blob: 5455c04386fbfa110ec17d566e91877b246a2878 [file] [log] [blame] [edit]
/*
* Copyright 2022 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wat-parser.h"
#include "ir/names.h"
#include "support/name.h"
#include "wasm-builder.h"
#include "wasm-type.h"
#include "wasm.h"
#include "wat-lexer.h"
// The WebAssembly text format is recursive in the sense that elements may be
// referred to before they are declared. Furthermore, elements may be referred
// to by index or by name. As a result, we need to parse text modules in
// multiple phases.
//
// In the first phase, we find all of the module element declarations and
// record, but do not interpret, the input spans of their corresponding
// definitions. This phase establishes the indices and names of each module
// element so that subsequent phases can look them up.
//
// The second phase parses type definitions to construct the types used in the
// module. This has to be its own phase because we have no way to refer to a
// type before it has been built along with all the other types, unlike for
// other module elements that can be referred to by name before their
// definitions have been parsed.
//
// The third phase, not yet implemented, further parses and constructs types
// implicitly defined by type uses in functions, blocks, and call_indirect
// instructions. These implicitly defined types may be referred to by index
// elsewhere.
//
// The fourth phase, not yet implemented, parses and sets the types of globals,
// functions, and other top-level module elements. These types need to be set
// before we parse instructions because they determine the types of instructions
// such as global.get and ref.func.
//
// The fifth and final phase parses the remaining contents of all module
// elements, including instructions.
//
// Each phase of parsing gets its own context type that is passed to the
// individual parsing functions. There is a parsing function for each element of
// the grammar given in the spec. Parsing functions are templatized so that they
// may be passed the appropriate context type and return the correct result type
// for each phase.
#define CHECK_ERR(val) \
if (auto _val = (val); auto err = _val.getErr()) { \
return Err{*err}; \
}
using namespace std::string_view_literals;
namespace wasm::WATParser {
namespace {
// ============
// Parser Input
// ============
// Wraps a lexer and provides utilities for consuming tokens.
struct ParseInput {
Lexer lexer;
ParseInput(std::string_view in) : lexer(in) {}
ParseInput(std::string_view in, size_t index) : lexer(in) {
lexer.setIndex(index);
}
bool empty() { return lexer.empty(); }
std::optional<Token> peek() {
if (!empty()) {
return *lexer;
}
return {};
}
bool takeLParen() {
auto t = peek();
if (!t || !t->isLParen()) {
return false;
}
++lexer;
return true;
}
bool takeRParen() {
auto t = peek();
if (!t || !t->isRParen()) {
return false;
}
++lexer;
return true;
}
std::optional<Name> takeID() {
if (auto t = peek()) {
if (auto id = t->getID()) {
++lexer;
// See comment on takeName.
return Name(std::string(*id));
}
}
return {};
}
std::optional<std::string_view> takeKeyword() {
if (auto t = peek()) {
if (auto keyword = t->getKeyword()) {
++lexer;
return *keyword;
}
}
return {};
}
bool takeKeyword(std::string_view expected) {
if (auto t = peek()) {
if (auto keyword = t->getKeyword()) {
if (*keyword == expected) {
++lexer;
return true;
}
}
}
return false;
}
std::optional<uint64_t> takeU64() {
if (auto t = peek()) {
if (auto n = t->getU64()) {
++lexer;
return n;
}
}
return {};
}
std::optional<int64_t> takeS64() {
if (auto t = peek()) {
if (auto n = t->getS64()) {
++lexer;
return n;
}
}
return {};
}
std::optional<int64_t> takeI64() {
if (auto t = peek()) {
if (auto n = t->getI64()) {
++lexer;
return n;
}
}
return {};
}
std::optional<uint32_t> takeU32() {
if (auto t = peek()) {
if (auto n = t->getU32()) {
++lexer;
return n;
}
}
return {};
}
std::optional<int32_t> takeS32() {
if (auto t = peek()) {
if (auto n = t->getS32()) {
++lexer;
return n;
}
}
return {};
}
std::optional<int32_t> takeI32() {
if (auto t = peek()) {
if (auto n = t->getI32()) {
++lexer;
return n;
}
}
return {};
}
std::optional<double> takeF64() {
if (auto t = peek()) {
if (auto d = t->getF64()) {
++lexer;
return d;
}
}
return {};
}
std::optional<float> takeF32() {
if (auto t = peek()) {
if (auto f = t->getF32()) {
++lexer;
return f;
}
}
return {};
}
std::optional<std::string_view> takeString() {
if (auto t = peek()) {
if (auto s = t->getString()) {
++lexer;
return s;
}
}
return {};
}
std::optional<Name> takeName() {
// TODO: Move this to lexer and validate UTF.
if (auto str = takeString()) {
// Copy to a std::string to make sure we have a null terminator, otherwise
// the `Name` constructor won't work correctly.
