blob: 0a580c19d767f87abf401b777190395cab8448a3 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "harness/compat.h"
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "procs.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846264338327950288
#endif
static int test_radians_double(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems);
const char *radians_kernel_code =
"__kernel void test_radians(__global float *src, __global float *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = radians(src[tid]);\n"
"}\n";
const char *radians2_kernel_code =
"__kernel void test_radians2(__global float2 *src, __global float2 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = radians(src[tid]);\n"
"}\n";
const char *radians4_kernel_code =
"__kernel void test_radians4(__global float4 *src, __global float4 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = radians(src[tid]);\n"
"}\n";
const char *radians8_kernel_code =
"__kernel void test_radians8(__global float8 *src, __global float8 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = radians(src[tid]);\n"
"}\n";
const char *radians16_kernel_code =
"__kernel void test_radians16(__global float16 *src, __global float16 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = radians(src[tid]);\n"
"}\n";
const char *radians3_kernel_code =
"__kernel void test_radians3(__global float *src, __global float *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" vstore3(radians(vload3(tid,src)),tid,dst);\n"
"}\n";
#define MAX_ERR 2.0f
static float
verify_radians(float *inptr, float *outptr, int n)
{
float error, max_error = 0.0f;
double r, max_val = NAN;
int i, j, max_index = 0;
for (i=0,j=0; i<n; i++,j++)
{
r = (M_PI / 180.0) * inptr[i];
error = Ulp_Error( outptr[i], r );
if( fabsf(error) > max_error)
{
max_error = error;
max_index = i;
max_val = r;
if( fabsf(error) > MAX_ERR)
{
log_error( "%d) Error @ %a: *%a vs %a (*%g vs %g) ulps: %f\n", i, inptr[i], r, outptr[i], r, outptr[i], error );
return 1;
}
}
}
log_info( "radians: Max error %f ulps at %d: *%a vs %a (*%g vs %g)\n", max_error, max_index, max_val, outptr[max_index], max_val, outptr[max_index] );
return 0;
}
int
test_radians(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
{
cl_mem streams[2];
cl_float *input_ptr[1], *output_ptr, *p;
cl_program *program;
cl_kernel *kernel;
void *values[2];
size_t threads[1];
int num_elements;
int err;
int i;
MTdata d;
program = (cl_program*)malloc(sizeof(cl_program)*kTotalVecCount);
kernel = (cl_kernel*)malloc(sizeof(cl_kernel)*kTotalVecCount);
num_elements = n_elems * (1 << (kTotalVecCount-1));
input_ptr[0] = (cl_float*)malloc(sizeof(cl_float) * num_elements);
output_ptr = (cl_float*)malloc(sizeof(cl_float) * num_elements);
streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, NULL);
if (!streams[0])
{
log_error("clCreateBuffer failed\n");
return -1;
}
streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, NULL);
if (!streams[1])
{
log_error("clCreateBuffer failed\n");
return -1;
}
p = input_ptr[0];
d = init_genrand( gRandomSeed );
for (i=0; i<num_elements; i++)
{
p[i] = get_random_float((float)(-100000.f * M_PI), (float)(100000.f * M_PI) ,d);
}
free_mtdata(d); d = NULL;
err = clEnqueueWriteBuffer( queue, streams[0], true, 0, sizeof(cl_float)*num_elements, (void *)input_ptr[0], 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clWriteArray failed\n");
return -1;
}
err = create_single_kernel_helper( context, &program[0], &kernel[0], 1, &radians_kernel_code, "test_radians" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[1], &kernel[1], 1, &radians2_kernel_code, "test_radians2" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[2], &kernel[2], 1, &radians4_kernel_code, "test_radians4" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[3], &kernel[3], 1, &radians8_kernel_code, "test_radians8" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[4], &kernel[4], 1, &radians16_kernel_code, "test_radians16" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[5], &kernel[5], 1, &radians3_kernel_code, "test_radians3" );
if (err)
return -1;
values[0] = streams[0];
values[1] = streams[1];
for (i=0; i < kTotalVecCount; i++)
{
err = clSetKernelArg(kernel[i], 0, sizeof streams[0], &streams[0] );
err |= clSetKernelArg(kernel[i], 1, sizeof streams[1], &streams[1] );
if (err != CL_SUCCESS)
{
log_error("clSetKernelArgs failed\n");
return -1;
}
}
for (i=0; i < kTotalVecCount; i++)
{
threads[0] = (size_t)num_elements / ((g_arrVecSizes[i]));
err = clEnqueueNDRangeKernel( queue, kernel[i], 1, NULL, threads, NULL, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueNDRangeKernel failed\n");
return -1;
}
cl_uint dead = 0xdeaddead;
memset_pattern4(output_ptr, &dead, sizeof(cl_float)*num_elements);
err = clEnqueueReadBuffer( queue, streams[1], true, 0, sizeof(cl_float)*num_elements, (void *)output_ptr, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueReadBuffer failed\n");
return -1;
}
if (verify_radians(input_ptr[0], output_ptr, n_elems*(i+1)))
{
log_error("RADIANS float%d test failed\n",((g_arrVecSizes[i])));
err = -1;
}
else
{
log_info("RADIANS float%d test passed\n", ((g_arrVecSizes[i])));
}
if (err)
break;
}
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
for (i=0; i < kTotalVecCount; i++) {
clReleaseKernel(kernel[i]);
clReleaseProgram(program[i]);
}
free(program);
free(kernel);
free(input_ptr[0]);
free(output_ptr);
if( err )
return err;
if( ! is_extension_available( device, "cl_khr_fp64" ) )
{
log_info( "Skipping double -- cl_khr_fp64 is not supported by this device.\n" );
return 0;
