blob: f6250b8888d120a5afb1f857a97a0428e0308a69 [file] [log] [blame]
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Relooper.h"
#include <string.h>
#include <stdlib.h>
#include <list>
#include <stack>
#include <string>
#include "ast_utils.h"
#include "parsing.h"
namespace CFG {
template <class T, class U> static bool contains(const T& container, const U& contained) {
return !!container.count(contained);
}
#ifdef RELOOPER_DEBUG
static void PrintDebug(const char *Format, ...);
#define DebugDump(x, ...) Debugging::Dump(x, __VA_ARGS__)
#else
#define PrintDebug(x, ...)
#define DebugDump(x, ...)
#endif
// Rendering utilities
static wasm::Expression* HandleFollowupMultiples(wasm::Expression* Ret, Shape* Parent, RelooperBuilder& Builder, bool InLoop) {
if (!Parent->Next) return Ret;
auto* Curr = Ret->dynCast<wasm::Block>();
if (!Curr || Curr->name.is()) {
Curr = Builder.makeBlock(Ret);
}
// for each multiple after us, we create a block target for breaks to reach
while (Parent->Next) {
auto* Multiple = Shape::IsMultiple(Parent->Next);
if (!Multiple) break;
for (auto& iter : Multiple->InnerMap) {
int Id = iter.first;
Shape* Body = iter.second;
Curr->name = Builder.getBlockBreakName(Id);
auto* Outer = Builder.makeBlock(Curr);
Outer->list.push_back(Body->Render(Builder, InLoop));
Outer->finalize(); // TODO: not really necessary
Curr = Outer;
}
Parent->Next = Parent->Next->Next;
}
// after the multiples is a simple or a loop, in both cases we must hit an entry
// block, and so this is the last one we need to take into account now (this
// is why we require that loops hit an entry).
if (Parent->Next) {
auto* Simple = Shape::IsSimple(Parent->Next);
if (Simple) {
// breaking on the next block's id takes us out, where we
// will reach its rendering
Curr->name = Builder.getBlockBreakName(Simple->Inner->Id);
} else {
// add one break target per entry for the loop
auto* Loop = Shape::IsLoop(Parent->Next);
assert(Loop);
assert(Loop->Entries.size() > 0);
if (Loop->Entries.size() == 1) {
Curr->name = Builder.getBlockBreakName((*Loop->Entries.begin())->Id);
} else {
for (auto* Entry : Loop->Entries) {
Curr->name = Builder.getBlockBreakName(Entry->Id);
auto* Outer = Builder.makeBlock(Curr);
Outer->finalize(); // TODO: not really necessary
Curr = Outer;
}
}
}
}
Curr->finalize();
return Curr;
}
// Branch
Branch::Branch(wasm::Expression* ConditionInit, wasm::Expression* CodeInit) : Ancestor(nullptr), Condition(ConditionInit), Code(CodeInit) {}
Branch::Branch(std::vector<wasm::Index>&& ValuesInit, wasm::Expression* CodeInit) : Ancestor(nullptr), Code(CodeInit) {
if (ValuesInit.size() > 0) {
SwitchValues = wasm::make_unique<std::vector<wasm::Index>>(ValuesInit);
}
// otherwise, it is the default
}
wasm::Expression* Branch::Render(RelooperBuilder& Builder, Block *Target, bool SetLabel) {
auto* Ret = Builder.makeBlock();
if (Code) Ret->list.push_back(Code);
if (SetLabel) Ret->list.push_back(Builder.makeSetLabel(Target->Id));
if (Type == Break) {
Ret->list.push_back(Builder.makeBlockBreak(Target->Id));
} else if (Type == Continue) {
assert(Ancestor);
Ret->list.push_back(Builder.makeShapeContinue(Ancestor->Id));
}
Ret->finalize();
return Ret;
}
// Block
Block::Block(wasm::Expression* CodeInit, wasm::Expression* SwitchConditionInit) : Parent(nullptr), Id(-1), Code(CodeInit), SwitchCondition(SwitchConditionInit), IsCheckedMultipleEntry(false) {}
Block::~Block() {
for (BlockBranchMap::iterator iter = ProcessedBranchesOut.begin(); iter != ProcessedBranchesOut.end(); iter++) {
delete iter->second;
}
for (BlockBranchMap::iterator iter = BranchesOut.begin(); iter != BranchesOut.end(); iter++) {
delete iter->second;
}
}
void Block::AddBranchTo(Block *Target, wasm::Expression* Condition, wasm::Expression* Code) {
assert(!contains(BranchesOut, Target)); // cannot add more than one branch to the same target
BranchesOut[Target] = new Branch(Condition, Code);
}
void Block::AddSwitchBranchTo(Block *Target, std::vector<wasm::Index>&& Values, wasm::Expression* Code) {
assert(!contains(BranchesOut, Target)); // cannot add more than one branch to the same target
BranchesOut[Target] = new Branch(std::move(Values), Code);
}
wasm::Expression* Block::Render(RelooperBuilder& Builder, bool InLoop) {
auto* Ret = Builder.makeBlock();
if (IsCheckedMultipleEntry && InLoop) {
Ret->list.push_back(Builder.makeSetLabel(0));
}
if (Code) Ret->list.push_back(Code);
if (!ProcessedBranchesOut.size()) {
Ret->finalize();
return Ret;
}
bool SetLabel = true; // in some cases it is clear we can avoid setting label, see later
// A setting of the label variable (label = x) is necessary if it can
// cause an impact. The main case is where we set label to x, then elsewhere
// we check if label is equal to that value, i.e., that label is an entry
// in a multiple block. We also need to reset the label when we enter
// that block, so that each setting is a one-time action: consider
//
// while (1) {
// if (check) label = 1;
// if (label == 1) { label = 0 }
// }
//
// (Note that this case is impossible due to fusing, but that is not
// material here.) So setting to 0 is important just to clear the 1 for
// future iterations.
