blob: 4447fb52d118e15d2f3facdbdac2a9fb56191168 [file] [log] [blame]
/*
*
* Copyright (c) 2014-2022 The Khronos Group Inc.
* Copyright (c) 2014-2022 Valve Corporation
* Copyright (c) 2014-2022 LunarG, Inc.
* Copyright (C) 2015 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Jon Ashburn <jon@lunarg.com>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Mark Young <marky@lunarg.com>
* Author: Lenny Komow <lenny@lunarg.com>
* Author: Charles Giessen <charles@lunarg.com>
*
*/
#include "loader.h"
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>
#include <stddef.h>
#if defined(__APPLE__)
#include <CoreFoundation/CoreFoundation.h>
#include <sys/param.h>
#endif
// Time related functions
#include <time.h>
#include <sys/types.h>
#if defined(_WIN32)
#include "dirent_on_windows.h"
#else // _WIN32
#include <dirent.h>
#endif // _WIN32
#include "vulkan/vk_icd.h"
#include "allocation.h"
#include "cJSON.h"
#include "debug_utils.h"
#include "get_environment.h"
#include "gpa_helper.h"
#include "loader.h"
#include "log.h"
#include "unknown_function_handling.h"
#include "vk_loader_platform.h"
#include "wsi.h"
#if defined(WIN32)
#include "loader_windows.h"
#endif
#ifdef LOADER_ENABLE_LINUX_SORT
// This header is currently only used when sorting Linux devices, so don't include it otherwise.
#include "loader_linux.h"
#endif // LOADER_ENABLE_LINUX_SORT
// Generated file containing all the extension data
#include "vk_loader_extensions.c"
struct loader_struct loader = {0};
struct activated_layer_info {
char *name;
char *manifest;
char *library;
bool is_implicit;
char *disable_env;
};
// thread safety lock for accessing global data structures such as "loader"
// all entrypoints on the instance chain need to be locked except GPA
// additionally CreateDevice and DestroyDevice needs to be locked
loader_platform_thread_mutex loader_lock;
loader_platform_thread_mutex loader_json_lock;
loader_platform_thread_mutex loader_preload_icd_lock;
// A list of ICDs that gets initialized when the loader does its global initialization. This list should never be used by anything
// other than EnumerateInstanceExtensionProperties(), vkDestroyInstance, and loader_release(). This list does not change
// functionality, but the fact that the libraries already been loaded causes any call that needs to load ICD libraries to speed up
// significantly. This can have a huge impact when making repeated calls to vkEnumerateInstanceExtensionProperties and
// vkCreateInstance.
static struct loader_icd_tramp_list scanned_icds;
LOADER_PLATFORM_THREAD_ONCE_DECLARATION(once_init);
loader_api_version loader_make_version(uint32_t version) {
loader_api_version out_version;
out_version.major = VK_API_VERSION_MAJOR(version);
out_version.minor = VK_API_VERSION_MINOR(version);
out_version.patch = VK_API_VERSION_PATCH(version);
return out_version;
}
loader_api_version loader_combine_version(uint32_t major, uint32_t minor, uint32_t patch) {
loader_api_version out_version;
out_version.major = (uint16_t)major;
out_version.minor = (uint16_t)minor;
out_version.patch = (uint16_t)patch;
return out_version;
}
// Helper macros for determining if a version is valid or not
bool loader_check_version_meets_required(loader_api_version required, loader_api_version version) {
// major version is satisfied
return (version.major > required.major) ||
// major version is equal, minor version is patch version is gerater to minimum minor
(version.major == required.major && version.minor > required.minor) ||
// major and minor version are equal, patch version is greater or equal to minimum patch
(version.major == required.major && version.minor == required.minor && version.patch >= required.patch);
}
// Wrapper around opendir so that the dirent_on_windows gets the instance it needs
// while linux opendir & readdir does not
DIR *loader_opendir(const struct loader_instance *instance, const char *name) {
#if defined(_WIN32)
return opendir(instance, name);
#else // _WIN32
return opendir(name);
#endif // _WIN32
}
int loader_closedir(const struct loader_instance *instance, DIR *dir) {
#if defined(_WIN32)
return closedir(instance, dir);
#else // _WIN32
return closedir(dir);
#endif // _WIN32
}
static bool is_json(const char *path, size_t len) {
if (len < 5) {
return false;
}
return !strncmp(path, ".json", 5);
}
// Handle error from to library loading
void loader_handle_load_library_error(const struct loader_instance *inst, const char *filename,
enum loader_layer_library_status *lib_status) {
const char *error_message = loader_platform_open_library_error(filename);
// If the error is due to incompatible architecture (eg 32 bit vs 64 bit), report it with INFO level
// Discussed in Github issue 262 & 644
// "wrong ELF class" is a linux error, " with error 193" is a windows error
VkFlags err_flag = VULKAN_LOADER_ERROR_BIT;
if (strstr(error_message, "wrong ELF class:") != NULL || strstr(error_message, " with error 193") != NULL) {
err_flag = VULKAN_LOADER_INFO_BIT;
if (NULL != lib_status) {
*lib_status = LOADER_LAYER_LIB_ERROR_WRONG_BIT_TYPE;
}
} else if (NULL != lib_status) {
*lib_status = LOADER_LAYER_LIB_ERROR_FAILED_TO_LOAD;
}
loader_log(inst, err_flag, 0, error_message);
}
VKAPI_ATTR VkResult VKAPI_CALL vkSetInstanceDispatch(VkInstance instance, void *object) {
struct loader_instance *inst = loader_get_instance(instance);
if (!inst) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkSetInstanceDispatch: Can not retrieve Instance dispatch table.");
return VK_ERROR_INITIALIZATION_FAILED;
}
loader_set_dispatch(object, inst->disp);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkSetDeviceDispatch(VkDevice device, void *object) {
struct loader_device *dev;
struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL);
if (NULL == icd_term) {
return VK_ERROR_INITIALIZATION_FAILED;
}
loader_set_dispatch(object, &dev->loader_dispatch);
return VK_SUCCESS;
}
void loader_free_layer_properties(const struct loader_instance *inst, struct loader_layer_properties *layer_properties) {
if (layer_properties->component_layer_names) {
loader_instance_heap_free(inst, layer_properties->component_layer_names);
}
if (layer_properties->override_paths) {
loader_instance_heap_free(inst, layer_properties->override_paths);
}
if (layer_properties->blacklist_layer_names) {
loader_instance_heap_free(inst, layer_properties->blacklist_layer_names);
}
if (layer_properties->app_key_paths) {
loader_instance_heap_free(inst, layer_properties->app_key_paths);
}
loader_destroy_generic_list(inst, (struct loader_generic_list *)&layer_properties->instance_extension_list);
if (layer_properties->device_extension_list.capacity > 0 && NULL != layer_properties->device_extension_list.list) {
for (uint32_t i = 0; i < layer_properties->device_extension_list.count; i++) {
struct loader_dev_ext_props *ext_props = &layer_properties->device_extension_list.list[i];
if (ext_props->entrypoint_count > 0) {
for (uint32_t j = 0; j < ext_props->entrypoint_count; j++) {
loader_instance_heap_free(inst, ext_props->entrypoints[j]);
}
loader_instance_heap_free(inst, ext_props->entrypoints);
}
}
}
loader_destroy_generic_list(inst, (struct loader_generic_list *)&layer_properties->device_extension_list);
// Make sure to clear out the removed layer, in case new layers are added in the previous location
memset(layer_properties, 0, sizeof(struct loader_layer_properties));
}
// Combine path elements, separating each element with the platform-specific
// directory separator, and save the combined string to a destination buffer,
// not exceeding the given length. Path elements are given as variable args,
// with a NULL element terminating the list.
//
// \returns the total length of the combined string, not including an ASCII
// NUL termination character. This length may exceed the available storage:
// in this case, the written string will be truncated to avoid a buffer
// overrun, and the return value will greater than or equal to the storage
// size. A NULL argument may be provided as the destination buffer in order
// to determine the required string length without actually writing a string.
static size_t loader_platform_combine_path(char *dest, size_t len, ...) {
size_t required_len = 0;
va_list ap;
const char *component;
va_start(ap, len);
component = va_arg(ap, const char *);
while (component) {
if (required_len > 0) {
// This path element is not the first non-empty element; prepend
// a directory separator if space allows
if (dest && required_len + 1 < len) {
(void)snprintf(dest + required_len, len - required_len, "%c", DIRECTORY_SYMBOL);
}
required_len++;
}
if (dest && required_len < len) {
strncpy(dest + required_len, component, len - required_len);
}
required_len += strlen(component);
component = va_arg(ap, const char *);
}
va_end(ap);
// strncpy(3) won't add a NUL terminating byte in the event of truncation.
if (dest && required_len >= len) {
dest[len - 1] = '\0';
}
return required_len;
}
// Given string of three part form "maj.min.pat" convert to a vulkan version number.
// Also can understand four part form "variant.major.minor.patch" if provided.
static uint32_t loader_parse_version_string(char *vers_str) {
uint32_t variant = 0, major = 0, minor = 0, patch = 0;
char *vers_tok;
if (!vers_str) {
return 0;
}
vers_tok = strtok(vers_str, ".\"\n\r");
if (NULL != vers_tok) {
major = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
minor = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
patch = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
// check that we are using a 4 part version string
if (NULL != vers_tok) {
// if we are, move the values over into the correct place
variant = major;
major = minor;
minor = patch;
patch = (uint16_t)atoi(vers_tok);
}
}
}
}
return VK_MAKE_API_VERSION(variant, major, minor, patch);
}
bool compare_vk_extension_properties(const VkExtensionProperties *op1, const VkExtensionProperties *op2) {
return strcmp(op1->extensionName, op2->extensionName) == 0 ? true : false;
}
// Search the given ext_array for an extension matching the given vk_ext_prop
bool has_vk_extension_property_array(const VkExtensionProperties *vk_ext_prop, const uint32_t count,
const VkExtensionProperties *ext_array) {
for (uint32_t i = 0; i < count; i++) {
if (compare_vk_extension_properties(vk_ext_prop, &ext_array[i])) return true;
}
return false;
}
// Search the given ext_list for an extension matching the given vk_ext_prop
bool has_vk_extension_property(const VkExtensionProperties *vk_ext_prop, const struct loader_extension_list *ext_list) {
for (uint32_t i = 0; i < ext_list->count; i++) {
if (compare_vk_extension_properties(&ext_list->list[i], vk_ext_prop)) return true;
}
return false;
}
// Search the given ext_list for a device extension matching the given ext_prop
bool has_vk_dev_ext_property(const VkExtensionProperties *ext_prop, const struct loader_device_extension_list *ext_list) {
for (uint32_t i = 0; i < ext_list->count; i++) {
if (compare_vk_extension_properties(&ext_list->list[i].props, ext_prop)) return true;
}
return false;
}
// Get the next unused layer property in the list. Init the property to zero.
static struct loader_layer_properties *loader_get_next_layer_property_slot(const struct loader_instance *inst,
struct loader_layer_list *layer_list) {
if (layer_list->capacity == 0) {
layer_list->list =
loader_instance_heap_alloc(inst, sizeof(struct loader_layer_properties) * 64, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (layer_list->list == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_get_next_layer_property_slot: Out of memory can not add any layer properties to list");
return NULL;
}
memset(layer_list->list, 0, sizeof(struct loader_layer_properties) * 64);
layer_list->capacity = sizeof(struct loader_layer_properties) * 64;
}
// Ensure enough room to add an entry
if ((layer_list->count + 1) * sizeof(struct loader_layer_properties) > layer_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, layer_list->list, layer_list->capacity, layer_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_get_next_layer_property_slot: realloc failed for layer list");
return NULL;
}
layer_list->list = new_ptr;
memset((uint8_t *)layer_list->list + layer_list->capacity, 0, layer_list->capacity);
layer_list->capacity *= 2;
}
layer_list->count++;
return &(layer_list->list[layer_list->count - 1]);
}
// Search the given layer list for a layer property matching the given layer name
static struct loader_layer_properties *loader_find_layer_property(const char *name, const struct loader_layer_list *layer_list) {
for (uint32_t i = 0; i < layer_list->count; i++) {
const VkLayerProperties *item = &layer_list->list[i].info;
if (strcmp(name, item->layerName) == 0) return &layer_list->list[i];
}
return NULL;
}
// Search the given layer list for a layer matching the given layer name
static bool loader_find_layer_name_in_list(const char *name, const struct loader_layer_list *layer_list) {
if (NULL == layer_list) {
return false;
}
if (NULL != loader_find_layer_property(name, layer_list)) {
return true;
}
return false;
}
// Search the given meta-layer's component list for a layer matching the given layer name
static bool loader_find_layer_name_in_meta_layer(const struct loader_instance *inst, const char *layer_name,
struct loader_layer_list *layer_list,
struct loader_layer_properties *meta_layer_props) {
for (uint32_t comp_layer = 0; comp_layer < meta_layer_props->num_component_layers; comp_layer++) {
if (!strcmp(meta_layer_props->component_layer_names[comp_layer], layer_name)) {
return true;
}
struct loader_layer_properties *comp_layer_props =
loader_find_layer_property(meta_layer_props->component_layer_names[comp_layer], layer_list);
if (comp_layer_props->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
return loader_find_layer_name_in_meta_layer(inst, layer_name, layer_list, comp_layer_props);
}
}
return false;
}
// Search the override layer's blacklist for a layer matching the given layer name
static bool loader_find_layer_name_in_blacklist(const struct loader_instance *inst, const char *layer_name,
struct loader_layer_list *layer_list,
struct loader_layer_properties *meta_layer_props) {
for (uint32_t black_layer = 0; black_layer < meta_layer_props->num_blacklist_layers; ++black_layer) {
if (!strcmp(meta_layer_props->blacklist_layer_names[black_layer], layer_name)) {
return true;
}
}
return false;
}
// Remove all layer properties entries from the list
void loader_delete_layer_list_and_properties(const struct loader_instance *inst, struct loader_layer_list *layer_list) {
uint32_t i;
if (!layer_list) return;
for (i = 0; i < layer_list->count; i++) {
loader_free_layer_properties(inst, &(layer_list->list[i]));
}
layer_list->count = 0;
if (layer_list->capacity > 0) {
layer_list->capacity = 0;
loader_instance_heap_free(inst, layer_list->list);
}
}
void loader_remove_layer_in_list(const struct loader_instance *inst, struct loader_layer_list *layer_list,
uint32_t layer_to_remove) {
if (layer_list == NULL || layer_to_remove >= layer_list->count) {
return;
}
loader_free_layer_properties(inst, &(layer_list->list[layer_to_remove]));
// Remove the current invalid meta-layer from the layer list. Use memmove since we are
// overlapping the source and destination addresses.
memmove(&layer_list->list[layer_to_remove], &layer_list->list[layer_to_remove + 1],
sizeof(struct loader_layer_properties) * (layer_list->count - 1 - layer_to_remove));
// Decrement the count (because we now have one less) and decrement the loop index since we need to
// re-check this index.
layer_list->count--;
}
// Remove all layers in the layer list that are blacklisted by the override layer.
// NOTE: This should only be called if an override layer is found and not expired.
void loader_remove_layers_in_blacklist(const struct loader_instance *inst, struct loader_layer_list *layer_list) {
struct loader_layer_properties *override_prop = loader_find_layer_property(VK_OVERRIDE_LAYER_NAME, layer_list);
if (NULL == override_prop) {
return;
}
for (int32_t j = 0; j < (int32_t)(layer_list->count); j++) {
struct loader_layer_properties cur_layer_prop = layer_list->list[j];
const char *cur_layer_name = &cur_layer_prop.info.layerName[0];
// Skip the override layer itself.
if (!strcmp(VK_OVERRIDE_LAYER_NAME, cur_layer_name)) {
continue;
}
// If found in the override layer's blacklist, remove it
if (loader_find_layer_name_in_blacklist(inst, cur_layer_name, layer_list, override_prop)) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0,
"loader_remove_layers_in_blacklist: Override layer is active and layer %s is in the blacklist inside of it. "
"Removing that layer from current layer list.",
cur_layer_name);
loader_remove_layer_in_list(inst, layer_list, j);
j--;
// Re-do the query for the override layer
override_prop = loader_find_layer_property(VK_OVERRIDE_LAYER_NAME, layer_list);
}
}
}
// Remove all layers in the layer list that are not found inside any implicit meta-layers.
void loader_remove_layers_not_in_implicit_meta_layers(const struct loader_instance *inst, struct loader_layer_list *layer_list) {
int32_t i;
int32_t j;
int32_t layer_count = (int32_t)(layer_list->count);
for (i = 0; i < layer_count; i++) {
layer_list->list[i].keep = false;
}
for (i = 0; i < layer_count; i++) {
struct loader_layer_properties *cur_layer_prop = &layer_list->list[i];
if (0 == (cur_layer_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) {
cur_layer_prop->keep = true;
continue;
}
for (j = 0; j < layer_count; j++) {
struct loader_layer_properties *layer_to_check = &layer_list->list[j];
if (i == j) {
continue;
}
if (layer_to_check->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
// For all layers found in this meta layer, we want to keep them as well.
if (loader_find_layer_name_in_meta_layer(inst, cur_layer_prop->info.layerName, layer_list, layer_to_check)) {
cur_layer_prop->keep = true;
}
}
}
}
// Remove any layers we don't want to keep (Don't use layer_count here as we need it to be
// dynamically updated if we delete a layer property in the list).
for (i = 0; i < (int32_t)(layer_list->count); i++) {
struct loader_layer_properties *cur_layer_prop = &layer_list->list[i];
if (!cur_layer_prop->keep) {
loader_log(
inst, VULKAN_LOADER_DEBUG_BIT, 0,
"loader_remove_layers_not_in_implicit_meta_layers : Implicit meta-layers are active, and layer %s is not list "
"inside of any. So removing layer from current layer list.",
cur_layer_prop->info.layerName);
loader_remove_layer_in_list(inst, layer_list, i);
i--;
}
}
}
static VkResult loader_add_instance_extensions(const struct loader_instance *inst,
const PFN_vkEnumerateInstanceExtensionProperties fp_get_props, const char *lib_name,
struct loader_extension_list *ext_list) {
uint32_t i, count = 0;
VkExtensionProperties *ext_props;
VkResult res = VK_SUCCESS;
if (!fp_get_props) {
// No EnumerateInstanceExtensionProperties defined
goto out;
}
res = fp_get_props(NULL, &count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_instance_extensions: Error getting Instance extension count from %s", lib_name);
goto out;
}
if (count == 0) {
// No ExtensionProperties to report
goto out;
}
ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties));
if (NULL == ext_props) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
res = fp_get_props(NULL, &count, ext_props);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_add_instance_extensions: Error getting Instance extensions from %s",
lib_name);
goto out;
}
for (i = 0; i < count; i++) {
bool ext_unsupported = wsi_unsupported_instance_extension(&ext_props[i]);
if (!ext_unsupported) {
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS) {
goto out;
}
}
}
out:
return res;
}
// Initialize ext_list with the physical device extensions.
// The extension properties are passed as inputs in count and ext_props.
static VkResult loader_init_device_extensions(const struct loader_instance *inst, struct loader_physical_device_term *phys_dev_term,
uint32_t count, VkExtensionProperties *ext_props,
struct loader_extension_list *ext_list) {
VkResult res;
uint32_t i;
res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
return res;
}
for (i = 0; i < count; i++) {
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS) return res;
}
return VK_SUCCESS;
}
VkResult loader_add_device_extensions(const struct loader_instance *inst,
PFN_vkEnumerateDeviceExtensionProperties fpEnumerateDeviceExtensionProperties,
VkPhysicalDevice physical_device, const char *lib_name,
struct loader_extension_list *ext_list) {
uint32_t i = 0, count = 0;
VkResult res = VK_SUCCESS;
VkExtensionProperties *ext_props = NULL;
res = fpEnumerateDeviceExtensionProperties(physical_device, NULL, &count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_device_extensions: Error getting physical device extension info count from library %s", lib_name);
return res;
}
if (count > 0) {
ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties));
if (!ext_props) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_device_extensions: Failed to allocate space for device extension properties from library %s.",
lib_name);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
res = fpEnumerateDeviceExtensionProperties(physical_device, NULL, &count, ext_props);
if (res != VK_SUCCESS) {
return res;
}
for (i = 0; i < count; i++) {
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS) {
return res;
}
}
}
return VK_SUCCESS;
}
VkResult loader_init_generic_list(const struct loader_instance *inst, struct loader_generic_list *list_info, size_t element_size) {
size_t capacity = 32 * element_size;
list_info->count = 0;
list_info->capacity = 0;
list_info->list = loader_instance_heap_alloc(inst, capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list_info->list == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_init_generic_list: Failed to allocate space for generic list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memset(list_info->list, 0, capacity);
list_info->capacity = capacity;
return VK_SUCCESS;
}
void loader_destroy_generic_list(const struct loader_instance *inst, struct loader_generic_list *list) {
loader_instance_heap_free(inst, list->list);
list->count = 0;
list->capacity = 0;
}
// Append non-duplicate extension properties defined in props to the given ext_list.
// Return - Vk_SUCCESS on success
VkResult loader_add_to_ext_list(const struct loader_instance *inst, struct loader_extension_list *ext_list,
uint32_t prop_list_count, const VkExtensionProperties *props) {
uint32_t i;
const VkExtensionProperties *cur_ext;
if (ext_list->list == NULL || ext_list->capacity == 0) {
VkResult res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
return res;
}
}
for (i = 0; i < prop_list_count; i++) {
cur_ext = &props[i];
// look for duplicates
if (has_vk_extension_property(cur_ext, ext_list)) {
continue;
}
// add to list at end
// check for enough capacity
if (ext_list->count * sizeof(VkExtensionProperties) >= ext_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, ext_list->list, ext_list->capacity, ext_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (new_ptr == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_to_ext_list: Failed to reallocate space for extension list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
ext_list->list = new_ptr;
// double capacity
ext_list->capacity *= 2;
}
memcpy(&ext_list->list[ext_list->count], cur_ext, sizeof(VkExtensionProperties));
ext_list->count++;
}
return VK_SUCCESS;
}
// Append one extension property defined in props with entrypoints defined in entries to the given
// ext_list. Do not append if a duplicate.
// Return - Vk_SUCCESS on success
VkResult loader_add_to_dev_ext_list(const struct loader_instance *inst, struct loader_device_extension_list *ext_list,
const VkExtensionProperties *props, uint32_t entry_count, char **entrys) {
uint32_t idx;
if (ext_list->list == NULL || ext_list->capacity == 0) {
VkResult res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(struct loader_dev_ext_props));
if (VK_SUCCESS != res) {
return res;
}
}
// look for duplicates
if (has_vk_dev_ext_property(props, ext_list)) {
return VK_SUCCESS;
}
idx = ext_list->count;
// add to list at end
// check for enough capacity
if (idx * sizeof(struct loader_dev_ext_props) >= ext_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, ext_list->list, ext_list->capacity, ext_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_to_dev_ext_list: Failed to reallocate space for device extension list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
ext_list->list = new_ptr;
// double capacity
ext_list->capacity *= 2;
}
memcpy(&ext_list->list[idx].props, props, sizeof(*props));
ext_list->list[idx].entrypoint_count = entry_count;
if (entry_count == 0) {
ext_list->list[idx].entrypoints = NULL;
} else {
ext_list->list[idx].entrypoints =
loader_instance_heap_alloc(inst, sizeof(char *) * entry_count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list[idx].entrypoints == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_to_dev_ext_list: Failed to allocate space for device extension entrypoint list in list %d", idx);
ext_list->list[idx].entrypoint_count = 0;
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for (uint32_t i = 0; i < entry_count; i++) {
ext_list->list[idx].entrypoints[i] =
loader_instance_heap_alloc(inst, strlen(entrys[i]) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list[idx].entrypoints[i] == NULL) {
for (uint32_t j = 0; j < i; j++) {
loader_instance_heap_free(inst, ext_list->list[idx].entrypoints[j]);
}
loader_instance_heap_free(inst, ext_list->list[idx].entrypoints);
ext_list->list[idx].entrypoint_count = 0;
ext_list->list[idx].entrypoints = NULL;
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_to_dev_ext_list: Failed to allocate space for device extension entrypoint %d name", i);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
strcpy(ext_list->list[idx].entrypoints[i], entrys[i]);
}
}
ext_list->count++;
return VK_SUCCESS;
}
// Prototypes needed.
bool loader_add_meta_layer(const struct loader_instance *inst, const struct loader_layer_properties *prop,
struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list,
const struct loader_layer_list *source_list);
// Manage lists of VkLayerProperties
static bool loader_init_layer_list(const struct loader_instance *inst, struct loader_layer_list *list) {
list->capacity = 32 * sizeof(struct loader_layer_properties);
list->list = loader_instance_heap_alloc(inst, list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->list == NULL) {
return false;
}
memset(list->list, 0, list->capacity);
list->count = 0;
return true;
}
// Search the given array of layer names for an entry matching the given VkLayerProperties
bool loader_names_array_has_layer_property(const VkLayerProperties *vk_layer_prop, uint32_t layer_info_count,
struct activated_layer_info *layer_info) {
for (uint32_t i = 0; i < layer_info_count; i++) {
if (strcmp(vk_layer_prop->layerName, layer_info[i].name) == 0) {
return true;
}
}
return false;
}
void loader_destroy_layer_list(const struct loader_instance *inst, struct loader_device *device,
struct loader_layer_list *layer_list) {
if (device) {
loader_device_heap_free(device, layer_list->list);
} else {
loader_instance_heap_free(inst, layer_list->list);
}
layer_list->count = 0;
layer_list->capacity = 0;
}
// Append layer properties defined in prop_list to the given layer_info list
VkResult loader_add_layer_properties_to_list(const struct loader_instance *inst, struct loader_layer_list *list,
uint32_t prop_list_count, const struct loader_layer_properties *props) {
uint32_t i;
struct loader_layer_properties *layer;
if (list->list == NULL || list->capacity == 0) {
if (!loader_init_layer_list(inst, list)) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
if (list->list == NULL) return VK_SUCCESS;
for (i = 0; i < prop_list_count; i++) {
layer = (struct loader_layer_properties *)&props[i];
// Check for enough capacity
if (((list->count + 1) * sizeof(struct loader_layer_properties)) >= list->capacity) {
size_t new_capacity = list->capacity * 2;
void *new_ptr =
loader_instance_heap_realloc(inst, list->list, list->capacity, new_capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_add_layer_properties_to_list: Realloc failed for when attempting to add new layer");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
list->list = new_ptr;
list->capacity = new_capacity;
}
memcpy(&list->list[list->count], layer, sizeof(struct loader_layer_properties));
list->count++;
}
return VK_SUCCESS;
}
// Search the given search_list for any layers in the props list. Add these to the
// output layer_list.
static VkResult loader_add_layer_names_to_list(const struct loader_instance *inst, struct loader_layer_list *output_list,
struct loader_layer_list *expanded_output_list, uint32_t name_count,
const char *const *names, const struct loader_layer_list *source_list) {
struct loader_layer_properties *layer_prop;
VkResult err = VK_SUCCESS;
for (uint32_t i = 0; i < name_count; i++) {
const char *source_name = names[i];
layer_prop = loader_find_layer_property(source_name, source_list);
if (NULL == layer_prop) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_names_to_list: Unable to find layer %s", source_name);
err = VK_ERROR_LAYER_NOT_PRESENT;
continue;
}
// Make sure the layer isn't already in the output_list, skip adding it if it is.
if (loader_find_layer_name_in_list(source_name, output_list)) {
continue;
}
// If not a meta-layer, simply add it.
if (0 == (layer_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) {
loader_add_layer_properties_to_list(inst, output_list, 1, layer_prop);
loader_add_layer_properties_to_list(inst, expanded_output_list, 1, layer_prop);
} else {
loader_add_meta_layer(inst, layer_prop, output_list, expanded_output_list, source_list);
}
}
return err;
}
static bool check_expiration(const struct loader_instance *inst, const struct loader_layer_properties *prop) {
time_t current = time(NULL);
struct tm tm_current = *localtime(&current);
struct tm tm_expiration;
tm_expiration.tm_sec = 0;
tm_expiration.tm_min = prop->expiration.minute;
tm_expiration.tm_hour = prop->expiration.hour;
tm_expiration.tm_mday = prop->expiration.day;
tm_expiration.tm_mon = prop->expiration.month - 1;
tm_expiration.tm_year = prop->expiration.year - 1900;
tm_expiration.tm_isdst = tm_current.tm_isdst;
// wday and yday are ignored by mktime
time_t expiration = mktime(&tm_expiration);
return current < expiration;
}
// Determine if the provided implicit layer should be enabled by querying the appropriate environmental variables.
