blob: dbdeeb1bbdf1cf7468f3e15f7ad1fab5687fcf0d [file] [log] [blame]
/*
* Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef WTF_MathExtras_h
#define WTF_MathExtras_h
#include <algorithm>
#include <cmath>
#include <float.h>
#include <limits>
#include <stdint.h>
#include <stdlib.h>
#include <wtf/StdLibExtras.h>
#if OS(SOLARIS)
#include <ieeefp.h>
#endif
#if OS(OPENBSD)
#include <sys/types.h>
#include <machine/ieee.h>
#endif
#if OS(QNX)
// FIXME: Look into a way to have cmath import its functions into both the standard and global
// namespace. For now, we include math.h since the QNX cmath header only imports its functions
// into the standard namespace.
#include <math.h>
// These macros from math.h conflict with the real functions in the std namespace.
#undef signbit
#undef isnan
#undef isinf
#undef isfinite
#endif
#ifndef M_PI
const double piDouble = 3.14159265358979323846;
const float piFloat = 3.14159265358979323846f;
#else
const double piDouble = M_PI;
const float piFloat = static_cast<float>(M_PI);
#endif
#ifndef M_PI_2
const double piOverTwoDouble = 1.57079632679489661923;
const float piOverTwoFloat = 1.57079632679489661923f;
#else
const double piOverTwoDouble = M_PI_2;
const float piOverTwoFloat = static_cast<float>(M_PI_2);
#endif
#ifndef M_PI_4
const double piOverFourDouble = 0.785398163397448309616;
const float piOverFourFloat = 0.785398163397448309616f;
#else
const double piOverFourDouble = M_PI_4;
const float piOverFourFloat = static_cast<float>(M_PI_4);
#endif
#if OS(DARWIN)
// Work around a bug in the Mac OS X libc where ceil(-0.1) return +0.
inline double wtf_ceil(double x) { return copysign(ceil(x), x); }
#define ceil(x) wtf_ceil(x)
#endif
#if OS(SOLARIS)
namespace std {
#ifndef isfinite
inline bool isfinite(double x) { return finite(x) && !isnand(x); }
#endif
#ifndef signbit
inline bool signbit(double x) { return copysign(1.0, x) < 0; }
#endif
#ifndef isinf
inline bool isinf(double x) { return !finite(x) && !isnand(x); }
#endif
} // namespace std
#endif
#if OS(OPENBSD)
namespace std {
#ifndef isfinite
inline bool isfinite(double x) { return finite(x); }
#endif
#ifndef signbit
inline bool signbit(double x) { struct ieee_double *p = (struct ieee_double *)&x; return p->dbl_sign; }
#endif
} // namespace std
#endif
#if COMPILER(MSVC)
// We must not do 'num + 0.5' or 'num - 0.5' because they can cause precision loss.
static double round(double num)
{
double integer = ceil(num);
if (num > 0)
return integer - num > 0.5 ? integer - 1.0 : integer;
return integer - num >= 0.5 ? integer - 1.0 : integer;
}
static float roundf(float num)
{
float integer = ceilf(num);
if (num > 0)
return integer - num > 0.5f ? integer - 1.0f : integer;
return integer - num >= 0.5f ? integer - 1.0f : integer;
}
inline long long llround(double num) { return static_cast<long long>(round(num)); }
inline long long llroundf(float num) { return static_cast<long long>(roundf(num)); }
inline long lround(double num) { return static_cast<long>(round(num)); }
inline long lroundf(float num) { return static_cast<long>(roundf(num)); }
inline double trunc(double num) { return num > 0 ? floor(num) : ceil(num); }
#endif
#if COMPILER(GCC) && OS(QNX)
// The stdlib on QNX doesn't contain long abs(long). See PR #104666.
inline long long abs(long num) { return labs(num); }
#endif
#if COMPILER(MSVC)
// MSVC's math.h does not currently supply log2 or log2f.
inline double log2(double num)
{
// This constant is roughly M_LN2, which is not provided by default on Windows.
return log(num) / 0.693147180559945309417232121458176568;
}
inline float log2f(float num)
{
// This constant is roughly M_LN2, which is not provided by default on Windows.
