blob: e0854a8df04efefa1677d10091ffdf7a4b9e9927 [file] [log] [blame] [edit]
#!/usr/bin/env python3
# SPDX-License-Identifier: Apache-2.0
# -----------------------------------------------------------------------------
# Copyright 2021 Arm Limited
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy
# of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
# -----------------------------------------------------------------------------
"""
The ``astc_trace_analysis`` utility provides a tool to analyze trace files.
WARNING: Trace files are an engineering tool, and not part of the standard
product, so traces and their associated tools are volatile and may change
significantly without notice.
"""
import argparse
from collections import defaultdict as ddict
import json
import numpy as np
import sys
QUANT_TABLE = {
0: 2,
1: 3,
2: 4,
3: 5,
4: 6,
5: 8,
6: 10,
7: 12,
8: 16,
9: 20,
10: 24,
11: 32
}
CHANNEL_TABLE = {
0: "R",
1: "G",
2: "B",
3: "A"
}
class Trace:
def __init__(self, block_x, block_y, block_z):
self.block_x = block_x
self.block_y = block_y
self.block_z = block_z
self.blocks = []
def add_block(self, block):
self.blocks.append(block)
def __getitem__(self, i):
return self.blocks[i]
def __delitem__(self, i):
del self.blocks[i]
def __len__(self):
return len(self.blocks)
class Block:
def __init__(self, pos_x, pos_y, pos_z, error_target):
self.pos_x = pos_x
self.pos_y = pos_y
self.pos_z = pos_z
self.raw_min = None
self.raw_max = None
self.ldr_min = None
self.ldr_max = None
self.error_target = error_target
self.passes = []
self.qualityHit = None
def add_minimums(self, r, g, b, a):
self.raw_min = (r, g, b, a)
def ldr(x):
cmax = 65535.0
return int((r / cmax) * 255.0)
self.ldr_min = (ldr(r), ldr(g), ldr(b), ldr(a))
def add_maximums(self, r, g, b, a):
self.raw_max = (r, g, b, a)
def ldr(x):
cmax = 65535.0
return int((r / cmax) * 255.0)
self.ldr_max = (ldr(r), ldr(g), ldr(b), ldr(a))
def add_pass(self, pas):
self.passes.append(pas)
def __getitem__(self, i):
return self.passes[i]
def __delitem__(self, i):
del self.passes[i]
def __len__(self):
return len(self.passes)
class Pass:
def __init__(self, partitions, partition, planes, target_hit, mode, component):
self.partitions = partitions
self.partition_index = 0 if partition is None else partition
self.planes = planes
self.plane2_component = component
self.target_hit = target_hit
self.search_mode = mode
self.candidates = []
def add_candidate(self, candidate):
self.candidates.append(candidate)
def __getitem__(self, i):
return self.candidates[i]
def __delitem__(self, i):
del self.candidates[i]
def __len__(self):
return len(self.candidates)
class Candidate:
def __init__(self, weight_x, weight_y, weight_z, weight_quant):
self.weight_x = weight_x
self.weight_y = weight_y
self.weight_z = weight_z
self.weight_quant = weight_quant
self.refinement_errors = []
def add_refinement(self, errorval):
self.refinement_errors.append(errorval)
def get_attrib(data, name, multiple=False, hard_fail=True):
results = []
for attrib in data:
if len(attrib) == 2 and attrib[0] == name:
results.append(attrib[1])
if not results:
if hard_fail:
print(json.dumps(data, indent=2))
assert False, "Attribute %s not found" % name
if multiple:
return list()
return None
if not multiple:
if len(results) > 1:
print(json.dumps(data, indent=2))
assert False, "Attribute %s found %u times" % (name, len(results))
return results[0]
return results
def rev_enumerate(seq):
return zip(reversed(range(len(seq))), reversed(seq))
def foreach_block(data):
for block in data:
yield block
def foreach_pass(data):
for block in data:
for pas in block:
yield (block, pas)
def foreach_candidate(data):
for block in data:
for pas in block:
# Special case - None candidates for 0 partition
if not len(pas):
yield (block, pas, None)
for candidate in pas:
yield (block, pas, candidate)
def get_node(data, name, multiple=False, hard_fail=True):
results = []
for attrib in data:
if len(attrib) == 3 and attrib[0] == "node" and attrib[1] == name:
results.append(attrib[2])
if not results:
if hard_fail:
print(json.dumps(data, indent=2))
assert False, "Node %s not found" % name