// For an implicit layer, at least a disable environment variable is required.
bool loader_implicit_layer_is_enabled(const struct loader_instance *inst, const struct loader_layer_properties *prop) {
bool enable = false;
char *env_value = NULL;
// If no enable_environment variable is specified, this implicit layer is always be enabled by default.
if (prop->enable_env_var.name[0] == 0) {
enable = true;
} else {
// Otherwise, only enable this layer if the enable environment variable is defined
env_value = loader_getenv(prop->enable_env_var.name, inst);
if (env_value && !strcmp(prop->enable_env_var.value, env_value)) {
enable = true;
}
loader_free_getenv(env_value, inst);
}
// The disable_environment has priority over everything else. If it is defined, the layer is always
// disabled.
env_value = loader_getenv(prop->disable_env_var.name, inst);
if (NULL != env_value) {
enable = false;
}
loader_free_getenv(env_value, inst);
// If this layer has an expiration, check it to determine if this layer has expired.
if (prop->has_expiration) {
enable = check_expiration(inst, prop);
}
// Enable this layer if it is included in the override layer
if (inst != NULL && inst->override_layer_present) {
struct loader_layer_properties *override = NULL;
for (uint32_t i = 0; i < inst->instance_layer_list.count; ++i) {
if (strcmp(inst->instance_layer_list.list[i].info.layerName, VK_OVERRIDE_LAYER_NAME) == 0) {
override = &inst->instance_layer_list.list[i];
break;
}
}
if (override != NULL) {
for (uint32_t i = 0; i < override->num_component_layers; ++i) {
if (strcmp(override->component_layer_names[i], prop->info.layerName) == 0) {
enable = true;
break;
}
}
}
}
return enable;
}
// Check the individual implicit layer for the enable/disable environment variable settings. Only add it after
// every check has passed indicating it should be used.
static void loader_add_implicit_layer(const struct loader_instance *inst, const struct loader_layer_properties *prop,
struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list,
const struct loader_layer_list *source_list) {
bool enable = loader_implicit_layer_is_enabled(inst, prop);
// If the implicit layer is supposed to be enable, make sure the layer supports at least the same API version
// that the application is asking (i.e. layer's API >= app's API). If it's not, disable this layer.
if (enable) {
loader_api_version prop_version = loader_make_version(prop->info.specVersion);
if (!loader_check_version_meets_required(inst->app_api_version, prop_version)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"loader_add_implicit_layer: Disabling implicit layer %s for using an old API version %d.%d versus "
"application requested %d.%d",
prop->info.layerName, prop_version.major, prop_version.minor, inst->app_api_version.major,
inst->app_api_version.minor);
enable = false;
}
}
if (enable) {
if (0 == (prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) {
loader_add_layer_properties_to_list(inst, target_list, 1, prop);
if (NULL != expanded_target_list) {
loader_add_layer_properties_to_list(inst, expanded_target_list, 1, prop);
}
} else {
loader_add_meta_layer(inst, prop, target_list, expanded_target_list, source_list);
}
}
}
// Add the component layers of a meta-layer to the active list of layers
bool loader_add_meta_layer(const struct loader_instance *inst, const struct loader_layer_properties *prop,
struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list,
const struct loader_layer_list *source_list) {
bool found = true;
// We need to add all the individual component layers
loader_api_version meta_layer_api_version = loader_make_version(prop->info.specVersion);
for (uint32_t comp_layer = 0; comp_layer < prop->num_component_layers; comp_layer++) {
const struct loader_layer_properties *search_prop =
loader_find_layer_property(prop->component_layer_names[comp_layer], source_list);
if (search_prop != NULL) {
loader_api_version search_prop_version = loader_make_version(prop->info.specVersion);
if (!loader_check_version_meets_required(meta_layer_api_version, search_prop_version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_meta_layer: Meta-layer API version %u.%u, component layer %s version %u.%u, may have "
"incompatibilities (Policy #LLP_LAYER_8)!",
meta_layer_api_version.major, meta_layer_api_version.minor, search_prop->info.layerName,
search_prop_version.major, search_prop_version.minor);
}
// If the component layer is itself an implicit layer, we need to do the implicit layer enable
// checks
if (0 == (search_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) {
loader_add_implicit_layer(inst, search_prop, target_list, expanded_target_list, source_list);
} else {
if (0 != (search_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) {
found = loader_add_meta_layer(inst, search_prop, target_list, expanded_target_list, source_list);
} else {
loader_add_layer_properties_to_list(inst, target_list, 1, search_prop);
if (NULL != expanded_target_list) {
loader_add_layer_properties_to_list(inst, expanded_target_list, 1, search_prop);
}
}
}
} else {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_meta_layer: Failed to find layer name %s component layer %s to activate (Policy #LLP_LAYER_7)",
prop->component_layer_names[comp_layer], prop->component_layer_names[comp_layer]);
found = false;
}
}
// Add this layer to the overall target list (not the expanded one)
if (found) {
loader_add_layer_properties_to_list(inst, target_list, 1, prop);
}
return found;
}
// Search the source_list for any layer with a name that matches the given name and a type
// that matches the given type. Add all matching layers to the target_list.
VkResult loader_add_layer_name_to_list(const struct loader_instance *inst, const char *name, const enum layer_type_flags type_flags,
const struct loader_layer_list *source_list, struct loader_layer_list *target_list,
struct loader_layer_list *expanded_target_list) {
VkResult res = VK_SUCCESS;
bool found = false;
for (uint32_t i = 0; i < source_list->count; i++) {
struct loader_layer_properties *source_prop = &source_list->list[i];
if (0 == strcmp(source_prop->info.layerName, name) && (source_prop->type_flags & type_flags) == type_flags) {
// If not a meta-layer, simply add it.
if (0 == (source_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) {
if (VK_SUCCESS == loader_add_layer_properties_to_list(inst, target_list, 1, source_prop)) {
found = true;
}
if (VK_SUCCESS == loader_add_layer_properties_to_list(inst, expanded_target_list, 1, source_prop)) {
found = true;
}
} else {
found = loader_add_meta_layer(inst, source_prop, target_list, expanded_target_list, source_list);
}
}
}
if (!found) {
if (strcmp(name, "VK_LAYER_LUNARG_standard_validation")) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_name_to_list: Failed to find layer name %s to activate", name);
} else {
res = VK_ERROR_LAYER_NOT_PRESENT;
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Layer VK_LAYER_LUNARG_standard_validation has been changed to VK_LAYER_KHRONOS_validation. Please use the "
"new version of the layer.");
}
}
return res;
}
static VkExtensionProperties *get_extension_property(const char *name, const struct loader_extension_list *list) {
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].extensionName) == 0) return &list->list[i];
}
return NULL;
}
static VkExtensionProperties *get_dev_extension_property(const char *name, const struct loader_device_extension_list *list) {
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].props.extensionName) == 0) return &list->list[i].props;
}
return NULL;
}
// For Instance extensions implemented within the loader (i.e. DEBUG_REPORT
// the extension must provide two entry points for the loader to use:
// - "trampoline" entry point - this is the address returned by GetProcAddr
// and will always do what's necessary to support a
// global call.
// - "terminator" function - this function will be put at the end of the
// instance chain and will contain the necessary logic
// to call / process the extension for the appropriate
// ICDs that are available.
// There is no generic mechanism for including these functions, the references
// must be placed into the appropriate loader entry points.
// GetInstanceProcAddr: call extension GetInstanceProcAddr to check for GetProcAddr
// requests
// loader_coalesce_extensions(void) - add extension records to the list of global
// extension available to the app.
// instance_disp - add function pointer for terminator function
// to this array.
// The extension itself should be in a separate file that will be linked directly
// with the loader.
VkResult loader_get_icd_loader_instance_extensions(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list,
struct loader_extension_list *inst_exts) {
struct loader_extension_list icd_exts;
VkResult res = VK_SUCCESS;
char *env_value;
bool filter_extensions = true;
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "Build ICD instance extension list");
// Check if a user wants to disable the instance extension filtering behavior
env_value = loader_getenv("VK_LOADER_DISABLE_INST_EXT_FILTER", inst);
if (NULL != env_value && atoi(env_value) != 0) {
filter_extensions = false;
}
loader_free_getenv(env_value, inst);
// traverse scanned icd list adding non-duplicate extensions to the list
for (uint32_t i = 0; i < icd_tramp_list->count; i++) {
res = loader_init_generic_list(inst, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
goto out;
}
res = loader_add_instance_extensions(inst, icd_tramp_list->scanned_list[i].EnumerateInstanceExtensionProperties,
icd_tramp_list->scanned_list[i].lib_name, &icd_exts);
if (VK_SUCCESS == res) {
if (filter_extensions) {
// Remove any extensions not recognized by the loader
for (int32_t j = 0; j < (int32_t)icd_exts.count; j++) {
// See if the extension is in the list of supported extensions
bool found = false;
for (uint32_t k = 0; LOADER_INSTANCE_EXTENSIONS[k] != NULL; k++) {
if (strcmp(icd_exts.list[j].extensionName, LOADER_INSTANCE_EXTENSIONS[k]) == 0) {
found = true;
break;
}
}
// If it isn't in the list, remove it
if (!found) {
for (uint32_t k = j + 1; k < icd_exts.count; k++) {
icd_exts.list[k - 1] = icd_exts.list[k];
}
--icd_exts.count;
--j;
}
}
}
res = loader_add_to_ext_list(inst, inst_exts, icd_exts.count, icd_exts.list);
}
loader_destroy_generic_list(inst, (struct loader_generic_list *)&icd_exts);
if (VK_SUCCESS != res) {
goto out;
}
};
// Traverse loader's extensions, adding non-duplicate extensions to the list
debug_utils_AddInstanceExtensions(inst, inst_exts);
static const VkExtensionProperties portability_enumeration_extension_info[] = {
{VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME, VK_KHR_PORTABILITY_ENUMERATION_SPEC_VERSION}};
// Add VK_KHR_portability_subset
loader_add_to_ext_list(inst, inst_exts, sizeof(portability_enumeration_extension_info) / sizeof(VkExtensionProperties),
portability_enumeration_extension_info);
out:
return res;
}
struct loader_icd_term *loader_get_icd_and_device(const void *device, struct loader_device **found_dev, uint32_t *icd_index) {
*found_dev = NULL;
for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) {
uint32_t index = 0;
for (struct loader_icd_term *icd_term = inst->icd_terms; icd_term; icd_term = icd_term->next) {
for (struct loader_device *dev = icd_term->logical_device_list; dev; dev = dev->next)
// Value comparison of device prevents object wrapping by layers
if (loader_get_dispatch(dev->icd_device) == loader_get_dispatch(device) ||
(dev->chain_device != VK_NULL_HANDLE &&
loader_get_dispatch(dev->chain_device) == loader_get_dispatch(device))) {
*found_dev = dev;
if (NULL != icd_index) {
*icd_index = index;
}
return icd_term;
}
index++;
}
}
return NULL;
}
void loader_destroy_logical_device(const struct loader_instance *inst, struct loader_device *dev,
const VkAllocationCallbacks *pAllocator) {
if (pAllocator) {
dev->alloc_callbacks = *pAllocator;
}
if (NULL != dev->expanded_activated_layer_list.list) {
loader_deactivate_layers(inst, dev, &dev->expanded_activated_layer_list);
}
if (NULL != dev->app_activated_layer_list.list) {
loader_destroy_layer_list(inst, dev, &dev->app_activated_layer_list);
}
loader_device_heap_free(dev, dev);
}
struct loader_device *loader_create_logical_device(const struct loader_instance *inst, const VkAllocationCallbacks *pAllocator) {
struct loader_device *new_dev;
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
{
#else
if (pAllocator) {
new_dev = (struct loader_device *)pAllocator->pfnAllocation(pAllocator->pUserData, sizeof(struct loader_device),
sizeof(int *), VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
} else {
#endif
new_dev = (struct loader_device *)malloc(sizeof(struct loader_device));
}
if (!new_dev) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_create_logical_device: Failed to alloc struct loader_device");
return NULL;
}
memset(new_dev, 0, sizeof(struct loader_device));
if (pAllocator) {
new_dev->alloc_callbacks = *pAllocator;
}
return new_dev;
}
void loader_add_logical_device(const struct loader_instance *inst, struct loader_icd_term *icd_term, struct loader_device *dev) {
dev->next = icd_term->logical_device_list;
icd_term->logical_device_list = dev;
}
void loader_remove_logical_device(const struct loader_instance *inst, struct loader_icd_term *icd_term,
struct loader_device *found_dev, const VkAllocationCallbacks *pAllocator) {
struct loader_device *dev, *prev_dev;
if (!icd_term || !found_dev) return;
prev_dev = NULL;
dev = icd_term->logical_device_list;
while (dev && dev != found_dev) {
prev_dev = dev;
dev = dev->next;
}
if (prev_dev)
prev_dev->next = found_dev->next;
else
icd_term->logical_device_list = found_dev->next;
loader_destroy_logical_device(inst, found_dev, pAllocator);
}
static void loader_icd_destroy(struct loader_instance *ptr_inst, struct loader_icd_term *icd_term,
const VkAllocationCallbacks *pAllocator) {
ptr_inst->total_icd_count--;
for (struct loader_device *dev = icd_term->logical_device_list; dev;) {
struct loader_device *next_dev = dev->next;
loader_destroy_logical_device(ptr_inst, dev, pAllocator);
dev = next_dev;
}
loader_instance_heap_free(ptr_inst, icd_term);
}
static struct loader_icd_term *loader_icd_create(const struct loader_instance *inst) {
struct loader_icd_term *icd_term;
icd_term = loader_instance_heap_alloc(inst, sizeof(struct loader_icd_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!icd_term) {
return NULL;
}
memset(icd_term, 0, sizeof(struct loader_icd_term));
return icd_term;
}
static struct loader_icd_term *loader_icd_add(struct loader_instance *ptr_inst, const struct loader_scanned_icd *scanned_icd) {
struct loader_icd_term *icd_term;
icd_term = loader_icd_create(ptr_inst);
if (!icd_term) {
return NULL;
}
icd_term->scanned_icd = scanned_icd;
icd_term->this_instance = ptr_inst;
// Prepend to the list
icd_term->next = ptr_inst->icd_terms;
ptr_inst->icd_terms = icd_term;
ptr_inst->total_icd_count++;
return icd_term;
}
// Determine the ICD interface version to use.
// @param icd
// @param pVersion Output parameter indicating which version to use or 0 if
// the negotiation API is not supported by the ICD
// @return bool indicating true if the selected interface version is supported
// by the loader, false indicates the version is not supported
bool loader_get_icd_interface_version(PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version, uint32_t *pVersion) {
if (fp_negotiate_icd_version == NULL) {
// ICD does not support the negotiation API, it supports version 0 or 1
// calling code must determine if it is version 0 or 1
*pVersion = 0;
} else {
// ICD supports the negotiation API, so call it with the loader's
// latest version supported
*pVersion = CURRENT_LOADER_ICD_INTERFACE_VERSION;
VkResult result = fp_negotiate_icd_version(pVersion);
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
// ICD no longer supports the loader's latest interface version so
// fail loading the ICD
return false;
}
}
#if MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION > 0
if (*pVersion < MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION) {
// Loader no longer supports the ICD's latest interface version so fail
// loading the ICD
return false;
}
#endif
return true;
}
void loader_scanned_icd_clear(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) {
if (0 != icd_tramp_list->capacity) {
for (uint32_t i = 0; i < icd_tramp_list->count; i++) {
loader_platform_close_library(icd_tramp_list->scanned_list[i].handle);
loader_instance_heap_free(inst, icd_tramp_list->scanned_list[i].lib_name);
}
loader_instance_heap_free(inst, icd_tramp_list->scanned_list);
icd_tramp_list->capacity = 0;
icd_tramp_list->count = 0;
icd_tramp_list->scanned_list = NULL;
}
}
static VkResult loader_scanned_icd_init(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) {
VkResult err = VK_SUCCESS;
loader_scanned_icd_clear(inst, icd_tramp_list);
icd_tramp_list->capacity = 8 * sizeof(struct loader_scanned_icd);
icd_tramp_list->scanned_list = loader_instance_heap_alloc(inst, icd_tramp_list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == icd_tramp_list->scanned_list) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_init: Realloc failed for layer list when attempting to add new layer");
err = VK_ERROR_OUT_OF_HOST_MEMORY;
}
return err;
}
static VkResult loader_scanned_icd_add(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list,
const char *filename, uint32_t api_version, enum loader_layer_library_status *lib_status) {
loader_platform_dl_handle handle;
PFN_vkCreateInstance fp_create_inst;
PFN_vkEnumerateInstanceExtensionProperties fp_get_inst_ext_props;
PFN_vkGetInstanceProcAddr fp_get_proc_addr;
PFN_GetPhysicalDeviceProcAddr fp_get_phys_dev_proc_addr = NULL;
PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version;
#if defined(VK_USE_PLATFORM_WIN32_KHR)
PFN_vk_icdEnumerateAdapterPhysicalDevices fp_enum_dxgi_adapter_phys_devs = NULL;
#endif
struct loader_scanned_icd *new_scanned_icd;
uint32_t interface_vers;
VkResult res = VK_SUCCESS;
// TODO implement smarter opening/closing of libraries. For now this
// function leaves libraries open and the scanned_icd_clear closes them
#if defined(__Fuchsia__)
handle = loader_platform_open_driver(filename);
#else
handle = loader_platform_open_library(filename);
#endif
if (NULL == handle) {
loader_handle_load_library_error(inst, filename, lib_status);
res = VK_ERROR_INCOMPATIBLE_DRIVER;
goto out;
}
// Get and settle on an ICD interface version
fp_negotiate_icd_version = loader_platform_get_proc_address(handle, "vk_icdNegotiateLoaderICDInterfaceVersion");
if (!loader_get_icd_interface_version(fp_negotiate_icd_version, &interface_vers)) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: ICD %s doesn't support interface version compatible with loader, skip this ICD.",
filename);
goto out;
}
fp_get_proc_addr = loader_platform_get_proc_address(handle, "vk_icdGetInstanceProcAddr");
if (NULL == fp_get_proc_addr) {
if (interface_vers != 0) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: ICD %s reports an interface version of %d but doesn't export "
"vk_icdGetInstanceProcAddr, skip "
"this ICD.",
filename, interface_vers);
goto out;
}
// Use deprecated interface from version 0
fp_get_proc_addr = loader_platform_get_proc_address(handle, "vkGetInstanceProcAddr");
if (NULL == fp_get_proc_addr) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: Attempt to retrieve either \'vkGetInstanceProcAddr\' or "
"\'vk_icdGetInstanceProcAddr\' from ICD %s failed.",
filename);
goto out;
} else {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"loader_scanned_icd_add: Using deprecated ICD interface of \'vkGetInstanceProcAddr\' instead of "
"\'vk_icdGetInstanceProcAddr\' for ICD %s",
filename);
}
fp_create_inst = loader_platform_get_proc_address(handle, "vkCreateInstance");
if (NULL == fp_create_inst) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: Failed querying \'vkCreateInstance\' via dlsym/loadlibrary for ICD %s", filename);
goto out;
}
fp_get_inst_ext_props = loader_platform_get_proc_address(handle, "vkEnumerateInstanceExtensionProperties");
if (NULL == fp_get_inst_ext_props) {
loader_log(
inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: Could not get \'vkEnumerateInstanceExtensionProperties\' via dlsym/loadlibrary for ICD %s",
filename);
goto out;
}
} else {
// Use newer interface version 1 or later
if (interface_vers == 0) {
interface_vers = 1;
}
fp_create_inst = (PFN_vkCreateInstance)fp_get_proc_addr(NULL, "vkCreateInstance");
if (NULL == fp_create_inst) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: Could not get \'vkCreateInstance\' via \'vk_icdGetInstanceProcAddr\' for ICD %s",
filename);
goto out;
}
fp_get_inst_ext_props =
(PFN_vkEnumerateInstanceExtensionProperties)fp_get_proc_addr(NULL, "vkEnumerateInstanceExtensionProperties");
if (NULL == fp_get_inst_ext_props) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_scanned_icd_add: Could not get \'vkEnumerateInstanceExtensionProperties\' via "
"\'vk_icdGetInstanceProcAddr\' for ICD %s",
filename);
goto out;
}
fp_get_phys_dev_proc_addr = loader_platform_get_proc_address(handle, "vk_icdGetPhysicalDeviceProcAddr");
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (interface_vers >= 6) {
fp_enum_dxgi_adapter_phys_devs = loader_platform_get_proc_address(handle, "vk_icdEnumerateAdapterPhysicalDevices");
}
#endif
}
// check for enough capacity
if ((icd_tramp_list->count * sizeof(struct loader_scanned_icd)) >= icd_tramp_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, icd_tramp_list->scanned_list, icd_tramp_list->capacity,
icd_tramp_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: Realloc failed on icd library list for ICD %s",
filename);
goto out;
}
icd_tramp_list->scanned_list = new_ptr;
// double capacity
icd_tramp_list->capacity *= 2;
}
loader_api_version api_version_struct = loader_make_version(api_version);
if (interface_vers <= 4 && loader_check_version_meets_required(LOADER_VERSION_1_1_0, api_version_struct)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"loader_scanned_icd_add: Driver %s supports Vulkan %u.%u, but only supports loader interface version %u."
" Interface version 5 or newer required to support this version of Vulkan (Policy #LDP_DRIVER_7)",
filename, api_version_struct.major, api_version_struct.minor, interface_vers);
}
new_scanned_icd = &(icd_tramp_list->scanned_list[icd_tramp_list->count]);
new_scanned_icd->handle = handle;
new_scanned_icd->api_version = api_version;
new_scanned_icd->GetInstanceProcAddr = fp_get_proc_addr;
new_scanned_icd->GetPhysicalDeviceProcAddr = fp_get_phys_dev_proc_addr;
new_scanned_icd->EnumerateInstanceExtensionProperties = fp_get_inst_ext_props;
new_scanned_icd->CreateInstance = fp_create_inst;
#if defined(VK_USE_PLATFORM_WIN32_KHR)
new_scanned_icd->EnumerateAdapterPhysicalDevices = fp_enum_dxgi_adapter_phys_devs;
#endif
new_scanned_icd->interface_version = interface_vers;
new_scanned_icd->lib_name = (char *)loader_instance_heap_alloc(inst, strlen(filename) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_scanned_icd->lib_name) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_scanned_icd_add: Out of memory can't add ICD %s", filename);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(new_scanned_icd->lib_name, filename);
icd_tramp_list->count++;
out:
return res;
}
void loader_initialize(void) {
// initialize mutexes
loader_platform_thread_create_mutex(&loader_lock);
loader_platform_thread_create_mutex(&loader_json_lock);
loader_platform_thread_create_mutex(&loader_preload_icd_lock);
// initialize logging
loader_debug_init();
#if defined(_WIN32)
windows_initialization();
#endif
loader_api_version version = loader_make_version(VK_HEADER_VERSION_COMPLETE);
loader_log(NULL, VULKAN_LOADER_INFO_BIT, 0, "Vulkan Loader Version %d.%d.%d", version.major, version.minor, version.patch);
#if defined(GIT_BRANCH_NAME) && defined(GIT_TAG_INFO)
loader_log(NULL, VULKAN_LOADER_INFO_BIT, 0, "[Vulkan Loader Git - Tag: " GIT_BRANCH_NAME ", Branch/Commit: " GIT_TAG_INFO "]");
#endif
}
void loader_release() {
// Guarantee release of the preloaded ICD libraries. This may have already been called in vkDestroyInstance.
loader_unload_preloaded_icds();
// release mutexes
loader_platform_thread_delete_mutex(&loader_lock);
loader_platform_thread_delete_mutex(&loader_json_lock);
loader_platform_thread_delete_mutex(&loader_preload_icd_lock);
}
// Preload the ICD libraries that are likely to be needed so we don't repeatedly load/unload them later
void loader_preload_icds(void) {
loader_platform_thread_lock_mutex(&loader_preload_icd_lock);
// Already preloaded, skip loading again.
if (scanned_icds.scanned_list != NULL) {
loader_platform_thread_unlock_mutex(&loader_preload_icd_lock);
return;
}
memset(&scanned_icds, 0, sizeof(scanned_icds));
VkResult result = loader_icd_scan(NULL, &scanned_icds, NULL);
if (result != VK_SUCCESS) {
loader_scanned_icd_clear(NULL, &scanned_icds);
}
loader_platform_thread_unlock_mutex(&loader_preload_icd_lock);
}
// Release the ICD libraries that were preloaded
void loader_unload_preloaded_icds(void) {
loader_platform_thread_lock_mutex(&loader_preload_icd_lock);
loader_scanned_icd_clear(NULL, &scanned_icds);
loader_platform_thread_unlock_mutex(&loader_preload_icd_lock);
}
#if !defined(_WIN32)
__attribute__((constructor)) void loader_init_library() { loader_initialize(); }
__attribute__((destructor)) void loader_free_library() { loader_release(); }
#endif
// Get next file or dirname given a string list or registry key path
//
// \returns
// A pointer to first char in the next path.
// The next path (or NULL) in the list is returned in next_path.
// Note: input string is modified in some cases. PASS IN A COPY!
char *loader_get_next_path(char *path) {
uint32_t len;
char *next;
if (path == NULL) return NULL;
next = strchr(path, PATH_SEPARATOR);
if (next == NULL) {
len = (uint32_t)strlen(path);
next = path + len;
} else {
*next = '\0';
next++;
}
return next;
}
// Given a path which is absolute or relative, expand the path if relative or
// leave the path unmodified if absolute. The base path to prepend to relative
// paths is given in rel_base.
//
// @return - A string in out_fullpath of the full absolute path
static void loader_expand_path(const char *path, const char *rel_base, size_t out_size, char *out_fullpath) {
if (loader_platform_is_path_absolute(path)) {
// do not prepend a base to an absolute path
rel_base = "";
}
loader_platform_combine_path(out_fullpath, out_size, rel_base, path, NULL);
}
// Given a filename (file) and a list of paths (dir), try to find an existing
// file in the paths. If filename already is a path then no searching in the given paths.
//
// @return - A string in out_fullpath of either the full path or file.
static void loader_get_fullpath(const char *file, const char *in_dirs, size_t out_size, char *out_fullpath) {
if (!loader_platform_is_path(file) && *in_dirs) {
char *dirs_copy, *dir, *next_dir;
dirs_copy = loader_stack_alloc(strlen(in_dirs) + 1);
strcpy(dirs_copy, in_dirs);
// find if file exists after prepending paths in given list
// for (dir = dirs_copy; *dir && (next_dir = loader_get_next_path(dir)); dir = next_dir) {
dir = dirs_copy;
next_dir = loader_get_next_path(dir);
while (*dir && next_dir) {
loader_platform_combine_path(out_fullpath, out_size, dir, file, NULL);
if (loader_platform_file_exists(out_fullpath)) {
return;
}
dir = next_dir;
next_dir = loader_get_next_path(dir);
}
}
(void)snprintf(out_fullpath, out_size, "%s", file);
}
// Read a JSON file into a buffer.
//
// @return - A pointer to a cJSON object representing the JSON parse tree.
// This returned buffer should be freed by caller.
static VkResult loader_get_json(const struct loader_instance *inst, const char *filename, cJSON **json) {
FILE *file = NULL;
char *json_buf = NULL;
size_t len;
VkResult res = VK_SUCCESS;
if (NULL == json) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_get_json: Received invalid JSON file");
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
*json = NULL;
file = fopen(filename, "rb");
if (!file) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_get_json: Failed to open JSON file %s", filename);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// NOTE: We can't just use fseek(file, 0, SEEK_END) because that isn't guaranteed to be supported on all systems
size_t fread_ret_count = 0;
do {
char buffer[256];
fread_ret_count = fread(buffer, 1, 256, file);
} while (fread_ret_count == 256 && !feof(file));
len = ftell(file);
fseek(file, 0, SEEK_SET);
json_buf = (char *)loader_instance_heap_alloc(inst, len + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (json_buf == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_get_json: Failed to allocate space for JSON file %s buffer of length %d", filename, len);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
if (fread(json_buf, sizeof(char), len, file) != len) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_get_json: Failed to read JSON file %s.", filename);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
json_buf[len] = '\0';
// Can't be a valid json if the string is of length zero
if (len == 0) {
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// Parse text from file
*json = cJSON_Parse(inst, json_buf);
if (*json == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_get_json: Failed to parse JSON file %s, this is usually because something ran out of memory.", filename);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
out:
if (NULL != json_buf) {
loader_instance_heap_free(inst, json_buf);
}
if (NULL != file) {
fclose(file);
}
return res;
}
// Verify that all component layers in a meta-layer are valid.
static bool verify_meta_layer_component_layers(const struct loader_instance *inst, struct loader_layer_properties *prop,
struct loader_layer_list *instance_layers) {
bool success = true;
loader_api_version meta_layer_version = loader_make_version(prop->info.specVersion);
for (uint32_t comp_layer = 0; comp_layer < prop->num_component_layers; comp_layer++) {
struct loader_layer_properties *comp_prop =
loader_find_layer_property(prop->component_layer_names[comp_layer], instance_layers);
if (comp_prop == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"verify_meta_layer_component_layers: Meta-layer %s can't find component layer %s at index %d."
" Skipping this layer.",
prop->info.layerName, prop->component_layer_names[comp_layer], comp_layer);
success = false;
break;
}
// Check the version of each layer, they need to be at least MAJOR and MINOR
loader_api_version comp_prop_version = loader_make_version(comp_prop->info.specVersion);
if (!loader_check_version_meets_required(meta_layer_version, comp_prop_version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"verify_meta_layer_component_layers: Meta-layer uses API version %d.%d, but component "
"layer %d has API version %d.%d that is lower. Skipping this layer.",
meta_layer_version.major, meta_layer_version.minor, comp_layer, comp_prop_version.major,
comp_prop_version.minor);
success = false;
break;
}
// Make sure the layer isn't using it's own name
if (!strcmp(prop->info.layerName, prop->component_layer_names[comp_layer])) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"verify_meta_layer_component_layers: Meta-layer %s lists itself in its component layer "
"list at index %d. Skipping this layer.",
prop->info.layerName, comp_layer);
success = false;
break;
}
if (comp_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"verify_meta_layer_component_layers: Adding meta-layer %s which also contains meta-layer %s",
prop->info.layerName, comp_prop->info.layerName);
// Make sure if the layer is using a meta-layer in its component list that we also verify that.
if (!verify_meta_layer_component_layers(inst, comp_prop, instance_layers)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Meta-layer %s component layer %s can not find all component layers."