// TODO: When inside a loop, if necessary clear the label variable
// once on the top, and never do settings that are in effect clears
// Fusing: If the next is a Multiple, we can fuse it with this block. Note
// that we must be the Inner of a Simple, so fusing means joining a Simple
// to a Multiple. What happens there is that all options in the Multiple
// *must* appear in the Simple (the Simple is the only one reaching the
// Multiple), so we can remove the Multiple and add its independent groups
// into the Simple's branches.
MultipleShape *Fused = Shape::IsMultiple(Parent->Next);
if (Fused) {
PrintDebug("Fusing Multiple to Simple\n", 0);
Parent->Next = Parent->Next->Next;
// When the Multiple has the same number of groups as we have branches,
// they will all be fused, so it is safe to not set the label at all.
// If a switch, then we can have multiple branches to the same target
// (in different table indexes), and so this check is not sufficient TODO: optimize
if (SetLabel && Fused->InnerMap.size() == ProcessedBranchesOut.size() && !SwitchCondition) {
SetLabel = false;
}
}
Block *DefaultTarget = nullptr; // The block we branch to without checking the condition, if none of the other conditions held.
// Find the default target, the one without a condition
for (BlockBranchMap::iterator iter = ProcessedBranchesOut.begin(); iter != ProcessedBranchesOut.end(); iter++) {
if ((!SwitchCondition && !iter->second->Condition) || (SwitchCondition && !iter->second->SwitchValues)) {
assert(!DefaultTarget && "block has branches without a default (nullptr for the condition)"); // Must be exactly one default // nullptr
DefaultTarget = iter->first;
}
}
assert(DefaultTarget); // Since each block *must* branch somewhere, this must be set
wasm::Expression* Root = nullptr; // root of the main part, that we are about to emit
if (!SwitchCondition) {
// We'll emit a chain of if-elses
wasm::If* CurrIf = nullptr;
wasm::Expression* RemainingConditions = nullptr;
for (BlockBranchMap::iterator iter = ProcessedBranchesOut.begin();; iter++) {
Block *Target;
Branch *Details;
if (iter != ProcessedBranchesOut.end()) {
Target = iter->first;
if (Target == DefaultTarget) continue; // done at the end
Details = iter->second;
assert(Details->Condition); // must have a condition if this is not the default target
} else {
Target = DefaultTarget;
Details = ProcessedBranchesOut[DefaultTarget];
}
bool SetCurrLabel = SetLabel && Target->IsCheckedMultipleEntry;
bool HasFusedContent = Fused && contains(Fused->InnerMap, Target->Id);
if (HasFusedContent) {
assert(Details->Type == Branch::Break);
Details->Type = Branch::Direct;
}
wasm::Expression* CurrContent = nullptr;
bool IsDefault = iter == ProcessedBranchesOut.end();
if (SetCurrLabel || Details->Type != Branch::Direct || HasFusedContent || Details->Code) {
CurrContent = Details->Render(Builder, Target, SetCurrLabel);
if (HasFusedContent) {
CurrContent = Builder.blockify(CurrContent, Fused->InnerMap.find(Target->Id)->second->Render(Builder, InLoop));
}
}
// If there is nothing to show in this branch, omit the condition
if (CurrContent) {
if (IsDefault) {
wasm::Expression* Now;
if (RemainingConditions) {
Now = Builder.makeIf(RemainingConditions, CurrContent);
} else {
Now = CurrContent;
}
if (!CurrIf) {
assert(!Root);
Root = Now;
} else {
CurrIf->ifFalse = Now;
}
} else {
auto* Now = Builder.makeIf(Details->Condition, CurrContent);
if (!CurrIf) {
assert(!Root);
Root = CurrIf = Now;
} else {
CurrIf->ifFalse = Now;
CurrIf = Now;
}
}
} else {
auto* Now = Builder.makeUnary(wasm::EqZInt32, Details->Condition);
if (RemainingConditions) {
