| /////////////////////////////////////////////////////////////////////////////// |
| // Vectors.h |
| // ========= |
| // 2D/3D/4D vectors |
| // |
| // AUTHOR: Song Ho Ahn (song.ahn@gmail.com) |
| // CREATED: 2007-02-14 |
| // UPDATED: 2013-01-20 |
| // |
| // Copyright (C) 2007-2013 Song Ho Ahn |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| |
| #ifndef VECTORS_H_DEF |
| #define VECTORS_H_DEF |
| |
| #include <cmath> |
| #include <iostream> |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // 2D vector |
| /////////////////////////////////////////////////////////////////////////////// |
| struct Vector2 |
| { |
| float x; |
| float y; |
| |
| // ctors |
| Vector2() : x(0), y(0) {}; |
| Vector2(float x, float y) : x(x), y(y) {}; |
| |
| // utils functions |
| void set(float x, float y); |
| float length() const; // |
| float distance(const Vector2& vec) const; // distance between two vectors |
| Vector2& normalize(); // |
| float dot(const Vector2& vec) const; // dot product |
| bool equal(const Vector2& vec, float e) const; // compare with epsilon |
| |
| // operators |
| Vector2 operator-() const; // unary operator (negate) |
| Vector2 operator+(const Vector2& rhs) const; // add rhs |
| Vector2 operator-(const Vector2& rhs) const; // subtract rhs |
| Vector2& operator+=(const Vector2& rhs); // add rhs and update this object |
| Vector2& operator-=(const Vector2& rhs); // subtract rhs and update this object |
| Vector2 operator*(const float scale) const; // scale |
| Vector2 operator*(const Vector2& rhs) const; // multiply each element |
| Vector2& operator*=(const float scale); // scale and update this object |
| Vector2& operator*=(const Vector2& rhs); // multiply each element and update this object |
| Vector2 operator/(const float scale) const; // inverse scale |
| Vector2& operator/=(const float scale); // scale and update this object |
| bool operator==(const Vector2& rhs) const; // exact compare, no epsilon |
| bool operator!=(const Vector2& rhs) const; // exact compare, no epsilon |
| bool operator<(const Vector2& rhs) const; // comparison for sort |
| float operator[](int index) const; // subscript operator v[0], v[1] |
| float& operator[](int index); // subscript operator v[0], v[1] |
| |
| friend Vector2 operator*(const float a, const Vector2 vec); |
| friend std::ostream& operator<<(std::ostream& os, const Vector2& vec); |
| }; |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // 3D vector |
| /////////////////////////////////////////////////////////////////////////////// |
| struct Vector3 |
| { |
| float x; |
| float y; |
| float z; |
| |
| // ctors |
| Vector3() : x(0), y(0), z(0) {}; |
| Vector3(float x, float y, float z) : x(x), y(y), z(z) {}; |
| |
| // utils functions |
| void set(float x, float y, float z); |
| float length() const; // |
| float distance(const Vector3& vec) const; // distance between two vectors |
| Vector3& normalize(); // |
| float dot(const Vector3& vec) const; // dot product |
| Vector3 cross(const Vector3& vec) const; // cross product |
| bool equal(const Vector3& vec, float e) const; // compare with epsilon |
| |
| // operators |
| Vector3 operator-() const; // unary operator (negate) |
| Vector3 operator+(const Vector3& rhs) const; // add rhs |
| Vector3 operator-(const Vector3& rhs) const; // subtract rhs |
| Vector3& operator+=(const Vector3& rhs); // add rhs and update this object |
| Vector3& operator-=(const Vector3& rhs); // subtract rhs and update this object |
| Vector3 operator*(const float scale) const; // scale |