// TODO: Update `Name` to use string_view instead of char* and/or to take
// rvalue strings to avoid this extra copy.
return Name(std::string(*str));
}
return {};
}
bool takeSExprStart(std::string_view expected) {
auto original = lexer;
if (takeLParen() && takeKeyword(expected)) {
return true;
}
lexer = original;
return false;
}
Index getPos() {
if (auto t = peek()) {
return lexer.getIndex() - t->span.size();
}
return lexer.getIndex();
}
[[nodiscard]] Err err(std::string reason) {
std::stringstream msg;
msg << lexer.position(lexer.getIndex()) << ": error: " << reason;
return Err{msg.str()};
}
};
// =========
// Utilities
// =========
// The location and possible name of a module-level definition in the input.
struct DefPos {
Name name;
Index pos;
};
struct GlobalType {
Mutability mutability;
Type type;
};
struct ImportNames {
Name mod;
Name nm;
};
using IndexMap = std::unordered_map<Name, Index>;
void applyImportNames(Importable& item,
const std::optional<ImportNames>& names) {
if (names) {
item.module = names->mod;
item.base = names->nm;
}
}
Result<> addExports(ParseInput& in,
Module& wasm,
const Named* item,
const std::vector<Name>& exports,
ExternalKind kind) {
for (auto name : exports) {
if (wasm.getExportOrNull(name)) {
// TODO: Fix error location
return in.err("repeated export name");
}
wasm.addExport(Builder(wasm).makeExport(name, item->name, kind));
}
return Ok{};
}
Result<IndexMap> createIndexMap(std::string_view input,
const std::vector<DefPos>& defs) {
IndexMap indices;
for (Index i = 0; i < defs.size(); ++i) {
if (defs[i].name.is()) {
if (!indices.insert({defs[i].name, i}).second) {
return ParseInput(input, defs[i].pos).err("duplicate element name");
}
}
}
return indices;
}
std::vector<Type> getUnnamedTypes(const std::vector<NameType>& named) {
std::vector<Type> types;
types.reserve(named.size());
for (auto& t : named) {
types.push_back(t.type);
}
return types;
}
template<typename Ctx>
Result<> parseDefs(Ctx& ctx,
std::string_view input,
const std::vector<DefPos>& defs,
MaybeResult<> (*parser)(Ctx&, ParseInput&)) {
for (Index i = 0; i < defs.size(); ++i) {
ctx.index = i;
ParseInput in(input, defs[i].pos);
auto parsed = parser(ctx, in);
CHECK_ERR(parsed);
assert(parsed);
}
return Ok{};
}
// ===============
// Parser Contexts
// ===============
struct NullTypeParserCtx {
using IndexT = Ok;
using HeapTypeT = Ok;
using TypeT = Ok;
using ParamsT = Ok;
using ResultsT = Ok;
using SignatureT = Ok;
using StorageT = Ok;
using FieldT = Ok;
using FieldsT = Ok;
using StructT = Ok;
using ArrayT = Ok;
using GlobalTypeT = Ok;
HeapTypeT makeFunc() { return Ok{}; }
HeapTypeT makeAny() { return Ok{}; }
HeapTypeT makeExtern() { return Ok{}; }
HeapTypeT makeEq() { return Ok{}; }
HeapTypeT makeI31() { return Ok{}; }
HeapTypeT makeData() { return Ok{}; }
TypeT makeI32() { return Ok{}; }
TypeT makeI64() { return Ok{}; }
TypeT makeF32() { return Ok{}; }
TypeT makeF64() { return Ok{}; }
TypeT makeV128() { return Ok{}; }
TypeT makeRefType(HeapTypeT, Nullability) { return Ok{}; }
ParamsT makeParams() { return Ok{}; }
void appendParam(ParamsT&, Name, TypeT) {}
ResultsT makeResults() { return Ok{}; }
void appendResult(ResultsT&, TypeT) {}
SignatureT makeFuncType(ParamsT*, ResultsT*) { return Ok{}; }
StorageT makeI8() { return Ok{}; }
StorageT makeI16() { return Ok{}; }
StorageT makeStorageType(TypeT) { return Ok{}; }
FieldT makeFieldType(StorageT, Mutability) { return Ok{}; }
FieldsT makeFields() { return Ok{}; }
void appendField(FieldsT&, Name, FieldT) {}
StructT makeStruct(FieldsT&) { return Ok{}; }
std::optional<ArrayT> makeArray(FieldsT&) { return Ok{}; }
GlobalTypeT makeGlobalType(Mutability, TypeT) { return Ok{}; }
Result<Index> getTypeIndex(Name, ParseInput&) { return 1; }
Result<HeapTypeT> getHeapTypeFromIdx(Index, ParseInput&) { return Ok{}; }
};
template<typename Ctx> struct TypeParserCtx {
using IndexT = Index;
using HeapTypeT = HeapType;
using TypeT = Type;
using ParamsT = std::vector<NameType>;
using ResultsT = std::vector<Type>;
using SignatureT = Signature;
using StorageT = Field;
using FieldT = Field;
using FieldsT = std::pair<std::vector<Name>, std::vector<Field>>;
using StructT = std::pair<std::vector<Name>, Struct>;
using ArrayT = Array;
// Map heap type names to their indices.