" Skipping this layer.",
prop->info.layerName, prop->component_layer_names[comp_layer]);
success = false;
break;
}
}
// Add any instance and device extensions from component layers to this layer
// list, so that anyone querying extensions will only need to look at the meta-layer
for (uint32_t ext = 0; ext < comp_prop->instance_extension_list.count; ext++) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "Meta-layer %s component layer %s adding instance extension %s",
prop->info.layerName, prop->component_layer_names[comp_layer],
comp_prop->instance_extension_list.list[ext].extensionName);
if (!has_vk_extension_property(&comp_prop->instance_extension_list.list[ext], &prop->instance_extension_list)) {
loader_add_to_ext_list(inst, &prop->instance_extension_list, 1, &comp_prop->instance_extension_list.list[ext]);
}
}
for (uint32_t ext = 0; ext < comp_prop->device_extension_list.count; ext++) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "Meta-layer %s component layer %s adding device extension %s",
prop->info.layerName, prop->component_layer_names[comp_layer],
comp_prop->device_extension_list.list[ext].props.extensionName);
if (!has_vk_dev_ext_property(&comp_prop->device_extension_list.list[ext].props, &prop->device_extension_list)) {
loader_add_to_dev_ext_list(inst, &prop->device_extension_list, &comp_prop->device_extension_list.list[ext].props, 0,
NULL);
}
}
}
if (success) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Meta-layer %s all %d component layers appear to be valid.", prop->info.layerName, prop->num_component_layers);
// If layer logging is on, list the internals included in the meta-layer
if ((loader_get_debug_level() & VULKAN_LOADER_LAYER_BIT) != 0) {
for (uint32_t comp_layer = 0; comp_layer < prop->num_component_layers; comp_layer++) {
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " [%d] %s", comp_layer, prop->component_layer_names[comp_layer]);
}
}
}
return success;
}
// Verify that all meta-layers in a layer list are valid.
static void verify_all_meta_layers(struct loader_instance *inst, struct loader_layer_list *instance_layers,
bool *override_layer_present) {
*override_layer_present = false;
for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) {
struct loader_layer_properties *prop = &instance_layers->list[i];
// If this is a meta-layer, make sure it is valid
if ((prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) &&
!verify_meta_layer_component_layers(inst, prop, instance_layers)) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0,
"Removing meta-layer %s from instance layer list since it appears invalid.", prop->info.layerName);
loader_remove_layer_in_list(inst, instance_layers, i);
i--;
} else if (prop->is_override && loader_implicit_layer_is_enabled(inst, prop)) {
*override_layer_present = true;
}
}
}
// If the current working directory matches any app_key_path of the layers, remove all other override layers.
// Otherwise if no matching app_key was found, remove all but the global override layer, which has no app_key_path.
static void remove_all_non_valid_override_layers(struct loader_instance *inst, struct loader_layer_list *instance_layers) {
if (instance_layers == NULL) {
return;
}
char cur_path[MAX_STRING_SIZE];
char *ret = loader_platform_executable_path(cur_path, sizeof(cur_path));
if (ret == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"remove_all_non_valid_override_layers: Failed to get executable path and name");
return;
}
// Find out if there is an override layer with same the app_key_path as the path to the current executable.
// If more than one is found, remove it and use the first layer
// Remove any layers which aren't global and do not have the same app_key_path as the path to the current executable.
bool found_active_override_layer = false;
int global_layer_index = -1;
for (uint32_t i = 0; i < instance_layers->count; i++) {
struct loader_layer_properties *props = &instance_layers->list[i];
if (strcmp(props->info.layerName, VK_OVERRIDE_LAYER_NAME) == 0) {
if (props->num_app_key_paths > 0) { // not the global layer
for (uint32_t j = 0; j < props->num_app_key_paths; j++) {
if (strcmp(props->app_key_paths[j], cur_path) == 0) {
if (!found_active_override_layer) {
found_active_override_layer = true;
} else {
loader_log(
inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"remove_all_non_valid_override_layers: Multiple override layers where the same path in app_keys "
"was found. Using the first layer found");
// Remove duplicate active override layers that have the same app_key_path
loader_remove_layer_in_list(inst, instance_layers, i);
i--;
}
}
}
if (!found_active_override_layer) {
loader_log(
inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"--Override layer found but not used because app \'%s\' is not in \'app_keys\' list!",
cur_path);
// Remove non-global override layers that don't have an app_key that matches cur_path
loader_remove_layer_in_list(inst, instance_layers, i);
i--;
}
} else {
if (global_layer_index == -1) {
global_layer_index = i;
} else {
loader_log(
inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"remove_all_non_valid_override_layers: Multiple global override layers found. Using the first global "
"layer found");
loader_remove_layer_in_list(inst, instance_layers, i);
i--;
}
}
}
}
// Remove global layer if layer with same the app_key_path as the path to the current executable is found
if (found_active_override_layer && global_layer_index >= 0) {
loader_remove_layer_in_list(inst, instance_layers, global_layer_index);
}
// Should be at most 1 override layer in the list now.
if (found_active_override_layer) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Using the override layer for app key %s", cur_path);
} else if (global_layer_index >= 0) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Using the global override layer");
}
}
static VkResult loader_read_layer_json(const struct loader_instance *inst, struct loader_layer_list *layer_instance_list,
cJSON *layer_node, loader_api_version version, cJSON *item, bool is_implicit,
char *filename) {
char *temp;
char *name, *type, *library_path_str, *api_version;
char *implementation_version, *description;
cJSON *ext_item;
cJSON *library_path;
cJSON *component_layers;
cJSON *override_paths;
cJSON *blacklisted_layers;
cJSON *disable_environment = NULL;
VkExtensionProperties ext_prop;
VkResult result = VK_ERROR_INITIALIZATION_FAILED;
struct loader_layer_properties *props = NULL;
uint32_t props_index = 0;
int i, j;
// The following are required in the "layer" object:
// (required) "name"
// (required) "type"
// (required) "library_path"
// (required) "api_version"
// (required) "implementation_version"
// (required) "description"
// (required for implicit layers) "disable_environment"
#define GET_JSON_OBJECT(node, var) \
{ \
var = cJSON_GetObjectItem(node, #var); \
if (var == NULL) { \
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, \
"Didn't find required layer object %s in manifest " \
"JSON file, skipping this layer", \
#var); \
goto out; \
} \
}
#define GET_JSON_ITEM(inst, node, var) \
{ \
item = cJSON_GetObjectItem(node, #var); \
if (item == NULL) { \
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, \
"Didn't find required layer value %s in manifest JSON " \
"file, skipping this layer", \
#var); \
goto out; \
} \
temp = cJSON_Print(inst, item); \
if (temp == NULL) { \
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, \
"Problem accessing layer value %s in manifest JSON " \
"file, skipping this layer", \
#var); \
result = VK_ERROR_OUT_OF_HOST_MEMORY; \
goto out; \
} \
temp[strlen(temp) - 1] = '\0'; \
var = loader_stack_alloc(strlen(temp) + 1); \
strcpy(var, &temp[1]); \
cJSON_Free(inst, temp); \
}
GET_JSON_ITEM(inst, layer_node, name)
GET_JSON_ITEM(inst, layer_node, type)
GET_JSON_ITEM(inst, layer_node, api_version)
GET_JSON_ITEM(inst, layer_node, implementation_version)
GET_JSON_ITEM(inst, layer_node, description)
// Add list entry
if (!strcmp(type, "DEVICE")) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Device layers are deprecated. Skipping this layer");
goto out;
}
// Allow either GLOBAL or INSTANCE type interchangeably to handle
// layers that must work with older loaders
if (!strcmp(type, "INSTANCE") || !strcmp(type, "GLOBAL")) {
if (layer_instance_list == NULL) {
goto out;
}
props = loader_get_next_layer_property_slot(inst, layer_instance_list);
if (NULL == props) {
// Error already triggered in loader_get_next_layer_property_slot.
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
props_index = layer_instance_list->count - 1;
props->type_flags = VK_LAYER_TYPE_FLAG_INSTANCE_LAYER;
if (!is_implicit) {
props->type_flags |= VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER;
}
} else {
goto out;
}
// Expiration date for override layer. Field starte with JSON file 1.1.2 and
// is completely optional. So, no check put in place.
if (!strcmp(name, VK_OVERRIDE_LAYER_NAME)) {
cJSON *expiration;
if (!loader_check_version_meets_required(loader_combine_version(1, 1, 2), version)) {
loader_log(
inst, VULKAN_LOADER_WARN_BIT, 0,
"Override layer expiration date not added until version 1.1.2. Please update JSON file version appropriately.");
}
props->is_override = true;
expiration = cJSON_GetObjectItem(layer_node, "expiration_date");
if (NULL != expiration) {
char date_copy[32];
uint8_t cur_item = 0;
// Get the string for the current item
temp = cJSON_Print(inst, expiration);
if (temp == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Problem accessing layer value 'expiration_date' in manifest JSON file, skipping this layer");
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
strcpy(date_copy, &temp[1]);
cJSON_Free(inst, temp);
if (strlen(date_copy) == 16) {
char *cur_start = &date_copy[0];
char *next_dash = strchr(date_copy, '-');
if (NULL != next_dash) {
while (cur_item < 5 && strlen(cur_start)) {
if (next_dash != NULL) {
*next_dash = '\0';
}
switch (cur_item) {
case 0: // Year
props->expiration.year = (uint16_t)atoi(cur_start);
break;
case 1: // Month
props->expiration.month = (uint8_t)atoi(cur_start);
break;
case 2: // Day
props->expiration.day = (uint8_t)atoi(cur_start);
break;
case 3: // Hour
props->expiration.hour = (uint8_t)atoi(cur_start);
break;
case 4: // Minute
props->expiration.minute = (uint8_t)atoi(cur_start);
props->has_expiration = true;
break;
default: // Ignore
break;
}
if (next_dash != NULL) {
cur_start = next_dash + 1;
next_dash = strchr(cur_start, '-');
}
cur_item++;
}
}
}
}
}
// Library path no longer required unless component_layers is also not defined
library_path = cJSON_GetObjectItem(layer_node, "library_path");
component_layers = cJSON_GetObjectItem(layer_node, "component_layers");
if (NULL != library_path) {
if (NULL != component_layers) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Indicating meta-layer-specific component_layers, but also defining layer library path. Both are not "
"compatible, so skipping this layer");
goto out;
}
props->num_component_layers = 0;
props->component_layer_names = NULL;
temp = cJSON_Print(inst, library_path);
if (NULL == temp) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Problem accessing layer value library_path in manifest JSON file, skipping this layer");
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
library_path_str = loader_stack_alloc(strlen(temp) + 1);
strcpy(library_path_str, &temp[1]);
cJSON_Free(inst, temp);
strncpy(props->manifest_file_name, filename, MAX_STRING_SIZE);
char *fullpath = props->lib_name;
char *rel_base;
if (NULL != library_path_str) {
if (loader_platform_is_path(library_path_str)) {
// A relative or absolute path
char *name_copy = loader_stack_alloc(strlen(filename) + 1);
strcpy(name_copy, filename);
rel_base = loader_platform_dirname(name_copy);
loader_expand_path(library_path_str, rel_base, MAX_STRING_SIZE, fullpath);
} else {
// A filename which is assumed in a system directory
#if defined(DEFAULT_VK_LAYERS_PATH)
loader_get_fullpath(library_path_str, DEFAULT_VK_LAYERS_PATH, MAX_STRING_SIZE, fullpath);
#else
loader_get_fullpath(library_path_str, "", MAX_STRING_SIZE, fullpath);
#endif
}
}
} else if (NULL != component_layers) {
if (!loader_check_version_meets_required(LOADER_VERSION_1_1_0, version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Indicating meta-layer-specific component_layers, but using older JSON file version.");
}
int count = cJSON_GetArraySize(component_layers);
props->num_component_layers = count;
// Allocate buffer for layer names
props->component_layer_names =
loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == props->component_layer_names && count > 0) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Copy the component layers into the array
for (i = 0; i < count; i++) {
cJSON *comp_layer = cJSON_GetArrayItem(component_layers, i);
if (NULL != comp_layer) {
temp = cJSON_Print(inst, comp_layer);
if (NULL == temp) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
strncpy(props->component_layer_names[i], temp + 1, MAX_STRING_SIZE - 1);
props->component_layer_names[i][MAX_STRING_SIZE - 1] = '\0';
cJSON_Free(inst, temp);
}
}
// This is now, officially, a meta-layer
props->type_flags |= VK_LAYER_TYPE_FLAG_META_LAYER;
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Encountered meta-layer %s", name);
// Make sure we set up other things so we head down the correct branches below
library_path_str = NULL;
} else {
loader_log(
inst, VULKAN_LOADER_WARN_BIT, 0,
"Layer missing both library_path and component_layers fields. One or the other MUST be defined. Skipping this layer");
goto out;
}
props->num_blacklist_layers = 0;
props->blacklist_layer_names = NULL;
blacklisted_layers = cJSON_GetObjectItem(layer_node, "blacklisted_layers");
if (blacklisted_layers != NULL) {
if (strcmp(name, VK_OVERRIDE_LAYER_NAME)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Layer %s contains a blacklist, but a blacklist can only be provided by the override metalayer. This "
"blacklist will be ignored.",
name);
} else {
props->num_blacklist_layers = cJSON_GetArraySize(blacklisted_layers);
if (props->num_blacklist_layers > 0) {
// Allocate the blacklist array
props->blacklist_layer_names = loader_instance_heap_alloc(
inst, sizeof(char[MAX_STRING_SIZE]) * props->num_blacklist_layers, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (props->blacklist_layer_names == NULL && props->num_blacklist_layers > 0) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Copy the blacklisted layers into the array
for (i = 0; i < (int)props->num_blacklist_layers; ++i) {
cJSON *black_layer = cJSON_GetArrayItem(blacklisted_layers, i);
if (black_layer == NULL) {
continue;
}
temp = cJSON_Print(inst, black_layer);
if (temp == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
strncpy(props->blacklist_layer_names[i], temp + 1, MAX_STRING_SIZE - 1);
props->blacklist_layer_names[i][MAX_STRING_SIZE - 1] = '\0';
cJSON_Free(inst, temp);
}
}
}
}
override_paths = cJSON_GetObjectItem(layer_node, "override_paths");
if (NULL != override_paths) {
if (!loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Indicating meta-layer-specific override paths, but using older JSON file version.");
}
int count = cJSON_GetArraySize(override_paths);
props->num_override_paths = count;
if (count > 0) {
// Allocate buffer for override paths
props->override_paths =
loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == props->override_paths && count > 0) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Copy the override paths into the array
for (i = 0; i < count; i++) {
cJSON *override_path = cJSON_GetArrayItem(override_paths, i);
if (NULL != override_path) {
temp = cJSON_Print(inst, override_path);
if (NULL == temp) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
strncpy(props->override_paths[i], temp + 1, MAX_STRING_SIZE - 1);
props->override_paths[i][MAX_STRING_SIZE - 1] = '\0';
cJSON_Free(inst, temp);
}
}
}
}
if (is_implicit) {
GET_JSON_OBJECT(layer_node, disable_environment)
}
#undef GET_JSON_ITEM
#undef GET_JSON_OBJECT
strncpy(props->info.layerName, name, sizeof(props->info.layerName));
props->info.layerName[sizeof(props->info.layerName) - 1] = '\0';
if (0 != strncmp(props->info.layerName, "VK_LAYER_", 9)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0, "Layer name %s does not conform to naming standard (Policy #LLP_LAYER_3)",
props->info.layerName);
}
props->info.specVersion = loader_parse_version_string(api_version);
props->info.implementationVersion = atoi(implementation_version);
strncpy((char *)props->info.description, description, sizeof(props->info.description));
props->info.description[sizeof(props->info.description) - 1] = '\0';
if (is_implicit) {
if (!disable_environment || !disable_environment->child) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Didn't find required layer child value disable_environment in manifest JSON file, skipping this layer "
"(Policy #LLP_LAYER_9)");
goto out;
}
strncpy(props->disable_env_var.name, disable_environment->child->string, sizeof(props->disable_env_var.name));
props->disable_env_var.name[sizeof(props->disable_env_var.name) - 1] = '\0';
strncpy(props->disable_env_var.value, disable_environment->child->valuestring, sizeof(props->disable_env_var.value));
props->disable_env_var.value[sizeof(props->disable_env_var.value) - 1] = '\0';
}
// Make sure the layer's manifest doesn't contain a non zero variant value
if (VK_API_VERSION_VARIANT(props->info.specVersion) != 0) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Layer %s has an \'api_version\' field which contains a non-zero variant value of %d. "
" Skipping Layer.",
props->info.layerName, VK_API_VERSION_VARIANT(props->info.specVersion));
goto out;
}
// Now get all optional items and objects and put in list:
// functions
// instance_extensions
// device_extensions
// enable_environment (implicit layers only)
#define GET_JSON_OBJECT(node, var) \
{ var = cJSON_GetObjectItem(node, #var); }
#define GET_JSON_ITEM(inst, node, var) \
{ \
item = cJSON_GetObjectItem(node, #var); \
if (item != NULL) { \
temp = cJSON_Print(inst, item); \
if (temp != NULL) { \
temp[strlen(temp) - 1] = '\0'; \
var = loader_stack_alloc(strlen(temp) + 1); \
strcpy(var, &temp[1]); \
cJSON_Free(inst, temp); \
} else { \
result = VK_ERROR_OUT_OF_HOST_MEMORY; \
goto out; \
} \
} \
}
cJSON *instance_extensions, *device_extensions, *functions, *enable_environment;
cJSON *entrypoints = NULL;
char *vkGetInstanceProcAddr = NULL;
char *vkGetDeviceProcAddr = NULL;
char *vkNegotiateLoaderLayerInterfaceVersion = NULL;
char *spec_version = NULL;
char **entry_array = NULL;
cJSON *app_keys = NULL;
// Layer interface functions
// vkGetInstanceProcAddr
// vkGetDeviceProcAddr
// vkNegotiateLoaderLayerInterfaceVersion (starting with JSON file 1.1.0)
GET_JSON_OBJECT(layer_node, functions)
if (functions != NULL) {
if (loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) {
GET_JSON_ITEM(inst, functions, vkNegotiateLoaderLayerInterfaceVersion)
if (vkNegotiateLoaderLayerInterfaceVersion != NULL)
strncpy(props->functions.str_negotiate_interface, vkNegotiateLoaderLayerInterfaceVersion,
sizeof(props->functions.str_negotiate_interface));
props->functions.str_negotiate_interface[sizeof(props->functions.str_negotiate_interface) - 1] = '\0';
} else {
props->functions.str_negotiate_interface[0] = '\0';
}
GET_JSON_ITEM(inst, functions, vkGetInstanceProcAddr)
GET_JSON_ITEM(inst, functions, vkGetDeviceProcAddr)
if (vkGetInstanceProcAddr != NULL) {
strncpy(props->functions.str_gipa, vkGetInstanceProcAddr, sizeof(props->functions.str_gipa));
if (loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"Layer \"%s\" using deprecated \'vkGetInstanceProcAddr\' tag which was deprecated starting with JSON "
"file version 1.1.0. The new vkNegotiateLoaderLayerInterfaceVersion function is preferred, though for "
"compatibility reasons it may be desirable to continue using the deprecated tag.",
name);
}
}
props->functions.str_gipa[sizeof(props->functions.str_gipa) - 1] = '\0';
if (vkGetDeviceProcAddr != NULL) {
strncpy(props->functions.str_gdpa, vkGetDeviceProcAddr, sizeof(props->functions.str_gdpa));
if (loader_check_version_meets_required(loader_combine_version(1, 1, 0), version)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"Layer \"%s\" using deprecated \'vkGetDeviceProcAddr\' tag which was deprecated starting with JSON "
"file version 1.1.0. The new vkNegotiateLoaderLayerInterfaceVersion function is preferred, though for "
"compatibility reasons it may be desirable to continue using the deprecated tag.",
name);
}
}
props->functions.str_gdpa[sizeof(props->functions.str_gdpa) - 1] = '\0';
}
// instance_extensions
// array of {
// name
// spec_version
// }
GET_JSON_OBJECT(layer_node, instance_extensions)
if (instance_extensions != NULL) {
int count = cJSON_GetArraySize(instance_extensions);
for (i = 0; i < count; i++) {
ext_item = cJSON_GetArrayItem(instance_extensions, i);
GET_JSON_ITEM(inst, ext_item, name)
if (name != NULL) {
strncpy(ext_prop.extensionName, name, sizeof(ext_prop.extensionName));
ext_prop.extensionName[sizeof(ext_prop.extensionName) - 1] = '\0';
}
GET_JSON_ITEM(inst, ext_item, spec_version)
if (NULL != spec_version) {
ext_prop.specVersion = atoi(spec_version);
} else {
ext_prop.specVersion = 0;
}
bool ext_unsupported = wsi_unsupported_instance_extension(&ext_prop);
if (!ext_unsupported) {
loader_add_to_ext_list(inst, &props->instance_extension_list, 1, &ext_prop);
}
}
}
// device_extensions
// array of {
// name
// spec_version
// entrypoints
// }
GET_JSON_OBJECT(layer_node, device_extensions)
if (device_extensions != NULL) {
int count = cJSON_GetArraySize(device_extensions);
for (i = 0; i < count; i++) {
ext_item = cJSON_GetArrayItem(device_extensions, i);
GET_JSON_ITEM(inst, ext_item, name)
GET_JSON_ITEM(inst, ext_item, spec_version)
if (name != NULL) {
strncpy(ext_prop.extensionName, name, sizeof(ext_prop.extensionName));
ext_prop.extensionName[sizeof(ext_prop.extensionName) - 1] = '\0';
}
if (NULL != spec_version) {
ext_prop.specVersion = atoi(spec_version);
} else {
ext_prop.specVersion = 0;
}
// entrypoints = cJSON_GetObjectItem(ext_item, "entrypoints");
GET_JSON_OBJECT(ext_item, entrypoints)
int entry_count;
if (entrypoints == NULL) {
loader_add_to_dev_ext_list(inst, &props->device_extension_list, &ext_prop, 0, NULL);
continue;
}
entry_count = cJSON_GetArraySize(entrypoints);
if (entry_count) {
entry_array = (char **)loader_stack_alloc(sizeof(char *) * entry_count);
}
for (j = 0; j < entry_count; j++) {
ext_item = cJSON_GetArrayItem(entrypoints, j);
if (ext_item != NULL) {
temp = cJSON_Print(inst, ext_item);
if (NULL == temp) {
entry_array[j] = NULL;
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
entry_array[j] = loader_stack_alloc(strlen(temp) + 1);
strcpy(entry_array[j], &temp[1]);
cJSON_Free(inst, temp);
}
}
loader_add_to_dev_ext_list(inst, &props->device_extension_list, &ext_prop, entry_count, entry_array);
}
}
if (is_implicit) {
GET_JSON_OBJECT(layer_node, enable_environment)
// enable_environment is optional
if (enable_environment) {
strncpy(props->enable_env_var.name, enable_environment->child->string, sizeof(props->enable_env_var.name));
props->enable_env_var.name[sizeof(props->enable_env_var.name) - 1] = '\0';
strncpy(props->enable_env_var.value, enable_environment->child->valuestring, sizeof(props->enable_env_var.value));
props->enable_env_var.value[sizeof(props->enable_env_var.value) - 1] = '\0';
}
}
// Read in the pre-instance stuff
cJSON *pre_instance = cJSON_GetObjectItem(layer_node, "pre_instance_functions");
if (NULL != pre_instance) {
// Supported versions started in 1.1.2, so anything newer
if (!loader_check_version_meets_required(loader_combine_version(1, 1, 2), version)) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"Found pre_instance_functions section in layer from \"%s\". This section is only valid in manifest version "
"1.1.2 or later. The section will be ignored",
filename);
} else if (!is_implicit) {
loader_log(inst, VULKAN_LOADER_WARN_BIT, 0,
"Found pre_instance_functions section in explicit layer from \"%s\". This section is only valid in implicit "
"layers. The section will be ignored",
filename);
} else {
cJSON *inst_ext_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceExtensionProperties");
if (NULL != inst_ext_json) {
char *inst_ext_name = cJSON_Print(inst, inst_ext_json);
if (NULL == inst_ext_name) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
size_t len = strlen(inst_ext_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_ext_name) - 2;
strncpy(props->pre_instance_functions.enumerate_instance_extension_properties, inst_ext_name + 1, len);
props->pre_instance_functions.enumerate_instance_extension_properties[len] = '\0';
cJSON_Free(inst, inst_ext_name);
}
cJSON *inst_layer_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceLayerProperties");
if (NULL != inst_layer_json) {
char *inst_layer_name = cJSON_Print(inst, inst_layer_json);
if (NULL == inst_layer_name) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
size_t len = strlen(inst_layer_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_layer_name) - 2;
strncpy(props->pre_instance_functions.enumerate_instance_layer_properties, inst_layer_name + 1, len);
props->pre_instance_functions.enumerate_instance_layer_properties[len] = '\0';
cJSON_Free(inst, inst_layer_name);
}
cJSON *inst_version_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceVersion");
if (NULL != inst_version_json) {
char *inst_version_name = cJSON_Print(inst, inst_version_json);
if (NULL == inst_version_name) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
size_t len = strlen(inst_version_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_version_name) - 2;
strncpy(props->pre_instance_functions.enumerate_instance_version, inst_version_name + 1, len);
props->pre_instance_functions.enumerate_instance_version[len] = '\0';
cJSON_Free(inst, inst_version_name);
}
}
}
props->num_app_key_paths = 0;
props->app_key_paths = NULL;
app_keys = cJSON_GetObjectItem(layer_node, "app_keys");
if (app_keys != NULL) {
if (strcmp(name, VK_OVERRIDE_LAYER_NAME)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Layer %s contains app_keys, but any app_keys can only be provided by the override metalayer. "
"These will be ignored.",
name);
} else {
props->num_app_key_paths = cJSON_GetArraySize(app_keys);
// Allocate the blacklist array
props->app_key_paths = loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * props->num_app_key_paths,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (props->app_key_paths == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Copy the app_key_paths into the array
for (i = 0; i < (int)props->num_app_key_paths; ++i) {
cJSON *app_key_path = cJSON_GetArrayItem(app_keys, i);
if (app_key_path == NULL) {
continue;
}
temp = cJSON_Print(inst, app_key_path);
if (temp == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
strncpy(props->app_key_paths[i], temp + 1, MAX_STRING_SIZE - 1);
props->app_key_paths[i][MAX_STRING_SIZE - 1] = '\0';
cJSON_Free(inst, temp);
}
}
}
result = VK_SUCCESS;
out:
#undef GET_JSON_ITEM
#undef GET_JSON_OBJECT
if (VK_SUCCESS != result && NULL != props) {
// Make sure to free anything that was allocated
loader_remove_layer_in_list(inst, layer_instance_list, props_index);
}
return result;
}
static inline bool is_valid_layer_json_version(const loader_api_version *layer_json) {
// Supported versions are: 1.0.0, 1.0.1, 1.1.0 - 1.1.2, and 1.2.0 - 1.2.1.
if ((layer_json->major == 1 && layer_json->minor == 2 && layer_json->patch < 2) ||
(layer_json->major == 1 && layer_json->minor == 1 && layer_json->patch < 3) ||
(layer_json->major == 1 && layer_json->minor == 0 && layer_json->patch < 2)) {
return true;
}
return false;
}
// Given a cJSON struct (json) of the top level JSON object from layer manifest
// file, add entry to the layer_list. Fill out the layer_properties in this list
// entry from the input cJSON object.
//
// \returns
// void
// layer_list has a new entry and initialized accordingly.
