blob: a2abcd5b5958aa93a995f4029da2d47461f42ac9 [file] [log] [blame] [edit]
/*
* Copyright 2022 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "module-utils.h"
#include "ir/intrinsics.h"
#include "support/insert_ordered.h"
#include "support/topological_sort.h"
namespace wasm::ModuleUtils {
namespace {
// Helper for collecting HeapTypes and their frequencies.
struct Counts : public InsertOrderedMap<HeapType, size_t> {
void note(HeapType type) {
if (!type.isBasic()) {
(*this)[type]++;
}
}
void note(Type type) {
for (HeapType ht : type.getHeapTypeChildren()) {
note(ht);
}
}
// Ensure a type is included without increasing its count.
void include(HeapType type) {
if (!type.isBasic()) {
(*this)[type];
}
}
void include(Type type) {
for (HeapType ht : type.getHeapTypeChildren()) {
include(ht);
}
}
};
struct CodeScanner
: PostWalker<CodeScanner, UnifiedExpressionVisitor<CodeScanner>> {
Counts& counts;
CodeScanner(Module& wasm, Counts& counts) : counts(counts) {
setModule(&wasm);
}
void visitExpression(Expression* curr) {
if (auto* call = curr->dynCast<CallIndirect>()) {
counts.note(call->heapType);
} else if (auto* call = curr->dynCast<CallRef>()) {
counts.note(call->target->type);
} else if (curr->is<RefNull>()) {
counts.note(curr->type);
} else if (curr->is<Select>() && curr->type.isRef()) {
// This select will be annotated in the binary, so note it.
counts.note(curr->type);
} else if (curr->is<StructNew>()) {
counts.note(curr->type);
} else if (curr->is<ArrayNew>()) {
counts.note(curr->type);
} else if (curr->is<ArrayNewSeg>()) {
counts.note(curr->type);
} else if (curr->is<ArrayNewFixed>()) {
counts.note(curr->type);
} else if (auto* cast = curr->dynCast<RefCast>()) {
counts.note(cast->type);
} else if (auto* cast = curr->dynCast<RefTest>()) {
counts.note(cast->castType);
} else if (auto* cast = curr->dynCast<BrOn>()) {
if (cast->op == BrOnCast || cast->op == BrOnCastFail) {
counts.note(cast->castType);
}
} else if (auto* get = curr->dynCast<StructGet>()) {
counts.note(get->ref->type);
// If the type we read is a reference type then we must include it. It is
// not written in the binary format, so it doesn't need to be counted, but
// it does need to be taken into account in the IR (this may be the only
// place this type appears in the entire binary, and we must scan all
// types as the analyses that use us depend on that). TODO: This is kind
// of a hack, so it would be nice to remove. If we could remove it, we
// could also remove some of the pruning logic in getHeapTypeCounts below.
counts.include(get->type);
} else if (auto* set = curr->dynCast<StructSet>()) {
counts.note(set->ref->type);
} else if (auto* get = curr->dynCast<ArrayGet>()) {
counts.note(get->ref->type);
// See note on StructGet above.
counts.include(get->type);
} else if (auto* set = curr->dynCast<ArraySet>()) {
counts.note(set->ref->type);
} else if (Properties::isControlFlowStructure(curr)) {
if (curr->type.isTuple()) {
// TODO: Allow control flow to have input types as well
counts.note(Signature(Type::none, curr->type));
} else {
counts.note(curr->type);
}
}
}
};
// Count the number of times each heap type that would appear in the binary is
// referenced. If `prune`, exclude types that are never referenced, even though
// a binary would be invalid without them.
Counts getHeapTypeCounts(Module& wasm, bool prune = false) {
// Collect module-level info.
Counts counts;
CodeScanner(wasm, counts).walkModuleCode(&wasm);
for (auto& curr : wasm.globals) {
counts.note(curr->type);
}
for (auto& curr : wasm.tags) {
counts.note(curr->sig);
}
for (auto& curr : wasm.tables) {
counts.note(curr->type);
}
for (auto& curr : wasm.elementSegments) {
counts.note(curr->type);
}
// Collect info from functions in parallel.
