blob: 9abaf3c5bd4a5a43a500f9a0ae41fb079d568fbf [file] [log] [blame]
"""Python Advanced Enumerations & NameTuples"""
import sys as _sys
pyver = float('%s.%s' % _sys.version_info[:2])
try:
from collections import OrderedDict
except ImportError:
OrderedDict = dict
from collections import defaultdict
try:
import sqlite3
except ImportError:
sqlite3 = None
if pyver >= 3:
from functools import reduce
from operator import or_ as _or_, and_ as _and_, xor as _xor_, inv as _inv_
from operator import abs as _abs_, add as _add_, floordiv as _floordiv_
from operator import lshift as _lshift_, rshift as _rshift_, mod as _mod_
from operator import mul as _mul_, neg as _neg_, pos as _pos_, pow as _pow_
from operator import truediv as _truediv_, sub as _sub_
if pyver < 3:
from operator import div as _div_
__all__ = [
'NamedConstant', 'constant', 'skip'
'Enum', 'IntEnum', 'AutoNumberEnum', 'OrderedEnum', 'UniqueEnum',
'AutoNumber', 'MultiValue', 'NoAlias', 'Unique',
'enum', 'extend_enum', 'unique',
'NamedTuple', 'SqliteEnum',
]
if sqlite3 is None:
__all__.remove('SqliteEnum')
version = 2, 0, 1
try:
any
except NameError:
def any(iterable):
for element in iterable:
if element:
return True
return False
try:
basestring
except NameError:
# In Python 2 basestring is the ancestor of both str and unicode
# in Python 3 it's just str, but was missing in 3.1
basestring = str
try:
unicode
except NameError:
# In Python 3 unicode no longer exists (it's just str)
unicode = str
try:
long
baseinteger = int, long
except NameError:
baseinteger = int
# deprecated
baseint = baseinteger
try:
NoneType
except NameError:
NoneType = type(None)
try:
# derive from stdlib enum if possible
import enum
if hasattr(enum, 'version'):
StdlibEnumMeta = StdlibEnum = None
else:
from enum import EnumMeta as StdlibEnumMeta, Enum as StdlibEnum
del enum
except ImportError:
StdlibEnumMeta = StdlibEnum = None
# will be exported later
AutoValue = AutoNumber = MultiValue = NoAlias = Unique = None
class _RouteClassAttributeToGetattr(object):
"""Route attribute access on a class to __getattr__.
This is a descriptor, used to define attributes that act differently when
accessed through an instance and through a class. Instance access remains
normal, but access to an attribute through a class will be routed to the
class's __getattr__ method; this is done by raising AttributeError.
"""
name = None # set by metaclass
def __init__(self, fget=None):
self.fget = fget
def __get__(self, instance, ownerclass=None):
if instance is None:
raise AttributeError()
return self.fget(instance)
def __set__(self, instance, value):
raise AttributeError("can't set attribute %r" % self.name)
def __delete__(self, instance):
raise AttributeError("can't delete attribute %r" % self.name)
class skip(object):
"""
Protects item from becaming an Enum member during class creation.
"""
def __init__(self, value):
self.value = value
def __get__(self, instance, ownerclass=None):
return self.value
def _is_descriptor(obj):
"""Returns True if obj is a descriptor, False otherwise."""
return (
hasattr(obj, '__get__') or
hasattr(obj, '__set__') or
hasattr(obj, '__delete__'))
def _is_dunder(name):
"""Returns True if a __dunder__ name, False otherwise."""
return (name[:2] == name[-2:] == '__' and
name[2:3] != '_' and
name[-3:-2] != '_' and
len(name) > 4)
def _is_sunder(name):
"""Returns True if a _sunder_ name, False otherwise."""
return (name[0] == name[-1] == '_' and
name[1:2] != '_' and
name[-2:-1] != '_' and
len(name) > 2)
def _make_class_unpicklable(cls):
"""Make the given class un-picklable."""
def _break_on_call_reduce(self, protocol=None):
raise TypeError('%r cannot be pickled' % self)
cls.__reduce_ex__ = _break_on_call_reduce
cls.__module__ = '<unknown>'
################
# Constant stuff
################
# metaclass and class dict for NamedConstant
class constant(object):
'''
Simple constant descriptor for NamedConstant and Enum use.
'''
def __init__(self, value, doc=None):
self.value = value
self.__doc__ = doc
def __get__(self, *args):
return self.value
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, self.value)
NamedConstant = None
class _NamedConstantDict(dict):
"""Track constant order and ensure names are not reused.
NamedConstantMeta will use the names found in self._names as the
Constant names.
"""
def __init__(self):
super(_NamedConstantDict, self).__init__()
self._names = []
def __setitem__(self, key, value):
"""Changes anything not dundered or not a constant descriptor.
If an constant name is used twice, an error is raised; duplicate
values are not checked for.
Single underscore (sunder) names are reserved.
"""
if _is_sunder(key):
raise ValueError('_names_ are reserved for future NamedConstant use')
elif _is_dunder(key):
pass
elif key in self._names:
# overwriting an existing constant?
raise TypeError('Attempted to reuse name: %r' % key)
elif isinstance(value, constant) or not _is_descriptor(value):
if key in self:
# overwriting a descriptor?
raise TypeError('%s already defined as: %r' % (key, self[key]))
self._names.append(key)
super(_NamedConstantDict, self).__setitem__(key, value)
class NamedConstantMeta(type):
"""
Block attempts to reassign NamedConstant attributes.
"""
def __new__(metacls, cls, bases, clsdict):
if type(clsdict) is dict:
original_dict = clsdict
clsdict = _NamedConstantDict()
for k, v in original_dict.items():
clsdict[k] = v
newdict = {}
constants = {}
for name, obj in clsdict.items():
if name in clsdict._names:
constants[name] = obj
continue
elif isinstance(obj, skip):
obj = obj.value
newdict[name] = obj
newcls = super(NamedConstantMeta, metacls).__new__(metacls, cls, bases, newdict)
newcls._named_constant_cache_ = {}
for name, obj in constants.items():
newcls.__new__(newcls, name, obj)
return newcls
def __setattr__(cls, name, value):
"""Block attempts to reassign NamedConstants.
"""
cur_obj = cls.__dict__.get(name)
if NamedConstant is not None and isinstance(cur_obj, NamedConstant):
raise AttributeError('Cannot rebind constant <%s.%s>' % (cur_obj.__class__.__name__, cur_obj._name_))
super(NamedConstantMeta, cls).__setattr__(name, value)
temp_constant_dict = {}
temp_constant_dict['__doc__'] = "NamedConstants protection.\n\n Derive from this class to lock NamedConstants.\n\n"
def __new__(cls, name, value, doc=None):
cur_obj = cls.__dict__.get(name)
if isinstance(cur_obj, NamedConstant):
raise AttributeError('Cannot rebind constant <%s.%s>' % (cur_obj.__class__.__name__, cur_obj._name_))
elif isinstance(value, constant):
doc = doc or value.__doc__
value = value.value
metacls = cls.__class__
actual_type = type(value)
value_type = cls._named_constant_cache_.get(actual_type)
if value_type is None:
value_type = type(cls.__name__, (NamedConstant, type(value)), {})
cls._named_constant_cache_[type(value)] = value_type
obj = actual_type.__new__(value_type, value)
obj._name_ = name
obj._value_ = value
obj.__doc__ = doc
metacls.__setattr__(cls, name, obj)
return obj
temp_constant_dict['__new__'] = __new__
del __new__
def __repr__(self):
return "<%s.%s: %r>" % (
self.__class__.__name__, self._name_, self._value_)
temp_constant_dict['__repr__'] = __repr__
del __repr__
NamedConstant = NamedConstantMeta('NamedConstant', (object, ), temp_constant_dict)
Constant = NamedConstant
del temp_constant_dict
# defined now for immediate use
def enumsort(things):
"""
sorts things by value if all same type; otherwise by name
"""
if not things:
return things
sort_type = type(things[0])
if not issubclass(sort_type, tuple):
# direct sort or type error
if not all((type(v) is sort_type) for v in things[1:]):
raise TypeError('Cannot sort items of different types')
return sorted(things)
else:
# expecting list of (name, value) tuples
sort_type = type(things[0][1])
try:
if all((type(v[1]) is sort_type) for v in things[1:]):
return sorted(things, key=lambda i: i[1])
else:
raise TypeError('try name sort instead')
except TypeError:
return sorted(things, key=lambda i: i[0])
def export(collection, namespace=None):
"""
export([collection,] namespace) -> Export members to target namespace.
If collection is not given, act as a decorator.
"""
if namespace is None:
namespace = collection
def export_decorator(collection):
return export(collection, namespace)
return export_decorator
elif issubclass(collection, NamedConstant):
for n, c in collection.__dict__.items():
if isinstance(c, NamedConstant):
namespace[n] = c
elif issubclass(collection, Enum):
data = collection.__members__.items()
for n, m in data:
namespace[n] = m
else:
raise TypeError('%r is not a supported collection' % (collection,) )
return collection
# Constants used in Enum
@export(globals())
class EnumConstants(NamedConstant):
AutoValue = constant('autovalue', 'values are automatically created from _generate_next_value_')
AutoNumber = constant('autonumber', 'integer value is prepended to members, beginning from START')
MultiValue = constant('multivalue', 'each member can have several values')
NoAlias = constant('noalias', 'duplicate valued members are distinct, not aliased')
Unique = constant('unique', 'duplicate valued members are not allowed')
############
# Enum stuff
############
# Dummy value for Enum as EnumMeta explicity checks for it, but of course until
# EnumMeta finishes running the first time the Enum class doesn't exist. This
# is also why there are checks in EnumMeta like `if Enum is not None`
Enum = None
class enum(object):
"""
Helper class to track args, kwds.