RemainingConditions = Builder.makeBinary(wasm::AndInt32, RemainingConditions, Now);
} else {
RemainingConditions = Now;
}
}
if (IsDefault) break;
}
} else {
// Emit a switch
auto Base = std::string("switch$") + std::to_string(Id);
auto SwitchDefault = wasm::Name(Base + "$default");
auto SwitchLeave = wasm::Name(Base + "$leave");
std::map<Block*, wasm::Name> BlockNameMap;
auto* Outer = Builder.makeBlock();
auto* Inner = Outer;
std::vector<wasm::Name> Table;
for (auto& iter : ProcessedBranchesOut) {
Block *Target = iter.first;
Branch *Details = iter.second;
wasm::Name CurrName;
if (Details->SwitchValues) {
CurrName = wasm::Name(Base + "$case$" + std::to_string(Target->Id));
} else {
CurrName = SwitchDefault;
}
// generate the content for this block
bool SetCurrLabel = SetLabel && Target->IsCheckedMultipleEntry;
bool HasFusedContent = Fused && contains(Fused->InnerMap, Target->Id);
if (HasFusedContent) {
assert(Details->Type == Branch::Break);
Details->Type = Branch::Direct;
}
wasm::Expression* CurrContent = nullptr;
if (SetCurrLabel || Details->Type != Branch::Direct || HasFusedContent || Details->Code) {
CurrContent = Details->Render(Builder, Target, SetCurrLabel);
if (HasFusedContent) {
CurrContent = Builder.blockify(CurrContent, Fused->InnerMap.find(Target->Id)->second->Render(Builder, InLoop));
}
}
// generate a block to branch to, if we have content
if (CurrContent) {
auto* NextOuter = Builder.makeBlock();
NextOuter->list.push_back(Outer);
Outer->name = CurrName; // breaking on Outer leads to the content in NextOuter
NextOuter->list.push_back(CurrContent);
NextOuter->list.push_back(Builder.makeBreak(SwitchLeave));
// prepare for more nesting
Outer = NextOuter;
} else {
CurrName = SwitchLeave; // just go out straight from the table
if (!Details->SwitchValues) {
// this is the default, and it has no content. So make the default be the leave
for (auto& Value : Table) {
if (Value == SwitchDefault) Value = SwitchLeave;
}
SwitchDefault = SwitchLeave;
}
}
if (Details->SwitchValues) {
for (auto Value : *Details->SwitchValues) {
while (Table.size() <= Value) Table.push_back(SwitchDefault);
Table[Value] = CurrName;
}
}
}
// finish up the whole pattern
Outer->name = SwitchLeave;
Inner->list.push_back(Builder.makeSwitch(Table, SwitchDefault, SwitchCondition));
Root = Outer;
}
if (Root) {
Ret->list.push_back(Root);
}
Ret->finalize();
return Ret;
}
// SimpleShape
wasm::Expression* SimpleShape::Render(RelooperBuilder& Builder, bool InLoop) {
auto* Ret = Inner->Render(Builder, InLoop);
Ret = HandleFollowupMultiples(Ret, this, Builder, InLoop);
if (Next) {
Ret = Builder.makeSequence(Ret, Next->Render(Builder, InLoop));
}
return Ret;
}
// MultipleShape
wasm::Expression* MultipleShape::Render(RelooperBuilder& Builder, bool InLoop) {
// TODO: consider switch
// emit an if-else chain
wasm::If *FirstIf = nullptr, *CurrIf = nullptr;
for (IdShapeMap::iterator iter = InnerMap.begin(); iter != InnerMap.end(); iter++) {
auto* Now = Builder.makeIf(
Builder.makeCheckLabel(iter->first),
iter->second->Render(Builder, InLoop)
);
if (!CurrIf) {
FirstIf = CurrIf = Now;
} else {
CurrIf->ifFalse = Now;
CurrIf = Now;
}
}
wasm::Expression* Ret = Builder.makeBlock(FirstIf);
Ret = HandleFollowupMultiples(Ret, this, Builder, InLoop);
if (Next) {
Ret = Builder.makeSequence(Ret, Next->Render(Builder, InLoop));
}
return Ret;
}
// LoopShape
wasm::Expression* LoopShape::Render(RelooperBuilder& Builder, bool InLoop) {
wasm::Expression* Ret = Builder.makeLoop(Builder.getShapeContinueName(Id), Inner->Render(Builder, true));
Ret = HandleFollowupMultiples(Ret, this, Builder, InLoop);
if (Next) {
Ret = Builder.makeSequence(Ret, Next->Render(Builder, InLoop));
