blob: 0e49f19c89faeb93f74c0371faee1a9bc31eb20e [file] [log] [blame] [edit]
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Removes obviously unneeded code
//
#include <ir/block-utils.h>
#include <ir/drop.h>
#include <ir/effects.h>
#include <ir/iteration.h>
#include <ir/literal-utils.h>
#include <ir/utils.h>
#include <pass.h>
#include <wasm-builder.h>
#include <wasm.h>
namespace wasm {
struct Vacuum : public WalkerPass<ExpressionStackWalker<Vacuum>> {
bool isFunctionParallel() override { return true; }
std::unique_ptr<Pass> create() override { return std::make_unique<Vacuum>(); }
void doWalkFunction(Function* func) {
walk(func->body);
ReFinalize().walkFunctionInModule(func, getModule());
}
// Returns nullptr if curr is dead, curr if it must stay as is, or one of its
// children if it can be replaced. Takes into account:
//
// * The result may be used or unused.
// * The type may or may not matter.
//
// For example,
//
// (drop
// (i32.eqz
// (call ..)))
//
// The drop means that the value is not used later. And while the call has
// side effects, the i32.eqz does not. So when we are called on the i32.eqz,
// and told the result does not matter, we can return the call. Note that in
// this case the type does not matter either, as drop doesn't care, and anyhow
// i32.eqz returns the same type as it receives. But for an expression that
// returns a different type, if the type matters then we cannot replace it.
Expression* optimize(Expression* curr, bool resultUsed, bool typeMatters) {
auto type = curr->type;
// If the type is none, then we can never replace it with another type.
if (type == Type::none) {
typeMatters = true;
}
// An unreachable node must not be changed. DCE will remove those.
if (type == Type::unreachable) {
return curr;
}
// resultUsed only makes sense when the type is concrete
assert(!resultUsed || curr->type != Type::none);
// If we actually need the result, then we must not change anything.
// TODO: maybe there is something clever though?
if (resultUsed) {
return curr;
}
// We iterate on possible replacements.
auto* prev = curr;
while (1) {
// If a replacement changes the type, and the type matters, return the
// previous one and stop.
if (typeMatters && curr->type != type) {
return prev;
}
prev = curr;
// Some instructions have special handling in visit*, and we should do
// nothing for them here.
if (curr->is<Drop>() || curr->is<Block>() || curr->is<If>() ||
curr->is<Loop>() || curr->is<Try>() || curr->is<TryTable>()) {
return curr;
}
// Check if this expression itself has side effects, ignoring children.
EffectAnalyzer self(getPassOptions(), *getModule());
self.visit(curr);
if (self.hasUnremovableSideEffects()) {
return curr;
}
// The result isn't used, and this has no side effects itself, so we can
// get rid of it. However, the children may have side effects.
SmallVector<Expression*, 1> childrenWithEffects;
for (auto* child : ChildIterator(curr)) {
if (EffectAnalyzer(getPassOptions(), *getModule(), child)
.hasUnremovableSideEffects()) {
childrenWithEffects.push_back(child);
}
}
if (childrenWithEffects.empty()) {
return nullptr;
}
if (childrenWithEffects.size() == 1) {
// We know the result isn't used, and curr has no side effects, so we
// can skip curr and keep looking into the child.
curr = childrenWithEffects[0];
continue;
}
// The result is not used, but multiple children have side effects, so we
// need to keep them around. We must also return something of the proper
// type - if we can do that, replace everything with the children + a
// dummy value of the proper type.
if (curr->type.isDefaultable()) {
auto* dummy = Builder(*getModule())
.makeConstantExpression(Literal::makeZeros(curr->type));
return getDroppedChildrenAndAppend(
curr, *getModule(), getPassOptions(), dummy);
}
// Otherwise, give up.
return curr;
}
}
void visitBlock(Block* curr) {
auto& list = curr->list;
// If traps are assumed to never happen, we can remove code on paths that
// must reach a trap:
//
// (block
// (i32.store ..)
// (br_if ..) ;; execution branches here, so the first store remains
// (i32.store ..) ;; this store can be removed
// (unreachable);
// )
//
// For this to be useful we need to have at least 2 elements: something to
// remove, and an unreachable.
if (getPassOptions().trapsNeverHappen && list.size() >= 2) {
// Go backwards. When we find a trap, mark the things before it as heading
// to a trap.
auto headingToTrap = false;
for (int i = list.size() - 1; i >= 0; i--) {
if (list[i]->is<Unreachable>()) {
headingToTrap = true;
continue;
}
if (!headingToTrap) {
continue;
}
// Check if we may no longer be heading to a trap. We can only optimize
// if the trap will actually be reached. Two situations can prevent that
// here: Control flow might branch away, or we might hang (which can
// happen in a call or a loop).