const IndexMap& typeIndices;
TypeParserCtx(const IndexMap& typeIndices) : typeIndices(typeIndices) {}
Ctx& self() { return *static_cast<Ctx*>(this); }
HeapTypeT makeFunc() { return HeapType::func; }
HeapTypeT makeAny() { return HeapType::any; }
HeapTypeT makeExtern() { return HeapType::ext; }
HeapTypeT makeEq() { return HeapType::eq; }
HeapTypeT makeI31() { return HeapType::i31; }
HeapTypeT makeData() { return HeapType::data; }
TypeT makeI32() { return Type::i32; }
TypeT makeI64() { return Type::i64; }
TypeT makeF32() { return Type::f32; }
TypeT makeF64() { return Type::f64; }
TypeT makeV128() { return Type::v128; }
TypeT makeRefType(HeapTypeT ht, Nullability nullability) {
return Type(ht, nullability);
}
TypeT makeTupleType(const std::vector<Type> types) { return Tuple(types); }
ParamsT makeParams() { return {}; }
void appendParam(ParamsT& params, Name id, TypeT type) {
params.push_back({id, type});
}
ResultsT makeResults() { return {}; }
void appendResult(ResultsT& results, TypeT type) { results.push_back(type); }
SignatureT makeFuncType(ParamsT* params, ResultsT* results) {
std::vector<Type> empty;
const auto& paramTypes = params ? getUnnamedTypes(*params) : empty;
const auto& resultTypes = results ? *results : empty;
return Signature(self().makeTupleType(paramTypes),
self().makeTupleType(resultTypes));
}
StorageT makeI8() { return Field(Field::i8, Immutable); }
StorageT makeI16() { return Field(Field::i16, Immutable); }
StorageT makeStorageType(TypeT type) { return Field(type, Immutable); }
FieldT makeFieldType(FieldT field, Mutability mutability) {
if (field.packedType == Field::not_packed) {
return Field(field.type, mutability);
}
return Field(field.packedType, mutability);
}
FieldsT makeFields() { return {}; }
void appendField(FieldsT& fields, Name name, FieldT field) {
fields.first.push_back(name);
fields.second.push_back(field);
}
StructT makeStruct(FieldsT& fields) {
return {std::move(fields.first), Struct(std::move(fields.second))};
}
std::optional<ArrayT> makeArray(FieldsT& fields) {
if (fields.second.size() == 1) {
return Array(fields.second[0]);
}
return {};
}
Result<Index> getTypeIndex(Name id, ParseInput& in) {
auto it = typeIndices.find(id);
if (it == typeIndices.end()) {
return in.err("unknown type identifier");
}
return it->second;
}
};
struct NullInstrParserCtx {
using InstrT = Ok;
using InstrsT = Ok;
using ExprT = Ok;
InstrsT makeInstrs() { return Ok{}; }
void appendInstr(InstrsT&, InstrT) {}
ExprT makeExpr(InstrsT) { return Ok{}; }
InstrT makeUnreachable() { return Ok{}; }
InstrT makeNop() { return Ok{}; }
InstrT makeI32Const(uint32_t) { return Ok{}; }
InstrT makeI64Const(uint64_t) { return Ok{}; }
InstrT makeF32Const(float) { return Ok{}; }
InstrT makeF64Const(double) { return Ok{}; }
template<typename HeapTypeT> InstrT makeRefNull(HeapTypeT) { return {}; }
};
template<typename Ctx> struct InstrParserCtx : TypeParserCtx<Ctx> {
using InstrT = Expression*;
using InstrsT = std::vector<Expression*>;
using ExprT = Expression*;
Builder builder;
InstrParserCtx(Module& wasm, const IndexMap& typeIndices)
: TypeParserCtx<Ctx>(typeIndices), builder(wasm) {}
InstrsT makeInstrs() { return {}; }
void appendInstr(InstrsT& instrs, InstrT instr) { instrs.push_back(instr); }
ExprT makeExpr(InstrsT& instrs) {
switch (instrs.size()) {
case 0:
return builder.makeNop();
case 1:
return instrs.front();
default:
return builder.makeBlock(instrs);
}
}
InstrT makeUnreachable() { return builder.makeUnreachable(); }
InstrT makeNop() { return builder.makeNop(); }
InstrT makeI32Const(uint32_t c) { return builder.makeConst(Literal(c)); }
InstrT makeI64Const(uint64_t c) { return builder.makeConst(Literal(c)); }
InstrT makeF32Const(float c) { return builder.makeConst(Literal(c)); }
InstrT makeF64Const(double c) { return builder.makeConst(Literal(c)); }
InstrT makeRefNull(typename TypeParserCtx<Ctx>::HeapTypeT type) {
return builder.makeRefNull(type);
}
};
// Phase 1: Parse definition spans for top-level module elements and determine
// their indices and names.
struct ParseDeclsCtx : NullTypeParserCtx, NullInstrParserCtx {
// At this stage we only look at types to find implicit type definitions,
// which are inserted directly in to the context. We cannot materialize or
// validate any types because we don't know what types exist yet.
// Declared module elements are inserted into the module, but their bodies are
// not filled out until later parsing phases.