"""
def __init__(self, *args, **kwds):
self.args = args
self.kwds = kwds
def __repr__(self):
final = []
args = ', '.join(['%r' % (a, ) for a in self.args])
if args:
final.append(args)
kwds = ', '.join([('%s=%r') % (k, v) for k, v in enumsort(list(self.kwds.items()))])
if kwds:
final.append(kwds)
return 'enum(%s)' % ', '.join(final)
_auto_null = object()
class auto(object):
"""
Instances are replaced with an appropriate value in Enum class suites.
"""
_value = _auto_null
_operations = []
def __and__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_and_, (self, other)))
return new_auto
def __rand__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_and_, (other, self)))
return new_auto
def __invert__(self):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_inv_, (self,)))
return new_auto
def __or__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_or_, (self, other)))
return new_auto
def __ror__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_or_, (other, self)))
return new_auto
def __xor__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_xor_, (self, other)))
return new_auto
def __rxor__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_xor_, (other, self)))
return new_auto
def __abs__(self):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_abs_, (self, )))
return new_auto
def __add__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_add_, (self, other)))
return new_auto
def __radd__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_add_, (other, self)))
return new_auto
def __neg__(self):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_neg_, (self, )))
return new_auto
def __pos__(self):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_pos_, (self, )))
return new_auto
if pyver < 3:
def __div__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_div_, (self, other)))
return new_auto
def __rdiv__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_div_, (other, self)))
return new_auto
def __floordiv__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_floordiv_, (self, other)))
return new_auto
def __rfloordiv__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_floordiv_, (other, self)))
return new_auto
def __truediv__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_truediv_, (self, other)))
return new_auto
def __rtruediv__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_truediv_, (other, self)))
return new_auto
def __lshift__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_lshift_, (self, other)))
return new_auto
def __rlshift__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_lshift_, (other, self)))
return new_auto
def __rshift__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_rshift_, (self, other)))
return new_auto
def __rrshift__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_rshift_, (other, self)))
return new_auto
def __mod__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_mod_, (self, other)))
return new_auto
def __rmod__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_mod_, (other, self)))
return new_auto
def __mul__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_mul_, (self, other)))
return new_auto
def __rmul__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_mul_, (other, self)))
return new_auto
def __pow__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_pow_, (self, other)))
return new_auto
def __rpow__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_pow_, (other, self)))
return new_auto
def __sub__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_sub_, (self, other)))
return new_auto
def __rsub__(self, other):
new_auto = self.__class__()
new_auto._operations = self._operations[:]
new_auto._operations.append((_sub_, (other, self)))
return new_auto
@property
def value(self):
if self._value is not _auto_null and self._operations:
raise TypeError('auto() object out of sync')
elif self._value is _auto_null and not self._operations:
return self._value
elif self._value is not _auto_null:
return self._value
else:
cls = self.__class__
for op, params in self._operations:
values = []
for param in params:
if isinstance(param, cls):
if param.value is _auto_null:
raise ValueError('unable to complete pending operations')
else:
values.append(param.value)
else:
values.append(param)
value = op(*values)
self._operations[:] = []
self._value = value
return value
@value.setter
def value(self, value):
if self._operations:
raise ValueError('operations pending, cannot set value')
self._value = value
class _EnumDict(dict):
"""Track enum member order and ensure member names are not reused.
EnumMeta will use the names found in self._member_names as the
enumeration member names.
"""
def __init__(self, settings, start, constructor_init, constructor_start):
super(_EnumDict, self).__init__()
self._constructor_init = constructor_init
self._constructor_start = constructor_start
# list of enum members
self._member_names = []
self._settings = settings
autonumber = AutoNumber in settings
autovalue = AutoValue in settings
multivalue = MultiValue in settings
if autonumber and start is None:
# starting value for AutoNumber
start = 1
elif start is not None and not autonumber:
autonumber = True
if start is not None:
self._value = start - 1
else:
self._value = None
# when the magic turns off
self._locked = not (autovalue or autonumber)
# if auto or autonumber
self._autovalue = autovalue
self._autonumber = autonumber
# if multiple values are allowed
self._multivalue = multivalue
# if init fields are specified
self._init = None
# list of temporary names
self._ignore = []
# if _sunder_ values can be changed via the class body
self._allow_init = True
self._last_values = []
def __getitem__(self, key):
if key == '_auto_on_':
self._locked = False
if not self._autonumber:
self._autovalue = True
return None
elif key == '_auto_off_':
self._locked = True
return None
elif (
self._locked
or key in self
or key in self._ignore
or _is_sunder(key)
or _is_dunder(key)
):
return super(_EnumDict, self).__getitem__(key)
elif self._autonumber:
try:
# try to generate the next value
value = self._value + 1
self._value += 1
except:
# couldn't work the magic, report error
raise KeyError('%s not found' % (key,))
elif self._autovalue:
value = self._generate_next_value(key, 1, len(self._member_names), self._last_values[:])
else:
raise Exception('Neither AutoNumber nor AutoValue set -- why am I here?')
self.__setitem__(key, value)
return value
def __setitem__(self, key, value):
"""Changes anything not sundured, dundered, nor a descriptor.
If an enum member name is used twice, an error is raised; duplicate
values are not checked for.
Single underscore (sunder) names are reserved.
"""
if _is_sunder(key):
if key not in (
'_init_', '_settings_', '_order_', '_ignore_', '_start_',
'_create_pseudo_member_', '_generate_next_value_', '_missing_',
):
raise ValueError('_names_ are reserved for Enum use')
elif not self._allow_init and key not in ('create_pseudo_member_', '_missing_'):
# sunder is used during creation, must be specified first
raise ValueError('cannot set %r after init phase' % (key,))
elif key == '_ignore_':
if isinstance(value, basestring):
value = value.split()
else:
value = list(value)
self._ignore = value
already = set(value) & set(self._member_names)
if already:
raise ValueError('_ignore_ cannot specify already set names: %r' % (already, ))
elif key == '_start_':
if self._constructor_start:
raise TypeError('start specified in constructor and class body')
if value is None:
self._value = None
self._autonumber = False
if not self._autovalue:
self._locked = True
else:
self._value = value - 1
self._locked = False
self._autonumber = True
elif key == '_settings_':
if not isinstance(value, tuple):
value = value,
self._settings |= set(value)
if NoAlias in value and Unique in value:
raise TypeError('cannot specify both NoAlias and Unique')
elif MultiValue in value and self._init:
raise TypeError('cannot specify both MultiValue and _init_ fields')
elif MultiValue in value and NoAlias in value:
raise TypeError('cannot specify both MultiValue and NoAlias')
elif AutoValue in value and AutoNumber in value:
raise TypeError('cannot specify both AutoValue and AutoNumber')
allowed_settings = dict.fromkeys(['autovalue', 'autonumber', 'noalias', 'unique', 'multivalue'])
for arg in value:
if arg not in allowed_settings:
raise TypeError('unknown qualifier: %r' % (arg,))
allowed_settings[arg] = True
self._multivalue = allowed_settings['multivalue']
self._autovalue = allowed_settings['autovalue']
self._autonumber = allowed_settings['autonumber']
self._locked = not (self._autonumber or self._autovalue)
if self._autonumber and self._value is None:
self._value = 0
elif key == '_init_':
if self._constructor_init:
raise TypeError('init specified in constructor and in class body')
if value and self._multivalue:
raise TypeError('cannot specify both MultiValue and _init_ fields')
_init_ = value
if isinstance(_init_, basestring):
_init_ = _init_.replace(',',' ').split()
self._init = _init_
elif key == '_generate_next_value_':
setattr(self, '_generate_next_value', value)
elif _is_dunder(key):
if key == '__order__':
key = '_order_'
if not self._allow_init:
# _order_ is used during creation, must be specified first
raise ValueError('cannot set %r after init phase' % (key,))
if _is_descriptor(value):
self._locked = True
elif key in self._member_names:
# descriptor overwriting an enum?
raise TypeError('Attempted to reuse name: %r' % key)
elif key in self._ignore:
pass
elif not _is_descriptor(value):
self._allow_init = False
if key in self:
# enum overwriting a descriptor?
raise TypeError('%s already defined as: %r' % (key, self[key]))
if self._multivalue and isinstance(value, tuple):
if self._autonumber:
self._value = value[0]
elif self._autovalue:
pass
elif self._autonumber and not self._locked:
# convert any auto instances to integers
if isinstance(value, auto):
value = self._value + 1
elif isinstance(value, basestring):
pass
else:
try:
new_value = []
for v in value:
if isinstance(v, auto):
new_value.append(self._value + 1)
else:
new_value.append(v)
value = tuple(new_value)
except TypeError:
# value wasn't iterable
pass
if isinstance(value, int):
self._value = value
elif isinstance(value, tuple):
if self._init is None:
# old behavior -> if first item is int, use it as value
# otherwise, generate a value and prepend it
if value and isinstance(value[0], baseinteger):
self._value = value[0]
else:
self._value += 1
value = (self._value, ) + value
elif len(value) == len(self._init):
# provide actual value for member
self._value += 1
value = (self._value, ) + value
elif 'value' not in self._init and len(value) == len(self._init) + 1:
# actual value for member is provided
self._value = value[0]
elif 'value' in self._init and len(value) == len(self._init) - 1:
count = self._value + 1
value = count, value
self._value = count
else:
# mismatch
raise TypeError('%s: number of fields provided do not match init' % key)
else:
if self._init is not None and (len(self._init) != 1 or 'value' in self._init):
raise TypeError('%s: number of fields provided do not match init' % key)
count = self._value + 1
value = count, value
self._value = count
elif isinstance(value, auto):
# if AutoNumber set use built-in value, not _generate_next_value_
if self._autonumber:
value = self._value + 1
self._value = value
else:
if value.value == _auto_null:
value.value = self._generate_next_value(key, 1, len(self._member_names), self._last_values[:])
value = value.value
else:
pass
self._member_names.append(key)
else:
# not a new member, turn off the autoassign magic
self._locked = True
self._allow_init = False
if not _is_sunder(key) and not _is_dunder(key) and not _is_descriptor(value):
if (self._autonumber or self._multivalue) and isinstance(value, tuple):
self._last_values.append(value[0])
else:
self._last_values.append(value)
super(_EnumDict, self).__setitem__(key, value)
class EnumMeta(StdlibEnumMeta or type):
"""Metaclass for Enum"""
@classmethod
def __prepare__(metacls, cls, bases, init=None, start=None, settings=()):
# settings are a combination of current and all past settings
constructor_init = init is not None
constructor_start = start is not None
if not isinstance(settings, tuple):
settings = settings,
settings = set(settings)
generate = None
# inherit previous flags
member_type, first_enum = metacls._get_mixins_(bases)
if first_enum is not None:
settings |= first_enum._settings_
init = init or first_enum._auto_init_
if start is None:
start = first_enum._start_
generate = getattr(first_enum, '_generate_next_value_', None)
generate = getattr(generate, 'im_func', generate)
# check for custom settings
if NoAlias in settings and Unique in settings:
raise TypeError('cannot specify both NoAlias and Unique')
elif MultiValue in settings and init is not None:
raise TypeError('cannot specify both MultiValue and INIT fields')
elif MultiValue in settings and NoAlias in settings:
raise TypeError('cannot specify both MultiValue and NoAlias')
elif AutoValue in settings and AutoNumber in settings:
raise TypeError('cannot specify both AutoValue and AutoNumber')
allowed_settings = dict.fromkeys(['autovalue', 'autonumber', 'noalias', 'unique', 'multivalue'])
for arg in settings:
if arg not in allowed_settings:
raise TypeError('unknown qualifier: %r' % (arg,))
allowed_settings[arg] = True
enum_dict = _EnumDict(settings=settings, start=start, constructor_init=constructor_init, constructor_start=constructor_start)
if settings & set([AutoValue, AutoNumber]) or start is not None:
enum_dict['_ignore_'] = ['property', 'classmethod', 'staticmethod']
if generate:
enum_dict['_generate_next_value_'] = generate
if init is not None:
if isinstance(init, basestring):
init = init.replace(',',' ').split()
enum_dict._init = init
return enum_dict
def __init__(cls, *args , **kwds):
super(EnumMeta, cls).__init__(*args)
def __new__(metacls, cls, bases, clsdict, init=None, start=None, settings=()):
# handle py2 case first
if type(clsdict) is not _EnumDict:
# py2 ard/or functional API gyrations
init = clsdict.pop('_init_', None)
start = clsdict.pop('_start_', None)
settings = clsdict.pop('_settings_', ())
_order_ = clsdict.pop('_order_', clsdict.pop('__order__', None))
_ignore_ = clsdict.pop('_ignore_', None)
_create_pseudo_member_ = clsdict.pop('_create_pseudo_member_', None)
_generate_next_value_ = clsdict.pop('_generate_next_value_', None)
_missing_ = clsdict.pop('_missing_', None)
enum_members = dict([
(k, v) for (k, v) in clsdict.items()
if not (_is_sunder(k) or _is_dunder(k) or _is_descriptor(v))
])
if isinstance(clsdict, OrderedDict):
calced_order = clsdict
elif _order_ is None:
calced_order = [name for (name, value) in enumsort(list(enum_members.items()))]
elif isinstance(_order_, basestring):
calced_order = _order_ = _order_.replace(',', ' ').split()
else:
calced_order = _order_
original_dict = clsdict
clsdict = metacls.__prepare__(cls, bases, init=init, start=start, settings=settings)
for name in ('_ignore_', '_create_pseudo_member_', '_generate_next_value_', '_missing_', '_order_'):
attr = locals()[name]
if attr is not None:
clsdict[name] = attr
# now add members
for k in calced_order:
clsdict[k] = original_dict[k]
for k, v in original_dict.items():
if k not in calced_order:
clsdict[k] = v
del _order_, _ignore_, _create_pseudo_member_, _generate_next_value_, _missing_
# resume normal path
clsdict._locked = True
member_type, first_enum = metacls._get_mixins_(bases)
_order_ = clsdict.pop('_order_', None)
if isinstance(_order_, basestring):
_order_ = _order_.replace(',',' ').split()
init = clsdict._init
start = clsdict._value
settings = clsdict._settings
if start is not None:
start += 1
creating_init = []
if init is None and (AutoNumber in settings or start is not None):
creating_init = ['value']
elif init is not None:
if (AutoNumber in settings or start is not None) and 'value' not in init:
creating_init = ['value'] + init
else:
creating_init = init[:]
autonumber = AutoNumber in settings
autovalue = AutoValue in settings
multivalue = MultiValue in settings
noalias = NoAlias in settings
unique = Unique in settings
# an Enum class is final once enumeration items have been defined; it
# cannot be mixed with other types (int, float, etc.) if it has an
# inherited __new__ unless a new __new__ is defined (or the resulting
# class will fail).
#
# remove any keys listed in _ignore_
clsdict.setdefault('_ignore_', []).append('_ignore_')
ignore = clsdict['_ignore_']
for key in ignore:
clsdict.pop(key, None)
# get the method to create enum members
__new__, save_new, use_args = metacls._find_new_(
clsdict,
member_type,
first_enum,
)
# save enum items into separate mapping so they don't get baked into
# the new class
enum_members = dict((k, clsdict[k]) for k in clsdict._member_names)
for name in clsdict._member_names:
del clsdict[name]
# move skipped values out of the descriptor, and add names to DynamicAttributes
for name, obj in clsdict.items():
if isinstance(obj, skip):
dict.__setitem__(clsdict, name, obj.value)
elif isinstance(obj, _RouteClassAttributeToGetattr):
obj.name = name
# check for illegal enum names (any others?)
invalid_names = set(enum_members) & set(['mro'])
if invalid_names:
raise ValueError('Invalid enum member name(s): %s' % (
', '.join(invalid_names), ))
# create our new Enum type
enum_class = type.__new__(metacls, cls, bases, clsdict)
enum_class._member_names_ = [] # names in random order
enum_class._member_map_ = OrderedDict()
enum_class._member_type_ = member_type
# save current flags for subclasses
enum_class._settings_ = settings
enum_class._start_ = start
enum_class._auto_init_ = _auto_init_ = init
if 'value' in creating_init and creating_init[0] != 'value':
raise TypeError("'value', if specified, must be the first item in 'init'")
# save attributes from super classes so we know if we can take
# the shortcut of storing members in the class dict
base_attributes = set([a for b in enum_class.mro() for a in b.__dict__])
# Reverse value->name map for hashable values.
enum_class._value2member_map_ = {}
enum_class._value2member_seq_ = ()
# instantiate them, checking for duplicates as we go
# we instantiate first instead of checking for duplicates first in case
# a custom __new__ is doing something funky with the values -- such as
# auto-numbering ;)
if __new__ is None:
__new__ = enum_class.__new__
for member_name in clsdict._member_names:
value = enum_members[member_name]
kwds = {}
more_args = ()
more_values = ()
if isinstance(value, enum):
args = value.args
kwds = value.kwds
elif not isinstance(value, tuple):
args = (value, )
else:
args = value
# tease value out of creating_init if specified
if 'value' in creating_init:
if 'value' in kwds:
value = kwds.pop('value')
else:
value, args = args[0], args[1:]
args, more_args = (value, ), args
elif multivalue:
args, more_values = args[0:1], args[1:]
value = args[0]
if member_type is tuple: # special case for tuple enums
args = (args, ) # wrap it one more time
if not use_args or not (args or kwds):
enum_member = __new__(enum_class)
if not hasattr(enum_member, '_value_'):
enum_member._value_ = value
else:
enum_member = __new__(enum_class, *args, **kwds)
if not hasattr(enum_member, '_value_'):
enum_member._value_ = member_type(*args)
value = enum_member._value_
enum_member._name_ = member_name
enum_member.__objclass__ = enum_class
enum_member.__init__(*(more_args or args), **kwds)
# If another member with the same value was already defined, the
# new member becomes an alias to the existing one.
if noalias:
# unless NoAlias was specified
enum_class._member_names_.append(member_name)
else:
nonunique = defaultdict(list)
for name, canonical_member in enum_class._member_map_.items():
if canonical_member.value == enum_member._value_:
if unique:
nonunique[name].append(member_name)
continue
enum_member = canonical_member
break
else:
# Aliases don't appear in member names (only in __members__).
enum_class._member_names_.append(member_name)
if nonunique:
# duplicates not allowed if Unique specified
message = []
for name, aliases in nonunique.items():
bad_aliases = ','.join(aliases)
message.append('%s --> %s' % (name, bad_aliases))
raise ValueError(
'duplicate names found in %r: %s' %
(cls, '; '.join(message))
)
# performance boost for any member that would not shadow
# a DynamicClassAttribute (aka _RouteClassAttributeToGetattr)
if member_name not in base_attributes:
setattr(enum_class, member_name, enum_member)
# now add to _member_map_
enum_class._member_map_[member_name] = enum_member
values = (value, ) + more_values
enum_member._values_ = values
for value in (value, ) + more_values:
# first check if value has already been used
if multivalue and (
value in enum_class._value2member_map_
or any(v == value for (v, m) in enum_class._value2member_seq_)
):
raise ValueError('%r has already been used' % (value,))
try:
# This may fail if value is not hashable. We can't add the value
# to the map, and by-value lookups for this value will be
# linear.
if noalias:
raise TypeError('cannot use dict to store value')
enum_class._value2member_map_[value] = enum_member
except TypeError:
enum_class._value2member_seq_ += ((value, enum_member), )