// If the json input object does not have all the required fields no entry
// is added to the list.
static VkResult loader_add_layer_properties(const struct loader_instance *inst, struct loader_layer_list *layer_instance_list,
cJSON *json, bool is_implicit, char *filename) {
// The following Fields in layer manifest file that are required:
// - "file_format_version"
// - If more than one "layer" object are used, then the "layers" array is
// required
VkResult result = VK_ERROR_INITIALIZATION_FAILED;
cJSON *item, *layers_node, *layer_node;
loader_api_version json_version = {0, 0, 0};
// Make sure sure the top level json value is an object
if (!json || json->type != 6) {
goto out;
}
item = cJSON_GetObjectItem(json, "file_format_version");
if (item == NULL) {
goto out;
}
char *file_vers = cJSON_PrintUnformatted(inst, item);
if (NULL == file_vers) {
goto out;
}
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0, "Found manifest file %s (file version %s)", filename, file_vers);
// Get the major/minor/and patch as integers for easier comparison
json_version = loader_make_version(loader_parse_version_string(file_vers));
if (!is_valid_layer_json_version(&json_version)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_properties: %s has unknown layer manifest file version %d.%d.%d. May cause errors.", filename,
json_version.major, json_version.minor, json_version.patch);
}
cJSON_Free(inst, file_vers);
// If "layers" is present, read in the array of layer objects
layers_node = cJSON_GetObjectItem(json, "layers");
if (layers_node != NULL) {
int numItems = cJSON_GetArraySize(layers_node);
// Supported versions started in 1.0.1, so anything newer
if (!loader_check_version_meets_required(loader_combine_version(1, 0, 1), json_version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_properties: \'layers\' tag not supported until file version 1.0.1, but %s is reporting "
"version %s",
filename, file_vers);
}
for (int curLayer = 0; curLayer < numItems; curLayer++) {
layer_node = cJSON_GetArrayItem(layers_node, curLayer);
if (layer_node == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_properties: Can not find 'layers' array element %d object in manifest JSON file %s. "
"Skipping this file",
curLayer, filename);
goto out;
}
result = loader_read_layer_json(inst, layer_instance_list, layer_node, json_version, item, is_implicit, filename);
}
} else {
// Otherwise, try to read in individual layers
layer_node = cJSON_GetObjectItem(json, "layer");
if (layer_node == NULL) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_properties: Can not find 'layer' object in manifest JSON file %s. Skipping this file.",
filename);
goto out;
}
// Loop through all "layer" objects in the file to get a count of them
// first.
uint16_t layer_count = 0;
cJSON *tempNode = layer_node;
do {
tempNode = tempNode->next;
layer_count++;
} while (tempNode != NULL);
// Throw a warning if we encounter multiple "layer" objects in file
// versions newer than 1.0.0. Having multiple objects with the same
// name at the same level is actually a JSON standard violation.
if (layer_count > 1 && loader_check_version_meets_required(loader_combine_version(1, 0, 1), json_version)) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_layer_properties: Multiple 'layer' nodes are deprecated starting in file version \"1.0.1\". "
"Please use 'layers' : [] array instead in %s.",
filename);
} else {
do {
result = loader_read_layer_json(inst, layer_instance_list, layer_node, json_version, item, is_implicit, filename);
layer_node = layer_node->next;
} while (layer_node != NULL);
}
}
out:
return result;
}
static inline size_t determine_data_file_path_size(const char *cur_path, size_t relative_path_size) {
size_t path_size = 0;
if (NULL != cur_path) {
// For each folder in cur_path, (detected by finding additional
// path separators in the string) we need to add the relative path on
// the end. Plus, leave an additional two slots on the end to add an
// additional directory slash and path separator if needed
path_size += strlen(cur_path) + relative_path_size + 2;
for (const char *x = cur_path; *x; ++x) {
if (*x == PATH_SEPARATOR) {
path_size += relative_path_size + 2;
}
}
}
return path_size;
}
static inline void copy_data_file_info(const char *cur_path, const char *relative_path, size_t relative_path_size,
char **output_path) {
if (NULL != cur_path) {
uint32_t start = 0;
uint32_t stop = 0;
char *cur_write = *output_path;
while (cur_path[start] != '\0') {
while (cur_path[start] == PATH_SEPARATOR) {
start++;
}
stop = start;
while (cur_path[stop] != PATH_SEPARATOR && cur_path[stop] != '\0') {
stop++;
}
const size_t s = stop - start;
if (s) {
memcpy(cur_write, &cur_path[start], s);
cur_write += s;
// If this is a specific JSON file, just add it and don't add any
// relative path or directory symbol to it.
if (!is_json(cur_write - 5, s)) {
// Add the relative directory if present.
if (relative_path_size > 0) {
// If last symbol written was not a directory symbol, add it.
if (*(cur_write - 1) != DIRECTORY_SYMBOL) {
*cur_write++ = DIRECTORY_SYMBOL;
}
memcpy(cur_write, relative_path, relative_path_size);
cur_write += relative_path_size;
}
}
*cur_write++ = PATH_SEPARATOR;
start = stop;
}
}
*output_path = cur_write;
}
}
// Check to see if there's enough space in the data file list. If not, add some.
static inline VkResult check_and_adjust_data_file_list(const struct loader_instance *inst, struct loader_data_files *out_files) {
if (out_files->count == 0) {
out_files->filename_list = loader_instance_heap_alloc(inst, 64 * sizeof(char *), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == out_files->filename_list) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"check_and_adjust_data_file_list: Failed to allocate space for manifest file name list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
out_files->alloc_count = 64;
} else if (out_files->count == out_files->alloc_count) {
size_t new_size = out_files->alloc_count * sizeof(char *) * 2;
void *new_ptr = loader_instance_heap_realloc(inst, out_files->filename_list, out_files->alloc_count * sizeof(char *),
new_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == new_ptr) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"check_and_adjust_data_file_list: Failed to reallocate space for manifest file name list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
out_files->filename_list = new_ptr;
out_files->alloc_count *= 2;
}
return VK_SUCCESS;
}
// add file_name to the out_files manifest list. Assumes its a valid manifest file name
static VkResult add_manifest_file(const struct loader_instance *inst, const char *file_name, struct loader_data_files *out_files) {
VkResult vk_result = VK_SUCCESS;
// Check and allocate space in the manifest list if necessary
vk_result = check_and_adjust_data_file_list(inst, out_files);
if (VK_SUCCESS != vk_result) {
goto out;
}
out_files->filename_list[out_files->count] =
loader_instance_heap_alloc(inst, strlen(file_name) + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (out_files->filename_list[out_files->count] == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "add_manifest_file: Failed to allocate space for manifest file %d list",
out_files->count);
vk_result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(out_files->filename_list[out_files->count++], file_name);
out:
return vk_result;
}
// If the file found is a manifest file name, add it to the out_files manifest list.
static VkResult add_if_manifest_file(const struct loader_instance *inst, const char *file_name,
struct loader_data_files *out_files) {
VkResult vk_result = VK_SUCCESS;
assert(NULL != file_name && "add_if_manifest_file: Received NULL pointer for file_name");
assert(NULL != out_files && "add_if_manifest_file: Received NULL pointer for out_files");
// Look for files ending with ".json" suffix
size_t name_len = strlen(file_name);
const char *name_suffix = file_name + name_len - 5;
if (!is_json(name_suffix, name_len)) {
// Use incomplete to indicate invalid name, but to keep going.
vk_result = VK_INCOMPLETE;
goto out;
}
vk_result = add_manifest_file(inst, file_name, out_files);
out:
return vk_result;
}
// Add any files found in the search_path. If any path in the search path points to a specific JSON, attempt to
// only open that one JSON. Otherwise, if the path is a folder, search the folder for JSON files.
VkResult add_data_files(const struct loader_instance *inst, char *search_path, struct loader_data_files *out_files,
bool use_first_found_manifest) {
VkResult vk_result = VK_SUCCESS;
DIR *dir_stream = NULL;
struct dirent *dir_entry;
char *cur_file;
char *next_file;
char *name;
char full_path[2048];
#ifndef _WIN32
char temp_path[2048];
#endif
// Now, parse the paths
next_file = search_path;
while (NULL != next_file && *next_file != '\0') {
name = NULL;
cur_file = next_file;
next_file = loader_get_next_path(cur_file);
// Is this a JSON file, then try to open it.
size_t len = strlen(cur_file);
if (is_json(cur_file + len - 5, len)) {
#ifdef _WIN32
name = cur_file;
#else
// Only Linux has relative paths, make a copy of location so it isn't modified
size_t str_len;
if (NULL != next_file) {
str_len = next_file - cur_file + 1;
} else {
str_len = strlen(cur_file) + 1;
}
if (str_len > sizeof(temp_path)) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "add_data_files: Path to %s too long\n", cur_file);
continue;
}
strcpy(temp_path, cur_file);
name = temp_path;
#endif
loader_get_fullpath(cur_file, name, sizeof(full_path), full_path);
name = full_path;
VkResult local_res;
local_res = add_if_manifest_file(inst, name, out_files);
// Incomplete means this was not a valid data file.
if (local_res == VK_INCOMPLETE) {
continue;
} else if (local_res != VK_SUCCESS) {
vk_result = local_res;
break;
}
} else { // Otherwise, treat it as a directory
dir_stream = loader_opendir(inst, cur_file);
if (NULL == dir_stream) {
continue;
}
while (1) {
dir_entry = readdir(dir_stream);
if (NULL == dir_entry) {
break;
}
name = &(dir_entry->d_name[0]);
loader_get_fullpath(name, cur_file, sizeof(full_path), full_path);
name = full_path;
VkResult local_res;
local_res = add_if_manifest_file(inst, name, out_files);
// Incomplete means this was not a valid data file.
if (local_res == VK_INCOMPLETE) {
continue;
} else if (local_res != VK_SUCCESS) {
vk_result = local_res;
break;
}
}
loader_closedir(inst, dir_stream);
if (vk_result != VK_SUCCESS) {
goto out;
}
}
if (use_first_found_manifest && out_files->count > 0) {
break;
}
}
out:
return vk_result;
}
// Look for data files in the provided paths, but first check the environment override to determine if we should use that
// instead.
static VkResult read_data_files_in_search_paths(const struct loader_instance *inst, enum loader_data_files_type manifest_type,
const char *path_override, bool *override_active,
struct loader_data_files *out_files) {
VkResult vk_result = VK_SUCCESS;
char *override_env = NULL;
const char *override_path = NULL;
char *relative_location = NULL;
char *additional_env = NULL;
size_t search_path_size = 0;
char *search_path = NULL;
char *cur_path_ptr = NULL;
bool use_first_found_manifest = false;
#ifndef _WIN32
size_t rel_size = 0; // unused in windows, dont declare so no compiler warnings are generated
bool xdg_config_home_secenv_alloc = true;
bool xdg_config_dirs_secenv_alloc = true;
bool xdg_data_home_secenv_alloc = true;
bool xdg_data_dirs_secenv_alloc = true;
#endif
#ifndef _WIN32
// Determine how much space is needed to generate the full search path
// for the current manifest files.
char *xdg_config_home = loader_secure_getenv("XDG_CONFIG_HOME", inst);
if (NULL == xdg_config_home) {
xdg_config_home_secenv_alloc = false;
}
char *xdg_config_dirs = loader_secure_getenv("XDG_CONFIG_DIRS", inst);
if (NULL == xdg_config_dirs) {
xdg_config_dirs_secenv_alloc = false;
}
#if !defined(__Fuchsia__) && !defined(__QNXNTO__)
if (NULL == xdg_config_dirs || '\0' == xdg_config_dirs[0]) {
xdg_config_dirs = FALLBACK_CONFIG_DIRS;
}
#endif
char *xdg_data_home = loader_secure_getenv("XDG_DATA_HOME", inst);
if (NULL == xdg_data_home) {
xdg_data_home_secenv_alloc = false;
}
char *xdg_data_dirs = loader_secure_getenv("XDG_DATA_DIRS", inst);
if (NULL == xdg_data_dirs) {
xdg_data_dirs_secenv_alloc = false;
}
#if !defined(__Fuchsia__) && !defined(__QNXNTO__)
if (NULL == xdg_data_dirs || '\0' == xdg_data_dirs[0]) {
xdg_data_dirs = FALLBACK_DATA_DIRS;
}
#endif
char *home = NULL;
char *default_data_home = NULL;
char *default_config_home = NULL;
char *home_data_dir = NULL;
char *home_config_dir = NULL;
// Only use HOME if XDG_DATA_HOME is not present on the system
home = loader_secure_getenv("HOME", inst);
if (home != NULL) {
if (NULL == xdg_config_home || '\0' == xdg_config_home[0]) {
const char config_suffix[] = "/.config";
default_config_home =
loader_instance_heap_alloc(inst, strlen(home) + strlen(config_suffix) + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (default_config_home == NULL) {
vk_result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(default_config_home, home);
strcat(default_config_home, config_suffix);
}
if (NULL == xdg_data_home || '\0' == xdg_data_home[0]) {
const char data_suffix[] = "/.local/share";
default_data_home =
loader_instance_heap_alloc(inst, strlen(home) + strlen(data_suffix) + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (default_data_home == NULL) {
vk_result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(default_data_home, home);
strcat(default_data_home, data_suffix);
}
}
if (NULL != default_config_home) {
home_config_dir = default_config_home;
} else {
home_config_dir = xdg_config_home;
}
if (NULL != default_data_home) {
home_data_dir = default_data_home;
} else {
home_data_dir = xdg_data_home;
}
#endif // !_WIN32
switch (manifest_type) {
case LOADER_DATA_FILE_MANIFEST_DRIVER:
override_env = loader_secure_getenv(VK_DRIVER_FILES_ENV_VAR, inst);
if (NULL == override_env) {
// Not there, so fall back to the old name
override_env = loader_secure_getenv(VK_ICD_FILENAMES_ENV_VAR, inst);
}
additional_env = loader_secure_getenv(VK_ADDITIONAL_DRIVER_FILES_ENV_VAR, inst);
relative_location = VK_DRIVERS_INFO_RELATIVE_DIR;
break;
case LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER:
relative_location = VK_ILAYERS_INFO_RELATIVE_DIR;
break;
case LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER:
override_env = loader_secure_getenv(VK_LAYER_PATH_ENV_VAR, inst);
additional_env = loader_secure_getenv(VK_ADDITIONAL_LAYER_PATH_ENV_VAR, inst);
relative_location = VK_ELAYERS_INFO_RELATIVE_DIR;
break;
default:
assert(false && "Shouldn't get here!");
break;
}
if (path_override != NULL) {
override_path = path_override;
} else if (override_env != NULL) {
override_path = override_env;
}
// Add two by default for NULL terminator and one path separator on end (just in case)
search_path_size = 2;
// If there's an override, use that (and the local folder if required) and nothing else
if (NULL != override_path) {
// Local folder and null terminator
search_path_size += strlen(override_path) + 2;
} else {
// Add the size of any additional search paths defined in the additive environment variable
if (NULL != additional_env) {
search_path_size += determine_data_file_path_size(additional_env, 0) + 2;
#ifdef _WIN32
} else {
goto out;
}
#else // !_WIN32
}
// Add the general search folders (with the appropriate relative folder added)
rel_size = strlen(relative_location);
if (rel_size > 0) {
#if defined(__APPLE__)
search_path_size += MAXPATHLEN;
#endif
// Only add the home folders if defined
if (NULL != home_config_dir) {
search_path_size += determine_data_file_path_size(home_config_dir, rel_size);
}
search_path_size += determine_data_file_path_size(xdg_config_dirs, rel_size);
search_path_size += determine_data_file_path_size(SYSCONFDIR, rel_size);
#if defined(EXTRASYSCONFDIR)
search_path_size += determine_data_file_path_size(EXTRASYSCONFDIR, rel_size);
#endif
// Only add the home folders if defined
if (NULL != home_data_dir) {
search_path_size += determine_data_file_path_size(home_data_dir, rel_size);
}
search_path_size += determine_data_file_path_size(xdg_data_dirs, rel_size);
}
#endif // !_WIN32
}
// Allocate the required space
search_path = loader_instance_heap_alloc(inst, search_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == search_path) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"read_data_files_in_search_paths: Failed to allocate space for search path of length %d",
(uint32_t)search_path_size);
vk_result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
cur_path_ptr = search_path;
// Add the remaining paths to the list
if (NULL != override_path) {
strcpy(cur_path_ptr, override_path);
cur_path_ptr += strlen(override_path);
} else {
// Add any additional search paths defined in the additive environment variable
if (NULL != additional_env) {
copy_data_file_info(additional_env, NULL, 0, &cur_path_ptr);
}
#ifndef _WIN32
if (rel_size > 0) {
#if defined(__APPLE__)
// Add the bundle's Resources dir to the beginning of the search path.
// Looks for manifests in the bundle first, before any system directories.
CFBundleRef main_bundle = CFBundleGetMainBundle();
if (NULL != main_bundle) {
CFURLRef ref = CFBundleCopyResourcesDirectoryURL(main_bundle);
if (NULL != ref) {
if (CFURLGetFileSystemRepresentation(ref, TRUE, (UInt8 *)cur_path_ptr, search_path_size)) {
cur_path_ptr += strlen(cur_path_ptr);
*cur_path_ptr++ = DIRECTORY_SYMBOL;
memcpy(cur_path_ptr, relative_location, rel_size);
cur_path_ptr += rel_size;
*cur_path_ptr++ = PATH_SEPARATOR;
// only for ICD manifests
if (override_env != NULL && manifest_type == LOADER_DATA_FILE_MANIFEST_DRIVER) {
use_first_found_manifest = true;
}
}
CFRelease(ref);
}
}
#endif // __APPLE__
// Only add the home folders if not NULL
if (NULL != home_config_dir) {
copy_data_file_info(home_config_dir, relative_location, rel_size, &cur_path_ptr);
}
copy_data_file_info(xdg_config_dirs, relative_location, rel_size, &cur_path_ptr);
copy_data_file_info(SYSCONFDIR, relative_location, rel_size, &cur_path_ptr);
#if defined(EXTRASYSCONFDIR)
copy_data_file_info(EXTRASYSCONFDIR, relative_location, rel_size, &cur_path_ptr);
#endif
// Only add the home folders if not NULL
if (NULL != home_data_dir) {
copy_data_file_info(home_data_dir, relative_location, rel_size, &cur_path_ptr);
}
copy_data_file_info(xdg_data_dirs, relative_location, rel_size, &cur_path_ptr);
}
// Remove the last path separator
--cur_path_ptr;
assert(cur_path_ptr - search_path < (ptrdiff_t)search_path_size);
*cur_path_ptr = '\0';
#endif // !_WIN32
}
// Remove duplicate paths, or it would result in duplicate extensions, duplicate devices, etc.
// This uses minimal memory, but is O(N^2) on the number of paths. Expect only a few paths.
char path_sep_str[2] = {PATH_SEPARATOR, '\0'};
size_t search_path_updated_size = strlen(search_path);
for (size_t first = 0; first < search_path_updated_size;) {
// If this is an empty path, erase it
if (search_path[first] == PATH_SEPARATOR) {
memmove(&search_path[first], &search_path[first + 1], search_path_updated_size - first + 1);
search_path_updated_size -= 1;
continue;
}
size_t first_end = first + 1;
first_end += strcspn(&search_path[first_end], path_sep_str);
for (size_t second = first_end + 1; second < search_path_updated_size;) {
size_t second_end = second + 1;
second_end += strcspn(&search_path[second_end], path_sep_str);
if (first_end - first == second_end - second &&
!strncmp(&search_path[first], &search_path[second], second_end - second)) {
// Found duplicate. Include PATH_SEPARATOR in second_end, then erase it from search_path.
if (search_path[second_end] == PATH_SEPARATOR) {
second_end++;
}
memmove(&search_path[second], &search_path[second_end], search_path_updated_size - second_end + 1);
search_path_updated_size -= second_end - second;
} else {
second = second_end + 1;
}
}
first = first_end + 1;
}
search_path_size = search_path_updated_size;
// Print out the paths being searched if debugging is enabled
uint32_t log_flags = 0;
if (search_path_size > 0) {
char *tmp_search_path = loader_instance_heap_alloc(inst, search_path_size + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL != tmp_search_path) {
strncpy(tmp_search_path, search_path, search_path_size);
tmp_search_path[search_path_size] = '\0';
if (manifest_type == LOADER_DATA_FILE_MANIFEST_DRIVER) {
log_flags = VULKAN_LOADER_DRIVER_BIT;
loader_log(inst, VULKAN_LOADER_DRIVER_BIT, 0, "Searching for driver manifest files");
} else {
log_flags = VULKAN_LOADER_LAYER_BIT;
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, "Searching for layer manifest files");
}
loader_log(inst, log_flags, 0, " In following folders:");
char *cur_file;
char *next_file = tmp_search_path;
while (NULL != next_file && *next_file != '\0') {
cur_file = next_file;
next_file = loader_get_next_path(cur_file);
loader_log(inst, log_flags, 0, " %s", cur_file);
}
loader_instance_heap_free(inst, tmp_search_path);
}
}
// Now, parse the paths and add any manifest files found in them.
vk_result = add_data_files(inst, search_path, out_files, use_first_found_manifest);
if (log_flags != 0 && out_files->count > 0) {
loader_log(inst, log_flags, 0, " Found the following files:");
for (uint32_t cur_file = 0; cur_file < out_files->count; ++cur_file) {
loader_log(inst, log_flags, 0, " %s", out_files->filename_list[cur_file]);
}
} else {
loader_log(inst, log_flags, 0, " Found no files");
}
if (NULL != override_path) {
*override_active = true;
} else {
*override_active = false;
}
out:
if (NULL != additional_env) {
loader_free_getenv(additional_env, inst);
}
if (NULL != override_env) {
loader_free_getenv(override_env, inst);
}
#ifndef _WIN32
if (xdg_config_home_secenv_alloc) {
loader_free_getenv(xdg_config_home, inst);
}
if (xdg_config_dirs_secenv_alloc) {
loader_free_getenv(xdg_config_dirs, inst);
}
if (xdg_data_home_secenv_alloc) {
loader_free_getenv(xdg_data_home, inst);
}
if (xdg_data_dirs_secenv_alloc) {
loader_free_getenv(xdg_data_dirs, inst);
}
if (NULL != xdg_data_home) {
loader_free_getenv(xdg_data_home, inst);
}
if (NULL != home) {
loader_free_getenv(home, inst);
}
if (NULL != default_data_home) {
loader_instance_heap_free(inst, default_data_home);
}
if (NULL != default_config_home) {
loader_instance_heap_free(inst, default_config_home);
}
#endif
if (NULL != search_path) {
loader_instance_heap_free(inst, search_path);
}
return vk_result;
}
// Find the Vulkan library manifest files.
//
// This function scans the appropriate locations for a list of JSON manifest files based on the
// "manifest_type". The location is interpreted as Registry path on Windows and a directory path(s)
// on Linux.
// "home_location" is an additional directory in the users home directory to look at. It is
// expanded into the dir path $XDG_DATA_HOME/home_location or $HOME/.local/share/home_location
// depending on environment variables. This "home_location" is only used on Linux.
//
// \returns
// VKResult
// A string list of manifest files to be opened in out_files param.
// List has a pointer to string for each manifest filename.
// When done using the list in out_files, pointers should be freed.
// Location or override string lists can be either files or directories as
// follows:
// | location | override
// --------------------------------
// Win ICD | files | files
// Win Layer | files | dirs
// Linux ICD | dirs | files
// Linux Layer| dirs | dirs
VkResult loader_get_data_files(const struct loader_instance *inst, enum loader_data_files_type manifest_type,
const char *path_override, struct loader_data_files *out_files) {
VkResult res = VK_SUCCESS;
bool override_active = false;
// Free and init the out_files information so there's no false data left from uninitialized variables.
if (out_files->filename_list != NULL) {
for (uint32_t i = 0; i < out_files->count; i++) {
if (NULL != out_files->filename_list[i]) {
loader_instance_heap_free(inst, out_files->filename_list[i]);
out_files->filename_list[i] = NULL;
}
}
loader_instance_heap_free(inst, out_files->filename_list);
}
out_files->count = 0;
out_files->alloc_count = 0;
out_files->filename_list = NULL;
res = read_data_files_in_search_paths(inst, manifest_type, path_override, &override_active, out_files);
if (VK_SUCCESS != res) {
goto out;
}
#ifdef _WIN32
// Read the registry if the override wasn't active.
if (!override_active) {
bool warn_if_not_present = false;
char *registry_location = NULL;
switch (manifest_type) {
default:
goto out;
case LOADER_DATA_FILE_MANIFEST_DRIVER:
warn_if_not_present = true;
registry_location = VK_DRIVERS_INFO_REGISTRY_LOC;
break;
case LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER:
registry_location = VK_ILAYERS_INFO_REGISTRY_LOC;
break;
case LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER:
warn_if_not_present = true;
registry_location = VK_ELAYERS_INFO_REGISTRY_LOC;
break;
}
VkResult tmp_res =
windows_read_data_files_in_registry(inst, manifest_type, warn_if_not_present, registry_location, out_files);
// Only return an error if there was an error this time, and no manifest files from before.
if (VK_SUCCESS != tmp_res && out_files->count == 0) {
res = tmp_res;
goto out;
}
}
#endif
out:
if (VK_SUCCESS != res && NULL != out_files->filename_list) {
for (uint32_t remove = 0; remove < out_files->count; remove++) {
loader_instance_heap_free(inst, out_files->filename_list[remove]);
}
loader_instance_heap_free(inst, out_files->filename_list);
out_files->count = 0;
out_files->alloc_count = 0;
out_files->filename_list = NULL;
}
return res;
}
void loader_init_icd_lib_list() {}
void loader_destroy_icd_lib_list() {}
// Try to find the Vulkan ICD driver(s).
//
// This function scans the default system loader path(s) or path specified by either the
// VK_DRIVER_FILES or VK_ICD_FILENAMES environment variable in order to find loadable
// VK ICDs manifest files.
// From these manifest files it finds the ICD libraries.
//
// skipped_portability_drivers is used to report whether the loader found drivers which report
// portability but the application didn't enable the bit to enumerate them
// Can be NULL
//
// \returns
// Vulkan result
// (on result == VK_SUCCESS) a list of icds that were discovered
VkResult loader_icd_scan(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list,
bool *skipped_portability_drivers) {
char *file_str;
loader_api_version json_file_version = {0, 0, 0};
struct loader_data_files manifest_files;
VkResult res = VK_SUCCESS;
bool lockedMutex = false;
cJSON *json = NULL;
uint32_t num_good_icds = 0;
memset(&manifest_files, 0, sizeof(struct loader_data_files));
res = loader_scanned_icd_init(inst, icd_tramp_list);
if (VK_SUCCESS != res) {
goto out;
}
// Get a list of manifest files for ICDs
res = loader_get_data_files(inst, LOADER_DATA_FILE_MANIFEST_DRIVER, NULL, &manifest_files);
if (VK_SUCCESS != res || manifest_files.count == 0) {
goto out;
}
loader_platform_thread_lock_mutex(&loader_json_lock);
lockedMutex = true;
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
VkResult temp_res = loader_get_json(inst, file_str, &json);
if (NULL == json || temp_res != VK_SUCCESS) {
if (NULL != json) {
cJSON_Delete(inst, json);
json = NULL;
}
// If we haven't already found an ICD, copy this result to
// the returned result.
if (num_good_icds == 0) {
res = temp_res;
}
if (temp_res == VK_ERROR_OUT_OF_HOST_MEMORY) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
break;
} else {
continue;
}
}
res = temp_res;
cJSON *item, *itemICD;
item = cJSON_GetObjectItem(json, "file_format_version");
if (item == NULL) {
if (num_good_icds == 0) {
res = VK_ERROR_INITIALIZATION_FAILED;
}
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: ICD JSON %s does not have a \'file_format_version\' field. Skipping ICD JSON.", file_str);
cJSON_Delete(inst, json);
json = NULL;
continue;
}
char *file_vers = cJSON_Print(inst, item);
if (NULL == file_vers) {
// Only reason the print can fail is if there was an allocation issue
if (num_good_icds == 0) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
}
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: Failed retrieving ICD JSON %s \'file_format_version\' field. Skipping ICD JSON",
file_str);
cJSON_Delete(inst, json);
json = NULL;
continue;
}
loader_log(inst, VULKAN_LOADER_DRIVER_BIT, 0, "Found ICD manifest file %s, version %s", file_str, file_vers);
// Get the version of the driver manifest
json_file_version = loader_make_version(loader_parse_version_string(file_vers));
// Loader only knows versions 1.0.0 and 1.0.1, anything above it is unknown
if (loader_check_version_meets_required(loader_combine_version(1, 0, 2), json_file_version)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: %s has unknown icd manifest file version %d.%d.%d. May cause errors.", file_str,
json_file_version.major, json_file_version.minor, json_file_version.patch);
}
cJSON_Free(inst, file_vers);
itemICD = cJSON_GetObjectItem(json, "ICD");
if (itemICD != NULL) {
item = cJSON_GetObjectItem(itemICD, "library_path");
if (item != NULL) {
char *temp = cJSON_Print(inst, item);
if (!temp || strlen(temp) == 0) {
if (num_good_icds == 0) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
}
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: Failed retrieving ICD JSON %s \'library_path\' field. Skipping ICD JSON.",
file_str);
cJSON_Free(inst, temp);
cJSON_Delete(inst, json);
json = NULL;
continue;
}
// strip out extra quotes
temp[strlen(temp) - 1] = '\0';
char *library_path = loader_stack_alloc(strlen(temp) + 1);
if (NULL == library_path) {
loader_log(
inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_icd_scan: Failed to allocate space for ICD JSON %s \'library_path\' value. Skipping ICD JSON.",
file_str);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
cJSON_Free(inst, temp);
cJSON_Delete(inst, json);
json = NULL;
goto out;
}
strcpy(library_path, &temp[1]);
cJSON_Free(inst, temp);
if (strlen(library_path) == 0) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: ICD JSON %s \'library_path\' field is empty. Skipping ICD JSON.", file_str);
cJSON_Delete(inst, json);
json = NULL;
continue;
}
char fullpath[MAX_STRING_SIZE];
// Print out the paths being searched if debugging is enabled
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "Searching for ICD drivers named %s", library_path);
if (loader_platform_is_path(library_path)) {
// a relative or absolute path
char *name_copy = loader_stack_alloc(strlen(file_str) + 1);
char *rel_base;
strcpy(name_copy, file_str);
rel_base = loader_platform_dirname(name_copy);
loader_expand_path(library_path, rel_base, sizeof(fullpath), fullpath);
} else {
// a filename which is assumed in a system directory
#if defined(DEFAULT_VK_DRIVERS_PATH)
loader_get_fullpath(library_path, DEFAULT_VK_DRIVERS_PATH, sizeof(fullpath), fullpath);
#else
loader_get_fullpath(library_path, "", sizeof(fullpath), fullpath);
#endif
}
uint32_t vers = 0;
item = cJSON_GetObjectItem(itemICD, "api_version");
if (item != NULL) {
temp = cJSON_Print(inst, item);
if (NULL == temp) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: Failed retrieving ICD JSON %s \'api_version\' field. Skipping ICD JSON.",
file_str);
// Only reason the print can fail is if there was an
// allocation issue
if (num_good_icds == 0) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
}
cJSON_Free(inst, temp);
cJSON_Delete(inst, json);
json = NULL;
continue;
}
vers = loader_parse_version_string(temp);
cJSON_Free(inst, temp);
} else {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: ICD JSON %s does not have an \'api_version\' field.", file_str);
}
if (VK_API_VERSION_VARIANT(vers) != 0) {
loader_log(
inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: Driver's ICD JSON %s \'api_version\' field contains a non-zero variant value of %d. "
" Skipping ICD JSON.",
file_str, VK_API_VERSION_VARIANT(vers));
cJSON_Delete(inst, json);
json = NULL;
continue;
}
// Skip over ICD's which contain a true "is_portability_driver" value whenever the application doesn't enable
// portability enumeration.
