blob: 6668ffb36df6782d628e8c44f5987df86a784099 [file] [log] [blame]
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "core/animation/AnimationEffect.h"
#include "core/animation/Animation.h"
#include "core/animation/AnimationEffectTiming.h"
#include "core/animation/ComputedTimingProperties.h"
#include "core/animation/TimingCalculations.h"
namespace blink {
namespace {
Timing::FillMode resolvedFillMode(Timing::FillMode fillMode, bool isAnimation)
{
if (fillMode != Timing::FillModeAuto)
return fillMode;
if (isAnimation)
return Timing::FillModeNone;
return Timing::FillModeBoth;
}
} // namespace
AnimationEffect::AnimationEffect(const Timing& timing, EventDelegate* eventDelegate)
: m_parent(nullptr)
, m_startTime(0)
, m_animation(nullptr)
, m_timing(timing)
, m_eventDelegate(eventDelegate)
, m_calculated()
, m_needsUpdate(true)
, m_lastUpdateTime(nullValue())
{
m_timing.assertValid();
}
double AnimationEffect::iterationDuration() const
{
double result = std::isnan(m_timing.iterationDuration) ? intrinsicIterationDuration() : m_timing.iterationDuration;
ASSERT(result >= 0);
return result;
}
double AnimationEffect::repeatedDuration() const
{
const double result = multiplyZeroAlwaysGivesZero(iterationDuration(), m_timing.iterationCount);
ASSERT(result >= 0);
return result;
}
double AnimationEffect::activeDurationInternal() const
{
const double result = m_timing.playbackRate
? repeatedDuration() / std::abs(m_timing.playbackRate)
: std::numeric_limits<double>::infinity();
ASSERT(result >= 0);
return result;
}
void AnimationEffect::updateSpecifiedTiming(const Timing& timing)
{
// FIXME: Test whether the timing is actually different?
m_timing = timing;
invalidate();
if (m_animation)
m_animation->setOutdated();
specifiedTimingChanged();
}
void AnimationEffect::computedTiming(ComputedTimingProperties& computedTiming)
{
// ComputedTimingProperties members.
computedTiming.setStartTime(startTimeInternal() * 1000);
computedTiming.setEndTime(endTimeInternal() * 1000);
computedTiming.setActiveDuration(activeDurationInternal() * 1000);
// FIXME: These should be null if not in effect, but current dictionary API
// will treat these as undefined.
if (ensureCalculated().isInEffect) {
computedTiming.setLocalTime(ensureCalculated().localTime * 1000);
computedTiming.setTimeFraction(ensureCalculated().timeFraction);
computedTiming.setCurrentIteration(ensureCalculated().currentIteration);
}
// KeyframeEffectOptions members.
computedTiming.setDelay(specifiedTiming().startDelay * 1000);
computedTiming.setEndDelay(specifiedTiming().endDelay * 1000);
computedTiming.setFill(Timing::fillModeString(resolvedFillMode(specifiedTiming().fillMode, isKeyframeEffect())));
computedTiming.setIterationStart(specifiedTiming().iterationStart);
computedTiming.setIterations(specifiedTiming().iterationCount);
UnrestrictedDoubleOrString duration;
duration.setUnrestrictedDouble(iterationDuration() * 1000);
computedTiming.setDuration(duration);
computedTiming.setPlaybackRate(specifiedTiming().playbackRate);
computedTiming.setDirection(Timing::playbackDirectionString(specifiedTiming().direction));
computedTiming.setEasing(specifiedTiming().timingFunction->toString());
}
ComputedTimingProperties AnimationEffect::computedTiming()
{
ComputedTimingProperties result;
computedTiming(result);
return result;
}
void AnimationEffect::updateInheritedTime(double inheritedTime, TimingUpdateReason reason) const
{
bool needsUpdate = m_needsUpdate || (m_lastUpdateTime != inheritedTime && !(isNull(m_lastUpdateTime) && isNull(inheritedTime)));
m_needsUpdate = false;
m_lastUpdateTime = inheritedTime;
const double localTime = inheritedTime - m_startTime;
double timeToNextIteration = std::numeric_limits<double>::infinity();
if (needsUpdate) {
const double activeDuration = this->activeDurationInternal();
const Phase currentPhase = calculatePhase(activeDuration, localTime, m_timing);
// FIXME: parentPhase depends on groups being implemented.
