blob: cc31f5200ce97fa576940763f133b437e8389531 [file] [log] [blame] [edit]
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef wasm_wasm_builder_h
#define wasm_wasm_builder_h
#include "ir/manipulation.h"
#include "wasm.h"
namespace wasm {
// Useful data structures
struct NameType {
Name name;
Type type;
NameType() : name(nullptr), type(Type::none) {}
NameType(Name name, Type type) : name(name), type(type) {}
};
// General AST node builder
class Builder {
MixedArena& allocator;
public:
Builder(MixedArena& allocator) : allocator(allocator) {}
Builder(Module& wasm) : allocator(wasm.allocator) {}
// make* functions, other globals
Function* makeFunction(Name name,
Signature sig,
std::vector<Type>&& vars,
Expression* body = nullptr) {
auto* func = new Function;
func->name = name;
func->sig = sig;
func->body = body;
func->vars.swap(vars);
return func;
}
Function* makeFunction(Name name,
std::vector<NameType>&& params,
Type resultType,
std::vector<NameType>&& vars,
Expression* body = nullptr) {
auto* func = new Function;
func->name = name;
func->body = body;
std::vector<Type> paramVec;
for (auto& param : params) {
paramVec.push_back(param.type);
Index index = func->localNames.size();
func->localIndices[param.name] = index;
func->localNames[index] = param.name;
}
func->sig = Signature(Type(paramVec), resultType);
for (auto& var : vars) {
func->vars.push_back(var.type);
Index index = func->localNames.size();
func->localIndices[var.name] = index;
func->localNames[index] = var.name;
}
return func;
}
Export* makeExport(Name name, Name value, ExternalKind kind) {
auto* export_ = new Export();
export_->name = name;
export_->value = value;
export_->kind = kind;
return export_;
}
// IR nodes
Nop* makeNop() { return allocator.alloc<Nop>(); }
Block* makeBlock(Expression* first = nullptr) {
auto* ret = allocator.alloc<Block>();
if (first) {
ret->list.push_back(first);
ret->finalize();
}
return ret;
}
Block* makeBlock(Name name, Expression* first = nullptr) {
auto* ret = makeBlock(first);
ret->name = name;
ret->finalize();
return ret;
}
Block* makeBlock(const std::vector<Expression*>& items) {
auto* ret = allocator.alloc<Block>();
ret->list.set(items);
ret->finalize();
return ret;
}
Block* makeBlock(const std::vector<Expression*>& items, Type type) {
auto* ret = allocator.alloc<Block>();
ret->list.set(items);
ret->finalize(type);
return ret;
}
Block* makeBlock(const ExpressionList& items) {
auto* ret = allocator.alloc<Block>();
ret->list.set(items);
ret->finalize();
return ret;
}
Block* makeBlock(const ExpressionList& items, Type type) {
auto* ret = allocator.alloc<Block>();
ret->list.set(items);
ret->finalize(type);
return ret;
}
Block* makeBlock(Name name, const ExpressionList& items) {
auto* ret = allocator.alloc<Block>();
ret->name = name;
ret->list.set(items);
ret->finalize();
return ret;
}
Block* makeBlock(Name name, const ExpressionList& items, Type type) {
auto* ret = allocator.alloc<Block>();
ret->name = name;
ret->list.set(items);
ret->finalize(type);
return ret;
}
If* makeIf(Expression* condition,
Expression* ifTrue,
Expression* ifFalse = nullptr) {
auto* ret = allocator.alloc<If>();
ret->condition = condition;
ret->ifTrue = ifTrue;
ret->ifFalse = ifFalse;
ret->finalize();
return ret;
}
If* makeIf(Expression* condition,
Expression* ifTrue,
Expression* ifFalse,
Type type) {
auto* ret = allocator.alloc<If>();
ret->condition = condition;
ret->ifTrue = ifTrue;
ret->ifFalse = ifFalse;
ret->finalize(type);
return ret;
}
Loop* makeLoop(Name name, Expression* body) {
auto* ret = allocator.alloc<Loop>();
ret->name = name;
ret->body = body;
ret->finalize();
return ret;
}
Loop* makeLoop(Name name, Expression* body, Type type) {
auto* ret = allocator.alloc<Loop>();
ret->name = name;
ret->body = body;
ret->finalize(type);
return ret;
}
Break* makeBreak(Name name,
Expression* value = nullptr,
Expression* condition = nullptr) {
