blob: 9292649aa36ad28bc6c26601ca47d69b91238c92 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "Utility.h"
#include <string.h>
#include "FunctionList.h"
int TestFunc_mad(const Func *f, MTdata, bool relaxedMode);
int TestFunc_mad_Double(const Func *f, MTdata, bool relaxedMode);
extern const vtbl _mad_tbl = { "ternary", TestFunc_mad, TestFunc_mad_Double };
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode);
static int BuildKernelDouble(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode);
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = { "__kernel void math_kernel",
sizeNames[vectorSize],
"( __global float",
sizeNames[vectorSize],
"* out, __global float",
sizeNames[vectorSize],
"* in1, __global float",
sizeNames[vectorSize],
"* in2, __global float",
sizeNames[vectorSize],
"* in3 )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = ",
name,
"( in1[i], in2[i], in3[i] );\n"
"}\n" };
const char *c3[] = {
"__kernel void math_kernel",
sizeNames[vectorSize],
"( __global float* out, __global float* in, __global float* in2, "
"__global float* in3)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" float3 f0 = vload3( 0, in + 3 * i );\n"
" float3 f1 = vload3( 0, in2 + 3 * i );\n"
" float3 f2 = vload3( 0, in3 + 3 * i );\n"
" f0 = ",
name,
"( f0, f1, f2 );\n"
" vstore3( f0, 0, out + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are "
"left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
"buffer size \n"
" float3 f0, f1, f2;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" f0 = (float3)( in[3*i], NAN, NAN ); \n"
" f1 = (float3)( in2[3*i], NAN, NAN ); \n"
" f2 = (float3)( in3[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
" f1 = (float3)( in2[3*i], in2[3*i+1], NAN ); \n"
" f2 = (float3)( in3[3*i], in3[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" f0 = ",
name,
"( f0, f1, f2 );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = f0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = f0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c) / sizeof(c[0]);
if (sizeValues[vectorSize] == 3)
{
kern = c3;
kernSize = sizeof(c3) / sizeof(c3[0]);
}
char testName[32];
snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
sizeNames[vectorSize]);
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
static int BuildKernelDouble(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = { "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void math_kernel",
sizeNames[vectorSize],
"( __global double",
sizeNames[vectorSize],
"* out, __global double",
sizeNames[vectorSize],
"* in1, __global double",
sizeNames[vectorSize],
"* in2, __global double",
sizeNames[vectorSize],
"* in3 )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = ",
name,
"( in1[i], in2[i], in3[i] );\n"
"}\n" };
const char *c3[] = {
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void math_kernel",
sizeNames[vectorSize],
"( __global double* out, __global double* in, __global double* in2, "
"__global double* in3)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" double3 d0 = vload3( 0, in + 3 * i );\n"
" double3 d1 = vload3( 0, in2 + 3 * i );\n"
" double3 d2 = vload3( 0, in3 + 3 * i );\n"
" d0 = ",
name,
"( d0, d1, d2 );\n"
" vstore3( d0, 0, out + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are "
"left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
"buffer size \n"
" double3 d0, d1, d2;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" d0 = (double3)( in[3*i], NAN, NAN ); \n"
" d1 = (double3)( in2[3*i], NAN, NAN ); \n"
" d2 = (double3)( in3[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" d0 = (double3)( in[3*i], in[3*i+1], NAN ); \n"
" d1 = (double3)( in2[3*i], in2[3*i+1], NAN ); \n"
" d2 = (double3)( in3[3*i], in3[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" d0 = ",
name,
"( d0, d1, d2 );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = d0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = d0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c) / sizeof(c[0]);