# If a custom type is mixed into the Enum, and it does not know how
# to pickle itself, pickle.dumps will succeed but pickle.loads will
# fail. Rather than have the error show up later and possibly far
# from the source, sabotage the pickle protocol for this class so
# that pickle.dumps also fails.
#
# However, if the new class implements its own __reduce_ex__, do not
# sabotage -- it's on them to make sure it works correctly. We use
# __reduce_ex__ instead of any of the others as it is preferred by
# pickle over __reduce__, and it handles all pickle protocols.
unpicklable = False
if '__reduce_ex__' not in clsdict:
if member_type is not object:
methods = ('__getnewargs_ex__', '__getnewargs__',
'__reduce_ex__', '__reduce__')
if not any(m in member_type.__dict__ for m in methods):
_make_class_unpicklable(enum_class)
unpicklable = True
# double check that repr and friends are not the mixin's or various
# things break (such as pickle)
for name in ('__repr__', '__str__', '__format__', '__reduce_ex__'):
class_method = getattr(enum_class, name)
enum_method = getattr(first_enum, name, None)
if name not in clsdict and class_method is not enum_method:
if name == '__reduce_ex__' and unpicklable:
continue
setattr(enum_class, name, enum_method)
# method resolution and int's are not playing nice
# Python's less than 2.6 use __cmp__
if pyver < 2.6:
if issubclass(enum_class, int):
setattr(enum_class, '__cmp__', getattr(int, '__cmp__'))
elif pyver < 3.0:
if issubclass(enum_class, int):
for method in (
'__le__',
'__lt__',
'__gt__',
'__ge__',
'__eq__',
'__ne__',
'__hash__',
):
setattr(enum_class, method, getattr(int, method))
# replace any other __new__ with our own (as long as Enum is not None,
# anyway) -- again, this is to support pickle
if Enum is not None:
# if the user defined their own __new__, save it before it gets
# clobbered in case they subclass later
if save_new:
setattr(enum_class, '__member_new__', enum_class.__dict__['__new__'])
setattr(enum_class, '__new__', Enum.__dict__['__new__'])
# py3 support for definition order (helps keep py2/py3 code in sync)
if _order_ and _order_ != enum_class._member_names_:
raise TypeError('member order does not match _order_')
return enum_class
def __bool__(cls):
"""
classes/types should always be True.
"""
return True
def __call__(cls, value, names=None, module=None, type=None, start=1):
"""Either returns an existing member, or creates a new enum class.
This method is used both when an enum class is given a value to match
to an enumeration member (i.e. Color(3)) and for the functional API
(i.e. Color = Enum('Color', names='red green blue')).
When used for the functional API: `module`, if set, will be stored in
the new class' __module__ attribute; `type`, if set, will be mixed in
as the first base class.
Note: if `module` is not set this routine will attempt to discover the
calling module by walking the frame stack; if this is unsuccessful
the resulting class will not be pickleable.
"""
if names is None: # simple value lookup
return cls.__new__(cls, value)
# otherwise, functional API: we're creating a new Enum type
return cls._create_(value, names, module=module, type=type, start=start)
def __contains__(cls, member):
return isinstance(member, cls) and member.name in cls._member_map_
def __delattr__(cls, attr):
# nicer error message when someone tries to delete an attribute
# (see issue19025).
if attr in cls._member_map_:
raise AttributeError(
"%s: cannot delete Enum member." % cls.__name__)
super(EnumMeta, cls).__delattr__(attr)
def __dir__(self):
return (['__class__', '__doc__', '__members__', '__module__'] +
self._member_names_)
@property
def __members__(cls):
"""Returns a mapping of member name->value.
This mapping lists all enum members, including aliases. Note that this
is a copy of the internal mapping.
"""
return cls._member_map_.copy()
def __getattr__(cls, name):
"""Return the enum member matching `name`
We use __getattr__ instead of descriptors or inserting into the enum
class' __dict__ in order to support `name` and `value` being both
properties for enum members (which live in the class' __dict__) and
enum members themselves.
"""
if _is_dunder(name):
raise AttributeError(name)
try:
return cls._member_map_[name]
except KeyError:
raise AttributeError(name)
def __getitem__(cls, name):
return cls._member_map_[name]
def __iter__(cls):
return (cls._member_map_[name] for name in cls._member_names_)
def __reversed__(cls):
return (cls._member_map_[name] for name in reversed(cls._member_names_))
def __len__(cls):
return len(cls._member_names_)
__nonzero__ = __bool__
def __repr__(cls):
return "<aenum %r>" % cls.__name__
def __setattr__(cls, name, value):
"""Block attempts to reassign Enum members/constants.
A simple assignment to the class namespace only changes one of the
several possible ways to get an Enum member from the Enum class,
resulting in an inconsistent Enumeration.
"""
member_map = cls.__dict__.get('_member_map_', {})
if name in member_map:
raise AttributeError('Cannot rebind %s.' % name)
cur_obj = cls.__dict__.get(name)
if isinstance(cur_obj, constant):
raise AttributeError('Cannot rebind %r' % (cur_obj,))
super(EnumMeta, cls).__setattr__(name, value)
def _create_(cls, class_name, names=None, module=None, type=None, start=1):
"""Convenience method to create a new Enum class.
`names` can be:
* A string containing member names, separated either with spaces or
commas. Values are auto-numbered from 1.
* An iterable of member names. Values are auto-numbered from 1.
* An iterable of (member name, value) pairs.
* A mapping of member name -> value.
"""
if pyver < 3.0:
# if class_name is unicode, attempt a conversion to ASCII
if isinstance(class_name, unicode):
try:
class_name = class_name.encode('ascii')
except UnicodeEncodeError:
raise TypeError('%r is not representable in ASCII' % class_name)
metacls = cls.__class__
if type is None:
bases = (cls, )
else:
bases = (type, cls)
_, first_enum = cls._get_mixins_(bases)
generate = getattr(first_enum, '_generate_next_value_', None)
generate = getattr(generate, 'im_func', generate)
# special processing needed for names?
if isinstance(names, basestring):
names = names.replace(',', ' ').split()
if isinstance(names, (tuple, list)) and isinstance(names[0], basestring):
original_names, names = names, []
last_values = []
for count, name in enumerate(original_names):
value = generate(name, start, count, last_values[:])
last_values.append(value)
names.append((name, value))
# Here, names is either an iterable of (name, value) or a mapping.
item = None # in case names is empty
clsdict = None
for item in names:
if clsdict is None:
# first time initialization
if isinstance(item, basestring):
clsdict = {}
else:
# remember the order
clsdict = metacls.__prepare__(class_name, bases)
if isinstance(item, basestring):
member_name, member_value = item, names[item]
else:
member_name, member_value = item
clsdict[member_name] = member_value
if clsdict is None:
# in case names was empty
clsdict = metacls.__prepare__(class_name, bases)
enum_class = metacls.__new__(metacls, class_name, bases, clsdict)
# TODO: replace the frame hack if a blessed way to know the calling
# module is ever developed
if module is None:
try:
module = _sys._getframe(2).f_globals['__name__']
except (AttributeError, KeyError):
pass
if module is None:
_make_class_unpicklable(enum_class)
else:
enum_class.__module__ = module
return enum_class
@staticmethod
def _get_mixins_(bases):
"""Returns the type for creating enum members, and the first inherited
enum class.
bases: the tuple of bases that was given to __new__
"""
if not bases or Enum is None:
return object, Enum
# double check that we are not subclassing a class with existing
# enumeration members; while we're at it, see if any other data
# type has been mixed in so we can use the correct __new__
member_type = first_enum = None
for base in bases:
if (base is not Enum and base is not StdlibEnum and
issubclass(base, Enum) and
base._member_names_):
raise TypeError("Cannot extend enumerations via subclassing.")
