| /////////////////////////////////////////////////////////////////////////////// |
| // Matrice.cpp |
| // =========== |
| // NxN Matrix Math classes |
| // |
| // The elements of the matrix are stored as column major order. |
| // | 0 2 | | 0 3 6 | | 0 4 8 12 | |
| // | 1 3 | | 1 4 7 | | 1 5 9 13 | |
| // | 2 5 8 | | 2 6 10 14 | |
| // | 3 7 11 15 | |
| // |
| // AUTHOR: Song Ho Ahn (song.ahn@gmail.com) |
| // CREATED: 2005-06-24 |
| // UPDATED: 2014-09-21 |
| // |
| // Copyright (C) 2005 Song Ho Ahn |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include <cmath> |
| #include <algorithm> |
| #include "Matrices.h" |
| |
| const float DEG2RAD = 3.141593f / 180; |
| const float EPSILON = 0.00001f; |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // transpose 2x2 matrix |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix2& Matrix2::transpose() |
| { |
| std::swap(m[1], m[2]); |
| return *this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // return the determinant of 2x2 matrix |
| /////////////////////////////////////////////////////////////////////////////// |
| float Matrix2::getDeterminant() |
| { |
| return m[0] * m[3] - m[1] * m[2]; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // inverse of 2x2 matrix |
| // If cannot find inverse, set identity matrix |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix2& Matrix2::invert() |
| { |
| float determinant = getDeterminant(); |
| if(fabs(determinant) <= EPSILON) |
| { |
| return identity(); |
| } |
| |
| float tmp = m[0]; // copy the first element |
| float invDeterminant = 1.0f / determinant; |
| m[0] = invDeterminant * m[3]; |
| m[1] = -invDeterminant * m[1]; |
| m[2] = -invDeterminant * m[2]; |
| m[3] = invDeterminant * tmp; |
| |
| return *this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // transpose 3x3 matrix |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix3& Matrix3::transpose() |
| { |
| std::swap(m[1], m[3]); |
| std::swap(m[2], m[6]); |
| std::swap(m[5], m[7]); |
| |
| return *this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // return determinant of 3x3 matrix |
| /////////////////////////////////////////////////////////////////////////////// |
| float Matrix3::getDeterminant() |
| { |
| return m[0] * (m[4] * m[8] - m[5] * m[7]) - |
| m[1] * (m[3] * m[8] - m[5] * m[6]) + |
| m[2] * (m[3] * m[7] - m[4] * m[6]); |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // inverse 3x3 matrix |
| // If cannot find inverse, set identity matrix |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix3& Matrix3::invert() |
| { |
| float determinant, invDeterminant; |
| float tmp[9]; |
| |
| tmp[0] = m[4] * m[8] - m[5] * m[7]; |
| tmp[1] = m[2] * m[7] - m[1] * m[8]; |
| tmp[2] = m[1] * m[5] - m[2] * m[4]; |
| tmp[3] = m[5] * m[6] - m[3] * m[8]; |
| tmp[4] = m[0] * m[8] - m[2] * m[6]; |
| tmp[5] = m[2] * m[3] - m[0] * m[5]; |
| tmp[6] = m[3] * m[7] - m[4] * m[6]; |
| tmp[7] = m[1] * m[6] - m[0] * m[7]; |
| tmp[8] = m[0] * m[4] - m[1] * m[3]; |
| |
| // check determinant if it is 0 |
| determinant = m[0] * tmp[0] + m[1] * tmp[3] + m[2] * tmp[6]; |
| if(fabs(determinant) <= EPSILON) |
| { |
| return identity(); // cannot inverse, make it idenety matrix |
| } |
| |
| // divide by the determinant |
| invDeterminant = 1.0f / determinant; |
| m[0] = invDeterminant * tmp[0]; |
| m[1] = invDeterminant * tmp[1]; |
| m[2] = invDeterminant * tmp[2]; |
| m[3] = invDeterminant * tmp[3]; |
| m[4] = invDeterminant * tmp[4]; |
| m[5] = invDeterminant * tmp[5]; |
| m[6] = invDeterminant * tmp[6]; |
| m[7] = invDeterminant * tmp[7]; |