item = cJSON_GetObjectItem(itemICD, "is_portability_driver");
if (item != NULL && item->type == cJSON_True && !inst->portability_enumeration_enabled) {
if (skipped_portability_drivers) *skipped_portability_drivers = true;
cJSON_Delete(inst, json);
json = NULL;
continue;
}
VkResult icd_add_res = VK_SUCCESS;
enum loader_layer_library_status lib_status;
icd_add_res = loader_scanned_icd_add(inst, icd_tramp_list, fullpath, vers, &lib_status);
if (VK_ERROR_OUT_OF_HOST_MEMORY == icd_add_res) {
res = icd_add_res;
goto out;
} else if (VK_SUCCESS != icd_add_res) {
switch (lib_status) {
case LOADER_LAYER_LIB_NOT_LOADED:
case LOADER_LAYER_LIB_ERROR_FAILED_TO_LOAD:
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: Failed loading library associated with ICD JSON %s.Ignoring this JSON",
fullpath);
break;
case LOADER_LAYER_LIB_ERROR_WRONG_BIT_TYPE: {
loader_log(inst, VULKAN_LOADER_DRIVER_BIT, 0,
"Requested layer %s was wrong bit-type. Ignoring this JSON", fullpath);
break;
}
case LOADER_LAYER_LIB_SUCCESS_LOADED:
// Shouldn't be able to reach this but if it is, best to report a debug
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"Shouldn't reach this. A valid version of requested ICD %s was loaded but something bad "
"happened afterwards.",
fullpath);
break;
}
cJSON_Delete(inst, json);
json = NULL;
continue;
}
num_good_icds++;
} else {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: Failed to find \'library_path\' object in ICD JSON file %s. Skipping ICD JSON.",
file_str);
}
} else {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"loader_icd_scan: Can not find \'ICD\' object in ICD JSON file %s. Skipping ICD JSON", file_str);
}
cJSON_Delete(inst, json);
json = NULL;
}
out:
if (NULL != json) {
cJSON_Delete(inst, json);
}
if (NULL != manifest_files.filename_list) {
for (uint32_t i = 0; i < manifest_files.count; i++) {
if (NULL != manifest_files.filename_list[i]) {
loader_instance_heap_free(inst, manifest_files.filename_list[i]);
}
}
loader_instance_heap_free(inst, manifest_files.filename_list);
}
if (lockedMutex) {
loader_platform_thread_unlock_mutex(&loader_json_lock);
}
return res;
}
void loader_scan_for_layers(struct loader_instance *inst, struct loader_layer_list *instance_layers) {
char *file_str;
struct loader_data_files manifest_files;
cJSON *json;
bool override_layer_valid = false;
char *override_paths = NULL;
uint32_t total_count = 0;
memset(&manifest_files, 0, sizeof(struct loader_data_files));
// Cleanup any previously scanned libraries
loader_delete_layer_list_and_properties(inst, instance_layers);
loader_platform_thread_lock_mutex(&loader_json_lock);
// Get a list of manifest files for any implicit layers
if (VK_SUCCESS != loader_get_data_files(inst, LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER, NULL, &manifest_files)) {
goto out;
}
if (manifest_files.count != 0) {
total_count += manifest_files.count;
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
// Parse file into JSON struct
VkResult res = loader_get_json(inst, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
} else if (VK_SUCCESS != res || NULL == json) {
continue;
}
VkResult local_res = loader_add_layer_properties(inst, instance_layers, json, true, file_str);
cJSON_Delete(inst, json);
// If the error is anything other than out of memory we still want to try to load the other layers
if (VK_ERROR_OUT_OF_HOST_MEMORY == local_res) {
goto out;
}
}
}
// Remove any extraneous override layers.
remove_all_non_valid_override_layers(inst, instance_layers);
// Check to see if the override layer is present, and use it's override paths.
for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) {
struct loader_layer_properties *prop = &instance_layers->list[i];
if (prop->is_override && loader_implicit_layer_is_enabled(inst, prop) && prop->num_override_paths > 0) {
char *cur_write_ptr = NULL;
size_t override_path_size = 0;
for (uint32_t j = 0; j < prop->num_override_paths; j++) {
override_path_size += determine_data_file_path_size(prop->override_paths[j], 0);
}
override_paths = loader_instance_heap_alloc(inst, override_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (override_paths == NULL) {
goto out;
}
cur_write_ptr = &override_paths[0];
for (uint32_t j = 0; j < prop->num_override_paths; j++) {
copy_data_file_info(prop->override_paths[j], NULL, 0, &cur_write_ptr);
}
// Remove the last path separator
--cur_write_ptr;
assert(cur_write_ptr - override_paths < (ptrdiff_t)override_path_size);
*cur_write_ptr = '\0';
loader_log(NULL, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_scan_for_layers: Override layer has override paths set to %s", override_paths);
}
}
// Get a list of manifest files for explicit layers
if (VK_SUCCESS != loader_get_data_files(inst, LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER, override_paths, &manifest_files)) {
goto out;
}
// Make sure we have at least one layer, if not, go ahead and return
if (manifest_files.count == 0 && total_count == 0) {
goto out;
} else {
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
// Parse file into JSON struct
VkResult res = loader_get_json(inst, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
} else if (VK_SUCCESS != res || NULL == json) {
continue;
}
VkResult local_res = loader_add_layer_properties(inst, instance_layers, json, false, file_str);
cJSON_Delete(inst, json);
// If the error is anything other than out of memory we still want to try to load the other layers
if (VK_ERROR_OUT_OF_HOST_MEMORY == local_res) {
goto out;
}
}
}
// Verify any meta-layers in the list are valid and all the component layers are
// actually present in the available layer list
verify_all_meta_layers(inst, instance_layers, &override_layer_valid);
if (override_layer_valid) {
loader_remove_layers_in_blacklist(inst, instance_layers);
if (NULL != inst) {
inst->override_layer_present = true;
}
}
out:
if (NULL != override_paths) {
loader_instance_heap_free(inst, override_paths);
}
if (NULL != manifest_files.filename_list) {
for (uint32_t i = 0; i < manifest_files.count; i++) {
if (NULL != manifest_files.filename_list[i]) {
loader_instance_heap_free(inst, manifest_files.filename_list[i]);
}
}
loader_instance_heap_free(inst, manifest_files.filename_list);
}
loader_platform_thread_unlock_mutex(&loader_json_lock);
}
void loader_scan_for_implicit_layers(struct loader_instance *inst, struct loader_layer_list *instance_layers) {
char *file_str;
struct loader_data_files manifest_files;
cJSON *json;
bool override_layer_valid = false;
char *override_paths = NULL;
bool implicit_metalayer_present = false;
bool have_json_lock = false;
// Before we begin anything, init manifest_files to avoid a delete of garbage memory if
// a failure occurs before allocating the manifest filename_list.
memset(&manifest_files, 0, sizeof(struct loader_data_files));
VkResult res = loader_get_data_files(inst, LOADER_DATA_FILE_MANIFEST_IMPLICIT_LAYER, NULL, &manifest_files);
if (VK_SUCCESS != res || manifest_files.count == 0) {
goto out;
}
// Cleanup any previously scanned libraries
loader_delete_layer_list_and_properties(inst, instance_layers);
loader_platform_thread_lock_mutex(&loader_json_lock);
have_json_lock = true;
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
// parse file into JSON struct
res = loader_get_json(inst, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
} else if (VK_SUCCESS != res || NULL == json) {
continue;
}
res = loader_add_layer_properties(inst, instance_layers, json, true, file_str);
loader_instance_heap_free(inst, file_str);
manifest_files.filename_list[i] = NULL;
cJSON_Delete(inst, json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
}
}
// Remove any extraneous override layers.
remove_all_non_valid_override_layers(inst, instance_layers);
// Check to see if either the override layer is present, or another implicit meta-layer.
// Each of these may require explicit layers to be enabled at this time.
for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) {
struct loader_layer_properties *prop = &instance_layers->list[i];
if (prop->is_override && loader_implicit_layer_is_enabled(inst, prop)) {
override_layer_valid = true;
if (prop->num_override_paths > 0) {
char *cur_write_ptr = NULL;
size_t override_path_size = 0;
for (uint32_t j = 0; j < prop->num_override_paths; j++) {
override_path_size += determine_data_file_path_size(prop->override_paths[j], 0);
}
override_paths = loader_instance_heap_alloc(inst, override_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (override_paths == NULL) {
goto out;
}
cur_write_ptr = &override_paths[0];
for (uint32_t j = 0; j < prop->num_override_paths; j++) {
copy_data_file_info(prop->override_paths[j], NULL, 0, &cur_write_ptr);
}
// Remove the last path separator
--cur_write_ptr;
assert(cur_write_ptr - override_paths < (ptrdiff_t)override_path_size);
*cur_write_ptr = '\0';
loader_log(NULL, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_scan_for_implicit_layers: Override layer has override paths set to %s", override_paths);
}
} else if (!prop->is_override && prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
implicit_metalayer_present = true;
}
}
// If either the override layer or an implicit meta-layer are present, we need to add
// explicit layer info as well. Not to worry, though, all explicit layers not included
// in the override layer will be removed below in loader_remove_layers_in_blacklist().
if (override_layer_valid || implicit_metalayer_present) {
if (VK_SUCCESS != loader_get_data_files(inst, LOADER_DATA_FILE_MANIFEST_EXPLICIT_LAYER, override_paths, &manifest_files)) {
goto out;
}
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
// parse file into JSON struct
res = loader_get_json(inst, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
} else if (VK_SUCCESS != res || NULL == json) {
continue;
}
res = loader_add_layer_properties(inst, instance_layers, json, false, file_str);
loader_instance_heap_free(inst, file_str);
manifest_files.filename_list[i] = NULL;
cJSON_Delete(inst, json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
}
}
}
// Verify any meta-layers in the list are valid and all the component layers are
// actually present in the available layer list
verify_all_meta_layers(inst, instance_layers, &override_layer_valid);
if (override_layer_valid || implicit_metalayer_present) {
loader_remove_layers_not_in_implicit_meta_layers(inst, instance_layers);
if (override_layer_valid && inst != NULL) {
inst->override_layer_present = true;
}
}
out:
if (NULL != override_paths) {
loader_instance_heap_free(inst, override_paths);
}
for (uint32_t i = 0; i < manifest_files.count; i++) {
if (NULL != manifest_files.filename_list[i]) {
loader_instance_heap_free(inst, manifest_files.filename_list[i]);
}
}
if (NULL != manifest_files.filename_list) {
loader_instance_heap_free(inst, manifest_files.filename_list);
}
if (have_json_lock) {
loader_platform_thread_unlock_mutex(&loader_json_lock);
}
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpdpa_instance_internal(VkInstance inst, const char *pName) {
// inst is not wrapped
if (inst == VK_NULL_HANDLE) {
return NULL;
}
VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst;
void *addr;
if (disp_table == NULL) return NULL;
bool found_name;
addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name);
if (found_name) {
return addr;
}
addr = loader_phys_dev_ext_gpa_term(loader_get_instance(inst), pName);
if (NULL != addr) return addr;
// Don't call down the chain, this would be an infinite loop
loader_log(NULL, VULKAN_LOADER_DEBUG_BIT, 0, "loader_gpdpa_instance_internal() unrecognized name %s", pName);
return NULL;
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpdpa_instance_terminator(VkInstance inst, const char *pName) {
// inst is not wrapped
if (inst == VK_NULL_HANDLE) {
return NULL;
}
VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst;
void *addr;
if (disp_table == NULL) return NULL;
bool found_name;
addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name);
if (found_name) {
return addr;
}
// Get the terminator, but don't perform checking since it should already
// have been setup if we get here.
addr = loader_phys_dev_ext_gpa_term_no_check(loader_get_instance(inst), pName);
if (NULL != addr) return addr;
// Don't call down the chain, this would be an infinite loop
loader_log(NULL, VULKAN_LOADER_DEBUG_BIT, 0, "loader_gpdpa_instance_terminator() unrecognized name %s", pName);
return NULL;
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpa_instance_internal(VkInstance inst, const char *pName) {
if (!strcmp(pName, "vkGetInstanceProcAddr")) {
return (PFN_vkVoidFunction)loader_gpa_instance_internal;
}
if (!strcmp(pName, "vk_layerGetPhysicalDeviceProcAddr")) {
return (PFN_vkVoidFunction)loader_gpdpa_instance_terminator;
}
if (!strcmp(pName, "vkCreateInstance")) {
return (PFN_vkVoidFunction)terminator_CreateInstance;
}
if (!strcmp(pName, "vkCreateDevice")) {
return (PFN_vkVoidFunction)terminator_CreateDevice;
}
// The VK_EXT_debug_utils functions need a special case here so the terminators can still be found from vkGetInstanceProcAddr
if (!strcmp(pName, "vkSetDebugUtilsObjectNameEXT")) {
return (PFN_vkVoidFunction)terminator_SetDebugUtilsObjectNameEXT;
}
if (!strcmp(pName, "vkSetDebugUtilsObjectTagEXT")) {
return (PFN_vkVoidFunction)terminator_SetDebugUtilsObjectTagEXT;
}
if (!strcmp(pName, "vkQueueBeginDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_QueueBeginDebugUtilsLabelEXT;
}
if (!strcmp(pName, "vkQueueEndDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_QueueEndDebugUtilsLabelEXT;
}
if (!strcmp(pName, "vkQueueInsertDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_QueueInsertDebugUtilsLabelEXT;
}
if (!strcmp(pName, "vkCmdBeginDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_CmdBeginDebugUtilsLabelEXT;
}
if (!strcmp(pName, "vkCmdEndDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_CmdEndDebugUtilsLabelEXT;
}
if (!strcmp(pName, "vkCmdInsertDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_CmdInsertDebugUtilsLabelEXT;
}
// inst is not wrapped
if (inst == VK_NULL_HANDLE) {
return NULL;
}
VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst;
void *addr;
if (disp_table == NULL) return NULL;
bool found_name;
addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name);
if (found_name) {
return addr;
}
// Don't call down the chain, this would be an infinite loop
loader_log(NULL, VULKAN_LOADER_DEBUG_BIT, 0, "loader_gpa_instance_internal() unrecognized name %s", pName);
return NULL;
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpa_device_internal(VkDevice device, const char *pName) {
struct loader_device *dev;
struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL);
// Return this function if a layer above here is asking for the vkGetDeviceProcAddr.
// This is so we can properly intercept any device commands needing a terminator.
if (!strcmp(pName, "vkGetDeviceProcAddr")) {
return (PFN_vkVoidFunction)loader_gpa_device_internal;
}
// NOTE: Device Funcs needing Trampoline/Terminator.
// Overrides for device functions needing a trampoline and
// a terminator because certain device entry-points still need to go
// through a terminator before hitting the ICD. This could be for
// several reasons, but the main one is currently unwrapping an
// object before passing the appropriate info along to the ICD.
// This is why we also have to override the direct ICD call to
// vkGetDeviceProcAddr to intercept those calls.
PFN_vkVoidFunction addr = get_extension_device_proc_terminator(dev, pName);
if (NULL != addr) {
return addr;
}
return icd_term->dispatch.GetDeviceProcAddr(device, pName);
}
struct loader_instance *loader_get_instance(const VkInstance instance) {
// look up the loader_instance in our list by comparing dispatch tables, as
// there is no guarantee the instance is still a loader_instance* after any
// layers which wrap the instance object.
const VkLayerInstanceDispatchTable *disp;
struct loader_instance *ptr_instance = (struct loader_instance *)instance;
if (VK_NULL_HANDLE == instance || LOADER_MAGIC_NUMBER != ptr_instance->magic) {
return NULL;
} else {
disp = loader_get_instance_layer_dispatch(instance);
for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) {
if (&inst->disp->layer_inst_disp == disp) {
ptr_instance = inst;
break;
}
}
}
return ptr_instance;
}
static loader_platform_dl_handle loader_open_layer_file(const struct loader_instance *inst, const char *chain_type,
struct loader_layer_properties *prop) {
if ((prop->lib_handle = loader_platform_open_library(prop->lib_name)) == NULL) {
loader_handle_load_library_error(inst, prop->lib_name, &prop->lib_status);
} else {
prop->lib_status = LOADER_LAYER_LIB_SUCCESS_LOADED;
loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Loading layer library %s", prop->lib_name);
}
return prop->lib_handle;
}
static void loader_close_layer_file(const struct loader_instance *inst, struct loader_layer_properties *prop) {
if (prop->lib_handle) {
loader_platform_close_library(prop->lib_handle);
loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Unloading layer library %s", prop->lib_name);
prop->lib_handle = NULL;
}
}
void loader_deactivate_layers(const struct loader_instance *instance, struct loader_device *device,
struct loader_layer_list *list) {
// Delete instance list of enabled layers and close any layer libraries
for (uint32_t i = 0; i < list->count; i++) {
struct loader_layer_properties *layer_prop = &list->list[i];
loader_close_layer_file(instance, layer_prop);
}
loader_destroy_layer_list(instance, device, list);
}
// Go through the search_list and find any layers which match type. If layer
// type match is found in then add it to ext_list.
static void loader_add_implicit_layers(const struct loader_instance *inst, struct loader_layer_list *target_list,
struct loader_layer_list *expanded_target_list,
const struct loader_layer_list *source_list) {
for (uint32_t src_layer = 0; src_layer < source_list->count; src_layer++) {
const struct loader_layer_properties *prop = &source_list->list[src_layer];
if (0 == (prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) {
loader_add_implicit_layer(inst, prop, target_list, expanded_target_list, source_list);
}
}
}
// Get the layer name(s) from the env_name environment variable. If layer is found in
// search_list then add it to layer_list. But only add it to layer_list if type_flags matches.
static VkResult loader_add_environment_layers(struct loader_instance *inst, const enum layer_type_flags type_flags,
const char *env_name, struct loader_layer_list *target_list,
struct loader_layer_list *expanded_target_list,
const struct loader_layer_list *source_list) {
VkResult res = VK_SUCCESS;
char *next, *name;
char *layer_env = loader_getenv(env_name, inst);
if (layer_env == NULL) {
goto out;
}
name = loader_stack_alloc(strlen(layer_env) + 1);
if (name == NULL) {
goto out;
}
strcpy(name, layer_env);
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_environment_layers: Env Var %s defined and adding layers %s", env_name, name);
while (name && *name) {
next = loader_get_next_path(name);
res = loader_add_layer_name_to_list(inst, name, type_flags, source_list, target_list, expanded_target_list);
if (res != VK_SUCCESS) {
goto out;
}
name = next;
}
out:
if (layer_env != NULL) {
loader_free_getenv(layer_env, inst);
}
return res;
}
VkResult loader_enable_instance_layers(struct loader_instance *inst, const VkInstanceCreateInfo *pCreateInfo,
const struct loader_layer_list *instance_layers) {
assert(inst && "Cannot have null instance");
if (!loader_init_layer_list(inst, &inst->app_activated_layer_list)) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_enable_instance_layers: Failed to initialize application version of the layer list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
if (!loader_init_layer_list(inst, &inst->expanded_activated_layer_list)) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_enable_instance_layers: Failed to initialize expanded version of the layer list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Add any implicit layers first
loader_add_implicit_layers(inst, &inst->app_activated_layer_list, &inst->expanded_activated_layer_list, instance_layers);
// Add any layers specified via environment variable next
VkResult err =
loader_add_environment_layers(inst, VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER, "VK_INSTANCE_LAYERS",
&inst->app_activated_layer_list, &inst->expanded_activated_layer_list, instance_layers);
if (err != VK_SUCCESS) {
return err;
}
// Add layers specified by the application
err = loader_add_layer_names_to_list(inst, &inst->app_activated_layer_list, &inst->expanded_activated_layer_list,
pCreateInfo->enabledLayerCount, pCreateInfo->ppEnabledLayerNames, instance_layers);
for (uint32_t i = 0; i < inst->expanded_activated_layer_list.count; i++) {
// Verify that the layer api version is at least that of the application's request, if not, throw a warning since
// undefined behavior could occur.
struct loader_layer_properties *prop = inst->expanded_activated_layer_list.list + i;
loader_api_version prop_spec_version = loader_make_version(prop->info.specVersion);
if (!loader_check_version_meets_required(inst->app_api_version, prop_spec_version)) {
loader_log(inst, VULKAN_LOADER_WARN_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_add_to_layer_list: Explicit layer %s is using an old API version %" PRIu16 ".%" PRIu16
" versus application requested %" PRIu16 ".%" PRIu16,
prop->info.layerName, prop_spec_version.major, prop_spec_version.minor, inst->app_api_version.major,
inst->app_api_version.minor);
}
}
return err;
}
// Determine the layer interface version to use.
bool loader_get_layer_interface_version(PFN_vkNegotiateLoaderLayerInterfaceVersion fp_negotiate_layer_version,
VkNegotiateLayerInterface *interface_struct) {
memset(interface_struct, 0, sizeof(VkNegotiateLayerInterface));
interface_struct->sType = LAYER_NEGOTIATE_INTERFACE_STRUCT;
interface_struct->loaderLayerInterfaceVersion = 1;
interface_struct->pNext = NULL;
if (fp_negotiate_layer_version != NULL) {
// Layer supports the negotiation API, so call it with the loader's
// latest version supported
interface_struct->loaderLayerInterfaceVersion = CURRENT_LOADER_LAYER_INTERFACE_VERSION;
VkResult result = fp_negotiate_layer_version(interface_struct);
if (result != VK_SUCCESS) {
// Layer no longer supports the loader's latest interface version so
// fail loading the Layer
return false;
}
}
if (interface_struct->loaderLayerInterfaceVersion < MIN_SUPPORTED_LOADER_LAYER_INTERFACE_VERSION) {
// Loader no longer supports the layer's latest interface version so
// fail loading the layer
return false;
}
return true;
}
VKAPI_ATTR VkResult VKAPI_CALL loader_layer_create_device(VkInstance instance, VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice,
PFN_vkGetInstanceProcAddr layerGIPA, PFN_vkGetDeviceProcAddr *nextGDPA) {
VkResult res;
VkPhysicalDevice internal_device = VK_NULL_HANDLE;
struct loader_device *dev = NULL;
struct loader_instance *inst = NULL;
if (instance != VK_NULL_HANDLE) {
inst = loader_get_instance(instance);
internal_device = physicalDevice;
} else {
struct loader_physical_device_tramp *phys_dev = (struct loader_physical_device_tramp *)physicalDevice;
internal_device = phys_dev->phys_dev;
inst = (struct loader_instance *)phys_dev->this_instance;
}
// Get the physical device (ICD) extensions
struct loader_extension_list icd_exts;
icd_exts.list = NULL;
res = loader_init_generic_list(inst, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to create ICD extension list");
goto out;
}
PFN_vkEnumerateDeviceExtensionProperties enumDeviceExtensionProperties = NULL;
if (layerGIPA != NULL) {
enumDeviceExtensionProperties =
(PFN_vkEnumerateDeviceExtensionProperties)layerGIPA(instance, "vkEnumerateDeviceExtensionProperties");
} else {
enumDeviceExtensionProperties = inst->disp->layer_inst_disp.EnumerateDeviceExtensionProperties;
}
res = loader_add_device_extensions(inst, enumDeviceExtensionProperties, internal_device, "Unknown", &icd_exts);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to add extensions to list");
goto out;
}
// Make sure requested extensions to be enabled are supported
res = loader_validate_device_extensions(inst, &inst->expanded_activated_layer_list, &icd_exts, pCreateInfo);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to validate extensions in list");
goto out;
}
dev = loader_create_logical_device(inst, pAllocator);
if (dev == NULL) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Copy the application enabled instance layer list into the device
if (NULL != inst->app_activated_layer_list.list) {
dev->app_activated_layer_list.capacity = inst->app_activated_layer_list.capacity;
dev->app_activated_layer_list.count = inst->app_activated_layer_list.count;
dev->app_activated_layer_list.list =
loader_device_heap_alloc(dev, inst->app_activated_layer_list.capacity, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (dev->app_activated_layer_list.list == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"vkCreateDevice: Failed to allocate application activated layer list of size %d.",
inst->app_activated_layer_list.capacity);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memcpy(dev->app_activated_layer_list.list, inst->app_activated_layer_list.list,
sizeof(*dev->app_activated_layer_list.list) * dev->app_activated_layer_list.count);
} else {
dev->app_activated_layer_list.capacity = 0;
dev->app_activated_layer_list.count = 0;
dev->app_activated_layer_list.list = NULL;
}
// Copy the expanded enabled instance layer list into the device
if (NULL != inst->expanded_activated_layer_list.list) {
dev->expanded_activated_layer_list.capacity = inst->expanded_activated_layer_list.capacity;
dev->expanded_activated_layer_list.count = inst->expanded_activated_layer_list.count;
dev->expanded_activated_layer_list.list =
loader_device_heap_alloc(dev, inst->expanded_activated_layer_list.capacity, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (dev->expanded_activated_layer_list.list == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"vkCreateDevice: Failed to allocate expanded activated layer list of size %d.",
inst->expanded_activated_layer_list.capacity);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memcpy(dev->expanded_activated_layer_list.list, inst->expanded_activated_layer_list.list,
sizeof(*dev->expanded_activated_layer_list.list) * dev->expanded_activated_layer_list.count);
} else {
dev->expanded_activated_layer_list.capacity = 0;
dev->expanded_activated_layer_list.count = 0;
dev->expanded_activated_layer_list.list = NULL;
}
res = loader_create_device_chain(internal_device, pCreateInfo, pAllocator, inst, dev, layerGIPA, nextGDPA);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "vkCreateDevice: Failed to create device chain.");
goto out;
}
*pDevice = dev->chain_device;
// Initialize any device extension dispatch entry's from the instance list
loader_init_dispatch_dev_ext(inst, dev);
// Initialize WSI device extensions as part of core dispatch since loader
// has dedicated trampoline code for these
loader_init_device_extension_dispatch_table(&dev->loader_dispatch, inst->disp->layer_inst_disp.GetInstanceProcAddr,
dev->loader_dispatch.core_dispatch.GetDeviceProcAddr, inst->instance, *pDevice);
out:
// Failure cleanup
if (VK_SUCCESS != res) {
if (NULL != dev) {
loader_destroy_logical_device(inst, dev, pAllocator);
}
}
if (NULL != icd_exts.list) {
loader_destroy_generic_list(inst, (struct loader_generic_list *)&icd_exts);
}
return res;
}
VKAPI_ATTR void VKAPI_CALL loader_layer_destroy_device(VkDevice device, const VkAllocationCallbacks *pAllocator,
PFN_vkDestroyDevice destroyFunction) {
struct loader_device *dev;
if (device == VK_NULL_HANDLE) {
return;
}
struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL);
const struct loader_instance *inst = icd_term->this_instance;
destroyFunction(device, pAllocator);
dev->chain_device = NULL;
dev->icd_device = NULL;
loader_remove_logical_device(inst, icd_term, dev, pAllocator);
}
// Given the list of layers to activate in the loader_instance
// structure. This function will add a VkLayerInstanceCreateInfo
// structure to the VkInstanceCreateInfo.pNext pointer.
// Each activated layer will have it's own VkLayerInstanceLink
// structure that tells the layer what Get*ProcAddr to call to
// get function pointers to the next layer down.
// Once the chain info has been created this function will
// execute the CreateInstance call chain. Each layer will
// then have an opportunity in it's CreateInstance function
// to setup it's dispatch table when the lower layer returns
// successfully.
// Each layer can wrap or not-wrap the returned VkInstance object
// as it sees fit.
// The instance chain is terminated by a loader function
// that will call CreateInstance on all available ICD's and
// cache those VkInstance objects for future use.