//
// We also cannot remove a pop as it is necessary for structural
// reasons.
EffectAnalyzer effects(getPassOptions(), *getModule(), list[i]);
if (effects.transfersControlFlow() || effects.calls ||
effects.mayNotReturn || effects.danglingPop) {
headingToTrap = false;
continue;
}
// This code can be removed! Turn it into a nop, and leave it for the
// code lower down to finish cleaning up.
ExpressionManipulator::nop(list[i]);
}
}
// compress out nops and other dead code
int skip = 0;
size_t size = list.size();
for (size_t z = 0; z < size; z++) {
auto* child = list[z];
// The last element may be used.
bool used =
z == size - 1 && curr->type.isConcrete() &&
ExpressionAnalyzer::isResultUsed(expressionStack, getFunction());
auto* optimized = optimize(child, used, true);
if (!optimized) {
auto childType = child->type;
if (childType.isConcrete()) {
if (LiteralUtils::canMakeZero(childType)) {
// We can't just skip a final concrete element, even if it isn't
// used. Instead, replace it with something that's easy to optimize
// out (for example, code-folding can merge out identical zeros at
// the end of if arms).
optimized = LiteralUtils::makeZero(childType, *getModule());
} else {
// Don't optimize it out.
optimized = child;
}
} else if (childType == Type::unreachable) {
// Don't try to optimize out an unreachable child (dce can do that
// properly).
optimized = child;
}
}
if (!optimized) {
skip++;
} else {
if (optimized != child) {
list[z] = optimized;
}
if (skip > 0) {
list[z - skip] = list[z];
list[z] = nullptr;
}
// if this is unreachable, the rest is dead code
if (list[z - skip]->type == Type::unreachable && z < size - 1) {
list.resize(z - skip + 1);
skip = 0; // nothing more to do on the list
break;
}
}
}
if (skip > 0) {
list.resize(size - skip);
}
// the block may now be a trivial one that we can get rid of and just leave
// its contents
replaceCurrent(BlockUtils::simplifyToContents(curr, this));
}
void visitIf(If* curr) {
// if the condition is a constant, just apply it
// we can just return the ifTrue or ifFalse.
if (auto* value = curr->condition->dynCast<Const>()) {
Expression* child;
if (value->value.getInteger()) {
child = curr->ifTrue;
} else {
if (curr->ifFalse) {
child = curr->ifFalse;
} else {
ExpressionManipulator::nop(curr);
return;
}
}
replaceCurrent(child);
return;
}
// if the condition is unreachable, just return it
if (curr->condition->type == Type::unreachable) {
replaceCurrent(curr->condition);
return;
}
// from here on, we can assume the condition executed
// In trapsNeverHappen mode, a definitely-trapping arm can be assumed to not
// happen. Such conditional code can be assumed to never be reached in this
// mode.
//
// Ignore the case of an unreachable if, such as having both arms be
// unreachable. In that case we'd need to fix up the IR to avoid changing
// the type; leave that for DCE to simplify first. After checking that
// curr->type != unreachable, we can assume that only one of the arms is
// unreachable (at most).
if (getPassOptions().trapsNeverHappen && curr->type != Type::unreachable) {
auto optimizeArm = [&](Expression* arm, Expression* otherArm) {
if (!arm->is<Unreachable>()) {
return false;
}
Builder builder(*getModule());
Expression* rep = builder.makeDrop(curr->condition);
if (otherArm) {
rep = builder.makeSequence(rep, otherArm);
}
replaceCurrent(rep);
return true;
};
// As mentioned above, do not try to optimize both arms; leave that case
// for DCE.
if (optimizeArm(curr->ifTrue, curr->ifFalse) ||
(curr->ifFalse && optimizeArm(curr->ifFalse, curr->ifTrue))) {
return;
}
}
if (curr->ifFalse) {
if (curr->ifFalse->is<Nop>()) {
curr->ifFalse = nullptr;
} else if (curr->ifTrue->is<Nop>()) {
curr->ifTrue = curr->ifFalse;
curr->ifFalse = nullptr;
curr->condition =
Builder(*getModule()).makeUnary(EqZInt32, curr->condition);
} else if (curr->ifTrue->is<Drop>() && curr->ifFalse->is<Drop>()) {
// instead of dropping both sides, drop the if, if they are the same
// type
auto* left = curr->ifTrue->cast<Drop>()->value;
auto* right = curr->ifFalse->cast<Drop>()->value;
if (left->type == right->type) {
curr->ifTrue = left;
curr->ifFalse = right;
curr->finalize();
replaceCurrent(Builder(*getModule()).makeDrop(curr));
}
}
} else {
// This is an if without an else. If the body is empty, we do not need it.