auto* ret = allocator.alloc<Break>();
ret->name = name;
ret->value = value;
ret->condition = condition;
ret->finalize();
return ret;
}
template<typename T>
Switch* makeSwitch(T& list,
Name default_,
Expression* condition,
Expression* value = nullptr) {
auto* ret = allocator.alloc<Switch>();
ret->targets.set(list);
ret->default_ = default_;
ret->value = value;
ret->condition = condition;
return ret;
}
Call* makeCall(Name target,
const std::vector<Expression*>& args,
Type type,
bool isReturn = false) {
auto* call = allocator.alloc<Call>();
// not all functions may exist yet, so type must be provided
call->type = type;
call->target = target;
call->operands.set(args);
call->isReturn = isReturn;
return call;
}
template<typename T>
Call* makeCall(Name target, const T& args, Type type, bool isReturn = false) {
auto* call = allocator.alloc<Call>();
// not all functions may exist yet, so type must be provided
call->type = type;
call->target = target;
call->operands.set(args);
call->isReturn = isReturn;
call->finalize();
return call;
}
CallIndirect* makeCallIndirect(Expression* target,
const std::vector<Expression*>& args,
Signature sig,
bool isReturn = false) {
auto* call = allocator.alloc<CallIndirect>();
call->sig = sig;
call->type = sig.results;
call->target = target;
call->operands.set(args);
call->isReturn = isReturn;
call->finalize();
return call;
}
LocalGet* makeLocalGet(Index index, Type type) {
auto* ret = allocator.alloc<LocalGet>();
ret->index = index;
ret->type = type;
return ret;
}
LocalSet* makeLocalSet(Index index, Expression* value) {
auto* ret = allocator.alloc<LocalSet>();
ret->index = index;
ret->value = value;
ret->makeSet();
ret->finalize();
return ret;
}
LocalSet* makeLocalTee(Index index, Expression* value, Type type) {
auto* ret = allocator.alloc<LocalSet>();
ret->index = index;
ret->value = value;
ret->makeTee(type);
return ret;
}
GlobalGet* makeGlobalGet(Name name, Type type) {
auto* ret = allocator.alloc<GlobalGet>();
ret->name = name;
ret->type = type;
return ret;
}
GlobalSet* makeGlobalSet(Name name, Expression* value) {
auto* ret = allocator.alloc<GlobalSet>();
ret->name = name;
ret->value = value;
ret->finalize();
return ret;
}
Load* makeLoad(unsigned bytes,
bool signed_,
uint32_t offset,
unsigned align,
Expression* ptr,
Type type) {
auto* ret = allocator.alloc<Load>();
ret->isAtomic = false;
ret->bytes = bytes;
ret->signed_ = signed_;
ret->offset = offset;
ret->align = align;
ret->ptr = ptr;
ret->type = type;
return ret;
}
Load*
makeAtomicLoad(unsigned bytes, uint32_t offset, Expression* ptr, Type type) {
Load* load = makeLoad(bytes, false, offset, bytes, ptr, type);
load->isAtomic = true;
return load;
}
AtomicWait* makeAtomicWait(Expression* ptr,
Expression* expected,
Expression* timeout,
Type expectedType,
Address offset) {
auto* wait = allocator.alloc<AtomicWait>();
wait->offset = offset;
wait->ptr = ptr;
wait->expected = expected;
wait->timeout = timeout;
wait->expectedType = expectedType;
wait->finalize();
return wait;
}
AtomicNotify*
makeAtomicNotify(Expression* ptr, Expression* notifyCount, Address offset) {
auto* notify = allocator.alloc<AtomicNotify>();
notify->offset = offset;
notify->ptr = ptr;
notify->notifyCount = notifyCount;
notify->finalize();
return notify;
}
AtomicFence* makeAtomicFence() { return allocator.alloc<AtomicFence>(); }
Store* makeStore(unsigned bytes,
uint32_t offset,
unsigned align,
Expression* ptr,
Expression* value,
Type type) {
auto* ret = allocator.alloc<Store>();
ret->isAtomic = false;
ret->bytes = bytes;
ret->offset = offset;
ret->align = align;
ret->ptr = ptr;
ret->value = value;
ret->valueType = type;
ret->finalize();
assert(ret->value->type.isConcrete() ? ret->value->type == type : true);
return ret;
}
Store* makeAtomicStore(unsigned bytes,
uint32_t offset,
Expression* ptr,
Expression* value,
Type type) {