ModuleUtils::ParallelFunctionAnalysis<Counts, Immutable, InsertOrderedMap>
analysis(wasm, [&](Function* func, Counts& counts) {
counts.note(func->type);
for (auto type : func->vars) {
counts.note(type);
}
if (!func->imported()) {
CodeScanner(wasm, counts).walk(func->body);
}
});
// Combine the function info with the module info.
for (auto& [_, functionCounts] : analysis.map) {
for (auto& [sig, count] : functionCounts) {
counts[sig] += count;
}
}
if (prune) {
// Remove types that are not actually used.
auto it = counts.begin();
while (it != counts.end()) {
if (it->second == 0) {
auto deleted = it++;
counts.erase(deleted);
} else {
++it;
}
}
}
// Recursively traverse each reference type, which may have a child type that
// is itself a reference type. This reflects an appearance in the binary
// format that is in the type section itself. As we do this we may find more
// and more types, as nested children of previous ones. Each such type will
// appear in the type section once, so we just need to visit it once. Also
// track which recursion groups we've already processed to avoid quadratic
// behavior when there is a single large group.
InsertOrderedSet<HeapType> newTypes;
for (auto& [type, _] : counts) {
newTypes.insert(type);
}
std::unordered_set<RecGroup> includedGroups;
while (!newTypes.empty()) {
auto iter = newTypes.begin();
auto ht = *iter;
newTypes.erase(iter);
for (HeapType child : ht.getHeapTypeChildren()) {
if (!child.isBasic()) {
if (!counts.count(child)) {
newTypes.insert(child);
}
counts.note(child);
}
}
if (auto super = ht.getSuperType()) {
if (!counts.count(*super)) {
newTypes.insert(*super);
// We should unconditionally count supertypes, but while the type system
// is in flux, skip counting them to keep the type orderings in nominal
// test outputs more similar to the orderings in the equirecursive
// outputs. FIXME
counts.include(*super);
}
}
// Make sure we've noted the complete recursion group of each type as well.
if (!prune) {
auto recGroup = ht.getRecGroup();
if (includedGroups.insert(recGroup).second) {
for (auto type : recGroup) {
if (!counts.count(type)) {
newTypes.insert(type);
counts.include(type);
}
}
}
}
}
return counts;
}
void setIndices(IndexedHeapTypes& indexedTypes) {
for (Index i = 0; i < indexedTypes.types.size(); i++) {
indexedTypes.indices[indexedTypes.types[i]] = i;
}
}
InsertOrderedSet<HeapType> getPublicTypeSet(Module& wasm) {
InsertOrderedSet<HeapType> publicTypes;
auto notePublic = [&](HeapType type) {
if (type.isBasic()) {
return;
}
// All the rec group members are public as well.
for (auto member : type.getRecGroup()) {
if (!publicTypes.insert(member)) {
// We've already inserted this rec group.
break;
}
}
};
// TODO: Consider Tags as well, but they should store HeapTypes instead of
// Signatures first.
ModuleUtils::iterImportedTables(wasm, [&](Table* table) {
assert(table->type.isRef());
notePublic(table->type.getHeapType());
});
ModuleUtils::iterImportedGlobals(wasm, [&](Global* global) {
if (global->type.isRef()) {
notePublic(global->type.getHeapType());
}
});
ModuleUtils::iterImportedFunctions(wasm, [&](Function* func) {
// We can ignore call.without.effects, which is implemented as an import but
// functionally is a call within the module.
if (!Intrinsics(wasm).isCallWithoutEffects(func)) {
notePublic(func->type);
}
});
for (auto& ex : wasm.exports) {
switch (ex->kind) {
case ExternalKind::Function: {
auto* func = wasm.getFunction(ex->value);
notePublic(func->type);
continue;
}
case ExternalKind::Table: {
auto* table = wasm.getTable(ex->value);
assert(table->type.isRef());
notePublic(table->type.getHeapType());
continue;
}
case ExternalKind::Memory:
// Never a reference type.
continue;
case ExternalKind::Global: {
auto* global = wasm.getGlobal(ex->value);
if (global->type.isRef()) {
notePublic(global->type.getHeapType());
}
continue;
}
case ExternalKind::Tag:
// TODO
continue;
case ExternalKind::Invalid:
break;
}
WASM_UNREACHABLE("unexpected export kind");
}
// Find all the other public types reachable from directly publicized types.