Module& wasm;
// The module element definitions we are parsing in this phase.
std::vector<DefPos> typeDefs;
std::vector<DefPos> subtypeDefs;
std::vector<DefPos> globalDefs;
// Counters used for generating names for module elements.
int globalCounter = 0;
// Used to verify that all imports come before all non-imports.
bool hasNonImport = false;
ParseDeclsCtx(Module& wasm) : wasm(wasm) {}
void addFuncType(SignatureT) {}
void addStructType(StructT) {}
void addArrayType(ArrayT) {}
Result<> addSubtype(Index, ParseInput&) { return Ok{}; }
void finishSubtype(Name name, Index pos) {
subtypeDefs.push_back({name, pos});
}
size_t getRecGroupStartIndex() { return 0; }
void addRecGroup(Index, size_t) {}
void finishDeftype(Index pos) { typeDefs.push_back({{}, pos}); }
Result<Global*> addGlobalDecl(ParseInput& in,
Name name,
std::optional<ImportNames> importNames) {
auto g = std::make_unique<Global>();
if (name.is()) {
if (wasm.getGlobalOrNull(name)) {
// TODO: if the existing global is not explicitly named, fix its name
// and continue.
// TODO: Fix error location to point to name.
return in.err("repeated global name");
}
g->setExplicitName(name);
} else {
name = (importNames ? "gimport$" : "") + std::to_string(globalCounter++);
name = Names::getValidGlobalName(wasm, name);
g->name = name;
}
applyImportNames(*g, importNames);
return wasm.addGlobal(std::move(g));
}
Result<> addGlobal(Name name,
const std::vector<Name>& exports,
ImportNames* import,
GlobalTypeT,
std::optional<ExprT>,
Index pos,
ParseInput& in) {
if (import && hasNonImport) {
return in.err("import after non-import");
}
auto imp = import ? std::make_optional(*import) : std::nullopt;
auto g = addGlobalDecl(in, name, imp);
CHECK_ERR(g);
CHECK_ERR(addExports(in, wasm, *g, exports, ExternalKind::Global));
globalDefs.push_back({name, pos});
return Ok{};
}
};
// Phase 2: Parse type definitions into a TypeBuilder.
struct ParseTypeDefsCtx : TypeParserCtx<ParseTypeDefsCtx> {
// We update slots in this builder as we parse type definitions.
TypeBuilder& builder;
// Parse the names of types and fields as we go.
std::vector<TypeNames> names;
// The index of the subtype definition we are parsing.
Index index = 0;
ParseTypeDefsCtx(TypeBuilder& builder, const IndexMap& typeIndices)
: TypeParserCtx<ParseTypeDefsCtx>(typeIndices), builder(builder),
names(builder.size()) {}
TypeT makeRefType(HeapTypeT ht, Nullability nullability) {
return builder.getTempRefType(ht, nullability);
}
TypeT makeTupleType(const std::vector<Type> types) {
return builder.getTempTupleType(types);
}
Result<HeapTypeT> getHeapTypeFromIdx(Index idx, ParseInput& in) {
if (idx >= builder.size()) {
return in.err("type index out of bounds");
}
return builder[idx];
}
void addFuncType(SignatureT& type) { builder[index] = type; }
void addStructType(StructT& type) {
auto& [fieldNames, str] = type;
builder[index] = str;
for (Index i = 0; i < fieldNames.size(); ++i) {
if (auto name = fieldNames[i]; name.is()) {
names[index].fieldNames[i] = name;
}
}
}
void addArrayType(ArrayT& type) { builder[index] = type; }
Result<> addSubtype(Index super, ParseInput& in) {
if (super >= builder.size()) {
return in.err("supertype index out of bounds");
}
builder[index].subTypeOf(builder[super]);
return Ok{};
}
void finishSubtype(Name name, Index pos) { names[index++].name = name; }
size_t getRecGroupStartIndex() { return index; }
void addRecGroup(Index start, size_t len) {
builder.createRecGroup(start, len);
}
void finishDeftype(Index) {}
};
// TODO: Phase 3: ParseImplicitTypeDefsCtx
// Phase 4: Parse and set the types of module elements.
struct ParseModuleTypesCtx : TypeParserCtx<ParseModuleTypesCtx>,
NullInstrParserCtx {
// In this phase we have constructed all the types, so we can materialize and
// validate them when they are used.
using GlobalTypeT = GlobalType;
Module& wasm;
const std::vector<HeapType>& types;
// The index of the current type.