VkResult loader_create_instance_chain(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
struct loader_instance *inst, VkInstance *created_instance) {
uint32_t num_activated_layers = 0;
struct activated_layer_info *activated_layers = NULL;
VkLayerInstanceCreateInfo chain_info;
VkLayerInstanceLink *layer_instance_link_info = NULL;
VkInstanceCreateInfo loader_create_info;
VkResult res;
PFN_vkGetInstanceProcAddr next_gipa = loader_gpa_instance_internal;
PFN_vkGetInstanceProcAddr cur_gipa = loader_gpa_instance_internal;
PFN_vkGetDeviceProcAddr cur_gdpa = loader_gpa_device_internal;
PFN_GetPhysicalDeviceProcAddr next_gpdpa = loader_gpdpa_instance_internal;
PFN_GetPhysicalDeviceProcAddr cur_gpdpa = loader_gpdpa_instance_internal;
memcpy(&loader_create_info, pCreateInfo, sizeof(VkInstanceCreateInfo));
if (inst->expanded_activated_layer_list.count > 0) {
chain_info.u.pLayerInfo = NULL;
chain_info.pNext = pCreateInfo->pNext;
chain_info.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO;
chain_info.function = VK_LAYER_LINK_INFO;
loader_create_info.pNext = &chain_info;
layer_instance_link_info = loader_stack_alloc(sizeof(VkLayerInstanceLink) * inst->expanded_activated_layer_list.count);
if (!layer_instance_link_info) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_create_instance_chain: Failed to alloc Instance objects for layer");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
activated_layers = loader_stack_alloc(sizeof(struct activated_layer_info) * inst->expanded_activated_layer_list.count);
if (!activated_layers) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_create_instance_chain: Failed to alloc activated layer storage array");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Create instance chain of enabled layers
for (int32_t i = inst->expanded_activated_layer_list.count - 1; i >= 0; i--) {
struct loader_layer_properties *layer_prop = &inst->expanded_activated_layer_list.list[i];
loader_platform_dl_handle lib_handle;
// Skip it if a Layer with the same name has been already successfully activated
if (loader_names_array_has_layer_property(&layer_prop->info, num_activated_layers, activated_layers)) {
continue;
}
lib_handle = loader_open_layer_file(inst, "instance", layer_prop);
if (!lib_handle) {
continue;
}
if (NULL == layer_prop->functions.negotiate_layer_interface) {
PFN_vkNegotiateLoaderLayerInterfaceVersion negotiate_interface = NULL;
bool functions_in_interface = false;
if (strlen(layer_prop->functions.str_negotiate_interface) == 0) {
negotiate_interface = (PFN_vkNegotiateLoaderLayerInterfaceVersion)loader_platform_get_proc_address(
lib_handle, "vkNegotiateLoaderLayerInterfaceVersion");
} else {
negotiate_interface = (PFN_vkNegotiateLoaderLayerInterfaceVersion)loader_platform_get_proc_address(
lib_handle, layer_prop->functions.str_negotiate_interface);
}
// If we can negotiate an interface version, then we can also
// get everything we need from the one function call, so try
// that first, and see if we can get all the function pointers
// necessary from that one call.
if (NULL != negotiate_interface) {
layer_prop->functions.negotiate_layer_interface = negotiate_interface;
VkNegotiateLayerInterface interface_struct;
if (loader_get_layer_interface_version(negotiate_interface, &interface_struct)) {
// Go ahead and set the properties version to the
// correct value.
layer_prop->interface_version = interface_struct.loaderLayerInterfaceVersion;
// If the interface is 2 or newer, we have access to the
// new GetPhysicalDeviceProcAddr function, so grab it,
// and the other necessary functions, from the
// structure.
if (interface_struct.loaderLayerInterfaceVersion > 1) {
cur_gipa = interface_struct.pfnGetInstanceProcAddr;
cur_gdpa = interface_struct.pfnGetDeviceProcAddr;
cur_gpdpa = interface_struct.pfnGetPhysicalDeviceProcAddr;
if (cur_gipa != NULL) {
// We've set the functions, so make sure we
// don't do the unnecessary calls later.
functions_in_interface = true;
}
}
}
}
if (!functions_in_interface) {
if ((cur_gipa = layer_prop->functions.get_instance_proc_addr) == NULL) {
if (strlen(layer_prop->functions.str_gipa) == 0) {
cur_gipa =
(PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetInstanceProcAddr");
layer_prop->functions.get_instance_proc_addr = cur_gipa;
if (NULL == cur_gipa) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_create_instance_chain: Failed to find \'vkGetInstanceProcAddr\' in layer %s",
layer_prop->lib_name);
continue;
}
} else {
cur_gipa = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle,
layer_prop->functions.str_gipa);
if (NULL == cur_gipa) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_create_instance_chain: Failed to find \'%s\' in layer %s",
layer_prop->functions.str_gipa, layer_prop->lib_name);
continue;
}
}
}
}
}
layer_instance_link_info[num_activated_layers].pNext = chain_info.u.pLayerInfo;
layer_instance_link_info[num_activated_layers].pfnNextGetInstanceProcAddr = next_gipa;
layer_instance_link_info[num_activated_layers].pfnNextGetPhysicalDeviceProcAddr = next_gpdpa;
next_gipa = cur_gipa;
if (layer_prop->interface_version > 1 && cur_gpdpa != NULL) {
layer_prop->functions.get_physical_device_proc_addr = cur_gpdpa;
next_gpdpa = cur_gpdpa;
}
if (layer_prop->interface_version > 1 && cur_gipa != NULL) {
layer_prop->functions.get_instance_proc_addr = cur_gipa;
}
if (layer_prop->interface_version > 1 && cur_gdpa != NULL) {
layer_prop->functions.get_device_proc_addr = cur_gdpa;
}
chain_info.u.pLayerInfo = &layer_instance_link_info[num_activated_layers];
activated_layers[num_activated_layers].name = layer_prop->info.layerName;
activated_layers[num_activated_layers].manifest = layer_prop->manifest_file_name;
activated_layers[num_activated_layers].library = layer_prop->lib_name;
activated_layers[num_activated_layers].is_implicit = !(layer_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER);
if (activated_layers[num_activated_layers].is_implicit) {
activated_layers[num_activated_layers].disable_env = layer_prop->disable_env_var.name;
}
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Insert instance layer %s (%s)",
layer_prop->info.layerName, layer_prop->lib_name);
num_activated_layers++;
}
}
// Make sure each layer requested by the application was actually loaded
for (uint32_t exp = 0; exp < inst->expanded_activated_layer_list.count; ++exp) {
struct loader_layer_properties *exp_layer_prop = &inst->expanded_activated_layer_list.list[exp];
bool found = false;
for (uint32_t act = 0; act < num_activated_layers; ++act) {
if (!strcmp(activated_layers[act].name, exp_layer_prop->info.layerName)) {
found = true;
break;
}
}
// If it wasn't found, we want to at least log an error. However, if it was enabled by the application directly,
// we want to return a bad layer error.
if (!found) {
bool app_requested = false;
for (uint32_t act = 0; act < pCreateInfo->enabledLayerCount; ++act) {
if (!strcmp(pCreateInfo->ppEnabledLayerNames[act], exp_layer_prop->info.layerName)) {
app_requested = true;
break;
}
}
VkFlags log_flag = VULKAN_LOADER_LAYER_BIT;
char ending = '.';
if (app_requested) {
log_flag |= VULKAN_LOADER_ERROR_BIT;
ending = '!';
} else {
log_flag |= VULKAN_LOADER_INFO_BIT;
}
switch (exp_layer_prop->lib_status) {
case LOADER_LAYER_LIB_NOT_LOADED:
loader_log(inst, log_flag, 0, "Requested layer %s was not loaded%c", exp_layer_prop->info.layerName, ending);
break;
case LOADER_LAYER_LIB_ERROR_WRONG_BIT_TYPE: {
loader_log(inst, log_flag, 0, "Requested layer %s was wrong bit-type%c", exp_layer_prop->info.layerName,
ending);
break;
}
case LOADER_LAYER_LIB_ERROR_FAILED_TO_LOAD:
loader_log(inst, log_flag, 0, "Requested layer %s failed to load%c", exp_layer_prop->info.layerName, ending);
break;
case LOADER_LAYER_LIB_SUCCESS_LOADED:
// Shouldn't be able to reach this but if it is, best to report a debug
loader_log(inst, log_flag, 0,
"Shouldn't reach this. A valid version of requested layer %s was loaded but was not found in the "
"list of activated layers%c",
exp_layer_prop->info.layerName, ending);
break;
}
if (app_requested) {
return VK_ERROR_LAYER_NOT_PRESENT;
}
}
}
VkLoaderFeatureFlags feature_flags = 0;
#if defined(_WIN32)
feature_flags = windows_initialize_dxgi();
#endif
PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance)next_gipa(*created_instance, "vkCreateInstance");
if (fpCreateInstance) {
VkLayerInstanceCreateInfo instance_dispatch;
instance_dispatch.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO;
instance_dispatch.pNext = loader_create_info.pNext;
instance_dispatch.function = VK_LOADER_DATA_CALLBACK;
instance_dispatch.u.pfnSetInstanceLoaderData = vkSetInstanceDispatch;
VkLayerInstanceCreateInfo device_callback;
device_callback.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO;
device_callback.pNext = &instance_dispatch;
device_callback.function = VK_LOADER_LAYER_CREATE_DEVICE_CALLBACK;
device_callback.u.layerDevice.pfnLayerCreateDevice = loader_layer_create_device;
device_callback.u.layerDevice.pfnLayerDestroyDevice = loader_layer_destroy_device;
VkLayerInstanceCreateInfo loader_features;
loader_features.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO;
loader_features.pNext = &device_callback;
loader_features.function = VK_LOADER_FEATURES;
loader_features.u.loaderFeatures = feature_flags;
loader_create_info.pNext = &loader_features;
// If layer debugging is enabled, let's print out the full callstack with layers in their
// defined order.
if ((loader_get_debug_level() & VULKAN_LOADER_LAYER_BIT) != 0) {
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, "vkCreateInstance layer callstack setup to:");
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " <Application>");
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||");
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " <Loader>");
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||");
for (uint32_t cur_layer = 0; cur_layer < num_activated_layers; ++cur_layer) {
uint32_t index = num_activated_layers - cur_layer - 1;
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " %s", activated_layers[index].name);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Type: %s",
activated_layers[index].is_implicit ? "Implicit" : "Explicit");
if (activated_layers[index].is_implicit) {
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Disable Env Var: %s",
activated_layers[index].disable_env);
}
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Manifest: %s", activated_layers[index].manifest);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Library: %s", activated_layers[index].library);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||");
}
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " <Drivers>\n");
}
res = fpCreateInstance(&loader_create_info, pAllocator, created_instance);
} else {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_create_instance_chain: Failed to find \'vkCreateInstance\'");
// Couldn't find CreateInstance function!
res = VK_ERROR_INITIALIZATION_FAILED;
}
if (res == VK_SUCCESS) {
loader_init_instance_core_dispatch_table(&inst->disp->layer_inst_disp, next_gipa, *created_instance);
inst->instance = *created_instance;
}
return res;
}
void loader_activate_instance_layer_extensions(struct loader_instance *inst, VkInstance created_inst) {
loader_init_instance_extension_dispatch_table(&inst->disp->layer_inst_disp, inst->disp->layer_inst_disp.GetInstanceProcAddr,
created_inst);
}
VkResult loader_create_device_chain(const VkPhysicalDevice pd, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, const struct loader_instance *inst,
struct loader_device *dev, PFN_vkGetInstanceProcAddr callingLayer,
PFN_vkGetDeviceProcAddr *layerNextGDPA) {
uint32_t num_activated_layers = 0;
struct activated_layer_info *activated_layers = NULL;
VkLayerDeviceLink *layer_device_link_info;
VkLayerDeviceCreateInfo chain_info;
VkDeviceCreateInfo loader_create_info;
VkResult res;
PFN_vkGetDeviceProcAddr fpGDPA = NULL, nextGDPA = loader_gpa_device_internal;
PFN_vkGetInstanceProcAddr fpGIPA = NULL, nextGIPA = loader_gpa_instance_internal;
memcpy(&loader_create_info, pCreateInfo, sizeof(VkDeviceCreateInfo));
// Before we continue, we need to find out if the KHR_device_group extension is in the enabled list. If it is, we then
// need to look for the corresponding VkDeviceGroupDeviceCreateInfoKHR struct in the device list. This is because we
// need to replace all the incoming physical device values (which are really loader trampoline physical device values)
// with the layer/ICD version.
{
VkBaseOutStructure *pNext = (VkBaseOutStructure *)loader_create_info.pNext;
VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&loader_create_info;
while (NULL != pNext) {
if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) {
VkDeviceGroupDeviceCreateInfoKHR *cur_struct = (VkDeviceGroupDeviceCreateInfoKHR *)pNext;
if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) {
VkDeviceGroupDeviceCreateInfoKHR *temp_struct = loader_stack_alloc(sizeof(VkDeviceGroupDeviceCreateInfoKHR));
VkPhysicalDevice *phys_dev_array = NULL;
if (NULL == temp_struct) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(temp_struct, cur_struct, sizeof(VkDeviceGroupDeviceCreateInfoKHR));
phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * cur_struct->physicalDeviceCount);
if (NULL == phys_dev_array) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Before calling down, replace the incoming physical device values (which are really loader trampoline
// physical devices) with the next layer (or possibly even the terminator) physical device values.
struct loader_physical_device_tramp *cur_tramp;
for (uint32_t phys_dev = 0; phys_dev < cur_struct->physicalDeviceCount; phys_dev++) {
cur_tramp = (struct loader_physical_device_tramp *)cur_struct->pPhysicalDevices[phys_dev];
phys_dev_array[phys_dev] = cur_tramp->phys_dev;
}
temp_struct->pPhysicalDevices = phys_dev_array;
// Replace the old struct in the pNext chain with this one.
pPrev->pNext = (VkBaseOutStructure *)temp_struct;
}
break;
}
pPrev = pNext;
pNext = pNext->pNext;
}
}
if (dev->expanded_activated_layer_list.count > 0) {
layer_device_link_info = loader_stack_alloc(sizeof(VkLayerDeviceLink) * dev->expanded_activated_layer_list.count);
if (!layer_device_link_info) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_create_device_chain: Failed to alloc Device objects for layer. Skipping Layer.");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
activated_layers = loader_stack_alloc(sizeof(struct activated_layer_info) * inst->expanded_activated_layer_list.count);
if (!activated_layers) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_create_device_chain: Failed to alloc activated layer storage array");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
chain_info.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO;
chain_info.function = VK_LAYER_LINK_INFO;
chain_info.u.pLayerInfo = NULL;
chain_info.pNext = loader_create_info.pNext;
loader_create_info.pNext = &chain_info;
bool done = false;
// Create instance chain of enabled layers
for (int32_t i = dev->expanded_activated_layer_list.count - 1; i >= 0; i--) {
struct loader_layer_properties *layer_prop = &dev->expanded_activated_layer_list.list[i];
loader_platform_dl_handle lib_handle;
// Skip it if a Layer with the same name has been already successfully activated
if (loader_names_array_has_layer_property(&layer_prop->info, num_activated_layers, activated_layers)) {
continue;
}
lib_handle = loader_open_layer_file(inst, "device", layer_prop);
if (!lib_handle || done) {
continue;
}
// The Get*ProcAddr pointers will already be filled in if they were received from either the json file or the
// version negotiation
if ((fpGIPA = layer_prop->functions.get_instance_proc_addr) == NULL) {
if (strlen(layer_prop->functions.str_gipa) == 0) {
fpGIPA = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetInstanceProcAddr");
layer_prop->functions.get_instance_proc_addr = fpGIPA;
} else
fpGIPA =
(PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gipa);
if (!fpGIPA) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"loader_create_device_chain: Failed to find \'vkGetInstanceProcAddr\' in layer %s. Skipping layer.",
layer_prop->lib_name);
continue;
}
}
if (fpGIPA == callingLayer) {
if (layerNextGDPA != NULL) {
*layerNextGDPA = nextGDPA;
}
done = true;
continue;
}
if ((fpGDPA = layer_prop->functions.get_device_proc_addr) == NULL) {
if (strlen(layer_prop->functions.str_gdpa) == 0) {
fpGDPA = (PFN_vkGetDeviceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetDeviceProcAddr");
layer_prop->functions.get_device_proc_addr = fpGDPA;
} else
fpGDPA = (PFN_vkGetDeviceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gdpa);
if (!fpGDPA) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0,
"Failed to find vkGetDeviceProcAddr in layer %s", layer_prop->lib_name);
continue;
}
}
layer_device_link_info[num_activated_layers].pNext = chain_info.u.pLayerInfo;
layer_device_link_info[num_activated_layers].pfnNextGetInstanceProcAddr = nextGIPA;
layer_device_link_info[num_activated_layers].pfnNextGetDeviceProcAddr = nextGDPA;
chain_info.u.pLayerInfo = &layer_device_link_info[num_activated_layers];
nextGIPA = fpGIPA;
nextGDPA = fpGDPA;
activated_layers[num_activated_layers].name = layer_prop->info.layerName;
activated_layers[num_activated_layers].manifest = layer_prop->manifest_file_name;
activated_layers[num_activated_layers].library = layer_prop->lib_name;
activated_layers[num_activated_layers].is_implicit = !(layer_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER);
if (activated_layers[num_activated_layers].is_implicit) {
activated_layers[num_activated_layers].disable_env = layer_prop->disable_env_var.name;
}
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_LAYER_BIT, 0, "Inserted device layer %s (%s)",
layer_prop->info.layerName, layer_prop->lib_name);
num_activated_layers++;
}
}
VkDevice created_device = (VkDevice)dev;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)nextGIPA(inst->instance, "vkCreateDevice");
if (fpCreateDevice) {
VkLayerDeviceCreateInfo create_info_disp;
create_info_disp.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO;
create_info_disp.function = VK_LOADER_DATA_CALLBACK;
create_info_disp.u.pfnSetDeviceLoaderData = vkSetDeviceDispatch;
// If layer debugging is enabled, let's print out the full callstack with layers in their
// defined order.
uint32_t layer_driver_bits = VULKAN_LOADER_LAYER_BIT | VULKAN_LOADER_DRIVER_BIT;
if ((loader_get_debug_level() & layer_driver_bits) != 0) {
loader_log(inst, layer_driver_bits, 0, "vkCreateDevice layer callstack setup to:");
loader_log(inst, layer_driver_bits, 0, " <Application>");
loader_log(inst, layer_driver_bits, 0, " ||");
loader_log(inst, layer_driver_bits, 0, " <Loader>");
loader_log(inst, layer_driver_bits, 0, " ||");
if ((loader_get_debug_level() & VULKAN_LOADER_LAYER_BIT) != 0) {
for (uint32_t cur_layer = 0; cur_layer < num_activated_layers; ++cur_layer) {
uint32_t index = num_activated_layers - cur_layer - 1;
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " %s", activated_layers[index].name);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Type: %s",
activated_layers[index].is_implicit ? "Implicit" : "Explicit");
if (activated_layers[index].is_implicit) {
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Disable Env Var: %s",
activated_layers[index].disable_env);
}
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Manifest: %s", activated_layers[index].manifest);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " Library: %s", activated_layers[index].library);
loader_log(inst, VULKAN_LOADER_LAYER_BIT, 0, " ||");
}
}
loader_log(inst, layer_driver_bits, 0, " <Device>");
}
create_info_disp.pNext = loader_create_info.pNext;
loader_create_info.pNext = &create_info_disp;
res = fpCreateDevice(pd, &loader_create_info, pAllocator, &created_device);
if (res != VK_SUCCESS) {
return res;
}
dev->chain_device = created_device;
} else {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_create_device_chain: Failed to find \'vkCreateDevice\' in layers or ICD");
// Couldn't find CreateDevice function!
return VK_ERROR_INITIALIZATION_FAILED;
}
// Initialize device dispatch table
loader_init_device_dispatch_table(&dev->loader_dispatch, nextGDPA, dev->chain_device);
return res;
}
VkResult loader_validate_layers(const struct loader_instance *inst, const uint32_t layer_count,
const char *const *ppEnabledLayerNames, const struct loader_layer_list *list) {
struct loader_layer_properties *prop;
if (layer_count > 0 && ppEnabledLayerNames == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_instance_layers: ppEnabledLayerNames is NULL but enabledLayerCount is greater than zero");
return VK_ERROR_LAYER_NOT_PRESENT;
}
for (uint32_t i = 0; i < layer_count; i++) {
VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, ppEnabledLayerNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_layers: ppEnabledLayerNames contains string that is too long or is badly formed");
return VK_ERROR_LAYER_NOT_PRESENT;
}
prop = loader_find_layer_property(ppEnabledLayerNames[i], list);
if (NULL == prop) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_layers: Layer %d does not exist in the list of available layers", i);
return VK_ERROR_LAYER_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
VkResult loader_validate_instance_extensions(struct loader_instance *inst, const struct loader_extension_list *icd_exts,
const struct loader_layer_list *instance_layers,
const VkInstanceCreateInfo *pCreateInfo) {
VkExtensionProperties *extension_prop;
char *env_value;
bool check_if_known = true;
VkResult res = VK_SUCCESS;
struct loader_layer_list active_layers;
struct loader_layer_list expanded_layers;
memset(&active_layers, 0, sizeof(active_layers));
memset(&expanded_layers, 0, sizeof(expanded_layers));
if (pCreateInfo->enabledExtensionCount > 0 && pCreateInfo->ppEnabledExtensionNames == NULL) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_instance_extensions: Instance ppEnabledExtensionNames is NULL but enabledExtensionCount is "
"greater than zero");
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
if (!loader_init_layer_list(inst, &active_layers)) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
if (!loader_init_layer_list(inst, &expanded_layers)) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Build the lists of active layers (including metalayers) and expanded layers (with metalayers resolved to their
// components)
loader_add_implicit_layers(inst, &active_layers, &expanded_layers, instance_layers);
res = loader_add_environment_layers(inst, VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER, ENABLED_LAYERS_ENV, &active_layers,
&expanded_layers, instance_layers);
if (res != VK_SUCCESS) {
goto out;
}
res = loader_add_layer_names_to_list(inst, &active_layers, &expanded_layers, pCreateInfo->enabledLayerCount,
pCreateInfo->ppEnabledLayerNames, instance_layers);
if (VK_SUCCESS != res) {
goto out;
}
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_instance_extensions: Instance ppEnabledExtensionNames contains "
"string that is too long or is badly formed");
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
// Check if a user wants to disable the instance extension filtering behavior
env_value = loader_getenv("VK_LOADER_DISABLE_INST_EXT_FILTER", inst);
if (NULL != env_value && atoi(env_value) != 0) {
check_if_known = false;
}
loader_free_getenv(env_value, inst);
if (check_if_known) {
// See if the extension is in the list of supported extensions
bool found = false;
for (uint32_t j = 0; LOADER_INSTANCE_EXTENSIONS[j] != NULL; j++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], LOADER_INSTANCE_EXTENSIONS[j]) == 0) {
found = true;
break;
}
}
// If it isn't in the list, return an error
if (!found) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_instance_extensions: Extension %s not found in list of known instance extensions.",
pCreateInfo->ppEnabledExtensionNames[i]);
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
}
extension_prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[i], icd_exts);
if (extension_prop) {
continue;
}
extension_prop = NULL;
// Not in global list, search layer extension lists
struct loader_layer_properties *layer_prop = NULL;
for (uint32_t j = 0; NULL == extension_prop && j < expanded_layers.count; ++j) {
extension_prop =
get_extension_property(pCreateInfo->ppEnabledExtensionNames[i], &expanded_layers.list[j].instance_extension_list);
if (extension_prop) {
// Found the extension in one of the layers enabled by the app.
break;
}
layer_prop = loader_find_layer_property(expanded_layers.list[j].info.layerName, instance_layers);
if (NULL == layer_prop) {
// Should NOT get here, loader_validate_layers should have already filtered this case out.
continue;
}
}
if (!extension_prop) {
// Didn't find extension name in any of the global layers, error out
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_instance_extensions: Instance extension %s not supported by available ICDs or enabled "
"layers.",
pCreateInfo->ppEnabledExtensionNames[i]);
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
}
out:
loader_destroy_layer_list(inst, NULL, &active_layers);
loader_destroy_layer_list(inst, NULL, &expanded_layers);
return res;
}
VkResult loader_validate_device_extensions(struct loader_instance *this_instance,
const struct loader_layer_list *activated_device_layers,
const struct loader_extension_list *icd_exts, const VkDeviceCreateInfo *pCreateInfo) {
VkExtensionProperties *extension_prop;
struct loader_layer_properties *layer_prop;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(this_instance, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_device_extensions: Device ppEnabledExtensionNames contains "
"string that is too long or is badly formed");
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i];
extension_prop = get_extension_property(extension_name, icd_exts);
if (extension_prop) {
continue;
}
// Not in global list, search activated layer extension lists
for (uint32_t j = 0; j < activated_device_layers->count; j++) {
layer_prop = &activated_device_layers->list[j];
extension_prop = get_dev_extension_property(extension_name, &layer_prop->device_extension_list);
if (extension_prop) {
// Found the extension in one of the layers enabled by the app.
break;
}
}
if (!extension_prop) {
// Didn't find extension name in any of the device layers, error out
loader_log(this_instance, VULKAN_LOADER_ERROR_BIT, 0,
"loader_validate_device_extensions: Device extension %s not supported by selected physical device "
"or enabled layers.",
pCreateInfo->ppEnabledExtensionNames[i]);
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
// Terminator functions for the Instance chain
// All named terminator_<Vulkan API name>
VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateInstance(const VkInstanceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkInstance *pInstance) {
struct loader_icd_term *icd_term;
VkExtensionProperties *prop;
char **filtered_extension_names = NULL;
VkInstanceCreateInfo icd_create_info;
VkResult res = VK_SUCCESS;
bool one_icd_successful = false;
struct loader_instance *ptr_instance = (struct loader_instance *)*pInstance;
if (NULL == ptr_instance) {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateInstance: Loader instance pointer null encountered. Possibly set by active layer. (Policy "
"#LLP_LAYER_21)");
} else if (LOADER_MAGIC_NUMBER != ptr_instance->magic) {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateInstance: Instance pointer (%p) has invalid MAGIC value 0x%08x. Instance value possibly "
"corrupted by active layer (Policy #LLP_LAYER_21). ",
ptr_instance->magic);
}
memcpy(&icd_create_info, pCreateInfo, sizeof(icd_create_info));
icd_create_info.enabledLayerCount = 0;
icd_create_info.ppEnabledLayerNames = NULL;
// NOTE: Need to filter the extensions to only those supported by the ICD.
// No ICD will advertise support for layers. An ICD library could
// support a layer, but it would be independent of the actual ICD,
// just in the same library.
uint32_t extension_count = pCreateInfo->enabledExtensionCount;
#ifdef LOADER_ENABLE_LINUX_SORT
extension_count += 1;
#endif // LOADER_ENABLE_LINUX_SORT
filtered_extension_names = loader_stack_alloc(extension_count * sizeof(char *));
if (!filtered_extension_names) {
loader_log(ptr_instance, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_CreateInstance: Failed create extension name array for %d extensions", extension_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
icd_create_info.ppEnabledExtensionNames = (const char *const *)filtered_extension_names;
// Determine if Get Physical Device Properties 2 is available to this Instance
if (pCreateInfo->pApplicationInfo && pCreateInfo->pApplicationInfo->apiVersion >= VK_API_VERSION_1_1) {
ptr_instance->supports_get_dev_prop_2 = true;
} else {
for (uint32_t j = 0; j < pCreateInfo->enabledExtensionCount; j++) {
if (!strcmp(pCreateInfo->ppEnabledExtensionNames[j], VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
ptr_instance->supports_get_dev_prop_2 = true;
break;
}
}
}
for (uint32_t i = 0; i < ptr_instance->icd_tramp_list.count; i++) {
icd_term = loader_icd_add(ptr_instance, &ptr_instance->icd_tramp_list.scanned_list[i]);
if (NULL == icd_term) {
loader_log(ptr_instance, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_CreateInstance: Failed to add ICD %d to ICD trampoline list.", i);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// If any error happens after here, we need to remove the ICD from the list,
// because we've already added it, but haven't validated it
// Make sure that we reset the pApplicationInfo so we don't get an old pointer
icd_create_info.pApplicationInfo = pCreateInfo->pApplicationInfo;
icd_create_info.enabledExtensionCount = 0;
struct loader_extension_list icd_exts;
loader_log(ptr_instance, VULKAN_LOADER_DEBUG_BIT, 0, "Build ICD instance extension list");
// traverse scanned icd list adding non-duplicate extensions to the list
res = loader_init_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
// If out of memory, bail immediately.
goto out;
} else if (VK_SUCCESS != res) {
// Something bad happened with this ICD, so free it and try the
// next.
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
res = loader_add_instance_extensions(ptr_instance, icd_term->scanned_icd->EnumerateInstanceExtensionProperties,
icd_term->scanned_icd->lib_name, &icd_exts);
if (VK_SUCCESS != res) {
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
// If out of memory, bail immediately.
goto out;
} else {
// Something bad happened with this ICD, so free it and try the next.
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
}
for (uint32_t j = 0; j < pCreateInfo->enabledExtensionCount; j++) {
prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[j], &icd_exts);
if (prop) {
filtered_extension_names[icd_create_info.enabledExtensionCount] = (char *)pCreateInfo->ppEnabledExtensionNames[j];
icd_create_info.enabledExtensionCount++;
}
}
#ifdef LOADER_ENABLE_LINUX_SORT
// Force on "VK_KHR_get_physical_device_properties2" for Linux as we use it for GPU sorting. This
// should be done if the API version of either the application or the driver does not natively support
// the core version of vkGetPhysicalDeviceProperties2 entrypoint.
if ((ptr_instance->app_api_version.major == 1 && ptr_instance->app_api_version.minor == 0) ||
(VK_API_VERSION_MAJOR(icd_term->scanned_icd->api_version) == 1 &&
VK_API_VERSION_MINOR(icd_term->scanned_icd->api_version) == 0)) {
prop = get_extension_property(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, &icd_exts);
if (prop) {
filtered_extension_names[icd_create_info.enabledExtensionCount] =
(char *)VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME;
icd_create_info.enabledExtensionCount++;
// At least one ICD supports this, so the instance should be able to support it
ptr_instance->supports_get_dev_prop_2 = true;
}
}
#endif // LOADER_ENABLE_LINUX_SORT
// Determine if vkGetPhysicalDeviceProperties2 is available to this Instance
if (icd_term->scanned_icd->api_version >= VK_API_VERSION_1_1) {
icd_term->supports_get_dev_prop_2 = true;
} else {
for (uint32_t j = 0; j < icd_create_info.enabledExtensionCount; j++) {
if (!strcmp(filtered_extension_names[j], VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
icd_term->supports_get_dev_prop_2 = true;
break;
}
}
}
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts);
// Get the driver version from vkEnumerateInstanceVersion
uint32_t icd_version = VK_API_VERSION_1_0;
VkResult icd_result = VK_SUCCESS;
if (icd_term->scanned_icd->api_version >= VK_API_VERSION_1_1) {
PFN_vkEnumerateInstanceVersion icd_enumerate_instance_version =
(PFN_vkEnumerateInstanceVersion)icd_term->scanned_icd->GetInstanceProcAddr(NULL, "vkEnumerateInstanceVersion");
if (icd_enumerate_instance_version != NULL) {
icd_result = icd_enumerate_instance_version(&icd_version);
if (icd_result != VK_SUCCESS) {
icd_version = VK_API_VERSION_1_0;
loader_log(ptr_instance, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"terminator_CreateInstance: ICD \"%s\" vkEnumerateInstanceVersion returned error. The ICD will be "
"treated as a 1.0 ICD",
icd_term->scanned_icd->lib_name);
}
}
}
// Create an instance, substituting the version to 1.0 if necessary
VkApplicationInfo icd_app_info;
uint32_t icd_version_nopatch =
VK_MAKE_API_VERSION(0, VK_API_VERSION_MAJOR(icd_version), VK_API_VERSION_MINOR(icd_version), 0);
uint32_t requested_version = (pCreateInfo == NULL || pCreateInfo->pApplicationInfo == NULL)
? VK_API_VERSION_1_0
: pCreateInfo->pApplicationInfo->apiVersion;
if ((requested_version != 0) && (icd_version_nopatch == VK_API_VERSION_1_0)) {
if (icd_create_info.pApplicationInfo == NULL) {
memset(&icd_app_info, 0, sizeof(icd_app_info));
} else {
memcpy(&icd_app_info, icd_create_info.pApplicationInfo, sizeof(icd_app_info));
}
icd_app_info.apiVersion = icd_version;
icd_create_info.pApplicationInfo = &icd_app_info;
}
icd_result =
ptr_instance->icd_tramp_list.scanned_list[i].CreateInstance(&icd_create_info, pAllocator, &(icd_term->instance));
if (VK_ERROR_OUT_OF_HOST_MEMORY == icd_result) {
// If out of memory, bail immediately.