std::vector<HeapType> workList(publicTypes.begin(), publicTypes.end());
while (workList.size()) {
auto curr = workList.back();
workList.pop_back();
for (auto t : curr.getReferencedHeapTypes()) {
if (!t.isBasic() && publicTypes.insert(t)) {
workList.push_back(t);
}
}
}
return publicTypes;
}
} // anonymous namespace
std::vector<HeapType> collectHeapTypes(Module& wasm) {
auto counts = getHeapTypeCounts(wasm);
std::vector<HeapType> types;
types.reserve(counts.size());
for (auto& [type, _] : counts) {
types.push_back(type);
}
return types;
}
std::vector<HeapType> getPublicHeapTypes(Module& wasm) {
auto publicTypes = getPublicTypeSet(wasm);
std::vector<HeapType> types;
types.reserve(publicTypes.size());
for (auto type : publicTypes) {
types.push_back(type);
}
return types;
}
std::vector<HeapType> getPrivateHeapTypes(Module& wasm) {
auto usedTypes = getHeapTypeCounts(wasm, true);
auto publicTypes = getPublicTypeSet(wasm);
std::vector<HeapType> types;
for (auto& [type, _] : usedTypes) {
if (!publicTypes.count(type)) {
types.push_back(type);
}
}
return types;
}
IndexedHeapTypes getOptimizedIndexedHeapTypes(Module& wasm) {
TypeSystem system = getTypeSystem();
Counts counts = getHeapTypeCounts(wasm);
// Types have to be arranged into topologically ordered recursion groups.
// Under isorecrsive typing, the topological sort has to take all referenced
// rec groups into account but under nominal typing it only has to take
// supertypes into account. First, sort the groups by average use count among
// their members so that the later topological sort will place frequently used
// types first.
struct GroupInfo {
size_t index;
double useCount = 0;
std::unordered_set<RecGroup> preds;
std::vector<RecGroup> sortedPreds;
GroupInfo(size_t index) : index(index) {}
bool operator<(const GroupInfo& other) const {
if (useCount != other.useCount) {
return useCount < other.useCount;
}
return index > other.index;
}
};
struct GroupInfoMap : std::unordered_map<RecGroup, GroupInfo> {
void sort(std::vector<RecGroup>& groups) {
std::sort(groups.begin(), groups.end(), [&](auto& a, auto& b) {
return this->at(a) < this->at(b);
});
}
};
// Collect the information that will be used to sort the recursion groups.
GroupInfoMap groupInfos;
for (auto& [type, _] : counts) {
RecGroup group = type.getRecGroup();
// Try to initialize a new info or get the existing info.
auto& info = groupInfos.insert({group, {groupInfos.size()}}).first->second;
// Update the reference count.
info.useCount += counts.at(type);
// Collect predecessor groups.
switch (system) {
case TypeSystem::Isorecursive:
for (auto child : type.getReferencedHeapTypes()) {
if (!child.isBasic()) {
RecGroup otherGroup = child.getRecGroup();
if (otherGroup != group) {
info.preds.insert(otherGroup);
}
}
}
break;
case TypeSystem::Nominal:
if (auto super = type.getSuperType()) {
info.preds.insert(super->getRecGroup());
}
break;
}
}
// Fix up the use counts to be averages to ensure groups are used comensurate
// with the amount of index space they occupy. Skip this for nominal types
// since their internal group size is always 1.
if (system != TypeSystem::Nominal) {
for (auto& [group, info] : groupInfos) {
info.useCount /= group.size();
}
}
// Sort the predecessors so the most used will be visited first.
for (auto& [group, info] : groupInfos) {
info.sortedPreds.insert(
info.sortedPreds.end(), info.preds.begin(), info.preds.end());
groupInfos.sort(info.sortedPreds);
info.preds.clear();
}
struct RecGroupSort : TopologicalSort<RecGroup, RecGroupSort> {
GroupInfoMap& groupInfos;
RecGroupSort(GroupInfoMap& groupInfos) : groupInfos(groupInfos) {
// Sort all the groups so the topological sort visits the most used first.
std::vector<RecGroup> sortedGroups;
sortedGroups.reserve(groupInfos.size());
for (auto& [group, _] : groupInfos) {
sortedGroups.push_back(group);
}
groupInfos.sort(sortedGroups);
for (auto group : sortedGroups) {
push(group);
}
}
void pushPredecessors(RecGroup group) {
for (auto pred : groupInfos.at(group).sortedPreds) {
push(pred);
}
}
};
// Perform the topological sort and collect the types.
IndexedHeapTypes indexedTypes;
indexedTypes.types.reserve(counts.size());
for (auto group : RecGroupSort(groupInfos)) {
for (auto member : group) {
indexedTypes.types.push_back(member);
}
}
setIndices(indexedTypes);
return indexedTypes;
}
} // namespace wasm::ModuleUtils