if (sizeValues[vectorSize] == 3)
{
kern = c3;
kernSize = sizeof(c3) / sizeof(c3[0]);
}
char testName[32];
snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
sizeNames[vectorSize]);
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
typedef struct BuildKernelInfo
{
cl_uint offset; // the first vector size to build
cl_kernel *kernels;
cl_program *programs;
const char *nameInCode;
bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
} BuildKernelInfo;
static cl_int BuildKernel_FloatFn(cl_uint job_id, cl_uint thread_id UNUSED,
void *p);
static cl_int BuildKernel_FloatFn(cl_uint job_id, cl_uint thread_id UNUSED,
void *p)
{
BuildKernelInfo *info = (BuildKernelInfo *)p;
cl_uint i = info->offset + job_id;
return BuildKernel(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
static cl_int BuildKernel_DoubleFn(cl_uint job_id, cl_uint thread_id UNUSED,
void *p);
static cl_int BuildKernel_DoubleFn(cl_uint job_id, cl_uint thread_id UNUSED,
void *p)
{
BuildKernelInfo *info = (BuildKernelInfo *)p;
cl_uint i = info->offset + job_id;
return BuildKernelDouble(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
int TestFunc_mad(const Func *f, MTdata d, bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
int error;
logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);
cl_program programs[VECTOR_SIZE_COUNT];
cl_kernel kernels[VECTOR_SIZE_COUNT];
float maxError = 0.0f;
// int ftz = f->ftz || gForceFTZ || 0 == (CL_FP_DENORM &
// gFloatCapabilities);
float maxErrorVal = 0.0f;
float maxErrorVal2 = 0.0f;
float maxErrorVal3 = 0.0f;
size_t bufferSize = (gWimpyMode) ? gWimpyBufferSize : BUFFER_SIZE;
uint64_t step = getTestStep(sizeof(float), bufferSize);
// Init the kernels
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if ((error = ThreadPool_Do(BuildKernel_FloatFn,
gMaxVectorSizeIndex - gMinVectorSizeIndex,
&build_info)))
return error;
/*
for( i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++ )
if( (error = BuildKernel( f->nameInCode, (int) i, kernels + i,
programs + i) ) ) return error;
*/
for (i = 0; i < (1ULL << 32); i += step)
{
// Init input array
uint32_t *p = (uint32_t *)gIn;
uint32_t *p2 = (uint32_t *)gIn2;
uint32_t *p3 = (uint32_t *)gIn3;
for (j = 0; j < bufferSize / sizeof(float); j++)
{
p[j] = genrand_int32(d);
p2[j] = genrand_int32(d);
p3[j] = genrand_int32(d);
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0,
bufferSize, gIn2, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0,
bufferSize, gIn3, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error);
return error;
}
// write garbage into output arrays
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if ((error =
clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n",
error, j);
goto exit;
}
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeof(cl_float) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1)
/ vectorSize; // bufferSize / vectorSize rounded up
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer2),
&gInBuffer2)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 3, sizeof(gInBuffer3),
&gInBuffer3)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error =
clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL, NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
}
// Get that moving
if ((error = clFlush(gQueue))) vlog("clFlush failed\n");
// Calculate the correctly rounded reference result
float *r = (float *)gOut_Ref;
float *s = (float *)gIn;
float *s2 = (float *)gIn2;
float *s3 = (float *)gIn3;
for (j = 0; j < bufferSize / sizeof(float); j++)
r[j] = (float)f->func.f_fff(s[j], s2[j], s3[j]);
// Read the data back
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
if ((error =
clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("ReadArray failed %d\n", error);
goto exit;
}
}
if (gSkipCorrectnessTesting) break;
// Verify data -- Commented out on purpose. no verification possible.
// MAD is a random number generator.