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
} else if (VK_SUCCESS != icd_result) {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateInstance: Failed to CreateInstance in ICD %d. Skipping ICD.", i);
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
if (!loader_icd_init_entries(icd_term, icd_term->instance,
ptr_instance->icd_tramp_list.scanned_list[i].GetInstanceProcAddr)) {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateInstance: Failed to CreateInstance and find entrypoints with ICD. Skipping ICD.");
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
if (ptr_instance->icd_tramp_list.scanned_list[i].interface_version < 3 &&
(
#ifdef VK_USE_PLATFORM_XLIB_KHR
NULL != icd_term->dispatch.CreateXlibSurfaceKHR ||
#endif // VK_USE_PLATFORM_XLIB_KHR
#ifdef VK_USE_PLATFORM_XCB_KHR
NULL != icd_term->dispatch.CreateXcbSurfaceKHR ||
#endif // VK_USE_PLATFORM_XCB_KHR
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
NULL != icd_term->dispatch.CreateWaylandSurfaceKHR ||
#endif // VK_USE_PLATFORM_WAYLAND_KHR
#ifdef VK_USE_PLATFORM_ANDROID_KHR
NULL != icd_term->dispatch.CreateAndroidSurfaceKHR ||
#endif // VK_USE_PLATFORM_ANDROID_KHR
#ifdef VK_USE_PLATFORM_WIN32_KHR
NULL != icd_term->dispatch.CreateWin32SurfaceKHR ||
#endif // VK_USE_PLATFORM_WIN32_KHR
NULL != icd_term->dispatch.DestroySurfaceKHR)) {
loader_log(ptr_instance, VULKAN_LOADER_WARN_BIT, 0,
"terminator_CreateInstance: Driver %s supports interface version %u but still exposes VkSurfaceKHR"
" create/destroy entrypoints (Policy #LDP_DRIVER_8)",
ptr_instance->icd_tramp_list.scanned_list[i].lib_name,
ptr_instance->icd_tramp_list.scanned_list[i].interface_version);
}
// If we made it this far, at least one ICD was successful
one_icd_successful = true;
}
// For vkGetPhysicalDeviceProperties2, at least one ICD needs to support the extension for the
// instance to have it
if (ptr_instance->supports_get_dev_prop_2) {
bool at_least_one_supports = false;
icd_term = ptr_instance->icd_terms;
while (icd_term != NULL) {
if (icd_term->supports_get_dev_prop_2) {
at_least_one_supports = true;
break;
}
icd_term = icd_term->next;
}
if (!at_least_one_supports) {
ptr_instance->supports_get_dev_prop_2 = false;
}
}
// If no ICDs were added to instance list and res is unchanged from it's initial value, the loader was unable to
// find a suitable ICD.
if (VK_SUCCESS == res && (ptr_instance->icd_terms == NULL || !one_icd_successful)) {
loader_log(ptr_instance, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"terminator_CreateInstance: Found no drivers!");
res = VK_ERROR_INCOMPATIBLE_DRIVER;
}
out:
ptr_instance->create_terminator_invalid_extension = false;
if (VK_SUCCESS != res) {
if (VK_ERROR_EXTENSION_NOT_PRESENT == res) {
ptr_instance->create_terminator_invalid_extension = true;
}
while (NULL != ptr_instance->icd_terms) {
icd_term = ptr_instance->icd_terms;
ptr_instance->icd_terms = icd_term->next;
if (NULL != icd_term->instance) {
icd_term->dispatch.DestroyInstance(icd_term->instance, pAllocator);
}
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
}
} else {
// Check for enabled extensions here to setup the loader structures so the loader knows what extensions
// it needs to worry about.
// We do it here and again above the layers in the trampoline function since the trampoline function
// may think different extensions are enabled than what's down here.
// This is why we don't clear inside of these function calls.
// The clearing should actually be handled by the overall memset of the pInstance structure in the
// trampoline.
wsi_create_instance(ptr_instance, pCreateInfo);
debug_utils_CreateInstance(ptr_instance, pCreateInfo);
extensions_create_instance(ptr_instance, pCreateInfo);
}
return res;
}
VKAPI_ATTR void VKAPI_CALL terminator_DestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator) {
struct loader_instance *ptr_instance = loader_get_instance(instance);
if (NULL == ptr_instance) {
return;
}
struct loader_icd_term *icd_terms = ptr_instance->icd_terms;
struct loader_icd_term *next_icd_term;
// Remove this instance from the list of instances:
struct loader_instance *prev = NULL;
struct loader_instance *next = loader.instances;
while (next != NULL) {
if (next == ptr_instance) {
// Remove this instance from the list:
if (prev)
prev->next = next->next;
else
loader.instances = next->next;
break;
}
prev = next;
next = next->next;
}
while (NULL != icd_terms) {
if (icd_terms->instance) {
icd_terms->dispatch.DestroyInstance(icd_terms->instance, pAllocator);
}
next_icd_term = icd_terms->next;
icd_terms->instance = VK_NULL_HANDLE;
loader_icd_destroy(ptr_instance, icd_terms, pAllocator);
icd_terms = next_icd_term;
}
loader_delete_layer_list_and_properties(ptr_instance, &ptr_instance->instance_layer_list);
loader_scanned_icd_clear(ptr_instance, &ptr_instance->icd_tramp_list);
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&ptr_instance->ext_list);
if (NULL != ptr_instance->phys_devs_term) {
for (uint32_t i = 0; i < ptr_instance->phys_dev_count_term; i++) {
loader_instance_heap_free(ptr_instance, ptr_instance->phys_devs_term[i]);
}
loader_instance_heap_free(ptr_instance, ptr_instance->phys_devs_term);
}
if (NULL != ptr_instance->phys_dev_groups_term) {
for (uint32_t i = 0; i < ptr_instance->phys_dev_group_count_term; i++) {
loader_instance_heap_free(ptr_instance, ptr_instance->phys_dev_groups_term[i]);
}
loader_instance_heap_free(ptr_instance, ptr_instance->phys_dev_groups_term);
}
loader_free_dev_ext_table(ptr_instance);
loader_free_phys_dev_ext_table(ptr_instance);
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) {
VkResult res = VK_SUCCESS;
struct loader_physical_device_term *phys_dev_term;
phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
struct loader_device *dev = (struct loader_device *)*pDevice;
PFN_vkCreateDevice fpCreateDevice = icd_term->dispatch.CreateDevice;
struct loader_extension_list icd_exts;
VkBaseOutStructure *caller_dgci_container = NULL;
VkDeviceGroupDeviceCreateInfoKHR *caller_dgci = NULL;
dev->phys_dev_term = phys_dev_term;
icd_exts.list = NULL;
if (fpCreateDevice == NULL) {
loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"terminator_CreateDevice: No vkCreateDevice command exposed by ICD %s", icd_term->scanned_icd->lib_name);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
VkDeviceCreateInfo localCreateInfo;
memcpy(&localCreateInfo, pCreateInfo, sizeof(localCreateInfo));
// NOTE: Need to filter the extensions to only those supported by the ICD.
// No ICD will advertise support for layers. An ICD library could support a layer,
// but it would be independent of the actual ICD, just in the same library.
char **filtered_extension_names = NULL;
if (0 < pCreateInfo->enabledExtensionCount) {
filtered_extension_names = loader_stack_alloc(pCreateInfo->enabledExtensionCount * sizeof(char *));
if (NULL == filtered_extension_names) {
loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_CreateDevice: Failed to create extension name storage for %d extensions",
pCreateInfo->enabledExtensionCount);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
localCreateInfo.enabledLayerCount = 0;
localCreateInfo.ppEnabledLayerNames = NULL;
localCreateInfo.enabledExtensionCount = 0;
localCreateInfo.ppEnabledExtensionNames = (const char *const *)filtered_extension_names;
// Get the physical device (ICD) extensions
res = loader_init_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
goto out;
}
res = loader_add_device_extensions(icd_term->this_instance, icd_term->dispatch.EnumerateDeviceExtensionProperties,
phys_dev_term->phys_dev, icd_term->scanned_icd->lib_name, &icd_exts);
if (res != VK_SUCCESS) {
goto out;
}
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i];
VkExtensionProperties *prop = get_extension_property(extension_name, &icd_exts);
if (prop) {
filtered_extension_names[localCreateInfo.enabledExtensionCount] = (char *)extension_name;
localCreateInfo.enabledExtensionCount++;
} else {
loader_log(icd_term->this_instance, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"vkCreateDevice extension %s not available for devices associated with ICD %s", extension_name,
icd_term->scanned_icd->lib_name);
}
}
// Before we continue, If KHX_device_group is the list of enabled and viable extensions, then we then need to look for the
// corresponding VkDeviceGroupDeviceCreateInfo struct in the device list and replace all the physical device values (which
// are really loader physical device terminator values) with the ICD versions.
// if (icd_term->this_instance->enabled_known_extensions.khr_device_group_creation == 1) {
{
VkBaseOutStructure *pNext = (VkBaseOutStructure *)localCreateInfo.pNext;
VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&localCreateInfo;
while (NULL != pNext) {
if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) {
VkDeviceGroupDeviceCreateInfo *cur_struct = (VkDeviceGroupDeviceCreateInfo *)pNext;
if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) {
VkDeviceGroupDeviceCreateInfo *temp_struct = loader_stack_alloc(sizeof(VkDeviceGroupDeviceCreateInfo));
VkPhysicalDevice *phys_dev_array = NULL;
if (NULL == temp_struct) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(temp_struct, cur_struct, sizeof(VkDeviceGroupDeviceCreateInfo));
phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * cur_struct->physicalDeviceCount);
if (NULL == phys_dev_array) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Before calling down, replace the incoming physical device values (which are really loader terminator
// physical devices) with the ICDs physical device values.
struct loader_physical_device_term *cur_term;
for (uint32_t phys_dev = 0; phys_dev < cur_struct->physicalDeviceCount; phys_dev++) {
cur_term = (struct loader_physical_device_term *)cur_struct->pPhysicalDevices[phys_dev];
phys_dev_array[phys_dev] = cur_term->phys_dev;
}
temp_struct->pPhysicalDevices = phys_dev_array;
// Keep track of pointers to restore pNext chain before returning
caller_dgci_container = pPrev;
caller_dgci = cur_struct;
// Replace the old struct in the pNext chain with this one.
pPrev->pNext = (VkBaseOutStructure *)temp_struct;
}
break;
}
pPrev = pNext;
pNext = pNext->pNext;
}
}
// Handle loader emulation for structs that are not supported by the ICD:
// Presently, the emulation leaves the pNext chain alone. This means that the ICD will receive items in the chain which
// are not recognized by the ICD. If this causes the ICD to fail, then the items would have to be removed here. The current
// implementation does not remove them because copying the pNext chain would be impossible if the loader does not recognize
// the any of the struct types, as the loader would not know the size to allocate and copy.
// if (icd_term->dispatch.GetPhysicalDeviceFeatures2 == NULL && icd_term->dispatch.GetPhysicalDeviceFeatures2KHR == NULL) {
{
const void *pNext = localCreateInfo.pNext;
while (pNext != NULL) {
switch (*(VkStructureType *)pNext) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
const VkPhysicalDeviceFeatures2KHR *features = pNext;
if (icd_term->dispatch.GetPhysicalDeviceFeatures2 == NULL &&
icd_term->dispatch.GetPhysicalDeviceFeatures2KHR == NULL) {
loader_log(icd_term->this_instance, VULKAN_LOADER_INFO_BIT, 0,
"vkCreateDevice: Emulating handling of VkPhysicalDeviceFeatures2 in pNext chain for ICD \"%s\"",
icd_term->scanned_icd->lib_name);
// Verify that VK_KHR_get_physical_device_properties2 is enabled
if (icd_term->this_instance->enabled_known_extensions.khr_get_physical_device_properties2) {
localCreateInfo.pEnabledFeatures = &features->features;
}
}
// Leave this item in the pNext chain for now
pNext = features->pNext;
break;
}
case VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO: {
const VkDeviceGroupDeviceCreateInfoKHR *group_info = pNext;
if (icd_term->dispatch.EnumeratePhysicalDeviceGroups == NULL &&
icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR == NULL) {
loader_log(icd_term->this_instance, VULKAN_LOADER_INFO_BIT, 0,
"vkCreateDevice: Emulating handling of VkPhysicalDeviceGroupProperties in pNext chain for "
"ICD \"%s\"",
icd_term->scanned_icd->lib_name);
// The group must contain only this one device, since physical device groups aren't actually supported
if (group_info->physicalDeviceCount != 1) {
loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT, 0,
"vkCreateDevice: Emulation failed to create device from device group info");
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
}
// Nothing needs to be done here because we're leaving the item in the pNext chain and because the spec
// states that the physicalDevice argument must be included in the device group, and we've already checked
// that it is
pNext = group_info->pNext;
break;
}
// Multiview properties are also allowed, but since VK_KHX_multiview is a device extension, we'll just let the
// ICD handle that error when the user enables the extension here
default: {
const VkBaseInStructure *header = pNext;
pNext = header->pNext;
break;
}
}
}
}
// Every extension that has a loader-defined terminator needs to be marked as enabled or disabled so that we know whether or
// not to return that terminator when vkGetDeviceProcAddr is called
for (uint32_t i = 0; i < localCreateInfo.enabledExtensionCount; ++i) {
if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_SWAPCHAIN_EXTENSION_NAME)) {
dev->extensions.khr_swapchain_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_DISPLAY_SWAPCHAIN_EXTENSION_NAME)) {
dev->extensions.khr_display_swapchain_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_DEVICE_GROUP_EXTENSION_NAME)) {
dev->extensions.khr_device_group_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_EXT_DEBUG_MARKER_EXTENSION_NAME)) {
dev->extensions.ext_debug_marker_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], "VK_EXT_full_screen_exclusive")) {
dev->extensions.ext_full_screen_exclusive_enabled = true;
}
}
dev->extensions.ext_debug_utils_enabled = icd_term->this_instance->enabled_known_extensions.ext_debug_utils;
VkPhysicalDeviceProperties properties;
icd_term->dispatch.GetPhysicalDeviceProperties(phys_dev_term->phys_dev, &properties);
if (!dev->extensions.khr_device_group_enabled) {
if (properties.apiVersion >= VK_API_VERSION_1_1) {
dev->extensions.khr_device_group_enabled = true;
}
}
loader_log(icd_term->this_instance, VULKAN_LOADER_LAYER_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
" Using \"%s\" with driver: \"%s\"\n", properties.deviceName, icd_term->scanned_icd->lib_name);
res = fpCreateDevice(phys_dev_term->phys_dev, &localCreateInfo, pAllocator, &dev->icd_device);
if (res != VK_SUCCESS) {
loader_log(icd_term->this_instance, VULKAN_LOADER_ERROR_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"terminator_CreateDevice: Failed in ICD %s vkCreateDevice call", icd_term->scanned_icd->lib_name);
goto out;
}
*pDevice = dev->icd_device;
loader_add_logical_device(icd_term->this_instance, icd_term, dev);
// Init dispatch pointer in new device object
loader_init_dispatch(*pDevice, &dev->loader_dispatch);
out:
if (NULL != icd_exts.list) {
loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts);
}
// Restore pNext pointer to old VkDeviceGroupDeviceCreateInfoKHX
// in the chain to maintain consistency for the caller.
if (caller_dgci_container != NULL) {
caller_dgci_container->pNext = (VkBaseOutStructure *)caller_dgci;
}
return res;
}
// Update the trampoline physical devices with the wrapped version.
// We always want to re-use previous physical device pointers since they may be used by an application
// after returning previously.
VkResult setup_loader_tramp_phys_devs(struct loader_instance *inst, uint32_t phys_dev_count, VkPhysicalDevice *phys_devs) {
VkResult res = VK_SUCCESS;
uint32_t found_count = 0;
uint32_t old_count = inst->phys_dev_count_tramp;
uint32_t new_count = inst->total_gpu_count;
struct loader_physical_device_tramp **new_phys_devs = NULL;
if (0 == phys_dev_count) {
return VK_SUCCESS;
}
if (phys_dev_count > new_count) {
new_count = phys_dev_count;
}
// We want an old to new index array and a new to old index array
int32_t *old_to_new_index = (int32_t *)loader_stack_alloc(sizeof(int32_t) * old_count);
int32_t *new_to_old_index = (int32_t *)loader_stack_alloc(sizeof(int32_t) * new_count);
if (NULL == old_to_new_index || NULL == new_to_old_index) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Initialize both
for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) {
old_to_new_index[cur_idx] = -1;
}
for (uint32_t cur_idx = 0; cur_idx < new_count; ++cur_idx) {
new_to_old_index[cur_idx] = -1;
}
// Figure out the old->new and new->old indices
for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) {
for (uint32_t new_idx = 0; new_idx < phys_dev_count; ++new_idx) {
if (inst->phys_devs_tramp[cur_idx]->phys_dev == phys_devs[new_idx]) {
old_to_new_index[cur_idx] = (int32_t)new_idx;
new_to_old_index[new_idx] = (int32_t)cur_idx;
found_count++;
break;
}
}
}
// If we found exactly the number of items we were looking for as we had before. Then everything
// we already have is good enough and we just need to update the array that was passed in with
// the loader values.
if (found_count == phys_dev_count && 0 != old_count && old_count == new_count) {
for (uint32_t new_idx = 0; new_idx < phys_dev_count; ++new_idx) {
for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) {
if (old_to_new_index[cur_idx] == (int32_t)new_idx) {
phys_devs[new_idx] = (VkPhysicalDevice)inst->phys_devs_tramp[cur_idx];
break;
}
}
}
// Nothing else to do for this path
res = VK_SUCCESS;
} else {
// Something is different, so do the full path of checking every device and creating a new array to use.
// This can happen if a device was added, or removed, or we hadn't previously queried all the data and we
// have more to store.
new_phys_devs = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_tramp *) * new_count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_tramp_phys_devs: Failed to allocate new physical device array of size %d", new_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(new_phys_devs, 0, sizeof(struct loader_physical_device_tramp *) * new_count);
if (new_count > phys_dev_count) {
found_count = phys_dev_count;
} else {
found_count = new_count;
}
// First try to see if an old item exists that matches the new item. If so, just copy it over.
for (uint32_t new_idx = 0; new_idx < found_count; ++new_idx) {
bool old_item_found = false;
for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) {
if (old_to_new_index[cur_idx] == (int32_t)new_idx) {
// Copy over old item to correct spot in the new array
new_phys_devs[new_idx] = inst->phys_devs_tramp[cur_idx];
old_item_found = true;
break;
}
}
// Something wasn't found, so it's new so add it to the new list
if (!old_item_found) {
new_phys_devs[new_idx] = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_tramp),
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs[new_idx]) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_tramp_phys_devs: Failed to allocate new trampoline physical device");
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Initialize the new physicalDevice object
loader_set_dispatch((void *)new_phys_devs[new_idx], inst->disp);
new_phys_devs[new_idx]->this_instance = inst;
new_phys_devs[new_idx]->phys_dev = phys_devs[new_idx];
new_phys_devs[new_idx]->magic = PHYS_TRAMP_MAGIC_NUMBER;
}
phys_devs[new_idx] = (VkPhysicalDevice)new_phys_devs[new_idx];
}
// We usually get here if the user array is smaller than the total number of devices, so copy the
// remaining devices we have over to the new array.
uint32_t start = found_count;
for (uint32_t new_idx = start; new_idx < new_count; ++new_idx) {
for (uint32_t cur_idx = 0; cur_idx < old_count; ++cur_idx) {
if (old_to_new_index[cur_idx] == -1) {
new_phys_devs[new_idx] = inst->phys_devs_tramp[cur_idx];
old_to_new_index[cur_idx] = new_idx;
found_count++;
break;
}
}
}
}
out:
if (NULL != new_phys_devs) {
if (VK_SUCCESS != res) {
for (uint32_t new_idx = 0; new_idx < found_count; ++new_idx) {
// If an OOM occurred inside the copying of the new physical devices into the existing array
// will leave some of the old physical devices in the array which may have been copied into
// the new array, leading to them being freed twice. To avoid this we just make sure to not
// delete physical devices which were copied.
bool found = false;
for (uint32_t cur_idx = 0; cur_idx < inst->phys_dev_count_tramp; cur_idx++) {
if (new_phys_devs[new_idx] == inst->phys_devs_tramp[cur_idx]) {
found = true;
break;
}
}
if (!found) {
loader_instance_heap_free(inst, new_phys_devs[new_idx]);
}
}
loader_instance_heap_free(inst, new_phys_devs);
} else {
if (new_count > inst->total_gpu_count) {
inst->total_gpu_count = new_count;
}
// Free everything in the old array that was not copied into the new array
// here. We can't attempt to do that before here since the previous loop
// looking before the "out:" label may hit an out of memory condition resulting
// in memory leaking.
if (NULL != inst->phys_devs_tramp) {
for (uint32_t i = 0; i < inst->phys_dev_count_tramp; i++) {
bool found = false;
for (uint32_t j = 0; j < inst->total_gpu_count; j++) {
if (inst->phys_devs_tramp[i] == new_phys_devs[j]) {
found = true;
break;
}
}
if (!found) {
loader_instance_heap_free(inst, inst->phys_devs_tramp[i]);
}
}
loader_instance_heap_free(inst, inst->phys_devs_tramp);
}
inst->phys_devs_tramp = new_phys_devs;
inst->phys_dev_count_tramp = found_count;
}
}
if (VK_SUCCESS != res) {
inst->total_gpu_count = 0;
}
return res;
}
#ifdef LOADER_ENABLE_LINUX_SORT
bool is_linux_sort_enabled(struct loader_instance *inst) {
bool sort_items = inst->supports_get_dev_prop_2;
char *env_value = loader_getenv("VK_LOADER_DISABLE_SELECT", inst);
if (NULL != env_value) {
int32_t int_env_val = atoi(env_value);
loader_free_getenv(env_value, inst);
if (int_env_val != 0) {
sort_items = false;
}
}
return sort_items;
}
#endif // LOADER_ENABLE_LINUX_SORT
// Check if this physical device is already in the old buffer
void check_if_phys_dev_already_present(struct loader_instance *inst, VkPhysicalDevice physical_device, uint32_t idx,
struct loader_physical_device_term **new_phys_devs) {
if (NULL != inst->phys_devs_term) {
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) {
if (physical_device == inst->phys_devs_term[old_idx]->phys_dev) {
new_phys_devs[idx] = inst->phys_devs_term[old_idx];
break;
}
}
}
}
VkResult allocate_new_phys_dev_at_idx(struct loader_instance *inst, VkPhysicalDevice physical_device,
struct loader_phys_dev_per_icd *dev_array, uint32_t idx,
struct loader_physical_device_term **new_phys_devs) {
if (NULL == new_phys_devs[idx]) {
new_phys_devs[idx] =
loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs[idx]) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"allocate_new_phys_dev_at_idx: Failed to allocate physical device terminator object %d", idx);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
loader_set_dispatch((void *)new_phys_devs[idx], inst->disp);
new_phys_devs[idx]->this_icd_term = dev_array->icd_term;
new_phys_devs[idx]->icd_index = (uint8_t)(dev_array->icd_index);
new_phys_devs[idx]->phys_dev = physical_device;
}
return VK_SUCCESS;
}
/* Enumerate all physical devices from ICDs and add them to inst->phys_devs_term
*
* There are two methods to find VkPhysicalDevices - vkEnumeratePhysicalDevices and vkEnumerateAdapterPhysicalDevices
* The latter is supported on windows only and on devices supporting ICD Interface Version 6 and greater.
*
* Once all physical devices are acquired, they need to be pulled into a single list of `loader_physical_device_term`'s.
* They also need to be setup - the icd_term, icd_index, phys_dev, and disp (dispatch table) all need the correct data.
* Additionally, we need to keep using already setup physical devices as they may be in use, thus anything enumerated
* that is already in inst->phys_devs_term will be carried over.
*/
VkResult setup_loader_term_phys_devs(struct loader_instance *inst) {
VkResult res = VK_SUCCESS;
struct loader_icd_term *icd_term;
uint32_t icd_idx = 0;
uint32_t windows_sorted_devices_count = 0;
struct loader_phys_dev_per_icd *windows_sorted_devices_array = NULL;
uint32_t icd_count = 0;
struct loader_phys_dev_per_icd *icd_phys_dev_array = NULL;
uint32_t new_phys_devs_count = 0;
struct loader_physical_device_term **new_phys_devs = NULL;
#if defined(_WIN32)
// Get the physical devices supported by platform sorting mechanism into a separate list
res = windows_read_sorted_physical_devices(inst, &windows_sorted_devices_count, &windows_sorted_devices_array);
if (VK_SUCCESS != res) {
goto out;
}
#endif
icd_count = inst->total_icd_count;
// Allocate something to store the physical device characteristics that we read from each ICD.
icd_phys_dev_array = (struct loader_phys_dev_per_icd *)loader_stack_alloc(sizeof(struct loader_phys_dev_per_icd) * icd_count);
if (NULL == icd_phys_dev_array) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Failed to allocate temporary ICD Physical device info array of size %d",
icd_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(icd_phys_dev_array, 0, sizeof(struct loader_phys_dev_per_icd) * icd_count);
// For each ICD, query the number of physical devices, and then get an
// internal value for those physical devices.
icd_term = inst->icd_terms;
while (NULL != icd_term) {
// This is the legacy behavior which should be skipped if EnumerateAdapterPhysicalDevices is available
// and we successfully enumerated sorted adapters using windows_read_sorted_physical_devices.