return logf(num) / 0.693147180559945309417232121458176568f;
}
#endif
#if COMPILER(MSVC)
// The 64bit version of abs() is already defined in stdlib.h which comes with VC10
#if COMPILER(MSVC9_OR_LOWER)
inline long long abs(long long num) { return _abs64(num); }
#endif
namespace std {
inline bool isinf(double num) { return !_finite(num) && !_isnan(num); }
inline bool isnan(double num) { return !!_isnan(num); }
inline bool isfinite(double x) { return _finite(x); }
inline bool signbit(double num) { return _copysign(1.0, num) < 0; }
} // namespace std
inline double nextafter(double x, double y) { return _nextafter(x, y); }
inline float nextafterf(float x, float y) { return x > y ? x - FLT_EPSILON : x + FLT_EPSILON; }
inline double copysign(double x, double y) { return _copysign(x, y); }
// Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values.
extern "C" inline double wtf_atan2(double x, double y)
{
double posInf = std::numeric_limits<double>::infinity();
double negInf = -std::numeric_limits<double>::infinity();
double nan = std::numeric_limits<double>::quiet_NaN();
double result = nan;
if (x == posInf && y == posInf)
result = piOverFourDouble;
else if (x == posInf && y == negInf)
result = 3 * piOverFourDouble;
else if (x == negInf && y == posInf)
result = -piOverFourDouble;
else if (x == negInf && y == negInf)
result = -3 * piOverFourDouble;
else
result = ::atan2(x, y);
return result;
}
// Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x.
extern "C" inline double wtf_fmod(double x, double y) { return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); }
// Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1.
extern "C" inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); }
#define atan2(x, y) wtf_atan2(x, y)
#define fmod(x, y) wtf_fmod(x, y)
#define pow(x, y) wtf_pow(x, y)
// MSVC's math functions do not bring lrint.
inline long int lrint(double flt)
{
int64_t intgr;
#if CPU(X86)
__asm {
fld flt
fistp intgr
};
#else
ASSERT(std::isfinite(flt));
double rounded = round(flt);
intgr = static_cast<int64_t>(rounded);
// If the fractional part is exactly 0.5, we need to check whether
// the rounded result is even. If it is not we need to add 1 to
// negative values and subtract one from positive values.
if ((fabs(intgr - flt) == 0.5) & intgr)
intgr -= ((intgr >> 62) | 1); // 1 with the sign of result, i.e. -1 or 1.
#endif
return static_cast<long int>(intgr);
}
#endif // COMPILER(MSVC)
inline double deg2rad(double d) { return d * piDouble / 180.0; }
inline double rad2deg(double r) { return r * 180.0 / piDouble; }
inline double deg2grad(double d) { return d * 400.0 / 360.0; }
inline double grad2deg(double g) { return g * 360.0 / 400.0; }
inline double turn2deg(double t) { return t * 360.0; }
inline double deg2turn(double d) { return d / 360.0; }
inline double rad2grad(double r) { return r * 200.0 / piDouble; }
inline double grad2rad(double g) { return g * piDouble / 200.0; }
inline float deg2rad(float d) { return d * piFloat / 180.0f; }
inline float rad2deg(float r) { return r * 180.0f / piFloat; }
inline float deg2grad(float d) { return d * 400.0f / 360.0f; }
inline float grad2deg(float g) { return g * 360.0f / 400.0f; }
inline float turn2deg(float t) { return t * 360.0f; }
inline float deg2turn(float d) { return d / 360.0f; }
inline float rad2grad(float r) { return r * 200.0f / piFloat; }
inline float grad2rad(float g) { return g * piFloat / 200.0f; }
// std::numeric_limits<T>::min() returns the smallest positive value for floating point types
template<typename T> inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); }
template<> inline float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); }
template<> inline double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); }
template<typename T> inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); }
template<typename T> inline T clampTo(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>())
{
if (value >= static_cast<double>(max))
return max;
if (value <= static_cast<double>(min))
return min;
return static_cast<T>(value);
}
template<> inline long long int clampTo(double, long long int, long long int); // clampTo does not support long long ints.