Index index = 0;
ParseModuleTypesCtx(Module& wasm,
const std::vector<HeapType>& types,
const IndexMap& typeIndices)
: TypeParserCtx<ParseModuleTypesCtx>(typeIndices), wasm(wasm),
types(types) {}
Result<HeapTypeT> getHeapTypeFromIdx(Index idx, ParseInput& in) {
if (idx >= types.size()) {
return in.err("type index out of bounds");
}
return types[idx];
}
GlobalTypeT makeGlobalType(Mutability mutability, TypeT type) {
return {mutability, type};
}
Result<> addGlobal(Name,
const std::vector<Name>&,
ImportNames*,
GlobalTypeT type,
std::optional<ExprT>,
Index,
ParseInput&) {
auto& g = wasm.globals[index];
g->mutable_ = type.mutability;
g->type = type.type;
return Ok{};
}
};
// Phase 5: Parse module element definitions, including instructions.
struct ParseDefsCtx : InstrParserCtx<ParseDefsCtx> {
using GlobalTypeT = Ok;
using InstrT = Expression*;
using InstrsT = std::vector<Expression*>;
using ExprT = Expression*;
Module& wasm;
// A stack of stacks of fully-parsed instructions.
std::vector<std::vector<Expression*>> instrStack;
const std::vector<HeapType>& types;
// The index of the current module element.
Index index = 0;
ParseDefsCtx(Module& wasm,
const std::vector<HeapType>& types,
const IndexMap& typeIndices)
: InstrParserCtx<ParseDefsCtx>(wasm, typeIndices), wasm(wasm),
types(types) {}
GlobalTypeT makeGlobalType(Mutability, TypeT) { return Ok{}; }
Result<HeapTypeT> getHeapTypeFromIdx(Index idx, ParseInput& in) {
if (idx >= types.size()) {
return in.err("type index out of bounds");
}
return types[idx];
}
Result<> addGlobal(Name,
const std::vector<Name>&,
ImportNames*,
GlobalTypeT,
std::optional<ExprT> exp,
Index,
ParseInput&) {
if (exp) {
wasm.globals[index]->init = *exp;
}
return Ok{};
}
};
// ================
// Parser Functions
// ================
// Types
template<typename Ctx>
Result<typename Ctx::HeapTypeT> heaptype(Ctx&, ParseInput&);
template<typename Ctx>
MaybeResult<typename Ctx::RefTypeT> reftype(Ctx&, ParseInput&);
template<typename Ctx> Result<typename Ctx::TypeT> valtype(Ctx&, ParseInput&);
template<typename Ctx>
MaybeResult<typename Ctx::ParamsT> params(Ctx&, ParseInput&);
template<typename Ctx>
MaybeResult<typename Ctx::ResultsT> results(Ctx&, ParseInput&);
template<typename Ctx>
MaybeResult<typename Ctx::SignatureT> functype(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::FieldT> storagetype(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::FieldT> fieldtype(Ctx&, ParseInput&);
template<typename Ctx> Result<typename Ctx::FieldsT> fields(Ctx&, ParseInput&);
template<typename Ctx>
MaybeResult<typename Ctx::StructT> structtype(Ctx&, ParseInput&);
template<typename Ctx>
MaybeResult<typename Ctx::ArrayT> arraytype(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::GlobalTypeT> globaltype(Ctx&, ParseInput&);
// Instructions
template<typename Ctx>
MaybeResult<typename Ctx::InstrT> instr(Ctx&, ParseInput&);
template<typename Ctx> Result<typename Ctx::InstrsT> instrs(Ctx&, ParseInput&);
template<typename Ctx> Result<typename Ctx::ExprT> expr(Ctx&, ParseInput&);
template<typename Ctx> Result<typename Ctx::InstrT> makeUnreachable(Ctx&);
template<typename Ctx> Result<typename Ctx::InstrT> makeNop(Ctx&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeBinary(Ctx&, ParseInput&, BinaryOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeUnary(Ctx&, ParseInput&, UnaryOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeSelect(Ctx&, ParseInput&);
template<typename Ctx> Result<typename Ctx::InstrT> makeDrop(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeMemorySize(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeMemoryGrow(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeLocalGet(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeLocalTee(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeLocalSet(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeGlobalGet(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeGlobalSet(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeBlock(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeThenOrElse(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeConst(Ctx&, ParseInput&, Type type);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeLoad(Ctx&, ParseInput&, Type type, bool isAtomic);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStore(Ctx&, ParseInput&, Type type, bool isAtomic);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeAtomicRMWOrCmpxchg(Ctx&, ParseInput&, Type type);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeAtomicRMW(Ctx&, ParseInput&, Type type, uint8_t bytes, const char* extra);
template<typename Ctx>
Result<typename Ctx::InstrT> makeAtomicCmpxchg(
Ctx&, ParseInput&, Type type, uint8_t bytes, const char* extra);
template<typename Ctx>
Result<typename Ctx::InstrT> makeAtomicWait(Ctx&, ParseInput&, Type type);
template<typename Ctx>
Result<typename Ctx::InstrT> makeAtomicNotify(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeAtomicFence(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeSIMDExtract(Ctx&, ParseInput&, SIMDExtractOp op, size_t lanes);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeSIMDReplace(Ctx&, ParseInput&, SIMDReplaceOp op, size_t lanes);