/*
uint32_t *t = gOut_Ref;
for( j = 0; j < bufferSize / sizeof( float ); j++ )
{
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
uint32_t *q = gOut[k];
// If we aren't getting the correctly rounded result
if( t[j] != q[j] )
{
float test = ((float*) q)[j];
double correct = f->func.f_fff( s[j], s2[j], s3[j]
); float err = Ulp_Error( test, correct ); int fail = ! (fabsf(err) <=
f->float_ulps);
if( fail && ftz )
{
// retry per section 6.5.3.2
if( IsFloatSubnormal(correct) )
{ // look at me,
fail = fail && ( test != 0.0f );
if( ! fail )
err = 0.0f;
}
// retry per section 6.5.3.3
if( fail && IsFloatSubnormal( s[j] ) )
{ // look at me,
double correct2 = f->func.f_fff( 0.0, s2[j],
s3[j] ); double correct3 = f->func.f_fff( -0.0, s2[j], s3[j] ); float
err2 = Ulp_Error( test, correct2 ); float err3 = Ulp_Error( test,
correct3 ); fail = fail && ((!(fabsf(err2) <= f->float_ulps)) &&
(!(fabsf(err3) <= f->float_ulps))); if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
// retry per section 6.5.3.4
if( IsFloatResultSubnormal(correct2,
f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps ) )
{ // look at me now,
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
//try with first two args as zero
if( IsFloatSubnormal( s2[j] ) )
{ // its fun to have fun,
correct2 = f->func.f_fff( 0.0, 0.0,
s3[j] ); correct3 = f->func.f_fff( -0.0, 0.0, s3[j] ); double correct4
= f->func.f_fff( 0.0, -0.0, s3[j] ); double correct5 = f->func.f_fff(
-0.0, -0.0, s3[j] ); err2 = Ulp_Error( test, correct2 ); err3 =
Ulp_Error( test, correct3 ); float err4 = Ulp_Error( test, correct4 );
float err5 = Ulp_Error( test, correct5
); fail = fail && ((!(fabsf(err2) <= f->float_ulps)) && (!(fabsf(err3)
<= f->float_ulps)) &&
(!(fabsf(err4) <=
f->float_ulps)) && (!(fabsf(err5) <= f->float_ulps))); if( fabsf( err2
) < fabsf(err ) ) err = err2; if( fabsf( err3 ) < fabsf(err ) ) err =
err3; if( fabsf( err4 ) < fabsf(err ) ) err = err4; if( fabsf( err5 ) <
fabsf(err ) ) err = err5;
// retry per section 6.5.3.4
if( IsFloatResultSubnormal(correct2,
f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps ) ||
IsFloatResultSubnormal(correct4,
f->float_ulps ) || IsFloatResultSubnormal(correct5, f->float_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
if( IsFloatSubnormal( s3[j] ) )
{ // but you have to know how!
correct2 = f->func.f_fff( 0.0, 0.0,
0.0f ); correct3 = f->func.f_fff( -0.0, 0.0, 0.0f ); correct4 =
f->func.f_fff( 0.0, -0.0, 0.0f ); correct5 = f->func.f_fff( -0.0, -0.0,
0.0f ); double correct6 = f->func.f_fff( 0.0, 0.0, -0.0f ); double
correct7 = f->func.f_fff( -0.0, 0.0, -0.0f ); double correct8 =
f->func.f_fff( 0.0, -0.0, -0.0f ); double correct9 = f->func.f_fff(
-0.0, -0.0, -0.0f ); err2 = Ulp_Error( test, correct2 ); err3 =
Ulp_Error( test, correct3 ); err4 = Ulp_Error( test, correct4 ); err5
= Ulp_Error( test, correct5 ); float err6 = Ulp_Error( test, correct6
); float err7 = Ulp_Error( test, correct7 ); float err8 = Ulp_Error(
test, correct8 ); float err9 = Ulp_Error( test, correct9 ); fail =
fail && ((!(fabsf(err2) <= f->float_ulps)) && (!(fabsf(err3) <=
f->float_ulps)) &&
(!(fabsf(err4) <=
f->float_ulps)) && (!(fabsf(err5) <= f->float_ulps)) &&
(!(fabsf(err5) <=
f->float_ulps)) && (!(fabsf(err6) <= f->float_ulps)) &&
(!(fabsf(err7) <=
f->float_ulps)) && (!(fabsf(err8) <= f->float_ulps))); if( fabsf( err2
) < fabsf(err ) ) err = err2; if( fabsf( err3 ) < fabsf(err ) ) err =
err3; if( fabsf( err4 ) < fabsf(err ) ) err = err4; if( fabsf( err5 ) <
fabsf(err ) ) err = err5; if( fabsf( err6 ) < fabsf(err ) ) err = err6;
if( fabsf( err7 ) < fabsf(err ) )
err = err7;
if( fabsf( err8 ) < fabsf(err ) )
err = err8;
if( fabsf( err9 ) < fabsf(err ) )
err = err9;
// retry per section 6.5.3.4
if( IsFloatResultSubnormal(correct2,
f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps ) ||
IsFloatResultSubnormal(correct4,
f->float_ulps ) || IsFloatResultSubnormal(correct5, f->float_ulps ) ||
IsFloatResultSubnormal(
correct6, f->float_ulps ) || IsFloatResultSubnormal(correct7,
f->float_ulps ) || IsFloatResultSubnormal(correct8, f->float_ulps ) ||