inline int clampToInteger(double value)
{
return clampTo<int>(value);
}
inline float clampToFloat(double value)
{
return clampTo<float>(value);
}
inline int clampToPositiveInteger(double value)
{
return clampTo<int>(value, 0);
}
inline int clampToInteger(float value)
{
return clampTo<int>(value);
}
inline int clampToInteger(unsigned x)
{
const unsigned intMax = static_cast<unsigned>(std::numeric_limits<int>::max());
if (x >= intMax)
return std::numeric_limits<int>::max();
return static_cast<int>(x);
}
inline bool isWithinIntRange(float x)
{
return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max());
}
template<typename T> inline bool hasOneBitSet(T value)
{
return !((value - 1) & value) && value;
}
template<typename T> inline bool hasZeroOrOneBitsSet(T value)
{
return !((value - 1) & value);
}
template<typename T> inline bool hasTwoOrMoreBitsSet(T value)
{
return !hasZeroOrOneBitsSet(value);
}
template <typename T> inline unsigned getLSBSet(T value)
{
unsigned result = 0;
while (value >>= 1)
++result;
return result;
}
template<typename T> inline T timesThreePlusOneDividedByTwo(T value)
{
// Mathematically equivalent to:
// (value * 3 + 1) / 2;
// or:
// (unsigned)ceil(value * 1.5));
// This form is not prone to internal overflow.
return value + (value >> 1) + (value & 1);
}
#ifndef UINT64_C
#if COMPILER(MSVC)
#define UINT64_C(c) c ## ui64
#else
#define UINT64_C(c) c ## ull
#endif
#endif
#if COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)
inline double wtf_pow(double x, double y)
{
// MinGW-w64 has a custom implementation for pow.
// This handles certain special cases that are different.
if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) {
double f;
if (modf(y, &f) != 0.0)
return ((x == 0.0) ^ (y > 0.0)) ? std::numeric_limits<double>::infinity() : 0.0;
}
if (x == 2.0) {
int yInt = static_cast<int>(y);
if (y == yInt)
return ldexp(1.0, yInt);
}
return pow(x, y);
}
#define pow(x, y) wtf_pow(x, y)
#endif // COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)
// decompose 'number' to its sign, exponent, and mantissa components.
// The result is interpreted as:
// (sign ? -1 : 1) * pow(2, exponent) * (mantissa / (1 << 52))
inline void decomposeDouble(double number, bool& sign, int32_t& exponent, uint64_t& mantissa)
{
ASSERT(std::isfinite(number));
sign = std::signbit(number);
uint64_t bits = WTF::bitwise_cast<uint64_t>(number);
exponent = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff;
mantissa = bits & 0xFFFFFFFFFFFFFull;
// Check for zero/denormal values; if so, adjust the exponent,
// if not insert the implicit, omitted leading 1 bit.
if (exponent == -0x3ff)
exponent = mantissa ? -0x3fe : 0;
else
mantissa |= 0x10000000000000ull;
}
// Calculate d % 2^{64}.
inline void doubleToInteger(double d, unsigned long long& value)
{
if (std::isnan(d) || std::isinf(d))
value = 0;
else {
// -2^{64} < fmodValue < 2^{64}.
double fmodValue = fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
if (fmodValue >= 0) {
// 0 <= fmodValue < 2^{64}.
// 0 <= value < 2^{64}. This cast causes no loss.
value = static_cast<unsigned long long>(fmodValue);
} else {
// -2^{64} < fmodValue < 0.
// 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue);
// -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1.
// 0 < value < 2^{64}.
value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1;
}
}
}
namespace WTF {
// From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
inline uint32_t roundUpToPowerOfTwo(uint32_t v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
inline unsigned fastLog2(unsigned i)
{
unsigned log2 = 0;
if (i & (i - 1))
log2 += 1;
if (i >> 16)
log2 += 16, i >>= 16;
if (i >> 8)
log2 += 8, i >>= 8;
if (i >> 4)
log2 += 4, i >>= 4;
if (i >> 2)
log2 += 2, i >>= 2;
if (i >> 1)
log2 += 1;
return log2;
}
} // namespace WTF
#endif // #ifndef WTF_MathExtras_h