| 'use strict'; |
| |
| const { parsePathData, stringifyPathData } = require('../lib/path.js'); |
| |
| var prevCtrlPoint; |
| |
| /** |
| * Convert path string to JS representation. |
| * |
| * @param {String} pathString input string |
| * @param {Object} params plugin params |
| * @return {Array} output array |
| */ |
| exports.path2js = function (path) { |
| if (path.pathJS) return path.pathJS; |
| const pathData = []; // JS representation of the path data |
| const newPathData = parsePathData(path.attributes.d); |
| for (const { command, args } of newPathData) { |
| if (command === 'Z' || command === 'z') { |
| pathData.push({ instruction: 'z' }); |
| } else { |
| pathData.push({ instruction: command, data: args }); |
| } |
| } |
| // First moveto is actually absolute. Subsequent coordinates were separated above. |
| if (pathData.length && pathData[0].instruction == 'm') { |
| pathData[0].instruction = 'M'; |
| } |
| path.pathJS = pathData; |
| return pathData; |
| }; |
| |
| /** |
| * Convert relative Path data to absolute. |
| * |
| * @param {Array} data input data |
| * @return {Array} output data |
| */ |
| var relative2absolute = (exports.relative2absolute = function (data) { |
| var currentPoint = [0, 0], |
| subpathPoint = [0, 0], |
| i; |
| |
| return data.map(function (item) { |
| var instruction = item.instruction, |
| itemData = item.data && item.data.slice(); |
| |
| if (instruction == 'M') { |
| set(currentPoint, itemData); |
| set(subpathPoint, itemData); |
| } else if ('mlcsqt'.indexOf(instruction) > -1) { |
| for (i = 0; i < itemData.length; i++) { |
| itemData[i] += currentPoint[i % 2]; |
| } |
| set(currentPoint, itemData); |
| |
| if (instruction == 'm') { |
| set(subpathPoint, itemData); |
| } |
| } else if (instruction == 'a') { |
| itemData[5] += currentPoint[0]; |
| itemData[6] += currentPoint[1]; |
| set(currentPoint, itemData); |
| } else if (instruction == 'h') { |
| itemData[0] += currentPoint[0]; |
| currentPoint[0] = itemData[0]; |
| } else if (instruction == 'v') { |
| itemData[0] += currentPoint[1]; |
| currentPoint[1] = itemData[0]; |
| } else if ('MZLCSQTA'.indexOf(instruction) > -1) { |
| set(currentPoint, itemData); |
| } else if (instruction == 'H') { |
| currentPoint[0] = itemData[0]; |
| } else if (instruction == 'V') { |
| currentPoint[1] = itemData[0]; |
| } else if (instruction == 'z') { |
| set(currentPoint, subpathPoint); |
| } |
| |
| return instruction == 'z' |
| ? { instruction: 'z' } |
| : { |
| instruction: instruction.toUpperCase(), |
| data: itemData, |
| }; |
| }); |
| }); |
| |
| /** |
| * Compute Cubic Bézie bounding box. |
| * |
| * @see https://pomax.github.io/bezierinfo/ |
| * |
| * @param {Float} xa |
| * @param {Float} ya |
| * @param {Float} xb |
| * @param {Float} yb |
| * @param {Float} xc |
| * @param {Float} yc |
| * @param {Float} xd |
| * @param {Float} yd |
| * |
| * @return {Object} |
| */ |
| exports.computeCubicBoundingBox = function (xa, ya, xb, yb, xc, yc, xd, yd) { |
| var minx = Number.POSITIVE_INFINITY, |