}
return Ret;
}
// Relooper
Relooper::Relooper() : Root(nullptr), MinSize(false), BlockIdCounter(1), ShapeIdCounter(0) { // block ID 0 is reserved for clearings
}
Relooper::~Relooper() {
for (unsigned i = 0; i < Blocks.size(); i++) delete Blocks[i];
for (unsigned i = 0; i < Shapes.size(); i++) delete Shapes[i];
}
void Relooper::AddBlock(Block *New, int Id) {
New->Id = Id == -1 ? BlockIdCounter++ : Id;
Blocks.push_back(New);
}
struct RelooperRecursor {
Relooper *Parent;
RelooperRecursor(Relooper *ParentInit) : Parent(ParentInit) {}
};
typedef std::list<Block*> BlockList;
void Relooper::Calculate(Block *Entry) {
// Scan and optimize the input
struct PreOptimizer : public RelooperRecursor {
PreOptimizer(Relooper *Parent) : RelooperRecursor(Parent) {}
BlockSet Live;
void FindLive(Block *Root) {
BlockList ToInvestigate;
ToInvestigate.push_back(Root);
while (ToInvestigate.size() > 0) {
Block *Curr = ToInvestigate.front();
ToInvestigate.pop_front();
if (contains(Live, Curr)) continue;
Live.insert(Curr);
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
ToInvestigate.push_back(iter->first);
}
}
}
};
PreOptimizer Pre(this);
Pre.FindLive(Entry);
// Add incoming branches from live blocks, ignoring dead code
for (unsigned i = 0; i < Blocks.size(); i++) {
Block *Curr = Blocks[i];
if (!contains(Pre.Live, Curr)) continue;
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
iter->first->BranchesIn.insert(Curr);
}
}
// Recursively process the graph
struct Analyzer : public RelooperRecursor {
Analyzer(Relooper *Parent) : RelooperRecursor(Parent) {}
// Add a shape to the list of shapes in this Relooper calculation
void Notice(Shape *New) {
New->Id = Parent->ShapeIdCounter++;
Parent->Shapes.push_back(New);
}
// Create a list of entries from a block. If LimitTo is provided, only results in that set
// will appear
void GetBlocksOut(Block *Source, BlockSet& Entries, BlockSet *LimitTo = nullptr) {
for (BlockBranchMap::iterator iter = Source->BranchesOut.begin(); iter != Source->BranchesOut.end(); iter++) {
if (!LimitTo || contains(*LimitTo, iter->first)) {
Entries.insert(iter->first);
}
}
}
// Converts/processes all branchings to a specific target
void Solipsize(Block *Target, Branch::FlowType Type, Shape *Ancestor, BlockSet &From) {
PrintDebug("Solipsizing branches into %d\n", Target->Id);
DebugDump(From, " relevant to solipsize: ");
for (BlockSet::iterator iter = Target->BranchesIn.begin(); iter != Target->BranchesIn.end();) {
Block *Prior = *iter;
if (!contains(From, Prior)) {
iter++;
continue;
}
Branch *PriorOut = Prior->BranchesOut[Target];
PriorOut->Ancestor = Ancestor;
PriorOut->Type = Type;
iter++; // carefully increment iter before erasing
Target->BranchesIn.erase(Prior);
Target->ProcessedBranchesIn.insert(Prior);
Prior->BranchesOut.erase(Target);
Prior->ProcessedBranchesOut[Target] = PriorOut;
PrintDebug(" eliminated branch from %d\n", Prior->Id);
}
}
Shape *MakeSimple(BlockSet &Blocks, Block *Inner, BlockSet &NextEntries) {
PrintDebug("creating simple block with block #%d\n", Inner->Id);
SimpleShape *Simple = new SimpleShape;
Notice(Simple);
Simple->Inner = Inner;
Inner->Parent = Simple;
if (Blocks.size() > 1) {
Blocks.erase(Inner);
GetBlocksOut(Inner, NextEntries, &Blocks);
BlockSet JustInner;
JustInner.insert(Inner);
for (BlockSet::iterator iter = NextEntries.begin(); iter != NextEntries.end(); iter++) {
Solipsize(*iter, Branch::Break, Simple, JustInner);
}
}
return Simple;
}
Shape *MakeLoop(BlockSet &Blocks, BlockSet& Entries, BlockSet &NextEntries) {
// Find the inner blocks in this loop. Proceed backwards from the entries until
// you reach a seen block, collecting as you go.