| Vector3 operator*(const Vector3& rhs) const; // multiplay each element |
| Vector3& operator*=(const float scale); // scale and update this object |
| Vector3& operator*=(const Vector3& rhs); // product each element and update this object |
| Vector3 operator/(const float scale) const; // inverse scale |
| Vector3& operator/=(const float scale); // scale and update this object |
| bool operator==(const Vector3& rhs) const; // exact compare, no epsilon |
| bool operator!=(const Vector3& rhs) const; // exact compare, no epsilon |
| bool operator<(const Vector3& rhs) const; // comparison for sort |
| float operator[](int index) const; // subscript operator v[0], v[1] |
| float& operator[](int index); // subscript operator v[0], v[1] |
| |
| friend Vector3 operator*(const float a, const Vector3 vec); |
| friend std::ostream& operator<<(std::ostream& os, const Vector3& vec); |
| }; |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // 4D vector |
| /////////////////////////////////////////////////////////////////////////////// |
| struct Vector4 |
| { |
| float x; |
| float y; |
| float z; |
| float w; |
| |
| // ctors |
| Vector4() : x(0), y(0), z(0), w(0) {}; |
| Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}; |
| |
| // utils functions |
| void set(float x, float y, float z, float w); |
| float length() const; // |
| float distance(const Vector4& vec) const; // distance between two vectors |
| Vector4& normalize(); // |
| float dot(const Vector4& vec) const; // dot product |
| bool equal(const Vector4& vec, float e) const; // compare with epsilon |
| |
| // operators |
| Vector4 operator-() const; // unary operator (negate) |
| Vector4 operator+(const Vector4& rhs) const; // add rhs |
| Vector4 operator-(const Vector4& rhs) const; // subtract rhs |
| Vector4& operator+=(const Vector4& rhs); // add rhs and update this object |
| Vector4& operator-=(const Vector4& rhs); // subtract rhs and update this object |
| Vector4 operator*(const float scale) const; // scale |
| Vector4 operator*(const Vector4& rhs) const; // multiply each element |
| Vector4& operator*=(const float scale); // scale and update this object |
| Vector4& operator*=(const Vector4& rhs); // multiply each element and update this object |
| Vector4 operator/(const float scale) const; // inverse scale |
| Vector4& operator/=(const float scale); // scale and update this object |
| bool operator==(const Vector4& rhs) const; // exact compare, no epsilon |
| bool operator!=(const Vector4& rhs) const; // exact compare, no epsilon |
| bool operator<(const Vector4& rhs) const; // comparison for sort |
| float operator[](int index) const; // subscript operator v[0], v[1] |
| float& operator[](int index); // subscript operator v[0], v[1] |
| |
| friend Vector4 operator*(const float a, const Vector4 vec); |
| friend std::ostream& operator<<(std::ostream& os, const Vector4& vec); |
| }; |
| |
| |
| |
| // fast math routines from Doom3 SDK |
| inline float invSqrt(float x) |
| { |
| float xhalf = 0.5f * x; |
| int i = *(int*)&x; // get bits for floating value |
| i = 0x5f3759df - (i>>1); // gives initial guess |
| x = *(float*)&i; // convert bits back to float |
| x = x * (1.5f - xhalf*x*x); // Newton step |
| return x; |
| } |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // inline functions for Vector2 |
| /////////////////////////////////////////////////////////////////////////////// |
| inline Vector2 Vector2::operator-() const { |
| return Vector2(-x, -y); |
| } |
| |