# base is now the last base in bases
if not issubclass(base, Enum):
raise TypeError("new enumerations must be created as "
"`ClassName([mixin_type,] enum_type)`")
# get correct mix-in type (either mix-in type of Enum subclass, or
# first base if last base is Enum)
if StdlibEnum is not None:
enum_classes = Enum, StdlibEnum
else:
enum_classes = Enum
if not issubclass(bases[0], enum_classes):
member_type = bases[0] # first data type
first_enum = bases[-1] # enum type
else:
for base in bases[0].__mro__:
# most common: (IntEnum, int, Enum, object)
# possible: (<Enum 'AutoIntEnum'>, <Enum 'IntEnum'>,
# <class 'int'>, <Enum 'Enum'>,
# <class 'object'>)
if issubclass(base, enum_classes):
if first_enum is None:
first_enum = base
else:
if member_type is None:
member_type = base
return member_type, first_enum
if pyver < 3.0:
@staticmethod
def _find_new_(clsdict, member_type, first_enum):
"""Returns the __new__ to be used for creating the enum members.
clsdict: the class dictionary given to __new__
member_type: the data type whose __new__ will be used by default
first_enum: enumeration to check for an overriding __new__
"""
# now find the correct __new__, checking to see of one was defined
# by the user; also check earlier enum classes in case a __new__ was
# saved as __member_new__
__new__ = clsdict.get('__new__', None)
if __new__:
return None, True, True # __new__, save_new, use_args
N__new__ = getattr(None, '__new__')
O__new__ = getattr(object, '__new__')
if Enum is None:
E__new__ = N__new__
else:
E__new__ = Enum.__dict__['__new__']
# check all possibles for __member_new__ before falling back to
# __new__
for method in ('__member_new__', '__new__'):
for possible in (member_type, first_enum):
try:
target = possible.__dict__[method]
except (AttributeError, KeyError):
target = getattr(possible, method, None)
if target not in [
None,
N__new__,
O__new__,
E__new__,
]:
if method == '__member_new__':
clsdict['__new__'] = target
return None, False, True
if isinstance(target, staticmethod):
target = target.__get__(member_type)
__new__ = target
break
if __new__ is not None:
break
else:
__new__ = object.__new__
# if a non-object.__new__ is used then whatever value/tuple was
# assigned to the enum member name will be passed to __new__ and to the
# new enum member's __init__
if __new__ is object.__new__:
use_args = False
else:
use_args = True
return __new__, False, use_args
else:
@staticmethod
def _find_new_(clsdict, member_type, first_enum):
"""Returns the __new__ to be used for creating the enum members.
clsdict: the class dictionary given to __new__
member_type: the data type whose __new__ will be used by default
first_enum: enumeration to check for an overriding __new__
"""
# now find the correct __new__, checking to see of one was defined
# by the user; also check earlier enum classes in case a __new__ was
# saved as __member_new__
__new__ = clsdict.get('__new__', None)
# should __new__ be saved as __member_new__ later?
save_new = __new__ is not None
if __new__ is None:
# check all possibles for __member_new__ before falling back to
# __new__
for method in ('__member_new__', '__new__'):
for possible in (member_type, first_enum):
target = getattr(possible, method, None)
if target not in (
None,
None.__new__,
object.__new__,
Enum.__new__,
StdlibEnum.__new__
):
__new__ = target
break
if __new__ is not None:
break
else:
__new__ = object.__new__
# if a non-object.__new__ is used then whatever value/tuple was
# assigned to the enum member name will be passed to __new__ and to the
# new enum member's __init__
if __new__ is object.__new__:
use_args = False
else:
use_args = True
return __new__, save_new, use_args
########################################################
# In order to support Python 2 and 3 with a single
# codebase we have to create the Enum methods separately
# and then use the `type(name, bases, dict)` method to
# create the class.
########################################################
temp_enum_dict = EnumMeta.__prepare__('Enum', (object, ))
temp_enum_dict['__doc__'] = "Generic enumeration.\n\n Derive from this class to define new enumerations.\n\n"
def __init__(self, *args, **kwds):
# auto-init method
_auto_init_ = self._auto_init_
if _auto_init_ is None:
return
if 'value' in _auto_init_:
# remove 'value' from _auto_init_ as it has already been handled
_auto_init_ = _auto_init_[1:]
if _auto_init_:
for name, arg in zip(_auto_init_, args):
setattr(self, name, arg)
if len(args) < len(_auto_init_):
remaining_args = _auto_init_[len(args):]
for name in remaining_args:
value = kwds.pop(name, undefined)
if value is undefined:
raise TypeError('invalid keyword: %r' % name)
setattr(self, name, value)
if kwds:
# too many keyword arguments
raise TypeError('invalid keyword(s): %s' % ', '.join(kwds.keys()))
temp_enum_dict['__init__'] = __init__
del __init__
def __new__(cls, value):
# all enum instances are actually created during class construction
# without calling this method; this method is called by the metaclass'
# __call__ (i.e. Color(3) ), and by pickle
if NoAlias in cls._settings_:
raise TypeError('NoAlias enumerations cannot be looked up by value')
if type(value) is cls:
# For lookups like Color(Color.red)
# value = value.value
return value
# by-value search for a matching enum member
# see if it's in the reverse mapping (for hashable values)
try:
if value in cls._value2member_map_:
return cls._value2member_map_[value]
except TypeError:
# not there, now do long search -- O(n) behavior
for name, member in cls._value2member_seq_:
if name == value:
return member
# still not found -- try _missing_ hook
return cls._missing_(value)
temp_enum_dict['__new__'] = __new__
del __new__
@staticmethod
def _generate_next_value_(name, start, count, last_values):
for last_value in reversed(last_values):
try:
return last_value + 1
except TypeError:
pass
else:
return start
temp_enum_dict['_generate_next_value_'] = _generate_next_value_
del _generate_next_value_
@classmethod
def _missing_(cls, value):
raise ValueError("%s is not a valid %s" % (value, cls.__name__))
temp_enum_dict['_missing_'] = _missing_
del _missing_
def __repr__(self):
return "<%s.%s: %r>" % (
self.__class__.__name__, self._name_, self._value_)
temp_enum_dict['__repr__'] = __repr__
del __repr__
def __str__(self):
return "%s.%s" % (self.__class__.__name__, self._name_)
temp_enum_dict['__str__'] = __str__
del __str__
if pyver >= 3.0:
def __dir__(self):
added_behavior = [
m
for cls in self.__class__.mro()
for m in cls.__dict__
if m[0] != '_' and m not in self._member_map_
]
return (['__class__', '__doc__', '__module__', ] + added_behavior)
temp_enum_dict['__dir__'] = __dir__
del __dir__
def __format__(self, format_spec):
# mixed-in Enums should use the mixed-in type's __format__, otherwise
# we can get strange results with the Enum name showing up instead of
# the value
# pure Enum branch
if self._member_type_ is object:
cls = str
val = str(self)
# mix-in branch
else:
cls = self._member_type_
val = self.value
return cls.__format__(val, format_spec)
temp_enum_dict['__format__'] = __format__
del __format__
def __hash__(self):
return hash(self._name_)
temp_enum_dict['__hash__'] = __hash__
del __hash__
def __reduce_ex__(self, proto):
return self.__class__, (self._value_, )
temp_enum_dict['__reduce_ex__'] = __reduce_ex__
del __reduce_ex__
####################################
# Python's less than 2.6 use __cmp__
if pyver < 2.6:
def __cmp__(self, other):
if type(other) is self.__class__:
if self is other:
return 0
return -1
return NotImplemented
raise TypeError("unorderable types: %s() and %s()" % (self.__class__.__name__, other.__class__.__name__))
temp_enum_dict['__cmp__'] = __cmp__
del __cmp__
else:
def __le__(self, other):
raise TypeError("unorderable types: %s() <= %s()" % (self.__class__.__name__, other.__class__.__name__))
temp_enum_dict['__le__'] = __le__
del __le__
def __lt__(self, other):
raise TypeError("unorderable types: %s() < %s()" % (self.__class__.__name__, other.__class__.__name__))
temp_enum_dict['__lt__'] = __lt__
del __lt__
def __ge__(self, other):
raise TypeError("unorderable types: %s() >= %s()" % (self.__class__.__name__, other.__class__.__name__))
temp_enum_dict['__ge__'] = __ge__
del __ge__
def __gt__(self, other):
raise TypeError("unorderable types: %s() > %s()" % (self.__class__.__name__, other.__class__.__name__))
temp_enum_dict['__gt__'] = __gt__
del __gt__
def __eq__(self, other):
if type(other) is self.__class__:
return self is other
return NotImplemented
temp_enum_dict['__eq__'] = __eq__
del __eq__
def __ne__(self, other):
if type(other) is self.__class__:
return self is not other
return NotImplemented
temp_enum_dict['__ne__'] = __ne__
del __ne__
def __hash__(self):
return hash(self._name_)
temp_enum_dict['__hash__'] = __hash__
del __hash__
def __reduce_ex__(self, proto):
return self.__class__, (self._value_, )
temp_enum_dict['__reduce_ex__'] = __reduce_ex__
del __reduce_ex__
# _RouteClassAttributeToGetattr is used to provide access to the `name`
# and `value` properties of enum members while keeping some measure of
# protection from modification, while still allowing for an enumeration
# to have members named `name` and `value`. This works because enumeration
# members are not set directly on the enum class -- __getattr__ is
# used to look them up.
#
# This method is also very slow, so EnumMeta will add members directly to the
# Enum class if it won't shadow other instance attributes
@_RouteClassAttributeToGetattr
def name(self):
return self._name_
temp_enum_dict['name'] = name
del name
@_RouteClassAttributeToGetattr
def value(self):
return self._value_
temp_enum_dict['value'] = value
del value
@_RouteClassAttributeToGetattr
def values(self):
return self._values_
temp_enum_dict['values'] = values
del values
@classmethod
def _convert(cls, name, module, filter, source=None):
"""
Create a new Enum subclass that replaces a collection of global constants
"""
# convert all constants from source (or module) that pass filter() to
# a new Enum called name, and export the enum and its members back to
# module;
# also, replace the __reduce_ex__ method so unpickling works in
# previous Python versions
module_globals = vars(_sys.modules[module])
if source:
source = vars(source)
else:
source = module_globals
members = [(key, source[key]) for key in source.keys() if filter(key)]
try:
# sort by value, name
members.sort(key=lambda t: (t[1], t[0]))
except TypeError:
# unless some values aren't comparable, in which case sort by just name
members.sort(key=lambda t: t[0])
cls = cls(name, members, module=module)
cls.__reduce_ex__ = _reduce_ex_by_name
module_globals.update(cls.__members__)
module_globals[name] = cls
return cls
temp_enum_dict['_convert'] = _convert
del _convert
def _reduce_ex_by_name(self, proto):
return self.name
if StdlibEnum is not None:
Enum = EnumMeta('Enum', (StdlibEnum, ), temp_enum_dict)
else:
Enum = EnumMeta('Enum', (object, ), temp_enum_dict)
del temp_enum_dict
# Enum has now been created
###########################
class IntEnum(int, Enum):
"""Enum where members are also (and must be) ints"""
if pyver >= 3:
class AutoEnum(Enum):
"""
automatically use _generate_next_value_ when values are missing (Python 3 only)
"""
_settings_ = AutoValue
class AutoNumberEnum(Enum):
"""
Automatically assign increasing values to members.