BlockSet InnerBlocks;
BlockSet Queue = Entries;
while (Queue.size() > 0) {
Block *Curr = *(Queue.begin());
Queue.erase(Queue.begin());
if (!contains(InnerBlocks, Curr)) {
// This element is new, mark it as inner and remove from outer
InnerBlocks.insert(Curr);
Blocks.erase(Curr);
// Add the elements prior to it
for (BlockSet::iterator iter = Curr->BranchesIn.begin(); iter != Curr->BranchesIn.end(); iter++) {
Queue.insert(*iter);
}
#if 0
// Add elements it leads to, if they are dead ends. There is no reason not to hoist dead ends
// into loops, as it can avoid multiple entries after the loop
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
Block *Target = iter->first;
if (Target->BranchesIn.size() <= 1 && Target->BranchesOut.size() == 0) {
Queue.insert(Target);
}
}
#endif
}
}
assert(InnerBlocks.size() > 0);
for (BlockSet::iterator iter = InnerBlocks.begin(); iter != InnerBlocks.end(); iter++) {
Block *Curr = *iter;
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
Block *Possible = iter->first;
if (!contains(InnerBlocks, Possible)) {
NextEntries.insert(Possible);
}
}
}
#if 0
// We can avoid multiple next entries by hoisting them into the loop.
if (NextEntries.size() > 1) {
BlockBlockSetMap IndependentGroups;
FindIndependentGroups(NextEntries, IndependentGroups, &InnerBlocks);
while (IndependentGroups.size() > 0 && NextEntries.size() > 1) {
Block *Min = nullptr;
int MinSize = 0;
for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end(); iter++) {
Block *Entry = iter->first;
BlockSet &Blocks = iter->second;
if (!Min || Blocks.size() < MinSize) { // TODO: code size, not # of blocks
Min = Entry;
MinSize = Blocks.size();
}
}
// check how many new entries this would cause
BlockSet &Hoisted = IndependentGroups[Min];
bool abort = false;
for (BlockSet::iterator iter = Hoisted.begin(); iter != Hoisted.end() && !abort; iter++) {
Block *Curr = *iter;
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
Block *Target = iter->first;
if (!contains(Hoisted, Target) && !contains(NextEntries, Target)) {
// abort this hoisting
abort = true;
break;
}
}
}
if (abort) {
IndependentGroups.erase(Min);
continue;
}
// hoist this entry
PrintDebug("hoisting %d into loop\n", Min->Id);
NextEntries.erase(Min);
for (BlockSet::iterator iter = Hoisted.begin(); iter != Hoisted.end(); iter++) {
Block *Curr = *iter;
InnerBlocks.insert(Curr);
Blocks.erase(Curr);
}
IndependentGroups.erase(Min);
}
}
#endif
PrintDebug("creating loop block:\n", 0);
DebugDump(InnerBlocks, " inner blocks:");
DebugDump(Entries, " inner entries:");
DebugDump(Blocks, " outer blocks:");
DebugDump(NextEntries, " outer entries:");
LoopShape *Loop = new LoopShape();
Notice(Loop);
// Solipsize the loop, replacing with break/continue and marking branches as Processed (will not affect later calculations)
// A. Branches to the loop entries become a continue to this shape
for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
Solipsize(*iter, Branch::Continue, Loop, InnerBlocks);
}
// B. Branches to outside the loop (a next entry) become breaks on this shape
for (BlockSet::iterator iter = NextEntries.begin(); iter != NextEntries.end(); iter++) {
Solipsize(*iter, Branch::Break, Loop, InnerBlocks);
}
// Finish up
Shape *Inner = Process(InnerBlocks, Entries);
Loop->Inner = Inner;
Loop->Entries = Entries;
return Loop;
}
// For each entry, find the independent group reachable by it. The independent group is
// the entry itself, plus all the blocks it can reach that cannot be directly reached by another entry. Note that we
// ignore directly reaching the entry itself by another entry.
// @param Ignore - previous blocks that are irrelevant
void FindIndependentGroups(BlockSet &Entries, BlockBlockSetMap& IndependentGroups, BlockSet *Ignore = nullptr) {
typedef std::map<Block*, Block*> BlockBlockMap;
struct HelperClass {
BlockBlockSetMap& IndependentGroups;
BlockBlockMap Ownership; // For each block, which entry it belongs to. We have reached it from there.