}
return test_radians_double( device, context, queue, n_elems);
}
#pragma mark -
const char *radians_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_radians_double(__global double *src, __global double *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = radians(src[tid]);\n"
"}\n";
const char *radians2_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_radians2_double(__global double2 *src, __global double2 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = radians(src[tid]);\n"
"}\n";
const char *radians4_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_radians4_double(__global double4 *src, __global double4 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = radians(src[tid]);\n"
"}\n";
const char *radians8_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_radians8_double(__global double8 *src, __global double8 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = radians(src[tid]);\n"
"}\n";
const char *radians16_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_radians16_double(__global double16 *src, __global double16 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = radians(src[tid]);\n"
"}\n";
const char *radians3_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_radians3_double(__global double *src, __global double *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" vstore3(radians(vload3(tid,src)),tid,dst);\n"
"}\n";
#define MAX_ERR 2.0f
static double
verify_radians_double(double *inptr, double *outptr, int n)
{
float error, max_error = 0.0f;
double r, max_val = NAN;
int i, j, max_index = 0;
for (i=0,j=0; i<n; i++,j++)
{
r = (3.14159265358979323846264338327950288L / 180.0L) * inptr[i];
error = Ulp_Error_Double( outptr[i], r );
if( fabsf(error) > max_error)
{
max_error = error;
max_index = i;
max_val = r;
if( fabsf(error) > MAX_ERR)
{
log_error( "%d) Error @ %a: *%a vs %a (*%g vs %g) ulps: %f\n", i, inptr[i], r, outptr[i], r, outptr[i], error );
return 1;
}
}
}
log_info( "radiansd: Max error %f ulps at %d: *%a vs %a (*%g vs %g)\n", max_error, max_index, max_val, outptr[max_index], max_val, outptr[max_index] );
return 0;
}
int
test_radians_double(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
{
cl_mem streams[2];
cl_double *input_ptr[1], *output_ptr, *p;
cl_program *program;
cl_kernel *kernel;
void *values[2];
size_t threads[1];
int num_elements;
int err;
int i;
MTdata d;
program = (cl_program*)malloc(sizeof(cl_program)*kTotalVecCount);
kernel = (cl_kernel*)malloc(sizeof(cl_kernel)*kTotalVecCount);
//TODO: line below is clearly wrong
num_elements = n_elems * (1 << (kTotalVecCount-1));
input_ptr[0] = (cl_double*)malloc(sizeof(cl_double) * num_elements);
output_ptr = (cl_double*)malloc(sizeof(cl_double) * num_elements);
streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_double) * num_elements, NULL, NULL);
if (!streams[0])
{
log_error("clCreateBuffer failed\n");
return -1;
}
streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_double) * num_elements, NULL, NULL);
if (!streams[1])
{
log_error("clCreateBuffer failed\n");
return -1;
}
p = input_ptr[0];
d = init_genrand( gRandomSeed );
for (i=0; i<num_elements; i++)
p[i] = get_random_double((float)(-100000.0 * M_PI), (float)(100000.0 * M_PI) ,d);
free_mtdata(d); d = NULL;
err = clEnqueueWriteBuffer( queue, streams[0], true, 0, sizeof(cl_float)*num_elements, (void *)input_ptr[0], 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clWriteArray failed\n");
return -1;
}
err = create_single_kernel_helper( context, &program[0], &kernel[0], 1, &radians_kernel_code_double, "test_radians_double" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[1], &kernel[1], 1, &radians2_kernel_code_double, "test_radians2_double" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[2], &kernel[2], 1, &radians4_kernel_code_double, "test_radians4_double" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[3], &kernel[3], 1, &radians8_kernel_code_double, "test_radians8_double" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[4], &kernel[4], 1, &radians16_kernel_code_double, "test_radians16_double" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[5], &kernel[5], 1, &radians3_kernel_code_double, "test_radians3_double" );
if (err)
return -1;
values[0] = streams[0];
values[1] = streams[1];
for (i=0; i < kTotalVecCount; i++)
{
err = clSetKernelArg(kernel[i], 0, sizeof streams[0], &streams[0] );
err |= clSetKernelArg(kernel[i], 1, sizeof streams[1], &streams[1] );
if (err != CL_SUCCESS)
{
log_error("clSetKernelArgs failed\n");
return -1;
}
}
for (i=0; i < kTotalVecCount; i++)
{
threads[0] = (size_t)num_elements / ((g_arrVecSizes[i]));
err = clEnqueueNDRangeKernel( queue, kernel[i], 1, NULL, threads, NULL, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueNDRangeKernel failed\n");
return -1;
}
cl_uint dead = 0xdeaddead;
memset_pattern4(output_ptr, &dead, sizeof(cl_double)*num_elements);
err = clEnqueueReadBuffer( queue, streams[1], true, 0, sizeof(cl_double)*num_elements, (void *)output_ptr, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueReadBuffer failed\n");
return -1;
}
if (verify_radians_double(input_ptr[0], output_ptr, n_elems*(i+1)))
{
log_error("RADIANS double%d test failed\n",((g_arrVecSizes[i])));
err = -1;
}
else
{
log_info("RADIANS double%d test passed\n", ((g_arrVecSizes[i])));
}
if (err)
break;
}
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
for (i=0; i < kTotalVecCount; i++) {
clReleaseKernel(kernel[i]);
clReleaseProgram(program[i]);
}
free(program);
free(kernel);
free(input_ptr[0]);
free(output_ptr);
return err;
}