| inline Vector2 Vector2::operator+(const Vector2& rhs) const { |
| return Vector2(x+rhs.x, y+rhs.y); |
| } |
| |
| inline Vector2 Vector2::operator-(const Vector2& rhs) const { |
| return Vector2(x-rhs.x, y-rhs.y); |
| } |
| |
| inline Vector2& Vector2::operator+=(const Vector2& rhs) { |
| x += rhs.x; y += rhs.y; return *this; |
| } |
| |
| inline Vector2& Vector2::operator-=(const Vector2& rhs) { |
| x -= rhs.x; y -= rhs.y; return *this; |
| } |
| |
| inline Vector2 Vector2::operator*(const float a) const { |
| return Vector2(x*a, y*a); |
| } |
| |
| inline Vector2 Vector2::operator*(const Vector2& rhs) const { |
| return Vector2(x*rhs.x, y*rhs.y); |
| } |
| |
| inline Vector2& Vector2::operator*=(const float a) { |
| x *= a; y *= a; return *this; |
| } |
| |
| inline Vector2& Vector2::operator*=(const Vector2& rhs) { |
| x *= rhs.x; y *= rhs.y; return *this; |
| } |
| |
| inline Vector2 Vector2::operator/(const float a) const { |
| return Vector2(x/a, y/a); |
| } |
| |
| inline Vector2& Vector2::operator/=(const float a) { |
| x /= a; y /= a; return *this; |
| } |
| |
| inline bool Vector2::operator==(const Vector2& rhs) const { |
| return (x == rhs.x) && (y == rhs.y); |
| } |
| |
| inline bool Vector2::operator!=(const Vector2& rhs) const { |
| return (x != rhs.x) || (y != rhs.y); |
| } |
| |
| inline bool Vector2::operator<(const Vector2& rhs) const { |
| if(x < rhs.x) return true; |
| if(x > rhs.x) return false; |
| if(y < rhs.y) return true; |
| if(y > rhs.y) return false; |
| return false; |
| } |
| |
| inline float Vector2::operator[](int index) const { |
| return (&x)[index]; |
| } |
| |
| inline float& Vector2::operator[](int index) { |
| return (&x)[index]; |
| } |
| |
| inline void Vector2::set(float x_, float y_) { |
| this->x = x_; this->y = y_; |
| } |
| |
| inline float Vector2::length() const { |
| return sqrtf(x*x + y*y); |
| } |
| |
| inline float Vector2::distance(const Vector2& vec) const { |
| return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y)); |
| } |
| |
| inline Vector2& Vector2::normalize() { |
| //@@const float EPSILON = 0.000001f; |
| float xxyy = x*x + y*y; |
| //@@if(xxyy < EPSILON) |
| //@@ return *this; |
| |
| //float invLength = invSqrt(xxyy); |
| float invLength = 1.0f / sqrtf(xxyy); |
| x *= invLength; |
| y *= invLength; |
| return *this; |
| } |
| |
| inline float Vector2::dot(const Vector2& rhs) const { |
| return (x*rhs.x + y*rhs.y); |
| } |
| |
| inline bool Vector2::equal(const Vector2& rhs, float epsilon) const { |
| return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon; |
| } |
| |
| inline Vector2 operator*(const float a, const Vector2 vec) { |
| return Vector2(a*vec.x, a*vec.y); |
| } |
| |
| inline std::ostream& operator<<(std::ostream& os, const Vector2& vec) { |
| os << "(" << vec.x << ", " << vec.y << ")"; |
| return os; |
| } |
| // END OF VECTOR2 ///////////////////////////////////////////////////////////// |
| |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // inline functions for Vector3 |
| /////////////////////////////////////////////////////////////////////////////// |
| inline Vector3 Vector3::operator-() const { |
| return Vector3(-x, -y, -z); |
| } |
| |
| inline Vector3 Vector3::operator+(const Vector3& rhs) const { |
| return Vector3(x+rhs.x, y+rhs.y, z+rhs.z); |
| } |
| |
| inline Vector3 Vector3::operator-(const Vector3& rhs) const { |
| return Vector3(x-rhs.x, y-rhs.y, z-rhs.z); |
| } |
| |
| inline Vector3& Vector3::operator+=(const Vector3& rhs) { |
