| /* |
| * Copyright 2016 WebAssembly Community Group participants |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef wasm_learning_h |
| #define wasm_learning_h |
| |
| #include <algorithm> |
| #include <random> |
| |
| namespace wasm { |
| |
| // |
| // Machine learning using a genetic algorithm. |
| // |
| // The Genome class is the element on which to learn. It must |
| // implement the following: |
| // |
| // * Fitness getFitness(); - calculate how good this item is. |
| // |
| // The Generator must implement the following: |
| // |
| // * Genome* makeRandom(); - make a random element |
| // * Genome* makeMixture(Genome* one, Genome* two); - make a new element by |
| // mixing two |
| // |
| // Fitness is the type of the fitness values, e.g. uint32_t. More is better. |
| // |
| // Typical usage of this class is to run call runGeneration(), check the best |
| // quality using getBest()->getFitness(), and do that repeatedly until the |
| // fitness is good enough. Then acquireBest() to get ownership of the best, |
| // and the learner can be discarded (with all the rest of the population |
| // cleaned up). |
| |
| template<typename Genome, typename Fitness, typename Generator> |
| class GeneticLearner { |
| Generator& generator; |
| |
| typedef std::unique_ptr<Genome> unique_ptr; |
| std::vector<unique_ptr> population; |
| |
| void sort() { |
| std::sort(population.begin(), |
| population.end(), |
| [](const unique_ptr& left, const unique_ptr& right) { |
| return left->getFitness() > right->getFitness(); |
| }); |
| } |
| |
| std::mt19937 noise; |
| |
| size_t randomIndex() { return noise() % population.size(); } |
| |
| public: |
| GeneticLearner(Generator& generator, size_t size) |
| : generator(generator), noise(1337) { |
| population.resize(size); |
| for (size_t i = 0; i < size; i++) { |
| population[i] = unique_ptr(generator.makeRandom()); |
| } |
| sort(); |
| } |
| |
| Genome* getBest() { return population[0].get(); } |
| |
| unique_ptr acquireBest() { return population[0]; } |
| |
| void runGeneration() { |
| size_t size = population.size(); |
| |
| // we have a mix of promoted from the last generation, mixed from the last |
| // generation, and random |
| const size_t promoted = (25 * size) / 100; |
| const size_t mixed = (50 * size) / 100; |
| |
| // promoted just stay in place |
| // mixtures are computed, then added back in (as we still need them as we |
| // work) |
| std::vector<unique_ptr> mixtures; |
| mixtures.resize(mixed); |
| for (size_t i = 0; i < mixed; i++) { |
| mixtures[i] = unique_ptr(generator.makeMixture( |
| population[randomIndex()].get(), population[randomIndex()].get())); |
| } |
| for (size_t i = 0; i < mixed; i++) { |
| population[promoted + i].swap(mixtures[i]); |
| } |
| // TODO: de-duplicate at this point |
| // randoms fill in the test |
| for (size_t i = promoted + mixed; i < size; i++) { |
| population[i] = unique_ptr(generator.makeRandom()); |
| } |
| |
| sort(); |
| } |
| }; |
| |
| } // namespace wasm |
| |
| #endif // wasm_learning_h |