Py3: numbers match creation order
Py2: numbers are assigned alphabetically by member name
"""
def __new__(cls, *args, **kwds):
value = len(cls.__members__) + 1
obj = object.__new__(cls)
obj._value_ = value
return obj
class MultiValueEnum(Enum):
"""
Multiple values can map to each member.
"""
_settings_ = MultiValue
class NoAliasEnum(Enum):
"""
Duplicate value members are distinct, and cannot be looked up by value.
"""
_settings_ = NoAlias
class OrderedEnum(Enum):
"""
Add ordering based on values of Enum members.
"""
def __ge__(self, other):
if self.__class__ is other.__class__:
return self._value_ >= other._value_
return NotImplemented
def __gt__(self, other):
if self.__class__ is other.__class__:
return self._value_ > other._value_
return NotImplemented
def __le__(self, other):
if self.__class__ is other.__class__:
return self._value_ <= other._value_
return NotImplemented
def __lt__(self, other):
if self.__class__ is other.__class__:
return self._value_ < other._value_
return NotImplemented
if sqlite3:
class SqliteEnum(Enum):
def __conform__(self, protocol):
if protocol is sqlite3.PrepareProtocol:
return self.name
class UniqueEnum(Enum):
"""
Ensure no duplicate values exist.
"""
_settings_ = Unique
def convert(enum, name, module, filter, source=None):
"""
Create a new Enum subclass that replaces a collection of global constants
enum: Enum, IntEnum, ...
name: name of new Enum
module: name of module (__name__ in global context)
filter: function that returns True if name should be converted to Enum member
source: namespace to check (defaults to 'module')
"""
# convert all constants from source (or module) that pass filter() to
# a new Enum called name, and export the enum and its members back to
# module;
# also, replace the __reduce_ex__ method so unpickling works in
# previous Python versions
module_globals = vars(_sys.modules[module])
if source:
source = vars(source)
else:
source = module_globals
members = dict((name, value) for name, value in source.items() if filter(name))
enum = enum(name, members, module=module)
enum.__reduce_ex__ = _reduce_ex_by_name
module_globals.update(enum.__members__)
module_globals[name] = enum
def extend_enum(enumeration, name, *args):
"""
Add a new member to an existing Enum.
"""
try:
_member_map_ = enumeration._member_map_
_member_names_ = enumeration._member_names_
_member_type_ = enumeration._member_type_
_value2member_map_ = enumeration._value2member_map_
base_attributes = set([a for b in enumeration.mro() for a in b.__dict__])
except AttributeError:
raise TypeError('%r is not a supported Enum' % (enumeration,))
try:
_value2member_seq_ = enumeration._value2member_seq_
# _auto_number_ = enumeration._auto_number_
_multi_value_ = MultiValue in enumeration._settings_
_no_alias_ = NoAlias in enumeration._settings_
# _unique_ = Unique in enumeration._settings_
_auto_init_ = enumeration._auto_init_ or []
except AttributeError:
# standard Enum
_value2member_seq_ = []
# _auto_number_ = False
_multi_value_ = False
_no_alias_ = False
# _unique_ = False
_auto_init_ = []
_new = getattr(enumeration, '__new_member__', object.__new__)
if _new is object.__new__:
use_args = False
else:
use_args = True
if len(args) == 1:
[value] = args
else:
value = args
more_values = ()
kwds = {}
if isinstance(value, enum):
args = value.args
kwds = value.kwds
if not isinstance(value, tuple):
args = (value, )
else:
args = value
# tease value out of auto-init if specified
if 'value' in _auto_init_:
if 'value' in kwds:
value = kwds.pop('value')
else:
value, args = args[0], args[1:]
elif _multi_value_:
value, more_values, args = args[0], args[1:], ()
if _member_type_ is tuple:
args = (args, )
if not use_args:
new_member = _new(enumeration)
if not hasattr(new_member, '_value_'):
new_member._value_ = value
else:
new_member = _new(enumeration, *args, **kwds)
if not hasattr(new_member, '_value_'):
new_member._value_ = _member_type_(*args)
value = new_member._value_
new_member._name_ = name
new_member.__objclass__ = enumeration.__class__
new_member.__init__(*args)
# If another member with the same value was already defined, the
# new member becomes an alias to the existing one.
if _no_alias_:
# unless NoAlias was specified
_member_names_.append(name)
else:
nonunique = []
for canonical_member in _member_map_.values():
if canonical_member.value == new_member._value_:
if unique:
nonunique = canonical_member.name
continue
new_member = canonical_member
break
else:
# Aliases don't appear in member names (only in __members__).
_member_names_.append(name)
if nonunique:
# duplicates not allowed if Unique specified
raise ValueError('%s is a duplicate of %s' % (name, nonunique))
values = (value, ) + more_values
new_member._values_ = values
for value in (value, ) + more_values:
# first check if value has already been used
if _multi_value_ and (
value in _value2member_map_
or any(v == value for (v, m) in _value2member_seq_)
):
raise ValueError('%r has already been used' % (value,))
try:
# This may fail if value is not hashable. We can't add the value
# to the map, and by-value lookups for this value will be
# linear.
if _no_alias_:
raise TypeError('cannot use dict to store value')
_value2member_map_[value] = new_member
except TypeError:
_value2member_seq_ += ((value, new_member), )
if name not in base_attributes:
setattr(enumeration, name, new_member)
_member_map_[name] = new_member
try:
_value2member_map_[value] = new_member
except TypeError:
pass
def unique(enumeration):
"""
Class decorator that ensures only unique members exist in an enumeration.
"""
duplicates = []
for name, member in enumeration.__members__.items():
if name != member.name:
duplicates.append((name, member.name))
if duplicates:
duplicate_names = ', '.join(
["%s -> %s" % (alias, name) for (alias, name) in duplicates]
)
raise ValueError('duplicate names found in %r: %s' %
(enumeration, duplicate_names)
)
return enumeration
class Flag(Enum):
"""Support for flags"""
def _generate_next_value_(name, start, count, last_values):
"""
Generate the next value when not given.
name: the name of the member
start: the initital start value or None
count: the number of existing members
last_value: the last value assigned or None
"""
if not count:
return (1, start)[start is not None]
error = False
for last_value in reversed(last_values):
try:
high_bit = _high_bit(last_value)
break
except Exception:
error = True
break
if error:
raise TypeError('Invalid Flag value: %r' % last_value)
return 2 ** (high_bit+1)
@classmethod
def _missing_(cls, value):
original_value = value
if value < 0:
value = ~value
possible_member = cls._create_pseudo_member_(value)
if original_value < 0:
possible_member = ~possible_member
return possible_member
@classmethod
def _create_pseudo_member_(cls, value):
"""
Create a composite member iff value contains only members.