Store* store = makeStore(bytes, offset, bytes, ptr, value, type);
store->isAtomic = true;
return store;
}
AtomicRMW* makeAtomicRMW(AtomicRMWOp op,
unsigned bytes,
uint32_t offset,
Expression* ptr,
Expression* value,
Type type) {
auto* ret = allocator.alloc<AtomicRMW>();
ret->op = op;
ret->bytes = bytes;
ret->offset = offset;
ret->ptr = ptr;
ret->value = value;
ret->type = type;
ret->finalize();
return ret;
}
AtomicCmpxchg* makeAtomicCmpxchg(unsigned bytes,
uint32_t offset,
Expression* ptr,
Expression* expected,
Expression* replacement,
Type type) {
auto* ret = allocator.alloc<AtomicCmpxchg>();
ret->bytes = bytes;
ret->offset = offset;
ret->ptr = ptr;
ret->expected = expected;
ret->replacement = replacement;
ret->type = type;
ret->finalize();
return ret;
}
SIMDExtract*
makeSIMDExtract(SIMDExtractOp op, Expression* vec, uint8_t index) {
auto* ret = allocator.alloc<SIMDExtract>();
ret->op = op;
ret->vec = vec;
ret->index = index;
ret->finalize();
return ret;
}
SIMDReplace* makeSIMDReplace(SIMDReplaceOp op,
Expression* vec,
uint8_t index,
Expression* value) {
auto* ret = allocator.alloc<SIMDReplace>();
ret->op = op;
ret->vec = vec;
ret->index = index;
ret->value = value;
ret->finalize();
return ret;
}
SIMDShuffle* makeSIMDShuffle(Expression* left,
Expression* right,
const std::array<uint8_t, 16>& mask) {
auto* ret = allocator.alloc<SIMDShuffle>();
ret->left = left;
ret->right = right;
ret->mask = mask;
ret->finalize();
return ret;
}
SIMDTernary* makeSIMDTernary(SIMDTernaryOp op,
Expression* a,
Expression* b,
Expression* c) {
auto* ret = allocator.alloc<SIMDTernary>();
ret->op = op;
ret->a = a;
ret->b = b;
ret->c = c;
ret->finalize();
return ret;
}
SIMDShift* makeSIMDShift(SIMDShiftOp op, Expression* vec, Expression* shift) {
auto* ret = allocator.alloc<SIMDShift>();
ret->op = op;
ret->vec = vec;
ret->shift = shift;
ret->finalize();
return ret;
}
SIMDLoad*
makeSIMDLoad(SIMDLoadOp op, Address offset, Address align, Expression* ptr) {
auto* ret = allocator.alloc<SIMDLoad>();
ret->op = op;
ret->offset = offset;
ret->align = align;
ret->ptr = ptr;
ret->finalize();
return ret;
}
MemoryInit* makeMemoryInit(uint32_t segment,
Expression* dest,
Expression* offset,
Expression* size) {
auto* ret = allocator.alloc<MemoryInit>();
ret->segment = segment;
ret->dest = dest;
ret->offset = offset;
ret->size = size;
ret->finalize();
return ret;
}
DataDrop* makeDataDrop(uint32_t segment) {
auto* ret = allocator.alloc<DataDrop>();
ret->segment = segment;
ret->finalize();
return ret;
}
MemoryCopy*
makeMemoryCopy(Expression* dest, Expression* source, Expression* size) {
auto* ret = allocator.alloc<MemoryCopy>();
ret->dest = dest;
ret->source = source;
ret->size = size;
ret->finalize();
return ret;
}
MemoryFill*
makeMemoryFill(Expression* dest, Expression* value, Expression* size) {
auto* ret = allocator.alloc<MemoryFill>();
ret->dest = dest;
ret->value = value;
ret->size = size;
ret->finalize();
return ret;
}
Const* makeConst(Literal value) {
assert(value.type.isNumber());
auto* ret = allocator.alloc<Const>();
ret->value = value;
ret->type = value.type;
return ret;
}
Unary* makeUnary(UnaryOp op, Expression* value) {
auto* ret = allocator.alloc<Unary>();
ret->op = op;
ret->value = value;
ret->finalize();
return ret;
}
Binary* makeBinary(BinaryOp op, Expression* left, Expression* right) {
auto* ret = allocator.alloc<Binary>();
ret->op = op;
ret->left = left;
ret->right = right;
ret->finalize();
return ret;
}
Select*
makeSelect(Expression* condition, Expression* ifTrue, Expression* ifFalse) {
auto* ret = allocator.alloc<Select>();
ret->condition = condition;
ret->ifTrue = ifTrue;
ret->ifFalse = ifFalse;
ret->finalize();
return ret;
}
Select* makeSelect(Expression* condition,
Expression* ifTrue,
Expression* ifFalse,
Type type) {
auto* ret = allocator.alloc<Select>();
ret->condition = condition;
ret->ifTrue = ifTrue;
ret->ifFalse = ifFalse;