IsFloatResultSubnormal( correct9, f->float_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
else if( IsFloatSubnormal( s3[j] ) )
{
correct2 = f->func.f_fff( 0.0, s2[j],
0.0 ); correct3 = f->func.f_fff( -0.0, s2[j], 0.0 ); double correct4 =
f->func.f_fff( 0.0, s2[j], -0.0 ); double correct5 = f->func.f_fff(
-0.0, s2[j], -0.0 ); err2 = Ulp_Error( test, correct2 ); err3 =
Ulp_Error( test, correct3 ); float err4 = Ulp_Error( test, correct4 );
float err5 = Ulp_Error( test, correct5
); fail = fail && ((!(fabsf(err2) <= f->float_ulps)) && (!(fabsf(err3)
<= f->float_ulps)) &&
(!(fabsf(err4) <=
f->float_ulps)) && (!(fabsf(err5) <= f->float_ulps))); if( fabsf( err2
) < fabsf(err ) ) err = err2; if( fabsf( err3 ) < fabsf(err ) ) err =
err3; if( fabsf( err4 ) < fabsf(err ) ) err = err4; if( fabsf( err5 ) <
fabsf(err ) ) err = err5;
// retry per section 6.5.3.4
if( IsFloatResultSubnormal(correct2,
f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps ) ||
IsFloatResultSubnormal(correct4,
f->float_ulps ) || IsFloatResultSubnormal(correct5, f->float_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
else if( fail && IsFloatSubnormal( s2[j] ) )
{
double correct2 = f->func.f_fff( s[j], 0.0,
s3[j] ); double correct3 = f->func.f_fff( s[j], -0.0, s3[j] ); float
err2 = Ulp_Error( test, correct2 ); float err3 = Ulp_Error( test,
correct3 ); fail = fail && ((!(fabsf(err2) <= f->float_ulps)) &&
(!(fabsf(err3) <= f->float_ulps))); if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
// retry per section 6.5.3.4
if( IsFloatResultSubnormal(correct2,
f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
//try with second two args as zero
if( IsFloatSubnormal( s3[j] ) )
{
correct2 = f->func.f_fff( s[j], 0.0, 0.0
); correct3 = f->func.f_fff( s[j], -0.0, 0.0 ); double correct4 =
f->func.f_fff( s[j], 0.0, -0.0 ); double correct5 = f->func.f_fff(
s[j], -0.0, -0.0 ); err2 = Ulp_Error( test, correct2 ); err3 =
Ulp_Error( test, correct3 ); float err4 = Ulp_Error( test, correct4 );
float err5 = Ulp_Error( test, correct5
); fail = fail && ((!(fabsf(err2) <= f->float_ulps)) && (!(fabsf(err3)
<= f->float_ulps)) &&
(!(fabsf(err4) <=
f->float_ulps)) && (!(fabsf(err5) <= f->float_ulps))); if( fabsf( err2
) < fabsf(err ) ) err = err2; if( fabsf( err3 ) < fabsf(err ) ) err =
err3; if( fabsf( err4 ) < fabsf(err ) ) err = err4; if( fabsf( err5 ) <
fabsf(err ) ) err = err5;
// retry per section 6.5.3.4
if( IsFloatResultSubnormal(correct2,
f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps ) ||
IsFloatResultSubnormal(correct4,
f->float_ulps ) || IsFloatResultSubnormal(correct5, f->float_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
else if( fail && IsFloatSubnormal(s3[j]) )
{
double correct2 = f->func.f_fff( s[j],
s2[j], 0.0 ); double correct3 = f->func.f_fff( s[j], s2[j], -0.0 );
float err2 = Ulp_Error( test, correct2 );
float err3 = Ulp_Error( test, correct3 );
fail = fail && ((!(fabsf(err2) <=
f->float_ulps)) && (!(fabsf(err3) <= f->float_ulps))); if( fabsf( err2
) < fabsf(err ) ) err = err2; if( fabsf( err3 ) < fabsf(err ) ) err =
err3;
// retry per section 6.5.3.4
if( IsFloatResultSubnormal(correct2,
f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
if( fabsf(err ) > maxError )
{
maxError = fabsf(err);
maxErrorVal = s[j];
maxErrorVal2 = s2[j];
maxErrorVal3 = s3[j];
}
if( fail )
{
vlog_error( "\nERROR: %s%s: %f ulp error at {%a,
%a, %a}: *%a vs. %a\n", f->name, sizeNames[k], err, s[j], s2[j], s3[j],
((float*) gOut_Ref)[j], test ); error = -1; goto exit;
}
}
}
}
*/
if (0 == (i & 0x0fffffff))
{
vlog(".");
fflush(stdout);
}
}
if (!gSkipCorrectnessTesting)
{
if (gWimpyMode)
vlog("Wimp pass");
else
vlog("pass");
}
if (gMeasureTimes)
{
// Init input array
uint32_t *p = (uint32_t *)gIn;
uint32_t *p2 = (uint32_t *)gIn2;
uint32_t *p3 = (uint32_t *)gIn3;
for (j = 0; j < bufferSize / sizeof(float); j++)
{
p[j] = genrand_int32(d);
p2[j] = genrand_int32(d);
p3[j] = genrand_int32(d);
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0,
bufferSize, gIn2, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0,
bufferSize, gIn3, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error);