if (curr->ifTrue->is<Nop>()) {
replaceCurrent(Builder(*getModule()).makeDrop(curr->condition));
}
}
}
void visitLoop(Loop* curr) {
if (curr->body->is<Nop>()) {
ExpressionManipulator::nop(curr);
}
}
void visitDrop(Drop* curr) {
// optimize the dropped value, maybe leaving nothing
curr->value = optimize(curr->value, false, false);
if (curr->value == nullptr) {
ExpressionManipulator::nop(curr);
return;
}
// a drop of a tee is a set
if (auto* set = curr->value->dynCast<LocalSet>()) {
assert(set->isTee());
set->makeSet();
replaceCurrent(set);
return;
}
// If the value has no side effects, or it has side effects we can remove,
// do so. This basically means that if noTrapsHappen is set then we can
// use that assumption (that no trap actually happens at runtime) and remove
// a trapping value.
//
// TODO: A complete CFG analysis for noTrapsHappen mode, removing all code
// that definitely reaches a trap, *even if* it has side effects.
//
// Note that we check the type here to avoid removing unreachable code - we
// leave that for DCE.
if (curr->type == Type::none &&
!EffectAnalyzer(getPassOptions(), *getModule(), curr)
.hasUnremovableSideEffects()) {
ExpressionManipulator::nop(curr);
return;
}
// if we are dropping a block's return value, we might be able to remove it
// entirely
if (auto* block = curr->value->dynCast<Block>()) {
auto* last = block->list.back();
// note that the last element may be concrete but not the block, if the
// block has an unreachable element in the middle, making the block
// unreachable despite later elements and in particular the last
if (last->type.isConcrete() && block->type == last->type) {
last = optimize(last, false, false);
if (!last) {
// we may be able to remove this, if there are no brs
bool canPop = true;
if (block->name.is()) {
BranchUtils::BranchSeeker seeker(block->name);
Expression* temp = block;
seeker.walk(temp);
if (seeker.found && Type::hasLeastUpperBound(seeker.types)) {
canPop = false;
}
}
if (canPop) {
block->list.back() = last;
block->list.pop_back();
block->type = Type::none;
// we don't need the drop anymore, let's see what we have left in
// the block
if (block->list.size() > 1) {
replaceCurrent(block);
} else if (block->list.size() == 1) {
replaceCurrent(block->list[0]);
} else {
ExpressionManipulator::nop(curr);
}
return;
}
}
}
}
// sink a drop into an arm of an if-else if the other arm ends in an
// unreachable, as it if is a branch, this can make that branch optimizable
// and more vaccuming possible
auto* iff = curr->value->dynCast<If>();
if (iff && iff->ifFalse && iff->type.isConcrete()) {
// reuse the drop in both cases
if (iff->ifTrue->type == Type::unreachable &&
iff->ifFalse->type.isConcrete()) {
curr->value = iff->ifFalse;
iff->ifFalse = curr;
iff->type = Type::none;
replaceCurrent(iff);
} else if (iff->ifFalse->type == Type::unreachable &&
iff->ifTrue->type.isConcrete()) {
curr->value = iff->ifTrue;
iff->ifTrue = curr;
iff->type = Type::none;
replaceCurrent(iff);
}
}
}
void visitTry(Try* curr) {
// If try's body does not throw, the whole try-catch can be replaced with
// the try's body.
if (!EffectAnalyzer(getPassOptions(), *getModule(), curr->body).throws()) {
replaceCurrent(curr->body);
return;
}
// The try's body does throw. However, throwing may be the only thing it
// does, and if the try has a catch-all, then the entire try including
// children may have no effects. Note that this situation can only happen
// if we do have a catch-all, so avoid wasted work by checking that first.
// Also, we can't do this if a result is returned, so check the type.
if (curr->type == Type::none && curr->hasCatchAll() &&
!EffectAnalyzer(getPassOptions(), *getModule(), curr)
.hasUnremovableSideEffects()) {
ExpressionManipulator::nop(curr);
}
}
void visitTryTable(TryTable* curr) {
// If try_table's body does not throw, the whole try_table can be replaced
// with the try_table's body.
if (!EffectAnalyzer(getPassOptions(), *getModule(), curr->body).throws()) {
replaceCurrent(curr->body);
return;
}
}
void visitFunction(Function* curr) {
auto* optimized =
optimize(curr->body, curr->getResults() != Type::none, true);
if (optimized) {
curr->body = optimized;
} else {
ExpressionManipulator::nop(curr->body);
}
if (curr->getResults() == Type::none &&
!EffectAnalyzer(getPassOptions(), *getModule(), curr)
.hasUnremovableSideEffects()) {
ExpressionManipulator::nop(curr->body);
}
}
};
Pass* createVacuumPass() { return new Vacuum(); }
} // namespace wasm