| miny = Number.POSITIVE_INFINITY, |
| maxx = Number.NEGATIVE_INFINITY, |
| maxy = Number.NEGATIVE_INFINITY, |
| ts, |
| t, |
| x, |
| y, |
| i; |
| |
| // X |
| if (xa < minx) { |
| minx = xa; |
| } |
| if (xa > maxx) { |
| maxx = xa; |
| } |
| if (xd < minx) { |
| minx = xd; |
| } |
| if (xd > maxx) { |
| maxx = xd; |
| } |
| |
| ts = computeCubicFirstDerivativeRoots(xa, xb, xc, xd); |
| |
| for (i = 0; i < ts.length; i++) { |
| t = ts[i]; |
| |
| if (t >= 0 && t <= 1) { |
| x = computeCubicBaseValue(t, xa, xb, xc, xd); |
| // y = computeCubicBaseValue(t, ya, yb, yc, yd); |
| |
| if (x < minx) { |
| minx = x; |
| } |
| if (x > maxx) { |
| maxx = x; |
| } |
| } |
| } |
| |
| // Y |
| if (ya < miny) { |
| miny = ya; |
| } |
| if (ya > maxy) { |
| maxy = ya; |
| } |
| if (yd < miny) { |
| miny = yd; |
| } |
| if (yd > maxy) { |
| maxy = yd; |
| } |
| |
| ts = computeCubicFirstDerivativeRoots(ya, yb, yc, yd); |
| |
| for (i = 0; i < ts.length; i++) { |
| t = ts[i]; |
| |
| if (t >= 0 && t <= 1) { |
| // x = computeCubicBaseValue(t, xa, xb, xc, xd); |
| y = computeCubicBaseValue(t, ya, yb, yc, yd); |
| |
| if (y < miny) { |
| miny = y; |
| } |
| if (y > maxy) { |
| maxy = y; |
| } |
| } |
| } |
| |
| return { |
| minx: minx, |
| miny: miny, |
| maxx: maxx, |
| maxy: maxy, |
| }; |
| }; |
| |
| // compute the value for the cubic bezier function at time=t |
| function computeCubicBaseValue(t, a, b, c, d) { |
| var mt = 1 - t; |
| |
| return ( |
| mt * mt * mt * a + 3 * mt * mt * t * b + 3 * mt * t * t * c + t * t * t * d |
| ); |
| } |
| |
| // compute the value for the first derivative of the cubic bezier function at time=t |
| function computeCubicFirstDerivativeRoots(a, b, c, d) { |
| var result = [-1, -1], |
| tl = -a + 2 * b - c, |
| tr = -Math.sqrt(-a * (c - d) + b * b - b * (c + d) + c * c), |
| dn = -a + 3 * b - 3 * c + d; |
| |
| if (dn !== 0) { |
| result[0] = (tl + tr) / dn; |
| result[1] = (tl - tr) / dn; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Compute Quadratic Bézier bounding box. |
| * |
| * @see https://pomax.github.io/bezierinfo/ |
| * |
| * @param {Float} xa |
| * @param {Float} ya |
| * @param {Float} xb |
| * @param {Float} yb |
| * @param {Float} xc |
| * @param {Float} yc |
| * |
| * @return {Object} |
| */ |
| exports.computeQuadraticBoundingBox = function (xa, ya, xb, yb, xc, yc) { |
| var minx = Number.POSITIVE_INFINITY, |
| miny = Number.POSITIVE_INFINITY, |
| maxx = Number.NEGATIVE_INFINITY, |
| maxy = Number.NEGATIVE_INFINITY, |
| t, |
| x, |
| y; |
| |
| // X |
| if (xa < minx) { |
| minx = xa; |
| } |
| if (xa > maxx) { |
| maxx = xa; |
| } |
| if (xc < minx) { |
| minx = xc; |
| } |
| if (xc > maxx) { |
| maxx = xc; |
| } |
| |
| t = computeQuadraticFirstDerivativeRoot(xa, xb, xc); |
| |
| if (t >= 0 && t <= 1) { |
| x = computeQuadraticBaseValue(t, xa, xb, xc); |
| // y = computeQuadraticBaseValue(t, ya, yb, yc); |
| |
| if (x < minx) { |
| minx = x; |
| } |
| if (x > maxx) { |
| maxx = x; |
| } |
| } |
| |
| // Y |