const AnimationEffect::Phase parentPhase = AnimationEffect::PhaseActive;
const double activeTime = calculateActiveTime(activeDuration, resolvedFillMode(m_timing.fillMode, isKeyframeEffect()), localTime, parentPhase, currentPhase, m_timing);
double currentIteration;
double timeFraction;
if (const double iterationDuration = this->iterationDuration()) {
const double startOffset = multiplyZeroAlwaysGivesZero(m_timing.iterationStart, iterationDuration);
ASSERT(startOffset >= 0);
const double scaledActiveTime = calculateScaledActiveTime(activeDuration, activeTime, startOffset, m_timing);
const double iterationTime = calculateIterationTime(iterationDuration, repeatedDuration(), scaledActiveTime, startOffset, m_timing);
currentIteration = calculateCurrentIteration(iterationDuration, iterationTime, scaledActiveTime, m_timing);
timeFraction = calculateTransformedTime(currentIteration, iterationDuration, iterationTime, m_timing) / iterationDuration;
if (!isNull(iterationTime)) {
timeToNextIteration = (iterationDuration - iterationTime) / std::abs(m_timing.playbackRate);
if (activeDuration - activeTime < timeToNextIteration)
timeToNextIteration = std::numeric_limits<double>::infinity();
}
} else {
const double localIterationDuration = 1;
const double localRepeatedDuration = localIterationDuration * m_timing.iterationCount;
ASSERT(localRepeatedDuration >= 0);
const double localActiveDuration = m_timing.playbackRate ? localRepeatedDuration / std::abs(m_timing.playbackRate) : std::numeric_limits<double>::infinity();
ASSERT(localActiveDuration >= 0);
const double localLocalTime = localTime < m_timing.startDelay ? localTime : localActiveDuration + m_timing.startDelay;
const AnimationEffect::Phase localCurrentPhase = calculatePhase(localActiveDuration, localLocalTime, m_timing);
const double localActiveTime = calculateActiveTime(localActiveDuration, resolvedFillMode(m_timing.fillMode, isKeyframeEffect()), localLocalTime, parentPhase, localCurrentPhase, m_timing);
const double startOffset = m_timing.iterationStart * localIterationDuration;
ASSERT(startOffset >= 0);
const double scaledActiveTime = calculateScaledActiveTime(localActiveDuration, localActiveTime, startOffset, m_timing);
const double iterationTime = calculateIterationTime(localIterationDuration, localRepeatedDuration, scaledActiveTime, startOffset, m_timing);
currentIteration = calculateCurrentIteration(localIterationDuration, iterationTime, scaledActiveTime, m_timing);
timeFraction = calculateTransformedTime(currentIteration, localIterationDuration, iterationTime, m_timing);
}
m_calculated.currentIteration = currentIteration;
m_calculated.timeFraction = timeFraction;
m_calculated.phase = currentPhase;
m_calculated.isInEffect = !isNull(activeTime);
m_calculated.isInPlay = phase() == PhaseActive && (!m_parent || m_parent->isInPlay());
m_calculated.isCurrent = phase() == PhaseBefore || isInPlay() || (m_parent && m_parent->isCurrent());
m_calculated.localTime = m_lastUpdateTime - m_startTime;
}
// Test for events even if timing didn't need an update as the animation may have gained a start time.
// FIXME: Refactor so that we can ASSERT(m_animation) here, this is currently required to be nullable for testing.
if (reason == TimingUpdateForAnimationFrame && (!m_animation || m_animation->hasStartTime() || m_animation->paused())) {
if (m_eventDelegate)
m_eventDelegate->onEventCondition(*this);
}
if (needsUpdate) {
// FIXME: This probably shouldn't be recursive.
updateChildrenAndEffects();
m_calculated.timeToForwardsEffectChange = calculateTimeToEffectChange(true, localTime, timeToNextIteration);
m_calculated.timeToReverseEffectChange = calculateTimeToEffectChange(false, localTime, timeToNextIteration);
}
}
const AnimationEffect::CalculatedTiming& AnimationEffect::ensureCalculated() const
{
if (!m_animation)
return m_calculated;
if (m_animation->outdated())
m_animation->update(TimingUpdateOnDemand);
ASSERT(!m_animation->outdated());
return m_calculated;
}
AnimationEffectTiming* AnimationEffect::timing()
{
return AnimationEffectTiming::create(this);
}
DEFINE_TRACE(AnimationEffect)
{
visitor->trace(m_parent);
visitor->trace(m_animation);
visitor->trace(m_eventDelegate);
}
} // namespace blink