return None
if not multiple:
if len(results) > 1:
print(json.dumps(data, indent=2))
assert False, "Node %s found %u times" % (name, len(results))
return results[0]
return results
def find_best_pass_and_candidate(block):
explicit_pass = None
best_error = 1e30
best_pass = None
best_candidate = None
for pas in block:
# Special case for constant color blocks - no trial candidates
if pas.target_hit and pas.partitions == 0:
return (pas, None)
for candidate in pas:
errorval = candidate.refinement_errors[-1]
if errorval <= best_error:
best_error = errorval
best_pass = pas
best_candidate = candidate
# Every other return type must have both best pass and best candidate
assert (best_pass and best_candidate)
return (best_pass, best_candidate)
def generate_database(data):
# Skip header
assert(data[0] == "node")
assert(data[1] == "root")
data = data[2]
bx = get_attrib(data, "block_x")
by = get_attrib(data, "block_y")
bz = get_attrib(data, "block_z")
dbStruct = Trace(bx, by, bz)
for block in get_node(data, "block", True):
px = get_attrib(block, "pos_x")
py = get_attrib(block, "pos_y")
pz = get_attrib(block, "pos_z")
minr = get_attrib(block, "min_r")
ming = get_attrib(block, "min_g")
minb = get_attrib(block, "min_b")
mina = get_attrib(block, "min_a")
maxr = get_attrib(block, "max_r")
maxg = get_attrib(block, "max_g")
maxb = get_attrib(block, "max_b")
maxa = get_attrib(block, "max_a")
et = get_attrib(block, "tune_error_threshold")
blockStruct = Block(px, py, pz, et)
blockStruct.add_minimums(minr, ming, minb, mina)
blockStruct.add_maximums(maxr, maxg, maxb, maxa)
dbStruct.add_block(blockStruct)
for pas in get_node(block, "pass", True):
# Don't copy across passes we skipped due to heuristics
skipped = get_attrib(pas, "skip", False, False)
if skipped:
continue
prts = get_attrib(pas, "partition_count")
prti = get_attrib(pas, "partition_index", False, False)
plns = get_attrib(pas, "plane_count")
chan = get_attrib(pas, "plane_component", False, plns > 2)
mode = get_attrib(pas, "search_mode", False, False)
ehit = get_attrib(pas, "exit", False, False) == "quality hit"
passStruct = Pass(prts, prti, plns, ehit, mode, chan)
blockStruct.add_pass(passStruct)
# Constant color blocks don't have any candidates
if prts == 0:
continue
for candidate in get_node(pas, "candidate", True):
# Don't copy across candidates we couldn't encode
failed = get_attrib(candidate, "failed", False, False)
if failed:
continue
wx = get_attrib(candidate, "weight_x")
wy = get_attrib(candidate, "weight_y")
wz = get_attrib(candidate, "weight_z")
wq = QUANT_TABLE[get_attrib(candidate, "weight_quant")]
epre = get_attrib(candidate, "error_prerealign", True, False)
epst = get_attrib(candidate, "error_postrealign", True, False)
candStruct = Candidate(wx, wy, wz, wq)
passStruct.add_candidate(candStruct)
for value in epre:
candStruct.add_refinement(value)
for value in epst:
candStruct.add_refinement(value)
return dbStruct
def filter_database(data):
for block in data:
best_pass, best_candidate = find_best_pass_and_candidate(block)
for i, pas in rev_enumerate(block):
if pas != best_pass:
del block[i]
continue
if best_candidate is None:
continue
for j, candidate in rev_enumerate(pas):
if candidate != best_candidate:
del pas[j]
def generate_pass_statistics(data):
pass
def generate_feature_statistics(data):
# -------------------------------------------------------------------------
# Config
print("Compressor Config")
print("=================")
if data.block_z > 1:
dat = (data.block_x, data.block_y, data.block_z)
print(" - Block size: %ux%ux%u" % dat)
else:
dat = (data.block_x, data.block_y)
print(" - Block size: %ux%u" % dat)
print("")
# -------------------------------------------------------------------------
# Block metrics
result = ddict(int)
RANGE_QUANT = 16
for block in foreach_block(data):
ranges = []
for i in range(0, 4):
ranges.append(block.ldr_max[i] - block.ldr_min[i])
max_range = max(ranges)
max_range = int(max_range / RANGE_QUANT) * RANGE_QUANT
result[max_range] += 1
print("Channel Range")
print("=============")
keys = sorted(result.keys())
for key in keys:
dat = (key, key + RANGE_QUANT - 1, result[key])