| if (ya < miny) { |
| miny = ya; |
| } |
| if (ya > maxy) { |
| maxy = ya; |
| } |
| if (yc < miny) { |
| miny = yc; |
| } |
| if (yc > maxy) { |
| maxy = yc; |
| } |
| |
| t = computeQuadraticFirstDerivativeRoot(ya, yb, yc); |
| |
| if (t >= 0 && t <= 1) { |
| // x = computeQuadraticBaseValue(t, xa, xb, xc); |
| y = computeQuadraticBaseValue(t, ya, yb, yc); |
| |
| if (y < miny) { |
| miny = y; |
| } |
| if (y > maxy) { |
| maxy = y; |
| } |
| } |
| |
| return { |
| minx: minx, |
| miny: miny, |
| maxx: maxx, |
| maxy: maxy, |
| }; |
| }; |
| |
| // compute the value for the quadratic bezier function at time=t |
| function computeQuadraticBaseValue(t, a, b, c) { |
| var mt = 1 - t; |
| |
| return mt * mt * a + 2 * mt * t * b + t * t * c; |
| } |
| |
| // compute the value for the first derivative of the quadratic bezier function at time=t |
| function computeQuadraticFirstDerivativeRoot(a, b, c) { |
| var t = -1, |
| denominator = a - 2 * b + c; |
| |
| if (denominator !== 0) { |
| t = (a - b) / denominator; |
| } |
| |
| return t; |
| } |
| |
| /** |
| * Convert path array to string. |
| * |
| * @param {Array} path input path data |
| * @param {Object} params plugin params |
| * @return {String} output path string |
| */ |
| exports.js2path = function (path, data, params) { |
| path.pathJS = data; |
| |
| const pathData = []; |
| for (const item of data) { |
| // remove moveto commands which are followed by moveto commands |
| if ( |
| pathData.length !== 0 && |
| (item.instruction === 'M' || item.instruction === 'm') |
| ) { |
| const last = pathData[pathData.length - 1]; |
| if (last.command === 'M' || last.command === 'm') { |
| pathData.pop(); |
| } |
| } |
| pathData.push({ |
| command: item.instruction, |
| args: item.data || [], |
| }); |
| } |
| |
| path.attributes.d = stringifyPathData({ |
| pathData, |
| precision: params.floatPrecision, |
| disableSpaceAfterFlags: params.noSpaceAfterFlags, |
| }); |
| }; |
| |
| function set(dest, source) { |
| dest[0] = source[source.length - 2]; |
| dest[1] = source[source.length - 1]; |
| return dest; |
| } |
| |
| /** |
| * Checks if two paths have an intersection by checking convex hulls |
| * collision using Gilbert-Johnson-Keerthi distance algorithm |
| * https://web.archive.org/web/20180822200027/http://entropyinteractive.com/2011/04/gjk-algorithm/ |
| * |
| * @param {Array} path1 JS path representation |
| * @param {Array} path2 JS path representation |
| * @return {Boolean} |
| */ |
| exports.intersects = function (path1, path2) { |
| // Collect points of every subpath. |
| var points1 = relative2absolute(path1).reduce(gatherPoints, []), |
| points2 = relative2absolute(path2).reduce(gatherPoints, []); |
| |
| // Axis-aligned bounding box check. |
| if ( |
| points1.maxX <= points2.minX || |
| points2.maxX <= points1.minX || |
| points1.maxY <= points2.minY || |
| points2.maxY <= points1.minY || |
| points1.every(function (set1) { |
| return points2.every(function (set2) { |
| return ( |
| set1[set1.maxX][0] <= set2[set2.minX][0] || |