| m[8] = invDeterminant * tmp[8]; |
| |
| return *this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // transpose 4x4 matrix |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix4& Matrix4::transpose() |
| { |
| std::swap(m[1], m[4]); |
| std::swap(m[2], m[8]); |
| std::swap(m[3], m[12]); |
| std::swap(m[6], m[9]); |
| std::swap(m[7], m[13]); |
| std::swap(m[11], m[14]); |
| |
| return *this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // inverse 4x4 matrix |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix4& Matrix4::invert() |
| { |
| // If the 4th row is [0,0,0,1] then it is affine matrix and |
| // it has no projective transformation. |
| if(m[3] == 0 && m[7] == 0 && m[11] == 0 && m[15] == 1) |
| this->invertAffine(); |
| else |
| { |
| this->invertGeneral(); |
| /*@@ invertProjective() is not optimized (slower than generic one) |
| if(fabs(m[0]*m[5] - m[1]*m[4]) > EPSILON) |
| this->invertProjective(); // inverse using matrix partition |
| else |
| this->invertGeneral(); // generalized inverse |
| */ |
| } |
| |
| return *this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // compute the inverse of 4x4 Euclidean transformation matrix |
| // |
| // Euclidean transformation is translation, rotation, and reflection. |
| // With Euclidean transform, only the position and orientation of the object |
| // will be changed. Euclidean transform does not change the shape of an object |
| // (no scaling). Length and angle are reserved. |
| // |
| // Use inverseAffine() if the matrix has scale and shear transformation. |
| // |
| // M = [ R | T ] |
| // [ --+-- ] (R denotes 3x3 rotation/reflection matrix) |
| // [ 0 | 1 ] (T denotes 1x3 translation matrix) |
| // |
| // y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^T*y - R^T*T |
| // (R is orthogonal, R^-1 = R^T) |
| // |
| // [ R | T ]-1 [ R^T | -R^T * T ] (R denotes 3x3 rotation matrix) |
| // [ --+-- ] = [ ----+--------- ] (T denotes 1x3 translation) |
| // [ 0 | 1 ] [ 0 | 1 ] (R^T denotes R-transpose) |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix4& Matrix4::invertEuclidean() |
| { |
| // transpose 3x3 rotation matrix part |
| // | R^T | 0 | |
| // | ----+-- | |
| // | 0 | 1 | |
| float tmp; |
| tmp = m[1]; m[1] = m[4]; m[4] = tmp; |
| tmp = m[2]; m[2] = m[8]; m[8] = tmp; |
| tmp = m[6]; m[6] = m[9]; m[9] = tmp; |
| |
| // compute translation part -R^T * T |
| // | 0 | -R^T x | |
| // | --+------- | |
| // | 0 | 0 | |
| float x = m[12]; |
| float y = m[13]; |
| float z = m[14]; |
| m[12] = -(m[0] * x + m[4] * y + m[8] * z); |
| m[13] = -(m[1] * x + m[5] * y + m[9] * z); |
| m[14] = -(m[2] * x + m[6] * y + m[10]* z); |
| |
| // last row should be unchanged (0,0,0,1) |
| |
| return *this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // compute the inverse of a 4x4 affine transformation matrix |
| // |
| // Affine transformations are generalizations of Euclidean transformations. |
| // Affine transformation includes translation, rotation, reflection, scaling, |
| // and shearing. Length and angle are NOT preserved. |
| // M = [ R | T ] |
| // [ --+-- ] (R denotes 3x3 rotation/scale/shear matrix) |
| // [ 0 | 1 ] (T denotes 1x3 translation matrix) |
| // |
| // y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^-1*y - R^-1*T |
| // |
| // [ R | T ]-1 [ R^-1 | -R^-1 * T ] |
| // [ --+-- ] = [ -----+---------- ] |
| // [ 0 | 1 ] [ 0 + 1 ] |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix4& Matrix4::invertAffine() |
| { |
| // R^-1 |
| Matrix3 r(m[0],m[1],m[2], m[4],m[5],m[6], m[8],m[9],m[10]); |
| r.invert(); |