HelperClass(BlockBlockSetMap& IndependentGroupsInit) : IndependentGroups(IndependentGroupsInit) {}
void InvalidateWithChildren(Block *New) { // TODO: rename New
BlockList ToInvalidate; // Being in the list means you need to be invalidated
ToInvalidate.push_back(New);
while (ToInvalidate.size() > 0) {
Block *Invalidatee = ToInvalidate.front();
ToInvalidate.pop_front();
Block *Owner = Ownership[Invalidatee];
if (contains(IndependentGroups, Owner)) { // Owner may have been invalidated, do not add to IndependentGroups!
IndependentGroups[Owner].erase(Invalidatee);
}
if (Ownership[Invalidatee]) { // may have been seen before and invalidated already
Ownership[Invalidatee] = nullptr;
for (BlockBranchMap::iterator iter = Invalidatee->BranchesOut.begin(); iter != Invalidatee->BranchesOut.end(); iter++) {
Block *Target = iter->first;
BlockBlockMap::iterator Known = Ownership.find(Target);
if (Known != Ownership.end()) {
Block *TargetOwner = Known->second;
if (TargetOwner) {
ToInvalidate.push_back(Target);
}
}
}
}
}
}
};
HelperClass Helper(IndependentGroups);
// We flow out from each of the entries, simultaneously.
// When we reach a new block, we add it as belonging to the one we got to it from.
// If we reach a new block that is already marked as belonging to someone, it is reachable by
// two entries and is not valid for any of them. Remove it and all it can reach that have been
// visited.
BlockList Queue; // Being in the queue means we just added this item, and we need to add its children
for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
Block *Entry = *iter;
Helper.Ownership[Entry] = Entry;
IndependentGroups[Entry].insert(Entry);
Queue.push_back(Entry);
}
while (Queue.size() > 0) {
Block *Curr = Queue.front();
Queue.pop_front();
Block *Owner = Helper.Ownership[Curr]; // Curr must be in the ownership map if we are in the queue
if (!Owner) continue; // we have been invalidated meanwhile after being reached from two entries
// Add all children
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
Block *New = iter->first;
BlockBlockMap::iterator Known = Helper.Ownership.find(New);
if (Known == Helper.Ownership.end()) {
// New node. Add it, and put it in the queue
Helper.Ownership[New] = Owner;
IndependentGroups[Owner].insert(New);
Queue.push_back(New);
continue;
}
Block *NewOwner = Known->second;
if (!NewOwner) continue; // We reached an invalidated node
if (NewOwner != Owner) {
// Invalidate this and all reachable that we have seen - we reached this from two locations
Helper.InvalidateWithChildren(New);
}
// otherwise, we have the same owner, so do nothing
}
}
// Having processed all the interesting blocks, we remain with just one potential issue:
// If a->b, and a was invalidated, but then b was later reached by someone else, we must
// invalidate b. To check for this, we go over all elements in the independent groups,
// if an element has a parent which does *not* have the same owner, we must remove it
// and all its children.
for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
BlockSet &CurrGroup = IndependentGroups[*iter];
BlockList ToInvalidate;
for (BlockSet::iterator iter = CurrGroup.begin(); iter != CurrGroup.end(); iter++) {
Block *Child = *iter;
for (BlockSet::iterator iter = Child->BranchesIn.begin(); iter != Child->BranchesIn.end(); iter++) {
Block *Parent = *iter;
if (Ignore && contains(*Ignore, Parent)) continue;
if (Helper.Ownership[Parent] != Helper.Ownership[Child]) {
ToInvalidate.push_back(Child);
}
}
}
while (ToInvalidate.size() > 0) {
Block *Invalidatee = ToInvalidate.front();
ToInvalidate.pop_front();
Helper.InvalidateWithChildren(Invalidatee);
}
}
// Remove empty groups
for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
if (IndependentGroups[*iter].size() == 0) {
IndependentGroups.erase(*iter);
}
}
#ifdef RELOOPER_DEBUG
PrintDebug("Investigated independent groups:\n");
for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end(); iter++) {
DebugDump(iter->second, " group: ");
}
#endif
}
Shape *MakeMultiple(BlockSet &Blocks, BlockSet& Entries, BlockBlockSetMap& IndependentGroups, BlockSet &NextEntries, bool IsCheckedMultiple) {
PrintDebug("creating multiple block with %d inner groups\n", IndependentGroups.size());
MultipleShape *Multiple = new MultipleShape();
Notice(Multiple);
BlockSet CurrEntries;