| set2[set2.maxX][0] <= set1[set1.minX][0] || |
| set1[set1.maxY][1] <= set2[set2.minY][1] || |
| set2[set2.maxY][1] <= set1[set1.minY][1] |
| ); |
| }); |
| }) |
| ) |
| return false; |
| |
| // Get a convex hull from points of each subpath. Has the most complexity O(n·log n). |
| var hullNest1 = points1.map(convexHull), |
| hullNest2 = points2.map(convexHull); |
| |
| // Check intersection of every subpath of the first path with every subpath of the second. |
| return hullNest1.some(function (hull1) { |
| if (hull1.length < 3) return false; |
| |
| return hullNest2.some(function (hull2) { |
| if (hull2.length < 3) return false; |
| |
| var simplex = [getSupport(hull1, hull2, [1, 0])], // create the initial simplex |
| direction = minus(simplex[0]); // set the direction to point towards the origin |
| |
| var iterations = 1e4; // infinite loop protection, 10 000 iterations is more than enough |
| // eslint-disable-next-line no-constant-condition |
| while (true) { |
| // eslint-disable-next-line no-constant-condition |
| if (iterations-- == 0) { |
| console.error( |
| 'Error: infinite loop while processing mergePaths plugin.' |
| ); |
| return true; // true is the safe value that means “do nothing with paths” |
| } |
| // add a new point |
| simplex.push(getSupport(hull1, hull2, direction)); |
| // see if the new point was on the correct side of the origin |
| if (dot(direction, simplex[simplex.length - 1]) <= 0) return false; |
| // process the simplex |
| if (processSimplex(simplex, direction)) return true; |
| } |
| }); |
| }); |
| |
| function getSupport(a, b, direction) { |
| return sub(supportPoint(a, direction), supportPoint(b, minus(direction))); |
| } |
| |
| // Computes farthest polygon point in particular direction. |
| // Thanks to knowledge of min/max x and y coordinates we can choose a quadrant to search in. |
| // Since we're working on convex hull, the dot product is increasing until we find the farthest point. |
| function supportPoint(polygon, direction) { |
| var index = |
| direction[1] >= 0 |
| ? direction[0] < 0 |
| ? polygon.maxY |
| : polygon.maxX |
| : direction[0] < 0 |
| ? polygon.minX |
| : polygon.minY, |
| max = -Infinity, |
| value; |
| while ((value = dot(polygon[index], direction)) > max) { |
| max = value; |
| index = ++index % polygon.length; |
| } |
| return polygon[(index || polygon.length) - 1]; |
| } |
| }; |
| |
| function processSimplex(simplex, direction) { |
| // we only need to handle to 1-simplex and 2-simplex |
| if (simplex.length == 2) { |
| // 1-simplex |
| let a = simplex[1], |
| b = simplex[0], |
| AO = minus(simplex[1]), |
| AB = sub(b, a); |
| // AO is in the same direction as AB |
| if (dot(AO, AB) > 0) { |
| // get the vector perpendicular to AB facing O |
| set(direction, orth(AB, a)); |
| } else { |
| set(direction, AO); |
| // only A remains in the simplex |
| simplex.shift(); |
| } |
| } else { |
| // 2-simplex |
| let a = simplex[2], // [a, b, c] = simplex |
| b = simplex[1], |
| c = simplex[0], |
