| /* |
| * Copyright 2015 WebAssembly Community Group participants |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "support/bits.h" |
| #include "../compiler-support.h" |
| #include "support/utilities.h" |
| |
| #ifdef _MSC_VER |
| #include <intrin.h> |
| #endif |
| |
| namespace wasm::Bits { |
| |
| int popCount(uint8_t v) { |
| // Small table lookup. |
| static const uint8_t tbl[32] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, |
| 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, |
| 3, 4, 2, 3, 3, 4, 3, 4, 4, 5}; |
| return tbl[v & 0xf] + tbl[v >> 4]; |
| } |
| |
| int popCount(uint16_t v) { |
| #if __has_builtin(__builtin_popcount) || defined(__GNUC__) |
| return __builtin_popcount(v); |
| #else |
| return popCount((uint8_t)(v & 0xFF)) + popCount((uint8_t)(v >> 8)); |
| #endif |
| } |
| |
| int popCount(uint32_t v) { |
| #if __has_builtin(__builtin_popcount) || defined(__GNUC__) |
| return __builtin_popcount(v); |
| #else |
| // See Stanford bithacks, counting bits set in parallel, "best method": |
| // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
| v = v - ((v >> 1) & 0x55555555); |
| v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
| return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; |
| #endif |
| } |
| |
| int popCount(uint64_t v) { |
| #if __has_builtin(__builtin_popcount) || defined(__GNUC__) |
| return __builtin_popcountll(v); |
| #else |
| return popCount((uint32_t)v) + popCount((uint32_t)(v >> 32)); |
| #endif |
| } |
| |
| uint32_t bitReverse(uint32_t v) { |
| // See Hacker's Delight, first edition, figure 7-1. |
| v = ((v & 0x55555555) << 1) | ((v >> 1) & 0x55555555); |
| v = ((v & 0x33333333) << 2) | ((v >> 2) & 0x33333333); |
| v = ((v & 0x0F0F0F0F) << 4) | ((v >> 4) & 0x0F0F0F0F); |
| v = (v << 24) | ((v & 0xFF00) << 8) | ((v >> 8) & 0xFF00) | (v >> 24); |
| return v; |
| } |
| |
| int countTrailingZeroes(uint32_t v) { |
| if (v == 0) { |
| return 32; |
| } |
| #if __has_builtin(__builtin_ctz) || defined(__GNUC__) |
| return __builtin_ctz(v); |
| #elif defined(_MSC_VER) |
| unsigned long count; |
| _BitScanForward(&count, v); |
| return (int)count; |
| #else |
| // See Stanford bithacks, count the consecutive zero bits (trailing) on the |
| // right with multiply and lookup: |
| // http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup |
| static const uint8_t tbl[32] = {0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, |
| 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, |
| 16, 7, 26, 12, 18, 6, 11, 5, 10, 9}; |
| return (int)tbl[((uint32_t)((v & -v) * 0x077CB531U)) >> 27]; |
| #endif |
| } |
| |
| int countTrailingZeroes(uint64_t v) { |
| if (v == 0) { |
| return 64; |
| } |
| #if __has_builtin(__builtin_ctzll) || defined(__GNUC__) |
| return __builtin_ctzll(v); |
| #elif defined(_MSC_VER) && defined(_M_X64) |
| unsigned long count; |
| _BitScanForward64(&count, v); |
| return (int)count; |
| #else |
| return (uint32_t)v ? countTrailingZeroes((uint32_t)v) |
| : 32 + countTrailingZeroes((uint32_t)(v >> 32)); |
| #endif |
| } |
| |
| int countLeadingZeroes(uint32_t v) { |
| if (v == 0) { |
| return 32; |
| } |
| #if __has_builtin(__builtin_clz) || defined(__GNUC__) |
| return __builtin_clz(v); |
| #elif defined(_MSC_VER) |
| unsigned long count; |
| _BitScanReverse(&count, v); |
| // BitScanReverse gives the bit position (0 for the LSB, then 1, etc.) of the |