| x += rhs.x; y += rhs.y; z += rhs.z; return *this; |
| } |
| |
| inline Vector3& Vector3::operator-=(const Vector3& rhs) { |
| x -= rhs.x; y -= rhs.y; z -= rhs.z; return *this; |
| } |
| |
| inline Vector3 Vector3::operator*(const float a) const { |
| return Vector3(x*a, y*a, z*a); |
| } |
| |
| inline Vector3 Vector3::operator*(const Vector3& rhs) const { |
| return Vector3(x*rhs.x, y*rhs.y, z*rhs.z); |
| } |
| |
| inline Vector3& Vector3::operator*=(const float a) { |
| x *= a; y *= a; z *= a; return *this; |
| } |
| |
| inline Vector3& Vector3::operator*=(const Vector3& rhs) { |
| x *= rhs.x; y *= rhs.y; z *= rhs.z; return *this; |
| } |
| |
| inline Vector3 Vector3::operator/(const float a) const { |
| return Vector3(x/a, y/a, z/a); |
| } |
| |
| inline Vector3& Vector3::operator/=(const float a) { |
| x /= a; y /= a; z /= a; return *this; |
| } |
| |
| inline bool Vector3::operator==(const Vector3& rhs) const { |
| return (x == rhs.x) && (y == rhs.y) && (z == rhs.z); |
| } |
| |
| inline bool Vector3::operator!=(const Vector3& rhs) const { |
| return (x != rhs.x) || (y != rhs.y) || (z != rhs.z); |
| } |
| |
| inline bool Vector3::operator<(const Vector3& rhs) const { |
| if(x < rhs.x) return true; |
| if(x > rhs.x) return false; |
| if(y < rhs.y) return true; |
| if(y > rhs.y) return false; |
| if(z < rhs.z) return true; |
| if(z > rhs.z) return false; |
| return false; |
| } |
| |
| inline float Vector3::operator[](int index) const { |
| return (&x)[index]; |
| } |
| |
| inline float& Vector3::operator[](int index) { |
| return (&x)[index]; |
| } |
| |
| inline void Vector3::set(float x_, float y_, float z_) { |
| this->x = x_; this->y = y_; this->z = z_; |
| } |
| |
| inline float Vector3::length() const { |
| return sqrtf(x*x + y*y + z*z); |
| } |
| |
| inline float Vector3::distance(const Vector3& vec) const { |
| return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y) + (vec.z-z)*(vec.z-z)); |
| } |
| |
| inline Vector3& Vector3::normalize() { |
| //@@const float EPSILON = 0.000001f; |
| float xxyyzz = x*x + y*y + z*z; |
| //@@if(xxyyzz < EPSILON) |
| //@@ return *this; // do nothing if it is ~zero vector |
| |
| //float invLength = invSqrt(xxyyzz); |
| float invLength = 1.0f / sqrtf(xxyyzz); |
| x *= invLength; |
| y *= invLength; |
| z *= invLength; |
| return *this; |
| } |
| |
| inline float Vector3::dot(const Vector3& rhs) const { |
| return (x*rhs.x + y*rhs.y + z*rhs.z); |
| } |
| |
| inline Vector3 Vector3::cross(const Vector3& rhs) const { |
| return Vector3(y*rhs.z - z*rhs.y, z*rhs.x - x*rhs.z, x*rhs.y - y*rhs.x); |
| } |
| |
| inline bool Vector3::equal(const Vector3& rhs, float epsilon) const { |
| return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon && fabs(z - rhs.z) < epsilon; |
| } |
| |
| inline Vector3 operator*(const float a, const Vector3 vec) { |
| return Vector3(a*vec.x, a*vec.y, a*vec.z); |
| } |
| |
| inline std::ostream& operator<<(std::ostream& os, const Vector3& vec) { |
| os << "(" << vec.x << ", " << vec.y << ", " << vec.z << ")"; |
| return os; |
| } |
| // END OF VECTOR3 ///////////////////////////////////////////////////////////// |
| |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // inline functions for Vector4 |
| /////////////////////////////////////////////////////////////////////////////// |
| inline Vector4 Vector4::operator-() const { |
| return Vector4(-x, -y, -z, -w); |
| } |
| |
| inline Vector4 Vector4::operator+(const Vector4& rhs) const { |
| return Vector4(x+rhs.x, y+rhs.y, z+rhs.z, w+rhs.w); |
| } |
| |