print(" - %3u-%3u dynamic range = %6u blocks" % dat)
print("")
# -------------------------------------------------------------------------
# Partition usage
result_totals = ddict(int)
results = ddict(lambda: ddict(int))
for _, pas in foreach_pass(data):
result_totals[pas.partitions] += 1
results[pas.partitions][pas.partition_index] += 1
print("Partition Count")
print("===============")
keys = sorted(result_totals.keys())
for key in keys:
dat = (key, result_totals[key], len(results[key]))
print(" - %u partition(s) = %6u blocks / %4u indicies" % dat)
print("")
# -------------------------------------------------------------------------
# Plane usage
result_count = ddict(lambda: ddict(int))
result_channel = ddict(lambda: ddict(int))
for _, pas in foreach_pass(data):
result_count[pas.partitions][pas.planes] += 1
if (pas.planes > 1):
result_channel[pas.partitions][pas.plane2_component] += 1
print("Plane Usage")
print("===========")
keys = sorted(result_count.keys())
for key in keys:
keys2 = sorted(result_count[key])
for key2 in keys2:
val2 = result_count[key][key2]
dat = (key, key2, val2)
print(" - %u partition(s) %u plane(s) = %6u blocks" % dat)
if key2 == 2:
keys3 = sorted(result_channel[key])
for key3 in keys3:
dat = (CHANNEL_TABLE[key3], result_channel[key][key3])
print(" - %s plane = %6u blocks" % dat)
print("")
# -------------------------------------------------------------------------
# Decimation usage
decim_count = ddict(lambda: ddict(int))
quant_count = ddict(lambda: ddict(lambda: ddict(int)))
MERGE_ROTATIONS = True
for _, pas, can in foreach_candidate(data):
# Skip constant color blocks
if can is None:
continue
wx = can.weight_x
wy = can.weight_y
if MERGE_ROTATIONS and wx < wy:
wx, wy = wy, wx
decim_count[wx][wy] += 1
quant_count[wx][wy][can.weight_quant] += 1
print("Decimation Usage")
print("================")
if MERGE_ROTATIONS:
print(" - Note: data merging grid rotations")
x_keys = sorted(decim_count.keys())
for x_key in x_keys:
y_keys = sorted(decim_count[x_key])
for y_key in y_keys:
count = decim_count[x_key][y_key]
dat = (x_key, y_key, count)
print(" - %ux%u weights = %6u blocks" % dat)
q_keys = sorted(quant_count[x_key][y_key])
for q_key in q_keys:
count = quant_count[x_key][y_key][q_key]
dat = (q_key, count)
print(" - %2u quant range = %6u blocks" % dat)
print("")
# -------------------------------------------------------------------------
# Refinement usage
total_count = 0
better_count = 0
could_have_count = 0
success_count = 0
refinement_step = []
for block, pas, candidate in foreach_candidate(data):
# Ignore zero partition blocks - they don't use refinement
if not candidate:
continue
target_error = block.error_target
start_error = candidate.refinement_errors[0]
end_error = candidate.refinement_errors[-1]
rpf = float(start_error - end_error) / float(len(candidate.refinement_errors))
rpf = abs(rpf)
refinement_step.append(rpf / start_error)
total_count += 1
if end_error <= start_error:
better_count += 1
if end_error <= target_error:
success_count += 1
else:
for refinement in candidate.refinement_errors:
if refinement <= target_error:
could_have_count += 1
break
print("Refinement Usage")
print("================")
print(" - %u refinements(s)" % total_count)
print(" - %u refinements(s) improved" % better_count)
print(" - %u refinements(s) worsened" % (total_count - better_count))
print(" - %u refinements(s) could hit target, but didn't" % could_have_count)
print(" - %u refinements(s) hit target" % success_count)
print(" - %f mean step improvement" % np.mean(refinement_step))
def parse_command_line():
"""
Parse the command line.
Returns:
Namespace: The parsed command line container.
"""
parser = argparse.ArgumentParser()
parser.add_argument("trace", type=argparse.FileType("r"),
help="The trace file to analyze")
return parser.parse_args()
def main():
"""
The main function.
Returns:
int: The process return code.
"""
args = parse_command_line()
data = json.load(args.trace)
db = generate_database(data)
filter_database(db)
generate_feature_statistics(db)
return 0
if __name__ == "__main__":
sys.exit(main())