| //! Generic array are commonly used as a return value for hash digests, so | |
| //! it's a good idea to allow to hexlify them easily. This module implements | |
| //! `std::fmt::LowerHex` and `std::fmt::UpperHex` traits. | |
| //! | |
| //! Example: | |
| //! | |
| //! ```rust | |
| //! # #[macro_use] | |
| //! # extern crate generic_array; | |
| //! # extern crate typenum; | |
| //! # fn main() { | |
| //! let array = arr![u8; 10, 20, 30]; | |
| //! assert_eq!(format!("{:x}", array), "0a141e"); | |
| //! # } | |
| //! ``` | |
| //! | |
| use core::{fmt, str, ops::Add, cmp::min}; | |
| use typenum::*; | |
| use crate::{ArrayLength, GenericArray}; | |
| static LOWER_CHARS: &'static [u8] = b"0123456789abcdef"; | |
| static UPPER_CHARS: &'static [u8] = b"0123456789ABCDEF"; | |
| impl<T: ArrayLength<u8>> fmt::LowerHex for GenericArray<u8, T> | |
| where | |
| T: Add<T>, | |
| <T as Add<T>>::Output: ArrayLength<u8>, | |
| { | |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | |
| let max_digits = f.precision().unwrap_or_else(|| self.len() * 2); | |
| let max_hex = (max_digits >> 1) + (max_digits & 1); | |
| if T::USIZE < 1024 { | |
| // For small arrays use a stack allocated | |
| // buffer of 2x number of bytes | |
| let mut res = GenericArray::<u8, Sum<T, T>>::default(); | |
| self.iter().take(max_hex).enumerate().for_each(|(i, c)| { | |
| res[i * 2] = LOWER_CHARS[(c >> 4) as usize]; | |
| res[i * 2 + 1] = LOWER_CHARS[(c & 0xF) as usize]; | |
| }); | |
| f.write_str(unsafe { str::from_utf8_unchecked(&res[..max_digits]) })?; | |
| } else { | |
| // For large array use chunks of up to 1024 bytes (2048 hex chars) | |
| let mut buf = [0u8; 2048]; | |
| let mut digits_left = max_digits; | |
| for chunk in self[..max_hex].chunks(1024) { | |
| chunk.iter().enumerate().for_each(|(i, c)| { | |
| buf[i * 2] = LOWER_CHARS[(c >> 4) as usize]; | |
| buf[i * 2 + 1] = LOWER_CHARS[(c & 0xF) as usize]; | |
| }); | |
| let n = min(chunk.len() * 2, digits_left); | |
| f.write_str(unsafe { str::from_utf8_unchecked(&buf[..n]) })?; | |
| digits_left -= n; | |
| } | |
| } | |
| Ok(()) | |
| } | |
| } | |
| impl<T: ArrayLength<u8>> fmt::UpperHex for GenericArray<u8, T> | |
| where | |
| T: Add<T>, | |
| <T as Add<T>>::Output: ArrayLength<u8>, | |
| { | |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | |
| let max_digits = f.precision().unwrap_or_else(|| self.len() * 2); | |
| let max_hex = (max_digits >> 1) + (max_digits & 1); | |
| if T::USIZE < 1024 { | |
| // For small arrays use a stack allocated | |
| // buffer of 2x number of bytes | |
| let mut res = GenericArray::<u8, Sum<T, T>>::default(); | |
| self.iter().take(max_hex).enumerate().for_each(|(i, c)| { | |
| res[i * 2] = UPPER_CHARS[(c >> 4) as usize]; | |
| res[i * 2 + 1] = UPPER_CHARS[(c & 0xF) as usize]; | |
| }); | |
| f.write_str(unsafe { str::from_utf8_unchecked(&res[..max_digits]) })?; | |
| } else { | |
| // For large array use chunks of up to 1024 bytes (2048 hex chars) | |
| let mut buf = [0u8; 2048]; | |
| let mut digits_left = max_digits; | |
| for chunk in self[..max_hex].chunks(1024) { | |
| chunk.iter().enumerate().for_each(|(i, c)| { | |
| buf[i * 2] = UPPER_CHARS[(c >> 4) as usize]; | |
| buf[i * 2 + 1] = UPPER_CHARS[(c & 0xF) as usize]; | |
| }); | |
| let n = min(chunk.len() * 2, digits_left); | |
| f.write_str(unsafe { str::from_utf8_unchecked(&buf[..n]) })?; | |
| digits_left -= n; | |
| } | |
| } | |
| Ok(()) | |
| } | |
| } |