return error;
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeof(cl_float) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1)
/ vectorSize; // bufferSize / vectorSize rounded up
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer2),
&gInBuffer2)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 3, sizeof(gInBuffer3),
&gInBuffer3)))
{
LogBuildError(programs[j]);
goto exit;
}
double sum = 0.0;
double bestTime = INFINITY;
for (k = 0; k < PERF_LOOP_COUNT; k++)
{
uint64_t startTime = GetTime();
if ((error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL,
NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
// Make sure OpenCL is done
if ((error = clFinish(gQueue)))
{
vlog_error("Error %d at clFinish\n", error);
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime(endTime, startTime);
sum += time;
if (time < bestTime) bestTime = time;
}
if (gReportAverageTimes) bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double)gDeviceFrequency
* gComputeDevices * gSimdSize * 1e6
/ (bufferSize / sizeof(float));
vlog_perf(clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sf%s",
f->name, sizeNames[j]);
}
}
if (!gSkipCorrectnessTesting)
vlog("\t%8.2f @ {%a, %a, %a}", maxError, maxErrorVal, maxErrorVal2,
maxErrorVal3);
vlog("\n");
exit:
// Release
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}
int TestFunc_mad_Double(const Func *f, MTdata d, bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
int error;
cl_program programs[VECTOR_SIZE_COUNT];
cl_kernel kernels[VECTOR_SIZE_COUNT];
float maxError = 0.0f;
// int ftz = f->ftz || gForceFTZ;
double maxErrorVal = 0.0f;
double maxErrorVal2 = 0.0f;
double maxErrorVal3 = 0.0f;
size_t bufferSize = (gWimpyMode) ? gWimpyBufferSize : BUFFER_SIZE;
logFunctionInfo(f->name, sizeof(cl_double), relaxedMode);
uint64_t step = getTestStep(sizeof(double), bufferSize);
// Init the kernels
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if ((error = ThreadPool_Do(BuildKernel_DoubleFn,
gMaxVectorSizeIndex - gMinVectorSizeIndex,
&build_info)))
{
return error;
}
/*
for( i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++ )
if( (error = BuildKernelDouble( f->nameInCode, (int) i, kernels +
i, programs + i) ) ) return error;
*/
for (i = 0; i < (1ULL << 32); i += step)
{
// Init input array
double *p = (double *)gIn;
double *p2 = (double *)gIn2;
double *p3 = (double *)gIn3;
for (j = 0; j < bufferSize / sizeof(double); j++)
{
p[j] = DoubleFromUInt32(genrand_int32(d));
p2[j] = DoubleFromUInt32(genrand_int32(d));
p3[j] = DoubleFromUInt32(genrand_int32(d));
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0,
bufferSize, gIn2, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0,
bufferSize, gIn3, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error);
return error;
}
// write garbage into output arrays
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if ((error =
clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n",
error, j);
goto exit;
}
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeof(cl_double) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1)
/ vectorSize; // bufferSize / vectorSize rounded up
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer2),
&gInBuffer2)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 3, sizeof(gInBuffer3),
&gInBuffer3)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error =
clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL, NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
}
// Get that moving
if ((error = clFlush(gQueue))) vlog("clFlush failed\n");
// Calculate the correctly rounded reference result
double *r = (double *)gOut_Ref;
double *s = (double *)gIn;
double *s2 = (double *)gIn2;
double *s3 = (double *)gIn3;
for (j = 0; j < bufferSize / sizeof(double); j++)
r[j] = (double)f->dfunc.f_fff(s[j], s2[j], s3[j]);
// Read the data back
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
if ((error =
clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("ReadArray failed %d\n", error);
goto exit;
}
}
if (gSkipCorrectnessTesting) break;
// Verify data -- Commented out on purpose. no verification possible.