template<typename Ctx>
Result<typename Ctx::InstrT> makeSIMDShuffle(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeSIMDTernary(Ctx&, ParseInput&, SIMDTernaryOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeSIMDShift(Ctx&, ParseInput&, SIMDShiftOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeSIMDLoad(Ctx&, ParseInput&, SIMDLoadOp op);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeSIMDLoadStoreLane(Ctx&, ParseInput&, SIMDLoadStoreLaneOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeMemoryInit(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeDataDrop(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeMemoryCopy(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeMemoryFill(Ctx&, ParseInput&);
template<typename Ctx> Result<typename Ctx::InstrT> makePush(Ctx&, ParseInput&);
template<typename Ctx> Result<typename Ctx::InstrT> makePop(Ctx&, ParseInput&);
template<typename Ctx> Result<typename Ctx::InstrT> makeIf(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeMaybeBlock(Ctx&, ParseInput&, size_t i, Type type);
template<typename Ctx> Result<typename Ctx::InstrT> makeLoop(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeCall(Ctx&, ParseInput&, bool isReturn);
template<typename Ctx>
Result<typename Ctx::InstrT> makeCallIndirect(Ctx&, ParseInput&, bool isReturn);
template<typename Ctx>
Result<typename Ctx::InstrT> makeBreak(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeBreakTable(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeReturn(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefNull(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefIs(Ctx&, ParseInput&, RefIsOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefFunc(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefEq(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeTableGet(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeTableSet(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeTableSize(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeTableGrow(Ctx&, ParseInput&);
template<typename Ctx> Result<typename Ctx::InstrT> makeTry(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeTryOrCatchBody(Ctx&, ParseInput&, Type type, bool isTry);
template<typename Ctx>
Result<typename Ctx::InstrT> makeThrow(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeRethrow(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeTupleMake(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeTupleExtract(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeCallRef(Ctx&, ParseInput&, bool isReturn);
template<typename Ctx>
Result<typename Ctx::InstrT> makeI31New(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeI31Get(Ctx&, ParseInput&, bool signed_);
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefTest(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefTestStatic(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefCast(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefCastStatic(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefCastNopStatic(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeBrOn(Ctx&, ParseInput&, BrOnOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeBrOnStatic(Ctx&, ParseInput&, BrOnOp op);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStructNewStatic(Ctx&, ParseInput&, bool default_);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStructGet(Ctx&, ParseInput&, bool signed_ = false);
template<typename Ctx>
Result<typename Ctx::InstrT> makeStructSet(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeArrayNewStatic(Ctx&, ParseInput&, bool default_);
template<typename Ctx>
Result<typename Ctx::InstrT> makeArrayInitStatic(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeArrayGet(Ctx&, ParseInput&, bool signed_ = false);
template<typename Ctx>
Result<typename Ctx::InstrT> makeArraySet(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeArrayLen(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeArrayCopy(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefAs(Ctx&, ParseInput&, RefAsOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringNew(Ctx&, ParseInput&, StringNewOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringConst(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStringMeasure(Ctx&, ParseInput&, StringMeasureOp op);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStringEncode(Ctx&, ParseInput&, StringEncodeOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringConcat(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringEq(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringAs(Ctx&, ParseInput&, StringAsOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringWTF8Advance(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringWTF16Get(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringIterNext(Ctx&, ParseInput&);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStringIterMove(Ctx&, ParseInput&, StringIterMoveOp op);