ret->finalize(type);
return ret;
}
Return* makeReturn(Expression* value = nullptr) {
auto* ret = allocator.alloc<Return>();
ret->value = value;
return ret;
}
Host*
makeHost(HostOp op, Name nameOperand, std::vector<Expression*>&& operands) {
auto* ret = allocator.alloc<Host>();
ret->op = op;
ret->nameOperand = nameOperand;
ret->operands.set(operands);
ret->finalize();
return ret;
}
RefNull* makeRefNull() {
auto* ret = allocator.alloc<RefNull>();
ret->finalize();
return ret;
}
RefIsNull* makeRefIsNull(Expression* value) {
auto* ret = allocator.alloc<RefIsNull>();
ret->value = value;
ret->finalize();
return ret;
}
RefFunc* makeRefFunc(Name func) {
auto* ret = allocator.alloc<RefFunc>();
ret->func = func;
ret->finalize();
return ret;
}
Try* makeTry(Expression* body, Expression* catchBody) {
auto* ret = allocator.alloc<Try>();
ret->body = body;
ret->catchBody = catchBody;
ret->finalize();
return ret;
}
Try* makeTry(Expression* body, Expression* catchBody, Type type) {
auto* ret = allocator.alloc<Try>();
ret->body = body;
ret->catchBody = catchBody;
ret->finalize(type);
return ret;
}
Throw* makeThrow(Event* event, const std::vector<Expression*>& args) {
return makeThrow(event->name, args);
}
Throw* makeThrow(Name event, const std::vector<Expression*>& args) {
auto* ret = allocator.alloc<Throw>();
ret->event = event;
ret->operands.set(args);
ret->finalize();
return ret;
}
Rethrow* makeRethrow(Expression* exnref) {
auto* ret = allocator.alloc<Rethrow>();
ret->exnref = exnref;
ret->finalize();
return ret;
}
BrOnExn* makeBrOnExn(Name name, Event* event, Expression* exnref) {
return makeBrOnExn(name, event->name, exnref, event->sig.params);
}
BrOnExn* makeBrOnExn(Name name, Name event, Expression* exnref, Type sent) {
auto* ret = allocator.alloc<BrOnExn>();
ret->name = name;
ret->event = event;
ret->exnref = exnref;
// Copy params info into BrOnExn, because it is necessary when BrOnExn is
// refinalized without the module.
ret->sent = sent;
ret->finalize();
return ret;
}
Unreachable* makeUnreachable() { return allocator.alloc<Unreachable>(); }
Push* makePush(Expression* value) {
auto* ret = allocator.alloc<Push>();
ret->value = value;
ret->finalize();
return ret;
}
Pop* makePop(Type type) {
auto* ret = allocator.alloc<Pop>();
ret->type = type;
ret->finalize();
return ret;
}
// Additional helpers
Drop* makeDrop(Expression* value) {
auto* ret = allocator.alloc<Drop>();
ret->value = value;
ret->finalize();
return ret;
}
Expression* makeConstExpression(Literal value) {
switch (value.type.getSingle()) {
case Type::nullref:
return makeRefNull();
case Type::funcref:
if (value.getFunc()[0] != 0) {
return makeRefFunc(value.getFunc());
}
return makeRefNull();
default:
assert(value.type.isNumber());
return makeConst(value);
}
}
// Additional utility functions for building on top of nodes
// Convenient to have these on Builder, as it has allocation built in
static Index addParam(Function* func, Name name, Type type) {
// only ok to add a param if no vars, otherwise indices are invalidated
assert(func->localIndices.size() == func->sig.params.size());
assert(name.is());
std::vector<Type> params = func->sig.params.expand();
params.push_back(type);
func->sig.params = Type(params);
Index index = func->localNames.size();
func->localIndices[name] = index;
func->localNames[index] = name;
return index;
}
static Index addVar(Function* func, Name name, Type type) {
// always ok to add a var, it does not affect other indices
assert(type.isConcrete());
Index index = func->getNumLocals();
if (name.is()) {
func->localIndices[name] = index;
func->localNames[index] = name;
}
func->vars.emplace_back(type);
return index;
}
static Index addVar(Function* func, Type type) {
return addVar(func, Name(), type);
}
static void clearLocalNames(Function* func) {
func->localNames.clear();
func->localIndices.clear();
}
static void clearLocals(Function* func) {