for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end(); iter++) {
Block *CurrEntry = iter->first;
BlockSet &CurrBlocks = iter->second;
PrintDebug(" multiple group with entry %d:\n", CurrEntry->Id);
DebugDump(CurrBlocks, " ");
// Create inner block
CurrEntries.clear();
CurrEntries.insert(CurrEntry);
for (BlockSet::iterator iter = CurrBlocks.begin(); iter != CurrBlocks.end(); iter++) {
Block *CurrInner = *iter;
// Remove the block from the remaining blocks
Blocks.erase(CurrInner);
// Find new next entries and fix branches to them
for (BlockBranchMap::iterator iter = CurrInner->BranchesOut.begin(); iter != CurrInner->BranchesOut.end();) {
Block *CurrTarget = iter->first;
BlockBranchMap::iterator Next = iter;
Next++;
if (!contains(CurrBlocks, CurrTarget)) {
NextEntries.insert(CurrTarget);
Solipsize(CurrTarget, Branch::Break, Multiple, CurrBlocks);
}
iter = Next; // increment carefully because Solipsize can remove us
}
}
Multiple->InnerMap[CurrEntry->Id] = Process(CurrBlocks, CurrEntries);
if (IsCheckedMultiple) {
CurrEntry->IsCheckedMultipleEntry = true;
}
}
DebugDump(Blocks, " remaining blocks after multiple:");
// Add entries not handled as next entries, they are deferred
for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
Block *Entry = *iter;
if (!contains(IndependentGroups, Entry)) {
NextEntries.insert(Entry);
}
}
return Multiple;
}
// Main function.
// Process a set of blocks with specified entries, returns a shape
// The Make* functions receive a NextEntries. If they fill it with data, those are the entries for the
// ->Next block on them, and the blocks are what remains in Blocks (which Make* modify). In this way
// we avoid recursing on Next (imagine a long chain of Simples, if we recursed we could blow the stack).
Shape *Process(BlockSet &Blocks, BlockSet& InitialEntries) {
PrintDebug("Process() called\n", 0);
BlockSet *Entries = &InitialEntries;
BlockSet TempEntries[2];
int CurrTempIndex = 0;
BlockSet *NextEntries;
Shape *Ret = nullptr;
Shape *Prev = nullptr;
#define Make(call) \
Shape *Temp = call; \
if (Prev) Prev->Next = Temp; \
if (!Ret) Ret = Temp; \
if (!NextEntries->size()) { PrintDebug("Process() returning\n", 0); return Ret; } \
Prev = Temp; \
Entries = NextEntries; \
continue;
while (1) {
PrintDebug("Process() running\n", 0);
DebugDump(Blocks, " blocks : ");
DebugDump(*Entries, " entries: ");
CurrTempIndex = 1-CurrTempIndex;
NextEntries = &TempEntries[CurrTempIndex];
NextEntries->clear();
if (Entries->size() == 0) return Ret;
if (Entries->size() == 1) {
Block *Curr = *(Entries->begin());
if (Curr->BranchesIn.size() == 0) {
// One entry, no looping ==> Simple
Make(MakeSimple(Blocks, Curr, *NextEntries));
}
// One entry, looping ==> Loop
Make(MakeLoop(Blocks, *Entries, *NextEntries));
}
// More than one entry, try to eliminate through a Multiple groups of
// independent blocks from an entry/ies. It is important to remove through
// multiples as opposed to looping since the former is more performant.
BlockBlockSetMap IndependentGroups;
FindIndependentGroups(*Entries, IndependentGroups);
PrintDebug("Independent groups: %d\n", IndependentGroups.size());
if (IndependentGroups.size() > 0) {
// We can handle a group in a multiple if its entry cannot be reached by another group.
// Note that it might be reachable by itself - a loop. But that is fine, we will create
// a loop inside the multiple block, which is both the performant order to do it, and
// preserves the property that a loop will always reach an entry.
for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end();) {
Block *Entry = iter->first;
BlockSet &Group = iter->second;
BlockBlockSetMap::iterator curr = iter++; // iterate carefully, we may delete
for (BlockSet::iterator iterBranch = Entry->BranchesIn.begin(); iterBranch != Entry->BranchesIn.end(); iterBranch++) {
Block *Origin = *iterBranch;
if (!contains(Group, Origin)) {
// Reached from outside the group, so we cannot handle this
PrintDebug("Cannot handle group with entry %d because of incoming branch from %d\n", Entry->Id, Origin->Id);
IndependentGroups.erase(curr);
break;
}
}
}
// As an optimization, if we have 2 independent groups, and one is a small dead end, we can handle only that dead end.
// The other then becomes a Next - without nesting in the code and recursion in the analysis.