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStringSliceWTF(Ctx&, ParseInput&, StringSliceWTFOp op);
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringSliceIter(Ctx&, ParseInput&);
// Modules
template<typename Ctx>
MaybeResult<Index> maybeTypeidx(Ctx& ctx, ParseInput& in);
template<typename Ctx>
Result<typename Ctx::HeapTypeT> typeidx(Ctx&, ParseInput&);
MaybeResult<ImportNames> inlineImport(ParseInput&);
Result<std::vector<Name>> inlineExports(ParseInput&);
template<typename Ctx> Result<> strtype(Ctx&, ParseInput&);
template<typename Ctx>
MaybeResult<typename Ctx::ModuleNameT> subtype(Ctx&, ParseInput&);
template<typename Ctx> MaybeResult<> deftype(Ctx&, ParseInput&);
template<typename Ctx> MaybeResult<> global(Ctx&, ParseInput&);
MaybeResult<> modulefield(ParseDeclsCtx&, ParseInput&);
Result<> module(ParseDeclsCtx&, ParseInput&);
// =====
// Types
// =====
// heaptype ::= x:typeidx => types[x]
// | 'func' => func
// | 'extern' => extern
template<typename Ctx>
Result<typename Ctx::HeapTypeT> heaptype(Ctx& ctx, ParseInput& in) {
if (in.takeKeyword("func"sv)) {
return ctx.makeFunc();
}
if (in.takeKeyword("any"sv)) {
return ctx.makeAny();
}
if (in.takeKeyword("extern"sv)) {
return ctx.makeExtern();
}
if (in.takeKeyword("eq"sv)) {
return ctx.makeEq();
}
if (in.takeKeyword("i31"sv)) {
return ctx.makeI31();
}
if (in.takeKeyword("data"sv)) {
return ctx.makeData();
}
if (in.takeKeyword("array"sv)) {
return in.err("array heap type not yet supported");
}
auto type = typeidx(ctx, in);
CHECK_ERR(type);
return *type;
}
// reftype ::= 'funcref' => funcref
// | 'externref' => externref
// | 'anyref' => anyref
// | 'eqref' => eqref
// | 'i31ref' => i31ref
// | 'dataref' => dataref
// | 'arrayref' => arrayref
// | '(' ref null? t:heaptype ')' => ref null? t
template<typename Ctx>
MaybeResult<typename Ctx::TypeT> reftype(Ctx& ctx, ParseInput& in) {
if (in.takeKeyword("funcref"sv)) {
return ctx.makeRefType(ctx.makeFunc(), Nullable);
}
if (in.takeKeyword("externref"sv)) {
return ctx.makeRefType(ctx.makeExtern(), Nullable);
}
if (in.takeKeyword("anyref"sv)) {
return ctx.makeRefType(ctx.makeAny(), Nullable);
}
if (in.takeKeyword("eqref"sv)) {
return ctx.makeRefType(ctx.makeEq(), Nullable);
}
if (in.takeKeyword("i31ref"sv)) {
return ctx.makeRefType(ctx.makeI31(), NonNullable);
}
if (in.takeKeyword("dataref"sv)) {
return ctx.makeRefType(ctx.makeData(), NonNullable);
}
if (in.takeKeyword("arrayref"sv)) {
return in.err("arrayref not yet supported");
}
if (!in.takeSExprStart("ref"sv)) {
return {};
}
auto nullability = in.takeKeyword("null"sv) ? Nullable : NonNullable;
auto type = heaptype(ctx, in);
CHECK_ERR(type);
if (!in.takeRParen()) {
return in.err("expected end of reftype");
}
return ctx.makeRefType(*type, nullability);
}
// numtype ::= 'i32' => i32
// | 'i64' => i64
// | 'f32' => f32
// | 'f64' => f64
// vectype ::= 'v128' => v128
// valtype ::= t:numtype => t
// | t:vectype => t
// | t:reftype => t
template<typename Ctx>
Result<typename Ctx::TypeT> valtype(Ctx& ctx, ParseInput& in) {
if (in.takeKeyword("i32"sv)) {
return ctx.makeI32();
} else if (in.takeKeyword("i64"sv)) {
return ctx.makeI64();
} else if (in.takeKeyword("f32"sv)) {
return ctx.makeF32();
} else if (in.takeKeyword("f64"sv)) {
return ctx.makeF64();
} else if (in.takeKeyword("v128"sv)) {
return ctx.makeV128();
} else if (auto type = reftype(ctx, in)) {
CHECK_ERR(type);
return *type;
} else {
return in.err("expected valtype");
}
}
// param ::= '(' 'param id? t:valtype ')' => [t]
// | '(' 'param t*:valtype* ')' => [t*]
// params ::= param*
template<typename Ctx>
MaybeResult<typename Ctx::ParamsT> params(Ctx& ctx, ParseInput& in) {
bool hasAny = false;
auto res = ctx.makeParams();
while (in.takeSExprStart("param"sv)) {
hasAny = true;
if (auto id = in.takeID()) {
// Single named param
auto type = valtype(ctx, in);
CHECK_ERR(type);
if (!in.takeRParen()) {
return in.err("expected end of param");
}
ctx.appendParam(res, *id, *type);
} else {
// Repeated unnamed params
while (!in.takeRParen()) {
auto type = valtype(ctx, in);
CHECK_ERR(type);
ctx.appendParam(res, {}, *type);
}
}
}
if (hasAny) {
return res;
}
return {};
}
// result ::= '(' 'result' t*:valtype ')' => [t*]
// results ::= result*
template<typename Ctx>
MaybeResult<typename Ctx::ResultsT> results(Ctx& ctx, ParseInput& in) {
bool hasAny = false;
auto res = ctx.makeResults();
while (in.takeSExprStart("result"sv)) {
hasAny = true;
while (!in.takeRParen()) {
auto type = valtype(ctx, in);
CHECK_ERR(type);
ctx.appendResult(res, *type);
}
}
if (hasAny) {
return res;
}
return {};
}
// functype ::= '(' 'func' t1*:vec(param) t2*:vec(result) ')' => [t1*] -> [t2*]
template<typename Ctx>
MaybeResult<typename Ctx::SignatureT> functype(Ctx& ctx, ParseInput& in) {
if (!in.takeSExprStart("func"sv)) {
return {};
}
auto parsedParams = params(ctx, in);
CHECK_ERR(parsedParams);
auto parsedResults = results(ctx, in);
CHECK_ERR(parsedResults);