// MAD is a random number generator.
/*
uint64_t *t = gOut_Ref;
for( j = 0; j < bufferSize / sizeof( double ); j++ )
{
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
uint64_t *q = gOut[k];
// If we aren't getting the correctly rounded result
if( t[j] != q[j] )
{
double test = ((double*) q)[j];
long double correct = f->dfunc.f_fff( s[j], s2[j],
s3[j] ); float err = Bruteforce_Ulp_Error_Double( test, correct ); int
fail = ! (fabsf(err) <= f->double_ulps);
if( fail && ftz )
{
// retry per section 6.5.3.2
if( IsDoubleResultSubnormal(correct,
f->double_ulps) ) { // look at me, fail = fail && ( test != 0.0f ); if(
! fail ) err = 0.0f;
}
// retry per section 6.5.3.3
if( fail && IsDoubleSubnormal( s[j] ) )
{ // look at me,
long double correct2 = f->dfunc.f_fff( 0.0,
s2[j], s3[j] ); long double correct3 = f->dfunc.f_fff( -0.0, s2[j],
s3[j] ); float err2 = Bruteforce_Ulp_Error_Double( test, correct2 );
float err3 = Bruteforce_Ulp_Error_Double(
test, correct3 ); fail = fail && ((!(fabsf(err2) <= f->double_ulps))
&& (!(fabsf(err3) <= f->double_ulps))); if( fabsf( err2 ) < fabsf(err )
) err = err2; if( fabsf( err3 ) < fabsf(err ) ) err = err3;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2,
f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps )
) { // look at me now, fail = fail && ( test != 0.0f); if( ! fail ) err
= 0.0f;
}
//try with first two args as zero
if( IsDoubleSubnormal( s2[j] ) )
{ // its fun to have fun,
correct2 = f->dfunc.f_fff( 0.0, 0.0,
s3[j] ); correct3 = f->dfunc.f_fff( -0.0, 0.0, s3[j] ); long double
correct4 = f->dfunc.f_fff( 0.0, -0.0, s3[j] ); long double correct5 =
f->dfunc.f_fff( -0.0, -0.0, s3[j] ); err2 =
Bruteforce_Ulp_Error_Double( test, correct2 ); err3 =
Bruteforce_Ulp_Error_Double( test, correct3 ); float err4 =
Bruteforce_Ulp_Error_Double( test, correct4 ); float err5 =
Bruteforce_Ulp_Error_Double( test, correct5 ); fail = fail &&
((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <=
f->double_ulps)) &&
(!(fabsf(err4) <=
f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps))); if( fabsf(
err2 ) < fabsf(err ) ) err = err2; if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2,
f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps )
|| IsDoubleResultSubnormal( correct4, f->double_ulps ) ||
IsDoubleResultSubnormal( correct5, f->double_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
if( IsDoubleSubnormal( s3[j] ) )
{ // but you have to know how!