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (icd_term->scanned_icd->EnumerateAdapterPhysicalDevices != NULL) {
icd_term = icd_term->next;
++icd_idx;
continue;
}
#endif
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &icd_phys_dev_array[icd_idx].device_count, NULL);
if (VK_SUCCESS != res) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Call to ICD %d's \'vkEnumeratePhysicalDevices\' failed with error 0x%08x",
icd_idx, res);
goto out;
}
icd_phys_dev_array[icd_idx].physical_devices =
(VkPhysicalDevice *)loader_stack_alloc(icd_phys_dev_array[icd_idx].device_count * sizeof(VkPhysicalDevice));
if (NULL == icd_phys_dev_array[icd_idx].physical_devices) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Failed to allocate temporary ICD Physical device array for ICD %d of size %d",
icd_idx, icd_phys_dev_array[icd_idx].device_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &(icd_phys_dev_array[icd_idx].device_count),
icd_phys_dev_array[icd_idx].physical_devices);
if (VK_SUCCESS != res) {
goto out;
}
icd_phys_dev_array[icd_idx].icd_term = icd_term;
icd_phys_dev_array[icd_idx].icd_index = icd_idx;
icd_term = icd_term->next;
++icd_idx;
}
// Add up both the windows sorted and non windows found physical device counts
for (uint32_t i = 0; i < windows_sorted_devices_count; ++i) {
new_phys_devs_count += windows_sorted_devices_array[i].device_count;
}
for (uint32_t i = 0; i < icd_count; ++i) {
new_phys_devs_count += icd_phys_dev_array[i].device_count;
}
// Bail out if there are no physical devices reported
if (0 == new_phys_devs_count) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Failed to detect any valid GPUs in the current config");
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// Create an allocation large enough to hold both the windows sorting enumeration and non-windows physical device enumeration
new_phys_devs = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term *) * new_phys_devs_count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Failed to allocate new physical device array of size %d", new_phys_devs_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(new_phys_devs, 0, sizeof(struct loader_physical_device_term *) * new_phys_devs_count);
// Current index into the new_phys_devs array - increment whenever we've written in.
uint32_t idx = 0;
// Copy over everything found through sorted enumeration
for (uint32_t i = 0; i < windows_sorted_devices_count; ++i) {
for (uint32_t j = 0; j < windows_sorted_devices_array[i].device_count; ++j) {
check_if_phys_dev_already_present(inst, windows_sorted_devices_array[i].physical_devices[j], idx, new_phys_devs);
res = allocate_new_phys_dev_at_idx(inst, windows_sorted_devices_array[i].physical_devices[j],
&windows_sorted_devices_array[i], idx, new_phys_devs);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
// Increment the count of new physical devices
idx++;
}
}
// Now go through the rest of the physical devices and add them to new_phys_devs
#ifdef LOADER_ENABLE_LINUX_SORT
if (is_linux_sort_enabled(inst)) {
for (uint32_t dev = idx; dev < new_phys_devs_count; ++dev) {
new_phys_devs[dev] =
loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs[dev]) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"setup_loader_term_phys_devs: Failed to allocate physical device terminator object %d", dev);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
}
// Get the physical devices supported by platform sorting mechanism into a separate list
// Pass in a sublist to the function so it only operates on the correct elements. This means passing in a pointer to the
// current next element in new_phys_devs and passing in a `count` of currently unwritten elements
res =
linux_read_sorted_physical_devices(inst, icd_count, icd_phys_dev_array, new_phys_devs_count - idx, &new_phys_devs[idx]);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
// Keep previously allocated physical device info since apps may already be using that!
for (uint32_t new_idx = idx; new_idx < new_phys_devs_count; new_idx++) {
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) {
if (new_phys_devs[new_idx]->phys_dev == inst->phys_devs_term[old_idx]->phys_dev) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"Copying old device %u into new device %u", old_idx, new_idx);
// Free the old new_phys_devs info since we're not using it before we assign the new info
loader_instance_heap_free(inst, new_phys_devs[new_idx]);
new_phys_devs[new_idx] = inst->phys_devs_term[old_idx];
break;
}
}
}
// We want the following code to run if either linux sorting is disabled at compile time or runtime
} else {
#endif // LOADER_ENABLE_LINUX_SORT
// Copy over everything found through the non-sorted means.
for (uint32_t i = 0; i < icd_count; ++i) {
for (uint32_t j = 0; j < icd_phys_dev_array[i].device_count; ++j) {
check_if_phys_dev_already_present(inst, icd_phys_dev_array[i].physical_devices[j], idx, new_phys_devs);
// If this physical device isn't in the old buffer, then we need to create it.
res = allocate_new_phys_dev_at_idx(inst, icd_phys_dev_array[i].physical_devices[j], &icd_phys_dev_array[i], idx,
new_phys_devs);
if (res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
// Increment the count of new physical devices
idx++;
}
}
#ifdef LOADER_ENABLE_LINUX_SORT
}
#endif // LOADER_ENABLE_LINUX_SORT
out:
if (VK_SUCCESS != res) {
if (NULL != new_phys_devs) {
// We've encountered an error, so we should free the new buffers.
for (uint32_t i = 0; i < new_phys_devs_count; i++) {
// If an OOM occurred inside the copying of the new physical devices into the existing array
// will leave some of the old physical devices in the array which may have been copied into
// the new array, leading to them being freed twice. To avoid this we just make sure to not
// delete physical devices which were copied.
bool found = false;
if (NULL != inst->phys_devs_term) {
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) {
if (new_phys_devs[i] == inst->phys_devs_term[old_idx]) {
found = true;
break;
}
}
}
if (!found) {
loader_instance_heap_free(inst, new_phys_devs[i]);
}
}
loader_instance_heap_free(inst, new_phys_devs);
}
inst->total_gpu_count = 0;
} else {
if (NULL != inst->phys_devs_term) {
// Free everything in the old array that was not copied into the new array
// here. We can't attempt to do that before here since the previous loop
// looking before the "out:" label may hit an out of memory condition resulting
// in memory leaking.
for (uint32_t i = 0; i < inst->phys_dev_count_term; i++) {
bool found = false;
for (uint32_t j = 0; j < new_phys_devs_count; j++) {
if (new_phys_devs != NULL && inst->phys_devs_term[i] == new_phys_devs[j]) {
found = true;
break;
}
}
if (!found) {
loader_instance_heap_free(inst, inst->phys_devs_term[i]);
}
}
loader_instance_heap_free(inst, inst->phys_devs_term);
}
// Swap out old and new devices list
inst->phys_dev_count_term = new_phys_devs_count;
inst->phys_devs_term = new_phys_devs;
inst->total_gpu_count = new_phys_devs_count;
}
if (windows_sorted_devices_array != NULL) {
for (uint32_t i = 0; i < windows_sorted_devices_count; ++i) {
if (windows_sorted_devices_array[i].device_count > 0 && windows_sorted_devices_array[i].physical_devices != NULL) {
loader_instance_heap_free(inst, windows_sorted_devices_array[i].physical_devices);
}
}
loader_instance_heap_free(inst, windows_sorted_devices_array);
}
return res;
}
VkResult setup_loader_tramp_phys_dev_groups(struct loader_instance *inst, uint32_t group_count,
VkPhysicalDeviceGroupProperties *groups) {
VkResult res = VK_SUCCESS;
uint32_t cur_idx;
uint32_t dev_idx;
if (0 == group_count) {
return VK_SUCCESS;
}
// Generate a list of all the devices and convert them to the loader ID
uint32_t phys_dev_count = 0;
for (cur_idx = 0; cur_idx < group_count; ++cur_idx) {
phys_dev_count += groups[cur_idx].physicalDeviceCount;
}
VkPhysicalDevice *devices = (VkPhysicalDevice *)loader_stack_alloc(sizeof(VkPhysicalDevice) * phys_dev_count);
if (NULL == devices) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
uint32_t cur_device = 0;
for (cur_idx = 0; cur_idx < group_count; ++cur_idx) {
for (dev_idx = 0; dev_idx < groups[cur_idx].physicalDeviceCount; ++dev_idx) {
devices[cur_device++] = groups[cur_idx].physicalDevices[dev_idx];
}
}
// Update the devices based on the loader physical device values.
res = setup_loader_tramp_phys_devs(inst, phys_dev_count, devices);
if (VK_SUCCESS != res) {
return res;
}
// Update the devices in the group structures now
cur_device = 0;
for (cur_idx = 0; cur_idx < group_count; ++cur_idx) {
for (dev_idx = 0; dev_idx < groups[cur_idx].physicalDeviceCount; ++dev_idx) {
groups[cur_idx].physicalDevices[dev_idx] = devices[cur_device++];
}
}
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumeratePhysicalDevices(VkInstance instance, uint32_t *pPhysicalDeviceCount,
VkPhysicalDevice *pPhysicalDevices) {
struct loader_instance *inst = (struct loader_instance *)instance;
VkResult res = VK_SUCCESS;
// Always call the setup loader terminator physical devices because they may
// have changed at any point.
res = setup_loader_term_phys_devs(inst);
if (VK_SUCCESS != res) {
goto out;
}
uint32_t copy_count = inst->phys_dev_count_term;
if (NULL != pPhysicalDevices) {
if (copy_count > *pPhysicalDeviceCount) {
copy_count = *pPhysicalDeviceCount;
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"terminator_EnumeratePhysicalDevices : Trimming device count from %d to %d.", inst->phys_dev_count_term,
copy_count);
res = VK_INCOMPLETE;
}
for (uint32_t i = 0; i < copy_count; i++) {
pPhysicalDevices[i] = (VkPhysicalDevice)inst->phys_devs_term[i];
}
}
*pPhysicalDeviceCount = copy_count;
out:
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice,
const char *pLayerName, uint32_t *pPropertyCount,
VkExtensionProperties *pProperties) {
struct loader_physical_device_term *phys_dev_term;
struct loader_layer_list implicit_layer_list = {0};
struct loader_extension_list all_exts = {0};
struct loader_extension_list icd_exts = {0};
// Any layer or trampoline wrapping should be removed at this point in time can just cast to the expected
// type for VkPhysicalDevice.
phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
// if we got here with a non-empty pLayerName, look up the extensions
// from the json
if (pLayerName != NULL && strlen(pLayerName) > 0) {
uint32_t count;
uint32_t copy_size;
const struct loader_instance *inst = phys_dev_term->this_icd_term->this_instance;
struct loader_device_extension_list *dev_ext_list = NULL;
struct loader_device_extension_list local_ext_list;
memset(&local_ext_list, 0, sizeof(local_ext_list));
if (vk_string_validate(MaxLoaderStringLength, pLayerName) == VK_STRING_ERROR_NONE) {
for (uint32_t i = 0; i < inst->instance_layer_list.count; i++) {
struct loader_layer_properties *props = &inst->instance_layer_list.list[i];
if (strcmp(props->info.layerName, pLayerName) == 0) {
dev_ext_list = &props->device_extension_list;
}
}
count = (dev_ext_list == NULL) ? 0 : dev_ext_list->count;
if (pProperties == NULL) {
*pPropertyCount = count;
loader_destroy_generic_list(inst, (struct loader_generic_list *)&local_ext_list);
return VK_SUCCESS;
}
copy_size = *pPropertyCount < count ? *pPropertyCount : count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i], &dev_ext_list->list[i].props, sizeof(VkExtensionProperties));
}
*pPropertyCount = copy_size;
loader_destroy_generic_list(inst, (struct loader_generic_list *)&local_ext_list);
if (copy_size < count) {
return VK_INCOMPLETE;
}
} else {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"vkEnumerateDeviceExtensionProperties: pLayerName is too long or is badly formed");
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
return VK_SUCCESS;
}
// This case is during the call down the instance chain with pLayerName == NULL
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
uint32_t icd_ext_count = *pPropertyCount;
VkExtensionProperties *icd_props_list = pProperties;
VkResult res;
if (NULL == icd_props_list) {
// We need to find the count without duplicates. This requires querying the driver for the names of the extensions.
// A small amount of storage is then needed to facilitate the de-duplication.
res = icd_term->dispatch.EnumerateDeviceExtensionProperties(phys_dev_term->phys_dev, NULL, &icd_ext_count, NULL);
if (res != VK_SUCCESS) {
goto out;
}
if (icd_ext_count > 0) {
icd_props_list = loader_instance_heap_alloc(icd_term->this_instance, sizeof(VkExtensionProperties) * icd_ext_count,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == icd_props_list) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
}
}
// Get the available device extension count, and if pProperties is not NULL, the extensions as well
res = icd_term->dispatch.EnumerateDeviceExtensionProperties(phys_dev_term->phys_dev, NULL, &icd_ext_count, icd_props_list);
if (res != VK_SUCCESS) {
goto out;
}
if (!loader_init_layer_list(icd_term->this_instance, &implicit_layer_list)) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
loader_add_implicit_layers(icd_term->this_instance, &implicit_layer_list, NULL, &icd_term->this_instance->instance_layer_list);
// Initialize dev_extension list within the physicalDevice object
res = loader_init_device_extensions(icd_term->this_instance, phys_dev_term, icd_ext_count, icd_props_list, &icd_exts);
if (res != VK_SUCCESS) {
goto out;
}
// We need to determine which implicit layers are active, and then add their extensions. This can't be cached as
// it depends on results of environment variables (which can change).
res = loader_add_to_ext_list(icd_term->this_instance, &all_exts, icd_exts.count, icd_exts.list);
if (res != VK_SUCCESS) {
goto out;
}
loader_add_implicit_layers(icd_term->this_instance, &implicit_layer_list, NULL, &icd_term->this_instance->instance_layer_list);
for (uint32_t i = 0; i < implicit_layer_list.count; i++) {
for (uint32_t j = 0; j < implicit_layer_list.list[i].device_extension_list.count; j++) {
res = loader_add_to_ext_list(icd_term->this_instance, &all_exts, 1,
&implicit_layer_list.list[i].device_extension_list.list[j].props);
if (res != VK_SUCCESS) {
goto out;
}
}
}
uint32_t capacity = *pPropertyCount;
VkExtensionProperties *props = pProperties;
res = VK_SUCCESS;
if (NULL != pProperties) {
for (uint32_t i = 0; i < all_exts.count && i < capacity; i++) {
props[i] = all_exts.list[i];
}
// Wasn't enough space for the extensions, we did partial copy now return VK_INCOMPLETE
if (capacity < all_exts.count) {
res = VK_INCOMPLETE;
} else {
*pPropertyCount = all_exts.count;
}
} else {
*pPropertyCount = all_exts.count;
}
out:
if (NULL != implicit_layer_list.list) {
loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&implicit_layer_list);
}
if (NULL != all_exts.list) {
loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&all_exts);
}
if (NULL != icd_exts.list) {
loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts);
}
if (NULL == pProperties && NULL != icd_props_list) {
loader_instance_heap_free(icd_term->this_instance, icd_props_list);
}
return res;
}
VkStringErrorFlags vk_string_validate(const int max_length, const char *utf8) {
VkStringErrorFlags result = VK_STRING_ERROR_NONE;
int num_char_bytes = 0;
int i, j;
if (utf8 == NULL) {
return VK_STRING_ERROR_NULL_PTR;
}
for (i = 0; i <= max_length; i++) {
if (utf8[i] == 0) {
break;
} else if (i == max_length) {
result |= VK_STRING_ERROR_LENGTH;
break;
} else if ((utf8[i] >= 0x20) && (utf8[i] < 0x7f)) {
num_char_bytes = 0;
} else if ((utf8[i] & UTF8_ONE_BYTE_MASK) == UTF8_ONE_BYTE_CODE) {
num_char_bytes = 1;
} else if ((utf8[i] & UTF8_TWO_BYTE_MASK) == UTF8_TWO_BYTE_CODE) {
num_char_bytes = 2;
} else if ((utf8[i] & UTF8_THREE_BYTE_MASK) == UTF8_THREE_BYTE_CODE) {
num_char_bytes = 3;
} else {
result = VK_STRING_ERROR_BAD_DATA;
}
// Validate the following num_char_bytes of data
for (j = 0; (j < num_char_bytes) && (i < max_length); j++) {
if (++i == max_length) {
result |= VK_STRING_ERROR_LENGTH;
break;
}
if ((utf8[i] & UTF8_DATA_BYTE_MASK) != UTF8_DATA_BYTE_CODE) {
result |= VK_STRING_ERROR_BAD_DATA;
}
}
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateInstanceVersion(const VkEnumerateInstanceVersionChain *chain,
uint32_t *pApiVersion) {
// NOTE: The Vulkan WG doesn't want us checking pApiVersion for NULL, but instead
// prefers us crashing.
*pApiVersion = VK_HEADER_VERSION_COMPLETE;
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
terminator_EnumerateInstanceExtensionProperties(const VkEnumerateInstanceExtensionPropertiesChain *chain, const char *pLayerName,
uint32_t *pPropertyCount, VkExtensionProperties *pProperties) {
struct loader_extension_list *global_ext_list = NULL;
struct loader_layer_list instance_layers;
struct loader_extension_list local_ext_list;
struct loader_icd_tramp_list icd_tramp_list;
uint32_t copy_size;
VkResult res = VK_SUCCESS;
memset(&local_ext_list, 0, sizeof(local_ext_list));
memset(&instance_layers, 0, sizeof(instance_layers));
memset(&icd_tramp_list, 0, sizeof(icd_tramp_list));
// Get layer libraries if needed
if (pLayerName && strlen(pLayerName) != 0) {
if (vk_string_validate(MaxLoaderStringLength, pLayerName) != VK_STRING_ERROR_NONE) {
assert(VK_FALSE && "vkEnumerateInstanceExtensionProperties: pLayerName is too long or is badly formed");
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
loader_scan_for_layers(NULL, &instance_layers);
for (uint32_t i = 0; i < instance_layers.count; i++) {
struct loader_layer_properties *props = &instance_layers.list[i];
if (strcmp(props->info.layerName, pLayerName) == 0) {
global_ext_list = &props->instance_extension_list;
break;
}
}
} else {
// Preload ICD libraries so subsequent calls to EnumerateInstanceExtensionProperties don't have to load them
loader_preload_icds();
// Scan/discover all ICD libraries
res = loader_icd_scan(NULL, &icd_tramp_list, NULL);
// EnumerateInstanceExtensionProperties can't return anything other than OOM or VK_ERROR_LAYER_NOT_PRESENT
if ((VK_SUCCESS != res && icd_tramp_list.count > 0) || res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
// Get extensions from all ICD's, merge so no duplicates
res = loader_get_icd_loader_instance_extensions(NULL, &icd_tramp_list, &local_ext_list);
if (VK_SUCCESS != res) {
goto out;
}
loader_scanned_icd_clear(NULL, &icd_tramp_list);
// Append enabled implicit layers.
loader_scan_for_implicit_layers(NULL, &instance_layers);
for (uint32_t i = 0; i < instance_layers.count; i++) {
if (!loader_implicit_layer_is_enabled(NULL, &instance_layers.list[i])) {
continue;
}
struct loader_extension_list *ext_list = &instance_layers.list[i].instance_extension_list;
loader_add_to_ext_list(NULL, &local_ext_list, ext_list->count, ext_list->list);
}
global_ext_list = &local_ext_list;
}
if (global_ext_list == NULL) {
res = VK_ERROR_LAYER_NOT_PRESENT;
goto out;
}
if (pProperties == NULL) {
*pPropertyCount = global_ext_list->count;
goto out;
}
copy_size = *pPropertyCount < global_ext_list->count ? *pPropertyCount : global_ext_list->count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i], &global_ext_list->list[i], sizeof(VkExtensionProperties));
}
*pPropertyCount = copy_size;
if (copy_size < global_ext_list->count) {
res = VK_INCOMPLETE;
goto out;
}
out:
loader_destroy_generic_list(NULL, (struct loader_generic_list *)&icd_tramp_list);
loader_destroy_generic_list(NULL, (struct loader_generic_list *)&local_ext_list);
loader_delete_layer_list_and_properties(NULL, &instance_layers);
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateInstanceLayerProperties(const VkEnumerateInstanceLayerPropertiesChain *chain,
uint32_t *pPropertyCount,
VkLayerProperties *pProperties) {
VkResult result = VK_SUCCESS;
struct loader_layer_list instance_layer_list;
LOADER_PLATFORM_THREAD_ONCE(&once_init, loader_initialize);
uint32_t copy_size;
// Get layer libraries
memset(&instance_layer_list, 0, sizeof(instance_layer_list));
loader_scan_for_layers(NULL, &instance_layer_list);
if (pProperties == NULL) {
*pPropertyCount = instance_layer_list.count;
goto out;
}
copy_size = (*pPropertyCount < instance_layer_list.count) ? *pPropertyCount : instance_layer_list.count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i], &instance_layer_list.list[i].info, sizeof(VkLayerProperties));
}
*pPropertyCount = copy_size;
if (copy_size < instance_layer_list.count) {
result = VK_INCOMPLETE;
goto out;
}
out:
loader_delete_layer_list_and_properties(NULL, &instance_layer_list);
return result;
}
// ---- Vulkan Core 1.1 terminators
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumeratePhysicalDeviceGroups(
VkInstance instance, uint32_t *pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties) {
struct loader_instance *inst = (struct loader_instance *)instance;
VkResult res = VK_SUCCESS;
struct loader_icd_term *icd_term;
uint32_t total_count = 0;
uint32_t cur_icd_group_count = 0;
VkPhysicalDeviceGroupPropertiesKHR **new_phys_dev_groups = NULL;
struct loader_physical_device_group_term *local_phys_dev_groups = NULL;
PFN_vkEnumeratePhysicalDeviceGroups fpEnumeratePhysicalDeviceGroups = NULL;
struct loader_phys_dev_per_icd *sorted_phys_dev_array = NULL;
uint32_t sorted_count = 0;
// For each ICD, query the number of physical device groups, and then get an
// internal value for those physical devices.
icd_term = inst->icd_terms;
for (uint32_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) {
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
if (inst->enabled_known_extensions.khr_device_group_creation) {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR;
} else {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroups;
}
cur_icd_group_count = 0;
if (NULL == fpEnumeratePhysicalDeviceGroups) {
// Treat each ICD's GPU as it's own group if the extension isn't supported
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &cur_icd_group_count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of \'EnumeratePhysicalDevices\' "
"to ICD %d to get plain phys dev count.",
icd_idx);
continue;
}
} else {
// Query the actual group info
res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &cur_icd_group_count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get count.",
icd_idx);
continue;
}
}
total_count += cur_icd_group_count;
}
// If GPUs not sorted yet, look through them and generate list of all available GPUs
if (0 == total_count || 0 == inst->total_gpu_count) {
res = setup_loader_term_phys_devs(inst);
if (VK_SUCCESS != res) {
goto out;
}
}
if (NULL != pPhysicalDeviceGroupProperties) {
// Create an array for the new physical device groups, which will be stored
// in the instance for the Terminator code.
new_phys_dev_groups = (VkPhysicalDeviceGroupProperties **)loader_instance_heap_alloc(
inst, total_count * sizeof(VkPhysicalDeviceGroupProperties *), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_dev_groups) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed to allocate new physical device group array of size %d",
total_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(new_phys_dev_groups, 0, total_count * sizeof(VkPhysicalDeviceGroupProperties *));
// Create a temporary array (on the stack) to keep track of the
// returned VkPhysicalDevice values.
local_phys_dev_groups = loader_stack_alloc(sizeof(struct loader_physical_device_group_term) * total_count);
// Initialize the memory to something valid
memset(local_phys_dev_groups, 0, sizeof(struct loader_physical_device_group_term) * total_count);
#if defined(_WIN32)
// Get the physical devices supported by platform sorting mechanism into a separate list
res = windows_read_sorted_physical_devices(inst, &sorted_count, &sorted_phys_dev_array);
if (VK_SUCCESS != res) {
goto out;
}
#endif
cur_icd_group_count = 0;
icd_term = inst->icd_terms;
for (uint8_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) {
uint32_t count_this_time = total_count - cur_icd_group_count;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
if (inst->enabled_known_extensions.khr_device_group_creation) {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR;
} else {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroups;
}
if (NULL == fpEnumeratePhysicalDeviceGroups) {
icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &count_this_time, NULL);
VkPhysicalDevice *phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * count_this_time);
if (NULL == phys_dev_array) {
loader_log(
inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed to allocate local physical device array of size %d",
count_this_time);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &count_this_time, phys_dev_array);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDevices\' to ICD %d to get plain phys dev count.",
icd_idx);
goto out;
}
// Add each GPU as it's own group
for (uint32_t indiv_gpu = 0; indiv_gpu < count_this_time; indiv_gpu++) {
uint32_t cur_index = indiv_gpu + cur_icd_group_count;
local_phys_dev_groups[cur_index].this_icd_term = icd_term;
local_phys_dev_groups[cur_index].icd_index = icd_idx;
local_phys_dev_groups[cur_index].group_props.physicalDeviceCount = 1;
local_phys_dev_groups[cur_index].group_props.physicalDevices[0] = phys_dev_array[indiv_gpu];
}
} else {
res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &count_this_time, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get group count.",
icd_idx);
goto out;
}
if (cur_icd_group_count + count_this_time < *pPhysicalDeviceGroupCount) {
// The total amount is still less than the amount of physical device group data passed in
// by the callee. Therefore, we don't have to allocate any temporary structures and we
// can just use the data that was passed in.
res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &count_this_time,
&pPhysicalDeviceGroupProperties[cur_icd_group_count]);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get group information.",
icd_idx);
goto out;
}
for (uint32_t group = 0; group < count_this_time; ++group) {
uint32_t cur_index = group + cur_icd_group_count;
local_phys_dev_groups[cur_index].group_props = pPhysicalDeviceGroupProperties[cur_index];
local_phys_dev_groups[cur_index].this_icd_term = icd_term;
local_phys_dev_groups[cur_index].icd_index = icd_idx;
}
} else {
// There's not enough space in the callee's allocated pPhysicalDeviceGroupProperties structs,
// so we have to allocate temporary versions to collect all the data. However, we need to make
// sure that at least the ones we do query utilize any pNext data in the callee's version.
VkPhysicalDeviceGroupProperties *tmp_group_props =
loader_stack_alloc(count_this_time * sizeof(VkPhysicalDeviceGroupProperties));
for (uint32_t group = 0; group < count_this_time; group++) {
tmp_group_props[group].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES_KHR;
uint32_t cur_index = group + cur_icd_group_count;
if (*pPhysicalDeviceGroupCount > cur_index) {
tmp_group_props[group].pNext = pPhysicalDeviceGroupProperties[cur_index].pNext;
} else {
tmp_group_props[group].pNext = NULL;
}
tmp_group_props[group].subsetAllocation = false;
}
res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &count_this_time, tmp_group_props);
if (res != VK_SUCCESS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get group information for temp data.",
icd_idx);
goto out;
}
for (uint32_t group = 0; group < count_this_time; ++group) {
uint32_t cur_index = group + cur_icd_group_count;
local_phys_dev_groups[cur_index].group_props = tmp_group_props[group];
local_phys_dev_groups[cur_index].this_icd_term = icd_term;
local_phys_dev_groups[cur_index].icd_index = icd_idx;
}
}
if (VK_SUCCESS != res) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get content.",
icd_idx);
goto out;
}
}
cur_icd_group_count += count_this_time;
}
#ifdef LOADER_ENABLE_LINUX_SORT
if (is_linux_sort_enabled(inst)) {
// Get the physical devices supported by platform sorting mechanism into a separate list
res = linux_sort_physical_device_groups(inst, total_count, local_phys_dev_groups);
}
#elif defined(_WIN32)
// The Windows sorting information is only on physical devices. We need to take that and convert it to the group
// information if it's present.
if (sorted_count > 0) {
res =
windows_sort_physical_device_groups(inst, total_count, local_phys_dev_groups, sorted_count, sorted_phys_dev_array);
}
#endif // LOADER_ENABLE_LINUX_SORT
// Just to be safe, make sure we successfully completed setup_loader_term_phys_devs above
// before attempting to do the following. By verifying that setup_loader_term_phys_devs ran
// first, it guarantees that each physical device will have a loader-specific handle.
if (NULL != inst->phys_devs_term) {
for (uint32_t group = 0; group < total_count; group++) {
for (uint32_t group_gpu = 0; group_gpu < local_phys_dev_groups[group].group_props.physicalDeviceCount;
group_gpu++) {
bool found = false;
for (uint32_t term_gpu = 0; term_gpu < inst->phys_dev_count_term; term_gpu++) {
if (local_phys_dev_groups[group].group_props.physicalDevices[group_gpu] ==
inst->phys_devs_term[term_gpu]->phys_dev) {
local_phys_dev_groups[group].group_props.physicalDevices[group_gpu] =
(VkPhysicalDevice)inst->phys_devs_term[term_gpu];
found = true;
break;
}
}
if (!found) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed to find GPU %d in group %d returned by "
"\'EnumeratePhysicalDeviceGroups\' in list returned by \'EnumeratePhysicalDevices\'",
group_gpu, group);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
}
}
}
uint32_t idx = 0;
// Copy or create everything to fill the new array of physical device groups
for (uint32_t group = 0; group < total_count; group++) {
// Skip groups which have been included through sorting
if (local_phys_dev_groups[group].group_props.physicalDeviceCount == 0) {
continue;
}
// Find the VkPhysicalDeviceGroupProperties object in local_phys_dev_groups
VkPhysicalDeviceGroupProperties *group_properties = &local_phys_dev_groups[group].group_props;
// Check if this physical device group with the same contents is already in the old buffer
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_group_count_term; old_idx++) {
if (NULL != group_properties && NULL != inst->phys_dev_groups_term[old_idx] &&
group_properties->physicalDeviceCount == inst->phys_dev_groups_term[old_idx]->physicalDeviceCount) {
bool found_all_gpus = true;
for (uint32_t old_gpu = 0; old_gpu < inst->phys_dev_groups_term[old_idx]->physicalDeviceCount; old_gpu++) {
bool found_gpu = false;
for (uint32_t new_gpu = 0; new_gpu < group_properties->physicalDeviceCount; new_gpu++) {
if (group_properties->physicalDevices[new_gpu] ==
inst->phys_dev_groups_term[old_idx]->physicalDevices[old_gpu]) {
found_gpu = true;
break;
}
}
if (!found_gpu) {
found_all_gpus = false;
break;
}
}
if (!found_all_gpus) {
continue;
} else {
new_phys_dev_groups[idx] = inst->phys_dev_groups_term[old_idx];
break;
}
}
}
// If this physical device group isn't in the old buffer, create it
if (group_properties != NULL && NULL == new_phys_dev_groups[idx]) {
new_phys_dev_groups[idx] = (VkPhysicalDeviceGroupPropertiesKHR *)loader_instance_heap_alloc(
inst, sizeof(VkPhysicalDeviceGroupPropertiesKHR), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_dev_groups[idx]) {
loader_log(
inst, VULKAN_LOADER_ERROR_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups: Failed to allocate physical device group Terminator object %d",
idx);
total_count = idx;
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memcpy(new_phys_dev_groups[idx], group_properties, sizeof(VkPhysicalDeviceGroupPropertiesKHR));
}
++idx;
}
}
out:
if (NULL != pPhysicalDeviceGroupProperties) {
if (VK_SUCCESS != res) {
if (NULL != new_phys_dev_groups) {
// We've encountered an error, so we should free the new buffers.
for (uint32_t i = 0; i < total_count; i++) {
// If an OOM occurred inside the copying of the new physical device groups into the existing array will leave
// some of the old physical device groups in the array which may have been copied into the new array, leading to
// them being freed twice. To avoid this we just make sure to not delete physical device groups which were
// copied.
bool found = false;
if (NULL != inst->phys_devs_term) {
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_group_count_term; old_idx++) {
if (new_phys_dev_groups[i] == inst->phys_dev_groups_term[old_idx]) {
found = true;
break;
}
}
}
if (!found) {
loader_instance_heap_free(inst, new_phys_dev_groups[i]);
}
}
loader_instance_heap_free(inst, new_phys_dev_groups);
}
} else {
if (NULL != inst->phys_dev_groups_term) {
// Free everything in the old array that was not copied into the new array
// here. We can't attempt to do that before here since the previous loop
// looking before the "out:" label may hit an out of memory condition resulting
// in memory leaking.
for (uint32_t i = 0; i < inst->phys_dev_group_count_term; i++) {
bool found = false;
for (uint32_t j = 0; j < total_count; j++) {
if (inst->phys_dev_groups_term[i] == new_phys_dev_groups[j]) {
found = true;
break;
}
}
if (!found) {
loader_instance_heap_free(inst, inst->phys_dev_groups_term[i]);
}
}
loader_instance_heap_free(inst, inst->phys_dev_groups_term);
}
// Swap in the new physical device group list
inst->phys_dev_group_count_term = total_count;
inst->phys_dev_groups_term = new_phys_dev_groups;
}
if (sorted_phys_dev_array != NULL) {
for (uint32_t i = 0; i < sorted_count; ++i) {
if (sorted_phys_dev_array[i].device_count > 0 && sorted_phys_dev_array[i].physical_devices != NULL) {
loader_instance_heap_free(inst, sorted_phys_dev_array[i].physical_devices);
}
}
loader_instance_heap_free(inst, sorted_phys_dev_array);
}
uint32_t copy_count = inst->phys_dev_group_count_term;
if (NULL != pPhysicalDeviceGroupProperties) {
if (copy_count > *pPhysicalDeviceGroupCount) {
copy_count = *pPhysicalDeviceGroupCount;
loader_log(inst, VULKAN_LOADER_INFO_BIT, 0,
"terminator_EnumeratePhysicalDeviceGroups : Trimming device count from %d to %d.",
inst->phys_dev_group_count_term, copy_count);
res = VK_INCOMPLETE;
}
for (uint32_t i = 0; i < copy_count; i++) {
memcpy(&pPhysicalDeviceGroupProperties[i], inst->phys_dev_groups_term[i], sizeof(VkPhysicalDeviceGroupProperties));
}
}
*pPhysicalDeviceGroupCount = copy_count;
} else {
*pPhysicalDeviceGroupCount = total_count;
}
return res;
}