| AB = sub(b, a), |
| AC = sub(c, a), |
| AO = minus(a), |
| ACB = orth(AB, AC), // the vector perpendicular to AB facing away from C |
| ABC = orth(AC, AB); // the vector perpendicular to AC facing away from B |
| |
| if (dot(ACB, AO) > 0) { |
| if (dot(AB, AO) > 0) { |
| // region 4 |
| set(direction, ACB); |
| simplex.shift(); // simplex = [b, a] |
| } else { |
| // region 5 |
| set(direction, AO); |
| simplex.splice(0, 2); // simplex = [a] |
| } |
| } else if (dot(ABC, AO) > 0) { |
| if (dot(AC, AO) > 0) { |
| // region 6 |
| set(direction, ABC); |
| simplex.splice(1, 1); // simplex = [c, a] |
| } else { |
| // region 5 (again) |
| set(direction, AO); |
| simplex.splice(0, 2); // simplex = [a] |
| } |
| } // region 7 |
| else return true; |
| } |
| return false; |
| } |
| |
| function minus(v) { |
| return [-v[0], -v[1]]; |
| } |
| |
| function sub(v1, v2) { |
| return [v1[0] - v2[0], v1[1] - v2[1]]; |
| } |
| |
| function dot(v1, v2) { |
| return v1[0] * v2[0] + v1[1] * v2[1]; |
| } |
| |
| function orth(v, from) { |
| var o = [-v[1], v[0]]; |
| return dot(o, minus(from)) < 0 ? minus(o) : o; |
| } |
| |
| function gatherPoints(points, item, index, path) { |
| var subPath = points.length && points[points.length - 1], |
| prev = index && path[index - 1], |
| basePoint = subPath.length && subPath[subPath.length - 1], |
| data = item.data, |
| ctrlPoint = basePoint; |
| |
| switch (item.instruction) { |
| case 'M': |
| points.push((subPath = [])); |
| break; |
| case 'H': |
| addPoint(subPath, [data[0], basePoint[1]]); |
| break; |
| case 'V': |
| addPoint(subPath, [basePoint[0], data[0]]); |
| break; |
| case 'Q': |
| addPoint(subPath, data.slice(0, 2)); |
| prevCtrlPoint = [data[2] - data[0], data[3] - data[1]]; // Save control point for shorthand |
| break; |
| case 'T': |
| if (prev.instruction == 'Q' || prev.instruction == 'T') { |
| ctrlPoint = [ |
| basePoint[0] + prevCtrlPoint[0], |
| basePoint[1] + prevCtrlPoint[1], |
| ]; |
| addPoint(subPath, ctrlPoint); |
| prevCtrlPoint = [data[0] - ctrlPoint[0], data[1] - ctrlPoint[1]]; |
| } |
| break; |
| case 'C': |
| // Approximate quibic Bezier curve with middle points between control points |
| addPoint(subPath, [ |
| 0.5 * (basePoint[0] + data[0]), |
| 0.5 * (basePoint[1] + data[1]), |
| ]); |
| addPoint(subPath, [0.5 * (data[0] + data[2]), 0.5 * (data[1] + data[3])]); |
| addPoint(subPath, [0.5 * (data[2] + data[4]), 0.5 * (data[3] + data[5])]); |
| prevCtrlPoint = [data[4] - data[2], data[5] - data[3]]; // Save control point for shorthand |
| break; |
| case 'S': |
| if (prev.instruction == 'C' || prev.instruction == 'S') { |
| addPoint(subPath, [ |
| basePoint[0] + 0.5 * prevCtrlPoint[0], |
| basePoint[1] + 0.5 * prevCtrlPoint[1], |
| ]); |
| ctrlPoint = [ |
| basePoint[0] + prevCtrlPoint[0], |
| basePoint[1] + prevCtrlPoint[1], |
| ]; |
| } |
| addPoint(subPath, [ |
| 0.5 * (ctrlPoint[0] + data[0]), |
| 0.5 * (ctrlPoint[1] + data[1]), |
| ]); |
| addPoint(subPath, [0.5 * (data[0] + data[2]), 0.5 * (data[1] + data[3])]); |