correct2 = f->dfunc.f_fff( 0.0, 0.0,
0.0f ); correct3 = f->dfunc.f_fff( -0.0, 0.0, 0.0f ); correct4 =
f->dfunc.f_fff( 0.0, -0.0, 0.0f ); correct5 = f->dfunc.f_fff( -0.0,
-0.0, 0.0f ); long double correct6 = f->dfunc.f_fff( 0.0, 0.0, -0.0f );
long double correct7 =
f->dfunc.f_fff( -0.0, 0.0, -0.0f ); long double correct8 =
f->dfunc.f_fff( 0.0, -0.0, -0.0f ); long double correct9 =
f->dfunc.f_fff( -0.0, -0.0, -0.0f ); err2 =
Bruteforce_Ulp_Error_Double( test, correct2 ); err3 =
Bruteforce_Ulp_Error_Double( test, correct3 ); err4 =
Bruteforce_Ulp_Error_Double( test, correct4 ); err5 =
Bruteforce_Ulp_Error_Double( test, correct5 ); float err6 =
Bruteforce_Ulp_Error_Double( test, correct6 ); float err7 =
Bruteforce_Ulp_Error_Double( test, correct7 ); float err8 =
Bruteforce_Ulp_Error_Double( test, correct8 ); float err9 =
Bruteforce_Ulp_Error_Double( test, correct9 ); fail = fail &&
((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <=
f->double_ulps)) &&
(!(fabsf(err4) <=
f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps)) &&
(!(fabsf(err5) <=
f->double_ulps)) && (!(fabsf(err6) <= f->double_ulps)) &&
(!(fabsf(err7) <=
f->double_ulps)) && (!(fabsf(err8) <= f->double_ulps))); if( fabsf(
err2 ) < fabsf(err ) ) err = err2; if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
if( fabsf( err6 ) < fabsf(err ) )
err = err6;
if( fabsf( err7 ) < fabsf(err ) )
err = err7;
if( fabsf( err8 ) < fabsf(err ) )
err = err8;
if( fabsf( err9 ) < fabsf(err ) )
err = err9;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal(
correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3,
f->double_ulps ) || IsDoubleResultSubnormal( correct4, f->double_ulps
) || IsDoubleResultSubnormal( correct5, f->double_ulps ) ||
IsDoubleResultSubnormal(
correct6, f->double_ulps ) || IsDoubleResultSubnormal( correct7,
f->double_ulps ) || IsDoubleResultSubnormal( correct8, f->double_ulps
) || IsDoubleResultSubnormal( correct9, f->double_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
else if( IsDoubleSubnormal( s3[j] ) )
{
correct2 = f->dfunc.f_fff( 0.0, s2[j],
0.0 ); correct3 = f->dfunc.f_fff( -0.0, s2[j], 0.0 ); long double
correct4 = f->dfunc.f_fff( 0.0, s2[j], -0.0 ); long double correct5 =
f->dfunc.f_fff( -0.0, s2[j], -0.0 ); err2 =
Bruteforce_Ulp_Error_Double( test, correct2 ); err3 =
Bruteforce_Ulp_Error_Double( test, correct3 ); float err4 =
Bruteforce_Ulp_Error_Double( test, correct4 ); float err5 =
Bruteforce_Ulp_Error_Double( test, correct5 ); fail = fail &&
((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <=
f->double_ulps)) &&
(!(fabsf(err4) <=
f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps))); if( fabsf(
err2 ) < fabsf(err ) ) err = err2; if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2,
f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps )
|| IsDoubleResultSubnormal( correct4, f->double_ulps ) ||
IsDoubleResultSubnormal( correct5, f->double_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
else if( fail && IsDoubleSubnormal( s2[j] ) )
{
long double correct2 = f->dfunc.f_fff( s[j],
0.0, s3[j] ); long double correct3 = f->dfunc.f_fff( s[j], -0.0, s3[j]
); float err2 = Bruteforce_Ulp_Error_Double( test, correct2 ); float
err3 = Bruteforce_Ulp_Error_Double( test, correct3 ); fail = fail &&
((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <=
f->double_ulps))); if( fabsf( err2 ) < fabsf(err ) ) err = err2; if(
fabsf( err3 ) < fabsf(err ) ) err = err3;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2,
f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps
) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
//try with second two args as zero
if( IsDoubleSubnormal( s3[j] ) )
{
correct2 = f->dfunc.f_fff( s[j], 0.0,
0.0 ); correct3 = f->dfunc.f_fff( s[j], -0.0, 0.0 ); long double