| inline Vector4 Vector4::operator-(const Vector4& rhs) const { |
| return Vector4(x-rhs.x, y-rhs.y, z-rhs.z, w-rhs.w); |
| } |
| |
| inline Vector4& Vector4::operator+=(const Vector4& rhs) { |
| x += rhs.x; y += rhs.y; z += rhs.z; w += rhs.w; return *this; |
| } |
| |
| inline Vector4& Vector4::operator-=(const Vector4& rhs) { |
| x -= rhs.x; y -= rhs.y; z -= rhs.z; w -= rhs.w; return *this; |
| } |
| |
| inline Vector4 Vector4::operator*(const float a) const { |
| return Vector4(x*a, y*a, z*a, w*a); |
| } |
| |
| inline Vector4 Vector4::operator*(const Vector4& rhs) const { |
| return Vector4(x*rhs.x, y*rhs.y, z*rhs.z, w*rhs.w); |
| } |
| |
| inline Vector4& Vector4::operator*=(const float a) { |
| x *= a; y *= a; z *= a; w *= a; return *this; |
| } |
| |
| inline Vector4& Vector4::operator*=(const Vector4& rhs) { |
| x *= rhs.x; y *= rhs.y; z *= rhs.z; w *= rhs.w; return *this; |
| } |
| |
| inline Vector4 Vector4::operator/(const float a) const { |
| return Vector4(x/a, y/a, z/a, w/a); |
| } |
| |
| inline Vector4& Vector4::operator/=(const float a) { |
| x /= a; y /= a; z /= a; w /= a; return *this; |
| } |
| |
| inline bool Vector4::operator==(const Vector4& rhs) const { |
| return (x == rhs.x) && (y == rhs.y) && (z == rhs.z) && (w == rhs.w); |
| } |
| |
| inline bool Vector4::operator!=(const Vector4& rhs) const { |
| return (x != rhs.x) || (y != rhs.y) || (z != rhs.z) || (w != rhs.w); |
| } |
| |
| inline bool Vector4::operator<(const Vector4& rhs) const { |
| if(x < rhs.x) return true; |
| if(x > rhs.x) return false; |
| if(y < rhs.y) return true; |
| if(y > rhs.y) return false; |
| if(z < rhs.z) return true; |
| if(z > rhs.z) return false; |
| if(w < rhs.w) return true; |
| if(w > rhs.w) return false; |
| return false; |
| } |
| |
| inline float Vector4::operator[](int index) const { |
| return (&x)[index]; |
| } |
| |
| inline float& Vector4::operator[](int index) { |
| return (&x)[index]; |
| } |
| |
| inline void Vector4::set(float x_, float y_, float z_, float w_) { |
| this->x = x_; this->y = y_; this->z = z_; this->w = w_; |
| } |
| |
| inline float Vector4::length() const { |
| return sqrtf(x*x + y*y + z*z + w*w); |
| } |
| |
| inline float Vector4::distance(const Vector4& vec) const { |
| return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y) + (vec.z-z)*(vec.z-z) + (vec.w-w)*(vec.w-w)); |
| } |
| |
| inline Vector4& Vector4::normalize() { |
| //NOTE: leave w-component untouched |
| //@@const float EPSILON = 0.000001f; |
| float xxyyzz = x*x + y*y + z*z; |
| //@@if(xxyyzz < EPSILON) |
| //@@ return *this; // do nothing if it is zero vector |
| |
| //float invLength = invSqrt(xxyyzz); |
| float invLength = 1.0f / sqrtf(xxyyzz); |
| x *= invLength; |
| y *= invLength; |
| z *= invLength; |
| return *this; |
| } |
| |
| inline float Vector4::dot(const Vector4& rhs) const { |
| return (x*rhs.x + y*rhs.y + z*rhs.z + w*rhs.w); |
| } |
| |
| inline bool Vector4::equal(const Vector4& rhs, float epsilon) const { |
| return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon && |
| fabs(z - rhs.z) < epsilon && fabs(w - rhs.w) < epsilon; |
| } |
| |
| inline Vector4 operator*(const float a, const Vector4 vec) { |
| return Vector4(a*vec.x, a*vec.y, a*vec.z, a*vec.w); |
| } |
| |
| inline std::ostream& operator<<(std::ostream& os, const Vector4& vec) { |
| os << "(" << vec.x << ", " << vec.y << ", " << vec.z << ", " << vec.w << ")"; |
| return os; |
| } |
| // END OF VECTOR4 ///////////////////////////////////////////////////////////// |
| |
| #endif |