| // first bit that is 1, when looking from the MSB. To count leading zeros, we |
| // need to adjust that. |
| return 31 - int(count); |
| #else |
| // See Stanford bithacks, find the log base 2 of an N-bit integer in |
| // O(lg(N)) operations with multiply and lookup: |
| // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogDeBruijn |
| static const uint8_t tbl[32] = {31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, |
| 13, 9, 6, 28, 1, 23, 19, 11, 3, 16, 14, |
| 7, 24, 12, 4, 8, 25, 5, 26, 27, 0}; |
| v = v | (v >> 1); |
| v = v | (v >> 2); |
| v = v | (v >> 4); |
| v = v | (v >> 8); |
| v = v | (v >> 16); |
| return (int)tbl[((uint32_t)(v * 0x07C4ACDDU)) >> 27]; |
| #endif |
| } |
| |
| int countLeadingZeroes(uint64_t v) { |
| if (v == 0) { |
| return 64; |
| } |
| #if __has_builtin(__builtin_clzll) || defined(__GNUC__) |
| return __builtin_clzll(v); |
| #elif defined(_MSC_VER) && defined(_M_X64) |
| unsigned long count; |
| _BitScanReverse64(&count, v); |
| return 63 - int(count); |
| #else |
| return v >> 32 ? countLeadingZeroes((uint32_t)(v >> 32)) |
| : 32 + countLeadingZeroes((uint32_t)v); |
| #endif |
| } |
| |
| int ceilLog2(uint32_t v) { return 32 - countLeadingZeroes(v - 1); } |
| |
| int ceilLog2(uint64_t v) { return 64 - countLeadingZeroes(v - 1); } |
| |
| bool isPowerOf2InvertibleFloat(float v) { |
| // Power of two floating points should have zero as their significands, |
| // so here we just mask the exponent range of "v" and compare it with the |
| // unmasked input value. If they are equal, our value is a power of |
| // two. Also, we reject all values which are less than the minimal possible |
| // power of two or greater than the maximum possible power of two. |
| // We check values only with exponent in more limited ranges |
| // [-126..+126] for floats and [-1022..+1022] for doubles for avoiding |
| // overflows and reject NaNs, infinity and denormals. We also reject |
| // "asymmetric exponents", like +1023, because the range of |
| // (non-NaN, non-infinity) values is -1022..+1023, and it is convenient in |
| // optimizations to depend on being able to invert a power of two without |
| // losing precision. |
| // This function used in OptimizeInstruction pass. |
| const uint32_t MIN_POT = 0x01U << 23; // 0x1p-126 |
| const uint32_t MAX_POT = 0xFDU << 23; // 0x1p+126 |
| const uint32_t EXP_MASK = 0xFFU << 23; // mask only exponent |
| const uint32_t SIGN_MASK = ~0U >> 1; // mask everything except sign |
| auto u = bit_cast<uint32_t>(v) & SIGN_MASK; |
| return u >= MIN_POT && u <= MAX_POT && (u & EXP_MASK) == u; |
| } |
| |
| bool isPowerOf2InvertibleFloat(double v) { |
| // See isPowerOf2InvertibleFloat(float) |
| const uint64_t MIN_POT = 0x001ULL << 52; // 0x1p-1022 |
| const uint64_t MAX_POT = 0x7FDULL << 52; // 0x1p+1022 |
| const uint64_t EXP_MASK = 0x7FFULL << 52; // mask only exponent |
| const uint64_t SIGN_MASK = ~0ULL >> 1; // mask everything except sign |
| auto u = bit_cast<uint64_t>(v) & SIGN_MASK; |
| return u >= MIN_POT && u <= MAX_POT && (u & EXP_MASK) == u; |
| } |
| |
| uint32_t log2(uint32_t v) { |
| if (!isPowerOf2(v)) { |
| WASM_UNREACHABLE("value should be a power of two"); |
| } |
| return 31 - countLeadingZeroes(v); |
| } |
| |
| uint32_t pow2(uint32_t v) { return v < 32 ? 1 << v : 0; } |
| |
| } // namespace wasm::Bits |