| m[0] = r[0]; m[1] = r[1]; m[2] = r[2]; |
| m[4] = r[3]; m[5] = r[4]; m[6] = r[5]; |
| m[8] = r[6]; m[9] = r[7]; m[10]= r[8]; |
| |
| // -R^-1 * T |
| float x = m[12]; |
| float y = m[13]; |
| float z = m[14]; |
| m[12] = -(r[0] * x + r[3] * y + r[6] * z); |
| m[13] = -(r[1] * x + r[4] * y + r[7] * z); |
| m[14] = -(r[2] * x + r[5] * y + r[8] * z); |
| |
| // last row should be unchanged (0,0,0,1) |
| //m[3] = m[7] = m[11] = 0.0f; |
| //m[15] = 1.0f; |
| |
| return * this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // inverse matrix using matrix partitioning (blockwise inverse) |
| // It devides a 4x4 matrix into 4 of 2x2 matrices. It works in case of where |
| // det(A) != 0. If not, use the generic inverse method |
| // inverse formula. |
| // M = [ A | B ] A, B, C, D are 2x2 matrix blocks |
| // [ --+-- ] det(M) = |A| * |D - ((C * A^-1) * B)| |
| // [ C | D ] |
| // |
| // M^-1 = [ A' | B' ] A' = A^-1 - (A^-1 * B) * C' |
| // [ ---+--- ] B' = (A^-1 * B) * -D' |
| // [ C' | D' ] C' = -D' * (C * A^-1) |
| // D' = (D - ((C * A^-1) * B))^-1 |
| // |
| // NOTE: I wrap with () if it it used more than once. |
| // The matrix is invertable even if det(A)=0, so must check det(A) before |
| // calling this function, and use invertGeneric() instead. |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix4& Matrix4::invertProjective() |
| { |
| // partition |
| Matrix2 a(m[0], m[1], m[4], m[5]); |
| Matrix2 b(m[8], m[9], m[12], m[13]); |
| Matrix2 c(m[2], m[3], m[6], m[7]); |
| Matrix2 d(m[10], m[11], m[14], m[15]); |
| |
| // pre-compute repeated parts |
| a.invert(); // A^-1 |
| Matrix2 ab = a * b; // A^-1 * B |
| Matrix2 ca = c * a; // C * A^-1 |
| Matrix2 cab = ca * b; // C * A^-1 * B |
| Matrix2 dcab = d - cab; // D - C * A^-1 * B |
| |
| // check determinant if |D - C * A^-1 * B| = 0 |
| //NOTE: this function assumes det(A) is already checked. if |A|=0 then, |
| // cannot use this function. |
| float determinant = dcab[0] * dcab[3] - dcab[1] * dcab[2]; |
| if(fabs(determinant) <= EPSILON) |
| { |
| return identity(); |
| } |
| |
| // compute D' and -D' |
| Matrix2 d1 = dcab; // (D - C * A^-1 * B) |
| d1.invert(); // (D - C * A^-1 * B)^-1 |
| Matrix2 d2 = -d1; // -(D - C * A^-1 * B)^-1 |
| |
| // compute C' |
| Matrix2 c1 = d2 * ca; // -D' * (C * A^-1) |
| |
| // compute B' |
| Matrix2 b1 = ab * d2; // (A^-1 * B) * -D' |
| |
| // compute A' |
| Matrix2 a1 = a - (ab * c1); // A^-1 - (A^-1 * B) * C' |
| |
| // assemble inverse matrix |
| m[0] = a1[0]; m[4] = a1[2]; /*|*/ m[8] = b1[0]; m[12]= b1[2]; |
| m[1] = a1[1]; m[5] = a1[3]; /*|*/ m[9] = b1[1]; m[13]= b1[3]; |
| /*-----------------------------+-----------------------------*/ |
| m[2] = c1[0]; m[6] = c1[2]; /*|*/ m[10]= d1[0]; m[14]= d1[2]; |
| m[3] = c1[1]; m[7] = c1[3]; /*|*/ m[11]= d1[1]; m[15]= d1[3]; |
| |
| return *this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // compute the inverse of a general 4x4 matrix using Cramer's Rule |
| // If cannot find inverse, return indentity matrix |
| // M^-1 = adj(M) / det(M) |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix4& Matrix4::invertGeneral() |
| { |
| // get cofactors of minor matrices |
| float cofactor0 = getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]); |
| float cofactor1 = getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]); |
| float cofactor2 = getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]); |
| float cofactor3 = getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]); |
| |
| // get determinant |
| float determinant = m[0] * cofactor0 - m[1] * cofactor1 + m[2] * cofactor2 - m[3] * cofactor3; |