"""
pseudo_member = cls._value2member_map_.get(value, None)
if pseudo_member is None:
# verify all bits are accounted for
_, extra_flags = _decompose(cls, value)
if extra_flags:
raise ValueError("%r is not a valid %s" % (value, cls.__name__))
# construct a singleton enum pseudo-member
pseudo_member = object.__new__(cls)
pseudo_member._name_ = None
pseudo_member._value_ = value
# use setdefault in case another thread already created a composite
# with this value
pseudo_member = cls._value2member_map_.setdefault(value, pseudo_member)
return pseudo_member
def __contains__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return other._value_ & self._value_ == other._value_
def __repr__(self):
cls = self.__class__
if self._name_ is not None:
return '<%s.%s: %r>' % (cls.__name__, self._name_, self._value_)
members, uncovered = _decompose(cls, self._value_)
return '<%s.%s: %r>' % (
cls.__name__,
'|'.join([str(m._name_ or m._value_) for m in members]),
self._value_,
)
def __str__(self):
cls = self.__class__
if self._name_ is not None:
return '%s.%s' % (cls.__name__, self._name_)
members, uncovered = _decompose(cls, self._value_)
if len(members) == 1 and members[0]._name_ is None:
return '%s.%r' % (cls.__name__, members[0]._value_)
else:
return '%s.%s' % (
cls.__name__,
'|'.join([str(m._name_ or m._value_) for m in members]),
)
def __bool__(self):
return bool(self._value_)
if pyver < 3:
__nonzero__ = __bool__
del __bool__
def __or__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return self.__class__(self._value_ | other._value_)
def __and__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return self.__class__(self._value_ & other._value_)
def __xor__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return self.__class__(self._value_ ^ other._value_)
def __invert__(self):
members, uncovered = _decompose(self.__class__, self._value_)
inverted_members = [
m for m in self.__class__
if m not in members and not m._value_ & self._value_
]
inverted = reduce(_or_, inverted_members, self.__class__(0))
return self.__class__(inverted)
class IntFlag(int, Flag):
"""Support for integer-based Flags"""
@classmethod
def _missing_(cls, value):
if not isinstance(value, int):
raise ValueError("%r is not a valid %s" % (value, cls.__name__))
new_member = cls._create_pseudo_member_(value)
return new_member
@classmethod
def _create_pseudo_member_(cls, value):
pseudo_member = cls._value2member_map_.get(value, None)
if pseudo_member is None:
need_to_create = [value]
# get unaccounted for bits
_, extra_flags = _decompose(cls, value)
while extra_flags:
bit = _high_bit(extra_flags)
flag_value = 2 ** bit
if (flag_value not in cls._value2member_map_ and
flag_value not in need_to_create
):
need_to_create.append(flag_value)
if extra_flags == -flag_value:
extra_flags = 0
else:
extra_flags ^= flag_value
for value in reversed(need_to_create):
# construct singleton pseudo-members
pseudo_member = int.__new__(cls, value)
pseudo_member._name_ = None
pseudo_member._value_ = value
# use setdefault in case another thread already created a composite
# with this value
pseudo_member = cls._value2member_map_.setdefault(value, pseudo_member)
return pseudo_member
def __or__(self, other):
if not isinstance(other, (self.__class__, int)):
return NotImplemented
result = self.__class__(self._value_ | self.__class__(other)._value_)
return result
def __and__(self, other):
if not isinstance(other, (self.__class__, int)):
return NotImplemented
return self.__class__(self._value_ & self.__class__(other)._value_)
def __xor__(self, other):
if not isinstance(other, (self.__class__, int)):
return NotImplemented
return self.__class__(self._value_ ^ self.__class__(other)._value_)
__ror__ = __or__
__rand__ = __and__
__rxor__ = __xor__
def __invert__(self):
result = self.__class__(~self._value_)
return result
def _high_bit(value):
"""returns index of highest bit, or -1 if value is zero or negative"""
return value.bit_length() - 1
def _decompose(flag, value):
"""Extract all members from the value."""
# _decompose is only called if the value is not named
not_covered = value
negative = value < 0
# issue29167: wrap accesses to _value2member_map_ in a list to avoid race
# conditions between iterating over it and having more psuedo-
# members added to it
if negative:
# only check for named flags
flags_to_check = [
(m, v)
for v, m in list(flag._value2member_map_.items())
if m.name is not None
]
else:
# check for named flags and powers-of-two flags
flags_to_check = [
(m, v)
for v, m in list(flag._value2member_map_.items())
if m.name is not None or _power_of_two(v)
]
members = []
for member, member_value in flags_to_check:
if member_value and member_value & value == member_value:
members.append(member)
not_covered &= ~member_value
if not members and value in flag._value2member_map_:
members.append(flag._value2member_map_[value])
members.sort(key=lambda m: m._value_, reverse=True)
if len(members) > 1 and members[0].value == value:
# we have the breakdown, don't need the value member itself
members.pop(0)
return members, not_covered
def _power_of_two(value):
if value < 1:
return False
return value == 2 ** _high_bit(value)
# now for a NamedTuple
class _NamedTupleDict(OrderedDict):
"""Track field order and ensure field names are not reused.
NamedTupleMeta will use the names found in self._field_names to translate
to indices.
"""
def __init__(self, *args, **kwds):
self._field_names = []
super(_NamedTupleDict, self).__init__(*args, **kwds)
def __setitem__(self, key, value):
"""Records anything not dundered or not a descriptor.
If a field name is used twice, an error is raised.
Single underscore (sunder) names are reserved.
"""
if _is_sunder(key):
if key not in ('_size_', '_order_'):
raise ValueError('_names_ are reserved for future NamedTuple use')
elif _is_dunder(key):
if key == '__order__':
key = '_order_'
elif key in self._field_names:
# overwriting a field?
raise TypeError('Attempted to reuse field name: %r' % key)
elif not _is_descriptor(value):
if key in self:
# field overwriting a descriptor?
raise TypeError('%s already defined as: %r' % (key, self[key]))
self._field_names.append(key)
super(_NamedTupleDict, self).__setitem__(key, value)
class _TupleAttributeAtIndex(object):
def __init__(self, name, index, doc, default):
self.name = name
self.index = index
if doc is undefined:
doc = None
self.__doc__ = doc
self.default = default
def __get__(self, instance, owner):
if instance is None:
return self
if len(instance) <= self.index:
raise AttributeError('%s instance has no value for %s' % (instance.__class__.__name__, self.name))
return instance[self.index]
def __repr__(self):
return '%s(%d)' % (self.__class__.__name__, self.index)
class undefined(object):
def __repr__(self):
return 'undefined'
def __bool__(self):
return False
__nonzero__ = __bool__
undefined = undefined()
class TupleSize(Enum):
fixed = 'tuple length is static'
minimum = 'tuple must be at least x long (x is calculated during creation'
variable = 'tuple length can be anything'
class NamedTupleMeta(type):
"""Metaclass for NamedTuple"""
@classmethod
def __prepare__(metacls, cls, bases, size=undefined):
return _NamedTupleDict()
def __init__(cls, *args , **kwds):
super(NamedTupleMeta, cls).__init__(*args)
def __new__(metacls, cls, bases, clsdict, size=undefined):
if bases == (object, ):
bases = (tuple, object)
elif tuple not in bases:
if object in bases:
index = bases.index(object)
bases = bases[:index] + (tuple, ) + bases[index:]
else:
bases = bases + (tuple, )
# include any fields from base classes
base_dict = _NamedTupleDict()
namedtuple_bases = []
for base in bases:
if isinstance(base, NamedTupleMeta):
namedtuple_bases.append(base)
i = 0
if namedtuple_bases:
for name, index, doc, default in metacls._convert_fields(*namedtuple_bases):
base_dict[name] = index, doc, default
i = max(i, index)
# construct properly ordered dict with normalized indexes
for k, v in clsdict.items():
base_dict[k] = v
original_dict = base_dict
if size is not undefined and '_size_' in original_dict:
raise TypeError('_size_ cannot be set if "size" is passed in header')
add_order = isinstance(clsdict, _NamedTupleDict)
clsdict = _NamedTupleDict()
clsdict.setdefault('_size_', size or TupleSize.fixed)
unnumbered = OrderedDict()
numbered = OrderedDict()
_order_ = original_dict.pop('_order_', [])
if _order_ :
_order_ = _order_.replace(',',' ').split()
add_order = False
# and process this class
for k, v in original_dict.items():
if k not in original_dict._field_names:
clsdict[k] = v
else:
# TODO:normalize v here
if isinstance(v, baseinteger):
# assume an offset
v = v, undefined, undefined
i = v[0] + 1
target = numbered
elif isinstance(v, basestring):
# assume a docstring
if add_order:
v = i, v, undefined
i += 1
target = numbered
else:
v = undefined, v, undefined
target = unnumbered
elif isinstance(v, tuple) and len(v) in (2, 3) and isinstance(v[0], baseinteger) and isinstance(v[1], (basestring, NoneType)):
# assume an offset, a docstring, and (maybe) a default
if len(v) == 2:
v = v + (undefined, )
v = v
i = v[0] + 1
target = numbered
elif isinstance(v, tuple) and len(v) in (1, 2) and isinstance(v[0], (basestring, NoneType)):
# assume a docstring, and (maybe) a default
if len(v) == 1:
v = v + (undefined, )
if add_order:
v = (i, ) + v
i += 1
target = numbered
else:
v = (undefined, ) + v
target = unnumbered
else:
# refuse to guess further
raise ValueError('not sure what to do with %s=%r (should be OFFSET [, DOC [, DEFAULT]])' % (k, v))
target[k] = v
# all index values have been normalized
# deal with _order_ (or lack thereof)
fields = []
aliases = []
seen = set()
max_len = 0
if not _order_:
if unnumbered:
raise ValueError("_order_ not specified and OFFSETs not declared for %r" % unnumbered.keys())
for name, (index, doc, default) in sorted(numbered.items(), key=lambda nv: (nv[1][0], nv[0])):
if index in seen:
aliases.append(name)
else:
fields.append(name)
seen.add(index)
max_len = max(max_len, index + 1)
offsets = numbered
else:
# check if any unnumbered not in _order_
missing = set(unnumbered) - set(_order_)
if missing:
raise ValueError("unable to order fields: %s (use _order_ or specify OFFSET" % missing)
offsets = OrderedDict()
# if any unnumbered, number them from their position in _order_
i = 0
for k in _order_:
try:
index, doc, default = unnumbered.pop(k, None) or numbered.pop(k)
except IndexError:
raise ValueError('%s (from _order_) not found in %s' % (k, cls))
if index is not undefined:
i = index
if i in seen:
aliases.append(k)
else:
fields.append(k)
seen.add(i)
offsets[k] = i, doc, default
i += 1
max_len = max(max_len, i)
# now handle anything in numbered
for k, (index, doc, default) in sorted(numbered.items(), key=lambda nv: (nv[1][0], nv[0])):
if index in seen:
aliases.append(k)
else:
fields.append(k)
seen.add(index)
offsets[k] = index, doc, default
max_len = max(max_len, index+1)
# at this point fields and aliases should be ordered lists, offsets should be an
# OrdededDict with each value an int, str or None or undefined, default or None or undefined
assert len(fields) + len(aliases) == len(offsets), "number of fields + aliases != number of offsets"
assert set(fields) & set(offsets) == set(fields), "some fields are not in offsets: %s" % set(fields) & set(offsets)
assert set(aliases) & set(offsets) == set(aliases), "some aliases are not in offsets: %s" % set(aliases) & set(offsets)
for name, (index, doc, default) in offsets.items():
assert isinstance(index, baseinteger), "index for %s is not an int (%s:%r)" % (name, type(index), index)
assert isinstance(doc, (basestring, NoneType)) or doc is undefined, "doc is not a str, None, nor undefined (%s:%r)" % (name, type(doc), doc)
# create descriptors for fields
for name, (index, doc, default) in offsets.items():
clsdict[name] = _TupleAttributeAtIndex(name, index, doc, default)
clsdict['__slots__'] = ()
# create our new NamedTuple type
namedtuple_class = super(NamedTupleMeta, metacls).__new__(metacls, cls, bases, clsdict)
namedtuple_class._fields_ = fields
namedtuple_class._aliases_ = aliases
namedtuple_class._defined_len_ = max_len
return namedtuple_class
@staticmethod
def _convert_fields(*namedtuples):
"create list of index, doc, default triplets for cls in namedtuples"
all_fields = []
for cls in namedtuples:
base = len(all_fields)
for field in cls._fields_:
desc = getattr(cls, field)
all_fields.append((field, base+desc.index, desc.__doc__, desc.default))
return all_fields
def __add__(cls, other):
"A new NamedTuple is created by concatenating the _fields_ and adjusting the descriptors"
if not isinstance(other, NamedTupleMeta):
return NotImplemented
return NamedTupleMeta('%s%s' % (cls.__name__, other.__name__), (cls, other), {})
def __call__(cls, *args, **kwds):
"""Creates a new NamedTuple class or an instance of a NamedTuple subclass.