| prevCtrlPoint = [data[2] - data[0], data[3] - data[1]]; |
| break; |
| case 'A': |
| // Convert the arc to bezier curves and use the same approximation |
| var curves = a2c.apply(0, basePoint.concat(data)); |
| for (var cData; (cData = curves.splice(0, 6).map(toAbsolute)).length; ) { |
| addPoint(subPath, [ |
| 0.5 * (basePoint[0] + cData[0]), |
| 0.5 * (basePoint[1] + cData[1]), |
| ]); |
| addPoint(subPath, [ |
| 0.5 * (cData[0] + cData[2]), |
| 0.5 * (cData[1] + cData[3]), |
| ]); |
| addPoint(subPath, [ |
| 0.5 * (cData[2] + cData[4]), |
| 0.5 * (cData[3] + cData[5]), |
| ]); |
| if (curves.length) addPoint(subPath, (basePoint = cData.slice(-2))); |
| } |
| break; |
| } |
| // Save final command coordinates |
| if (data && data.length >= 2) addPoint(subPath, data.slice(-2)); |
| return points; |
| |
| function toAbsolute(n, i) { |
| return n + basePoint[i % 2]; |
| } |
| |
| // Writes data about the extreme points on each axle |
| function addPoint(path, point) { |
| if (!path.length || point[1] > path[path.maxY][1]) { |
| path.maxY = path.length; |
| points.maxY = points.length ? Math.max(point[1], points.maxY) : point[1]; |
| } |
| if (!path.length || point[0] > path[path.maxX][0]) { |
| path.maxX = path.length; |
| points.maxX = points.length ? Math.max(point[0], points.maxX) : point[0]; |
| } |
| if (!path.length || point[1] < path[path.minY][1]) { |
| path.minY = path.length; |
| points.minY = points.length ? Math.min(point[1], points.minY) : point[1]; |
| } |
| if (!path.length || point[0] < path[path.minX][0]) { |
| path.minX = path.length; |
| points.minX = points.length ? Math.min(point[0], points.minX) : point[0]; |
| } |
| path.push(point); |
| } |
| } |
| |
| /** |
| * Forms a convex hull from set of points of every subpath using monotone chain convex hull algorithm. |
| * https://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain |
| * |
| * @param points An array of [X, Y] coordinates |
| */ |
| function convexHull(points) { |
| points.sort(function (a, b) { |
| return a[0] == b[0] ? a[1] - b[1] : a[0] - b[0]; |
| }); |
| |
| var lower = [], |
| minY = 0, |
| bottom = 0; |
| for (let i = 0; i < points.length; i++) { |
| while ( |
| lower.length >= 2 && |
| cross(lower[lower.length - 2], lower[lower.length - 1], points[i]) <= 0 |
| ) { |
| lower.pop(); |
| } |
| if (points[i][1] < points[minY][1]) { |
| minY = i; |
| bottom = lower.length; |
| } |
| lower.push(points[i]); |
| } |
| |
| var upper = [], |
| maxY = points.length - 1, |
| top = 0; |
| for (let i = points.length; i--; ) { |
| while ( |
| upper.length >= 2 && |
| cross(upper[upper.length - 2], upper[upper.length - 1], points[i]) <= 0 |
| ) { |
| upper.pop(); |
| } |
| if (points[i][1] > points[maxY][1]) { |
| maxY = i; |
| top = upper.length; |
| } |
| upper.push(points[i]); |
| } |
| |
| // last points are equal to starting points of the other part |
| upper.pop(); |
| lower.pop(); |
| |
| var hull = lower.concat(upper); |
| |
| hull.minX = 0; // by sorting |