| if(fabs(determinant) <= EPSILON) |
| { |
| return identity(); |
| } |
| |
| // get rest of cofactors for adj(M) |
| float cofactor4 = getCofactor(m[1],m[2],m[3], m[9],m[10],m[11], m[13],m[14],m[15]); |
| float cofactor5 = getCofactor(m[0],m[2],m[3], m[8],m[10],m[11], m[12],m[14],m[15]); |
| float cofactor6 = getCofactor(m[0],m[1],m[3], m[8],m[9], m[11], m[12],m[13],m[15]); |
| float cofactor7 = getCofactor(m[0],m[1],m[2], m[8],m[9], m[10], m[12],m[13],m[14]); |
| |
| float cofactor8 = getCofactor(m[1],m[2],m[3], m[5],m[6], m[7], m[13],m[14],m[15]); |
| float cofactor9 = getCofactor(m[0],m[2],m[3], m[4],m[6], m[7], m[12],m[14],m[15]); |
| float cofactor10= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7], m[12],m[13],m[15]); |
| float cofactor11= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6], m[12],m[13],m[14]); |
| |
| float cofactor12= getCofactor(m[1],m[2],m[3], m[5],m[6], m[7], m[9], m[10],m[11]); |
| float cofactor13= getCofactor(m[0],m[2],m[3], m[4],m[6], m[7], m[8], m[10],m[11]); |
| float cofactor14= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7], m[8], m[9], m[11]); |
| float cofactor15= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6], m[8], m[9], m[10]); |
| |
| // build inverse matrix = adj(M) / det(M) |
| // adjugate of M is the transpose of the cofactor matrix of M |
| float invDeterminant = 1.0f / determinant; |
| m[0] = invDeterminant * cofactor0; |
| m[1] = -invDeterminant * cofactor4; |
| m[2] = invDeterminant * cofactor8; |
| m[3] = -invDeterminant * cofactor12; |
| |
| m[4] = -invDeterminant * cofactor1; |
| m[5] = invDeterminant * cofactor5; |
| m[6] = -invDeterminant * cofactor9; |
| m[7] = invDeterminant * cofactor13; |
| |
| m[8] = invDeterminant * cofactor2; |
| m[9] = -invDeterminant * cofactor6; |
| m[10]= invDeterminant * cofactor10; |
| m[11]= -invDeterminant * cofactor14; |
| |
| m[12]= -invDeterminant * cofactor3; |
| m[13]= invDeterminant * cofactor7; |
| m[14]= -invDeterminant * cofactor11; |
| m[15]= invDeterminant * cofactor15; |
| |
| return *this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // return determinant of 4x4 matrix |
| /////////////////////////////////////////////////////////////////////////////// |
| float Matrix4::getDeterminant() |
| { |
| return m[0] * getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]) - |
| m[1] * getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]) + |
| m[2] * getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]) - |
| m[3] * getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]); |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // compute cofactor of 3x3 minor matrix without sign |
| // input params are 9 elements of the minor matrix |
| // NOTE: The caller must know its sign. |
| /////////////////////////////////////////////////////////////////////////////// |
| float Matrix4::getCofactor(float m0, float m1, float m2, |
| float m3, float m4, float m5, |
| float m6, float m7, float m8) |
| { |
| return m0 * (m4 * m8 - m5 * m7) - |
| m1 * (m3 * m8 - m5 * m6) + |
| m2 * (m3 * m7 - m4 * m6); |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // translate this matrix by (x, y, z) |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix4& Matrix4::translate(const Vector3& v) |
| { |
| return translate(v.x, v.y, v.z); |
| } |
| |
| Matrix4& Matrix4::translate(float x, float y, float z) |
| { |
| m[0] += m[3] * x; m[4] += m[7] * x; m[8] += m[11]* x; m[12]+= m[15]* x; |
| m[1] += m[3] * y; m[5] += m[7] * y; m[9] += m[11]* y; m[13]+= m[15]* y; |