// TODO: if the larger is the only dead end, handle that too
// TODO: handle >2 groups
// TODO: handle not just dead ends, but also that do not branch to the NextEntries. However, must be careful
// there since we create a Next, and that Next can prevent eliminating a break (since we no longer
// naturally reach the same place), which may necessitate a one-time loop, which makes the unnesting
// pointless.
if (IndependentGroups.size() == 2) {
// Find the smaller one
BlockBlockSetMap::iterator iter = IndependentGroups.begin();
Block *SmallEntry = iter->first;
int SmallSize = iter->second.size();
iter++;
Block *LargeEntry = iter->first;
int LargeSize = iter->second.size();
if (SmallSize != LargeSize) { // ignore the case where they are identical - keep things symmetrical there
if (SmallSize > LargeSize) {
Block *Temp = SmallEntry;
SmallEntry = LargeEntry;
LargeEntry = Temp; // Note: we did not flip the Sizes too, they are now invalid. TODO: use the smaller size as a limit?
}
// Check if dead end
bool DeadEnd = true;
BlockSet &SmallGroup = IndependentGroups[SmallEntry];
for (BlockSet::iterator iter = SmallGroup.begin(); iter != SmallGroup.end(); iter++) {
Block *Curr = *iter;
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
Block *Target = iter->first;
if (!contains(SmallGroup, Target)) {
DeadEnd = false;
break;
}
}
if (!DeadEnd) break;
}
if (DeadEnd) {
PrintDebug("Removing nesting by not handling large group because small group is dead end\n", 0);
IndependentGroups.erase(LargeEntry);
}
}
}
PrintDebug("Handleable independent groups: %d\n", IndependentGroups.size());
if (IndependentGroups.size() > 0) {
// Some groups removable ==> Multiple
// This is a checked multiple if it has an entry that is an entry to this Process call, that is,
// if we can reach it from outside this set of blocks, then we must check the label variable
// to do so. Otherwise, if it is just internal blocks, those can always be jumped to forward,
// without using the label variable
bool Checked = false;
for (auto* Entry : *Entries) {
if (InitialEntries.count(Entry)) {
Checked = true;
break;
}
}
Make(MakeMultiple(Blocks, *Entries, IndependentGroups, *NextEntries, Checked));
}
}
// No independent groups, must be loopable ==> Loop
Make(MakeLoop(Blocks, *Entries, *NextEntries));
}
}
};
// Main
BlockSet AllBlocks;
for (BlockSet::iterator iter = Pre.Live.begin(); iter != Pre.Live.end(); iter++) {
Block *Curr = *iter;
AllBlocks.insert(Curr);
#ifdef RELOOPER_DEBUG
PrintDebug("Adding block %d (%s)\n", Curr->Id, Curr->Code);
#endif
}
BlockSet Entries;
Entries.insert(Entry);
Root = Analyzer(this).Process(AllBlocks, Entries);
assert(Root);
}
wasm::Expression* Relooper::Render(RelooperBuilder& Builder) {
assert(Root);
auto* ret = Root->Render(Builder, false);
// we may use the same name for more than one block in HandleFollowupMultiples
wasm::UniqueNameMapper::uniquify(ret);
return ret;
}
#ifdef RELOOPER_DEBUG
// Debugging
void Debugging::Dump(BlockSet &Blocks, const char *prefix) {
if (prefix) printf("%s ", prefix);
for (BlockSet::iterator iter = Blocks.begin(); iter != Blocks.end(); iter++) {
Block *Curr = *iter;
printf("%d:\n", Curr->Id);
for (BlockBranchMap::iterator iter2 = Curr->BranchesOut.begin(); iter2 != Curr->BranchesOut.end(); iter2++) {
Block *Other = iter2->first;
printf(" -> %d\n", Other->Id);
assert(contains(Other->BranchesIn, Curr));
}
}
}
void Debugging::Dump(Shape *S, const char *prefix) {
if (prefix) printf("%s ", prefix);
if (!S) {
printf(" (null)\n");
return;
}
printf(" %d ", S->Id);
if (SimpleShape *Simple = Shape::IsSimple(S)) {
printf("<< Simple with block %d\n", Simple->Inner->Id);
} else if (MultipleShape *Multiple = Shape::IsMultiple(S)) {
printf("<< Multiple\n");
for (IdShapeMap::iterator iter = Multiple->InnerMap.begin(); iter != Multiple->InnerMap.end(); iter++) {
printf(" with entry %d\n", iter->first);
}
} else if (Shape::IsLoop(S)) {
printf("<< Loop\n");
} else {
abort();
}
}
static void PrintDebug(const char *Format, ...) {
printf("// ");
va_list Args;
va_start(Args, Format);
vprintf(Format, Args);
va_end(Args);
}
#endif
} // namespace CFG