| hull.maxX = lower.length; |
| hull.minY = bottom; |
| hull.maxY = (lower.length + top) % hull.length; |
| |
| return hull; |
| } |
| |
| function cross(o, a, b) { |
| return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0]); |
| } |
| |
| /* Based on code from Snap.svg (Apache 2 license). http://snapsvg.io/ |
| * Thanks to Dmitry Baranovskiy for his great work! |
| */ |
| |
| function a2c( |
| x1, |
| y1, |
| rx, |
| ry, |
| angle, |
| large_arc_flag, |
| sweep_flag, |
| x2, |
| y2, |
| recursive |
| ) { |
| // for more information of where this Math came from visit: |
| // https://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes |
| var _120 = (Math.PI * 120) / 180, |
| rad = (Math.PI / 180) * (+angle || 0), |
| res = [], |
| rotateX = function (x, y, rad) { |
| return x * Math.cos(rad) - y * Math.sin(rad); |
| }, |
| rotateY = function (x, y, rad) { |
| return x * Math.sin(rad) + y * Math.cos(rad); |
| }; |
| if (!recursive) { |
| x1 = rotateX(x1, y1, -rad); |
| y1 = rotateY(x1, y1, -rad); |
| x2 = rotateX(x2, y2, -rad); |
| y2 = rotateY(x2, y2, -rad); |
| var x = (x1 - x2) / 2, |
| y = (y1 - y2) / 2; |
| var h = (x * x) / (rx * rx) + (y * y) / (ry * ry); |
| if (h > 1) { |
| h = Math.sqrt(h); |
| rx = h * rx; |
| ry = h * ry; |
| } |
| var rx2 = rx * rx, |
| ry2 = ry * ry, |
| k = |
| (large_arc_flag == sweep_flag ? -1 : 1) * |
| Math.sqrt( |
| Math.abs( |
| (rx2 * ry2 - rx2 * y * y - ry2 * x * x) / |
| (rx2 * y * y + ry2 * x * x) |
| ) |
| ), |
| cx = (k * rx * y) / ry + (x1 + x2) / 2, |
| cy = (k * -ry * x) / rx + (y1 + y2) / 2, |
| f1 = Math.asin(((y1 - cy) / ry).toFixed(9)), |
| f2 = Math.asin(((y2 - cy) / ry).toFixed(9)); |
| |
| f1 = x1 < cx ? Math.PI - f1 : f1; |
| f2 = x2 < cx ? Math.PI - f2 : f2; |
| f1 < 0 && (f1 = Math.PI * 2 + f1); |
| f2 < 0 && (f2 = Math.PI * 2 + f2); |
| if (sweep_flag && f1 > f2) { |
| f1 = f1 - Math.PI * 2; |
| } |
| if (!sweep_flag && f2 > f1) { |
| f2 = f2 - Math.PI * 2; |
| } |
| } else { |
| f1 = recursive[0]; |
| f2 = recursive[1]; |
| cx = recursive[2]; |
| cy = recursive[3]; |
| } |
| var df = f2 - f1; |
| if (Math.abs(df) > _120) { |
| var f2old = f2, |
| x2old = x2, |
| y2old = y2; |
| f2 = f1 + _120 * (sweep_flag && f2 > f1 ? 1 : -1); |
| x2 = cx + rx * Math.cos(f2); |
| y2 = cy + ry * Math.sin(f2); |
| res = a2c(x2, y2, rx, ry, angle, 0, sweep_flag, x2old, y2old, [ |
| f2, |
| f2old, |
| cx, |
| cy, |
| ]); |
| } |
| df = f2 - f1; |
| var c1 = Math.cos(f1), |
| s1 = Math.sin(f1), |
| c2 = Math.cos(f2), |
| s2 = Math.sin(f2), |
| t = Math.tan(df / 4), |
| hx = (4 / 3) * rx * t, |
| hy = (4 / 3) * ry * t, |
| m = [ |
| -hx * s1, |
| hy * c1, |
| x2 + hx * s2 - x1, |
| y2 - hy * c2 - y1, |
| x2 - x1, |
| y2 - y1, |
| ]; |
| if (recursive) { |
| return m.concat(res); |
| } else { |
| res = m.concat(res); |
| var newres = []; |
| for (var i = 0, n = res.length; i < n; i++) { |
| newres[i] = |
| i % 2 |
| ? rotateY(res[i - 1], res[i], rad) |
| : rotateX(res[i], res[i + 1], rad); |
| } |
| return newres; |
| } |
| } |