NamedTuple should have args of (class_name, names, module)
`names` can be:
* A string containing member names, separated either with spaces or
commas. Values are auto-numbered from 1.
* An iterable of member names. Values are auto-numbered from 1.
* An iterable of (member name, value) pairs.
* A mapping of member name -> value.
`module`, if set, will be stored in the new class' __module__ attribute;
Note: if `module` is not set this routine will attempt to discover the
calling module by walking the frame stack; if this is unsuccessful
the resulting class will not be pickleable.
subclass should have whatever arguments and/or keywords will be used to create an
instance of the subclass
"""
if cls is NamedTuple:
original_args = args
original_kwds = kwds.copy()
# create a new subclass
try:
if 'class_name' in kwds:
class_name = kwds.pop('class_name')
else:
class_name, args = args[0], args[1:]
if 'names' in kwds:
names = kwds.pop('names')
else:
names, args = args[0], args[1:]
if 'module' in kwds:
module = kwds.pop('module')
elif args:
module, args = args[0], args[1:]
else:
module = None
if 'type' in kwds:
type = kwds.pop('type')
elif args:
type, args = args[0], args[1:]
else:
type = None
except IndexError:
raise TypeError('too few arguments to NamedTuple: %s, %s' % (original_args, original_kwds))
if args or kwds:
raise TypeError('too many arguments to NamedTuple: %s, %s' % (original_args, original_kwds))
if pyver < 3.0:
# if class_name is unicode, attempt a conversion to ASCII
if isinstance(class_name, unicode):
try:
class_name = class_name.encode('ascii')
except UnicodeEncodeError:
raise TypeError('%r is not representable in ASCII' % class_name)
# quick exit if names is a NamedTuple
if isinstance(names, NamedTupleMeta):
names.__name__ = class_name
if type is not None and type not in names.__bases__:
names.__bases__ = (type, ) + names.__bases__
return names
metacls = cls.__class__
bases = (cls, )
clsdict = metacls.__prepare__(class_name, bases)
# special processing needed for names?
if isinstance(names, basestring):
names = names.replace(',', ' ').split()
if isinstance(names, (tuple, list)) and isinstance(names[0], basestring):
names = [(e, i) for (i, e) in enumerate(names)]
# Here, names is either an iterable of (name, index) or (name, index, doc, default) or a mapping.
item = None # in case names is empty
for item in names:
if isinstance(item, basestring):
# mapping
field_name, field_index = item, names[item]
else:
# non-mapping
if len(item) == 2:
field_name, field_index = item
else:
field_name, field_index = item[0], item[1:]
clsdict[field_name] = field_index
if type is not None:
if not isinstance(type, tuple):
type = (type, )
bases = type + bases
namedtuple_class = metacls.__new__(metacls, class_name, bases, clsdict)
# TODO: replace the frame hack if a blessed way to know the calling
# module is ever developed
if module is None:
try:
module = _sys._getframe(1).f_globals['__name__']
except (AttributeError, KeyError):
pass
if module is None:
_make_class_unpicklable(namedtuple_class)
else:
namedtuple_class.__module__ = module
return namedtuple_class
else:
# instantiate a subclass
namedtuple_instance = cls.__new__(cls, *args, **kwds)
if isinstance(namedtuple_instance, cls):
namedtuple_instance.__init__(*args, **kwds)
return namedtuple_instance
@property
def __fields__(cls):
return list(cls._fields_)
# collections.namedtuple compatibility
_fields = __fields__
@property
def __aliases__(cls):
return list(cls._aliases_)
def __repr__(cls):
return "<NamedTuple %r>" % cls.__name__
temp_namedtuple_dict = {}
temp_namedtuple_dict['__doc__'] = "NamedTuple base class.\n\n Derive from this class to define new NamedTuples.\n\n"
def __new__(cls, *args, **kwds):
if cls._size_ is TupleSize.fixed and len(args) > cls._defined_len_:
raise TypeError('%d fields expected, %d received' % (cls._defined_len_, len(args)))
unknown = set(kwds) - set(cls._fields_) - set(cls._aliases_)
if unknown:
raise TypeError('unknown fields: %r' % unknown)
final_args = list(args) + [undefined] * (len(cls.__fields__) - len(args))
for field, value in kwds.items():
index = getattr(cls, field).index
if final_args[index] != undefined:
raise TypeError('field %s specified more than once' % field)
final_args[index] = value
missing = []
for index, value in enumerate(final_args):
if value is undefined:
# look for default values
name = cls.__fields__[index]
default = getattr(cls, name).default
if default is undefined:
missing.append(name)
else:
final_args[index] = default
if missing:
if cls._size_ in (TupleSize.fixed, TupleSize.minimum):
raise TypeError('values not provided for field(s): %s' % ', '.join(missing))
while final_args and final_args[-1] is undefined:
final_args.pop()
missing.pop()
if cls._size_ is not TupleSize.variable or undefined in final_args:
raise TypeError('values not provided for field(s): %s' % ', '.join(missing))
return tuple.__new__(cls, tuple(final_args))
temp_namedtuple_dict['__new__'] = __new__
del __new__
def __reduce_ex__(self, proto):
return self.__class__, tuple(getattr(self, f) for f in self._fields_)
temp_namedtuple_dict['__reduce_ex__'] = __reduce_ex__
del __reduce_ex__
def __repr__(self):
if len(self) == len(self._fields_):
return "%s(%s)" % (
self.__class__.__name__, ', '.join(['%s=%r' % (f, o) for f, o in zip(self._fields_, self)])
)
else:
return '%s(%s)' % (self.__class__.__name__, ', '.join([repr(o) for o in self]))
temp_namedtuple_dict['__repr__'] = __repr__
del __repr__
def __str__(self):
return "%s(%s)" % (
self.__class__.__name__, ', '.join(['%r' % (getattr(self, f), ) for f in self._fields_])
)
temp_namedtuple_dict['__str__'] = __str__
del __str__
## compatibility methods with stdlib namedtuple
@property
def __aliases__(self):
return list(self.__class__._aliases_)
temp_namedtuple_dict['__aliases__'] = __aliases__
del __aliases__
@property
def __fields__(self):
return list(self.__class__._fields_)
temp_namedtuple_dict['__fields__'] = __fields__
temp_namedtuple_dict['_fields'] = __fields__
del __fields__
def _make(cls, iterable, new=None, len=None):
return cls.__new__(cls, *iterable)
temp_namedtuple_dict['_make'] = classmethod(_make)
del _make
def _asdict(self):
return OrderedDict(zip(self._fields_, self))
temp_namedtuple_dict['_asdict'] = _asdict
del _asdict
def _replace(self, **kwds):
current = self._asdict()
current.update(kwds)
return self.__class__(**current)
temp_namedtuple_dict['_replace'] = _replace
del _replace
NamedTuple = NamedTupleMeta('NamedTuple', (object, ), temp_namedtuple_dict)
del temp_namedtuple_dict
class module(object):
def __init__(self, cls, *args):
self.__name__ = cls.__name__
self._parent_module = cls.__module__
self.__all__ = []
all_objects = cls.__dict__
if not args:
args = [k for k, v in all_objects.items() if isinstance(v, (NamedConstant, Enum))]
for name in args:
self.__dict__[name] = all_objects[name]
self.__all__.append(name)
def register(self):
_sys.modules["%s.%s" % (self._parent_module, self.__name__)] = self