| m[2] += m[3] * z; m[6] += m[7] * z; m[10]+= m[11]* z; m[14]+= m[15]* z; |
| |
| return *this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // uniform scale |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix4& Matrix4::scale(float s) |
| { |
| return scale(s, s, s); |
| } |
| |
| Matrix4& Matrix4::scale(float x, float y, float z) |
| { |
| m[0] *= x; m[4] *= x; m[8] *= x; m[12] *= x; |
| m[1] *= y; m[5] *= y; m[9] *= y; m[13] *= y; |
| m[2] *= z; m[6] *= z; m[10]*= z; m[14] *= z; |
| return *this; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // build a rotation matrix with given angle(degree) and rotation axis, then |
| // multiply it with this object |
| /////////////////////////////////////////////////////////////////////////////// |
| Matrix4& Matrix4::rotate(float angle, const Vector3& axis) |
| { |
| return rotate(angle, axis.x, axis.y, axis.z); |
| } |
| |
| Matrix4& Matrix4::rotate(float angle, float x, float y, float z) |
| { |
| float c = cosf(angle * DEG2RAD); // cosine |
| float s = sinf(angle * DEG2RAD); // sine |
| float c1 = 1.0f - c; // 1 - c |
| float m0 = m[0], m4 = m[4], m8 = m[8], m12= m[12], |
| m1 = m[1], m5 = m[5], m9 = m[9], m13= m[13], |
| m2 = m[2], m6 = m[6], m10= m[10], m14= m[14]; |
| |
| // build rotation matrix |
| float r0 = x * x * c1 + c; |
| float r1 = x * y * c1 + z * s; |
| float r2 = x * z * c1 - y * s; |
| float r4 = x * y * c1 - z * s; |
| float r5 = y * y * c1 + c; |
| float r6 = y * z * c1 + x * s; |
| float r8 = x * z * c1 + y * s; |
| float r9 = y * z * c1 - x * s; |
| float r10= z * z * c1 + c; |
| |
| // multiply rotation matrix |
| m[0] = r0 * m0 + r4 * m1 + r8 * m2; |
| m[1] = r1 * m0 + r5 * m1 + r9 * m2; |
| m[2] = r2 * m0 + r6 * m1 + r10* m2; |
| m[4] = r0 * m4 + r4 * m5 + r8 * m6; |
| m[5] = r1 * m4 + r5 * m5 + r9 * m6; |
| m[6] = r2 * m4 + r6 * m5 + r10* m6; |
| m[8] = r0 * m8 + r4 * m9 + r8 * m10; |
| m[9] = r1 * m8 + r5 * m9 + r9 * m10; |
| m[10]= r2 * m8 + r6 * m9 + r10* m10; |
| m[12]= r0 * m12+ r4 * m13+ r8 * m14; |
| m[13]= r1 * m12+ r5 * m13+ r9 * m14; |
| m[14]= r2 * m12+ r6 * m13+ r10* m14; |
| |
| return *this; |
| } |
| |
| Matrix4& Matrix4::rotateX(float angle) |
| { |
| float c = cosf(angle * DEG2RAD); |
| float s = sinf(angle * DEG2RAD); |
| float m1 = m[1], m2 = m[2], |
| m5 = m[5], m6 = m[6], |
| m9 = m[9], m10= m[10], |
| m13= m[13], m14= m[14]; |
| |
| m[1] = m1 * c + m2 *-s; |
| m[2] = m1 * s + m2 * c; |
| m[5] = m5 * c + m6 *-s; |
| m[6] = m5 * s + m6 * c; |
| m[9] = m9 * c + m10*-s; |
| m[10]= m9 * s + m10* c; |
| m[13]= m13* c + m14*-s; |
| m[14]= m13* s + m14* c; |
| |
| return *this; |
| } |
| |
| Matrix4& Matrix4::rotateY(float angle) |
| { |
| float c = cosf(angle * DEG2RAD); |
| float s = sinf(angle * DEG2RAD); |
| float m0 = m[0], m2 = m[2], |
| m4 = m[4], m6 = m[6], |
| m8 = m[8], m10= m[10], |
| m12= m[12], m14= m[14]; |
| |
| m[0] = m0 * c + m2 * s; |
| m[2] = m0 *-s + m2 * c; |
| m[4] = m4 * c + m6 * s; |
| m[6] = m4 *-s + m6 * c; |
| m[8] = m8 * c + m10* s; |
| m[10]= m8 *-s + m10* c; |
| m[12]= m12* c + m14* s; |
| m[14]= m12*-s + m14* c; |
| |
| return *this; |
| } |
| |
| Matrix4& Matrix4::rotateZ(float angle) |
| { |
| float c = cosf(angle * DEG2RAD); |
| float s = sinf(angle * DEG2RAD); |
| float m0 = m[0], m1 = m[1], |
| m4 = m[4], m5 = m[5], |
| m8 = m[8], m9 = m[9], |
| m12= m[12], m13= m[13]; |
| |
| m[0] = m0 * c + m1 *-s; |
| m[1] = m0 * s + m1 * c; |
| m[4] = m4 * c + m5 *-s; |
| m[5] = m4 * s + m5 * c; |
| m[8] = m8 * c + m9 *-s; |
| m[9] = m8 * s + m9 * c; |
| m[12]= m12* c + m13*-s; |
| m[13]= m12* s + m13* c; |
| |
| return *this; |
| } |