correct4 = f->dfunc.f_fff( s[j], 0.0, -0.0 ); long double correct5 =
f->dfunc.f_fff( s[j], -0.0, -0.0 ); err2 = Bruteforce_Ulp_Error_Double(
test, correct2 ); err3 = Bruteforce_Ulp_Error_Double( test, correct3
); float err4 = Bruteforce_Ulp_Error_Double( test, correct4 ); float
err5 = Bruteforce_Ulp_Error_Double( test, correct5 ); fail = fail &&
((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <=
f->double_ulps)) &&
(!(fabsf(err4) <=
f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps))); if( fabsf(
err2 ) < fabsf(err ) ) err = err2; if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2,
f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps )
|| IsDoubleResultSubnormal( correct4, f->double_ulps ) ||
IsDoubleResultSubnormal( correct5, f->double_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
else if( fail && IsDoubleSubnormal(s3[j]) )
{
long double correct2 = f->dfunc.f_fff( s[j],
s2[j], 0.0 ); long double correct3 = f->dfunc.f_fff( s[j], s2[j], -0.0
); float err2 = Bruteforce_Ulp_Error_Double( test, correct2 ); float
err3 = Bruteforce_Ulp_Error_Double( test, correct3 ); fail = fail &&
((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <=
f->double_ulps))); if( fabsf( err2 ) < fabsf(err ) ) err = err2; if(
fabsf( err3 ) < fabsf(err ) ) err = err3;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2,
f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps )
)
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
if( fabsf(err ) > maxError )
{
maxError = fabsf(err);
maxErrorVal = s[j];
maxErrorVal2 = s2[j];
maxErrorVal3 = s3[j];
}
if( fail )
{
vlog_error( "\nERROR: %sD%s: %f ulp error at
{%a, %a, %a}: *%a vs. %a\n", f->name, sizeNames[k], err, s[j], s2[j],
s3[j], ((double*) gOut_Ref)[j], test ); error = -1; goto exit;
}
}
}
}
*/
if (0 == (i & 0x0fffffff))
{
vlog(".");
fflush(stdout);
}
}
if (!gSkipCorrectnessTesting)
{
if (gWimpyMode)
vlog("Wimp pass");
else
vlog("pass");
}
if (gMeasureTimes)
{
// Init input array
double *p = (double *)gIn;
double *p2 = (double *)gIn2;
double *p3 = (double *)gIn3;
for (j = 0; j < bufferSize / sizeof(double); j++)
{
p[j] = DoubleFromUInt32(genrand_int32(d));
p2[j] = DoubleFromUInt32(genrand_int32(d));
p3[j] = DoubleFromUInt32(genrand_int32(d));
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0,
bufferSize, gIn2, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0,
bufferSize, gIn3, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error);
return error;
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeof(cl_double) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1)
/ vectorSize; // bufferSize / vectorSize rounded up
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer2),
&gInBuffer2)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 3, sizeof(gInBuffer3),
&gInBuffer3)))
{
LogBuildError(programs[j]);
goto exit;
}
double sum = 0.0;
double bestTime = INFINITY;
for (k = 0; k < PERF_LOOP_COUNT; k++)
{
uint64_t startTime = GetTime();
if ((error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL,
NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
// Make sure OpenCL is done
if ((error = clFinish(gQueue)))
{
vlog_error("Error %d at clFinish\n", error);
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime(endTime, startTime);
sum += time;
if (time < bestTime) bestTime = time;
}
if (gReportAverageTimes) bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double)gDeviceFrequency
* gComputeDevices * gSimdSize * 1e6
/ (bufferSize / sizeof(double));
vlog_perf(clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sD%s",
f->name, sizeNames[j]);
}
for (; j < gMaxVectorSizeIndex; j++) vlog("\t -- ");
}
if (!gSkipCorrectnessTesting)
vlog("\t%8.2f @ {%a, %a, %a}", maxError, maxErrorVal, maxErrorVal2,
maxErrorVal3);
vlog("\n");
exit:
// Release
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}