func->sig.params = Type::none;
func->vars.clear();
clearLocalNames(func);
}
// ensure a node is a block, if it isn't already, and optionally append to the
// block
Block* blockify(Expression* any, Expression* append = nullptr) {
Block* block = nullptr;
if (any) {
block = any->dynCast<Block>();
}
if (!block) {
block = makeBlock(any);
}
if (append) {
block->list.push_back(append);
block->finalize();
}
return block;
}
template<typename... Ts>
Block* blockify(Expression* any, Expression* append, Ts... args) {
return blockify(blockify(any, append), args...);
}
// ensure a node is a block, if it isn't already, and optionally append to the
// block this variant sets a name for the block, so it will not reuse a block
// already named
Block*
blockifyWithName(Expression* any, Name name, Expression* append = nullptr) {
Block* block = nullptr;
if (any) {
block = any->dynCast<Block>();
}
if (!block || block->name.is()) {
block = makeBlock(any);
}
block->name = name;
if (append) {
block->list.push_back(append);
block->finalize();
}
return block;
}
// a helper for the common pattern of a sequence of two expressions. Similar
// to blockify, but does *not* reuse a block if the first is one.
Block* makeSequence(Expression* left, Expression* right) {
auto* block = makeBlock(left);
block->list.push_back(right);
block->finalize();
return block;
}
Block* makeSequence(Expression* left, Expression* right, Type type) {
auto* block = makeBlock(left);
block->list.push_back(right);
block->finalize(type);
return block;
}
// Grab a slice out of a block, replacing it with nops, and returning
// either another block with the contents (if more than 1) or a single
// expression
Expression* stealSlice(Block* input, Index from, Index to) {
Expression* ret;
if (to == from + 1) {
// just one
ret = input->list[from];
} else {
auto* block = allocator.alloc<Block>();
for (Index i = from; i < to; i++) {
block->list.push_back(input->list[i]);
}
block->finalize();
ret = block;
}
if (to == input->list.size()) {
input->list.resize(from);
} else {
for (Index i = from; i < to; i++) {
input->list[i] = allocator.alloc<Nop>();
}
}
input->finalize();
return ret;
}
// Drop an expression if it has a concrete type
Expression* dropIfConcretelyTyped(Expression* curr) {
if (!curr->type.isConcrete()) {
return curr;
}
return makeDrop(curr);
}
void flip(If* iff) {
std::swap(iff->ifTrue, iff->ifFalse);
iff->condition = makeUnary(EqZInt32, iff->condition);
}
// returns a replacement with the precise same type, and with
// minimal contents. as a replacement, this may reuse the
// input node
template<typename T> Expression* replaceWithIdenticalType(T* curr) {
Literal value;
// TODO: reuse node conditionally when possible for literals
switch (curr->type.getSingle()) {
case Type::i32:
value = Literal(int32_t(0));
break;
case Type::i64:
value = Literal(int64_t(0));
break;
case Type::f32:
value = Literal(float(0));
break;
case Type::f64:
value = Literal(double(0));
break;
case Type::v128: {
std::array<uint8_t, 16> bytes;
bytes.fill(0);
value = Literal(bytes.data());
break;
}
case Type::funcref:
case Type::anyref:
case Type::nullref:
case Type::exnref:
return ExpressionManipulator::refNull(curr);
case Type::none:
return ExpressionManipulator::nop(curr);
case Type::unreachable:
return ExpressionManipulator::unreachable(curr);
}
return makeConst(value);
}
// Module-level helpers
enum Mutability { Mutable, Immutable };
static Global*
makeGlobal(Name name, Type type, Expression* init, Mutability mutable_) {
auto* glob = new Global;
glob->name = name;
glob->type = type;
glob->init = init;
glob->mutable_ = mutable_ == Mutable;
return glob;
}
static Event* makeEvent(Name name, uint32_t attribute, Signature sig) {
auto* event = new Event;
event->name = name;
event->attribute = attribute;
event->sig = sig;
return event;
}
};
} // namespace wasm
#endif // wasm_wasm_builder_h