if (!in.takeRParen()) {
return in.err("expected end of functype");
}
return ctx.makeFuncType(parsedParams.getPtr(), parsedResults.getPtr());
}
// storagetype ::= valtype | packedtype
// packedtype ::= i8 | i16
template<typename Ctx>
Result<typename Ctx::FieldT> storagetype(Ctx& ctx, ParseInput& in) {
if (in.takeKeyword("i8"sv)) {
return ctx.makeI8();
}
if (in.takeKeyword("i16"sv)) {
return ctx.makeI16();
}
auto type = valtype(ctx, in);
CHECK_ERR(type);
return ctx.makeStorageType(*type);
}
// fieldtype ::= t:storagetype => const t
// | '(' 'mut' t:storagetype ')' => var t
template<typename Ctx>
Result<typename Ctx::FieldT> fieldtype(Ctx& ctx, ParseInput& in) {
auto mutability = Immutable;
if (in.takeSExprStart("mut"sv)) {
mutability = Mutable;
}
auto field = storagetype(ctx, in);
CHECK_ERR(field);
if (mutability == Mutable) {
if (!in.takeRParen()) {
return in.err("expected end of field type");
}
}
return ctx.makeFieldType(*field, mutability);
}
// field ::= '(' 'field' id t:fieldtype ')' => [(id, t)]
// | '(' 'field' t*:fieldtype* ')' => [(_, t*)*]
// | fieldtype
template<typename Ctx>
Result<typename Ctx::FieldsT> fields(Ctx& ctx, ParseInput& in) {
auto res = ctx.makeFields();
while (true) {
if (auto t = in.peek(); !t || t->isRParen()) {
return res;
}
if (in.takeSExprStart("field")) {
if (auto id = in.takeID()) {
auto field = fieldtype(ctx, in);
CHECK_ERR(field);
if (!in.takeRParen()) {
return in.err("expected end of field");
}
ctx.appendField(res, *id, *field);
} else {
while (!in.takeRParen()) {
auto field = fieldtype(ctx, in);
CHECK_ERR(field);
ctx.appendField(res, {}, *field);
}
}
} else {
auto field = fieldtype(ctx, in);
CHECK_ERR(field);
ctx.appendField(res, {}, *field);
}
}
}
// structtype ::= '(' 'struct' field* ')'
template<typename Ctx>
MaybeResult<typename Ctx::StructT> structtype(Ctx& ctx, ParseInput& in) {
if (!in.takeSExprStart("struct"sv)) {
return {};
}
auto namedFields = fields(ctx, in);
CHECK_ERR(namedFields);
if (!in.takeRParen()) {
return in.err("expected end of struct definition");
}
return ctx.makeStruct(*namedFields);
}
// arraytype ::= '(' 'array' field ')'
template<typename Ctx>
MaybeResult<typename Ctx::ArrayT> arraytype(Ctx& ctx, ParseInput& in) {
if (!in.takeSExprStart("array"sv)) {
return {};
}
auto namedFields = fields(ctx, in);
CHECK_ERR(namedFields);
if (!in.takeRParen()) {
return in.err("expected end of array definition");
}
if (auto array = ctx.makeArray(*namedFields)) {
return *array;
}
return in.err("expected exactly one field in array definition");
}
// globaltype ::= t:valtype => const t
// | '(' 'mut' t:valtype ')' => var t
template<typename Ctx>
Result<typename Ctx::GlobalTypeT> globaltype(Ctx& ctx, ParseInput& in) {
auto mutability = Immutable;
if (in.takeSExprStart("mut"sv)) {
mutability = Mutable;
}
auto type = valtype(ctx, in);
CHECK_ERR(type);
if (mutability == Mutable && !in.takeRParen()) {
return in.err("expected end of globaltype");
}
return ctx.makeGlobalType(mutability, *type);
}
// ============
// Instructions
// ============
template<typename Ctx>
MaybeResult<typename Ctx::InstrT> instr(Ctx& ctx, ParseInput& in) {
auto keyword = in.takeKeyword();
if (!keyword) {
return {};
}
auto op = *keyword;
#define NEW_INSTRUCTION_PARSER
#define NEW_WAT_PARSER
#include <gen-s-parser.inc>
}
template<typename Ctx>
Result<typename Ctx::InstrsT> instrs(Ctx& ctx, ParseInput& in) {
auto insts = ctx.makeInstrs();
while (auto inst = instr(ctx, in)) {
CHECK_ERR(inst);
ctx.appendInstr(insts, *inst);
}
return insts;
}
template<typename Ctx>
Result<typename Ctx::ExprT> expr(Ctx& ctx, ParseInput& in) {
auto insts = instrs(ctx, in);
CHECK_ERR(insts);
return ctx.makeExpr(*insts);
}
template<typename Ctx> Result<typename Ctx::InstrT> makeUnreachable(Ctx& ctx) {
return ctx.makeUnreachable();
}
template<typename Ctx> Result<typename Ctx::InstrT> makeNop(Ctx& ctx) {
return ctx.makeNop();
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeBinary(Ctx& ctx, ParseInput& in, BinaryOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeUnary(Ctx& ctx, ParseInput& in, UnaryOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeSelect(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeDrop(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeMemorySize(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeMemoryGrow(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeLocalGet(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeLocalTee(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeLocalSet(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeGlobalGet(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeGlobalSet(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeBlock(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeThenOrElse(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeConst(Ctx& ctx, ParseInput& in, Type type) {
assert(type.isBasic());
switch (type.getBasic()) {
case Type::i32:
if (auto c = in.takeI32()) {
return ctx.makeI32Const(*c);
}
return in.err("expected i32");
case Type::i64:
if (auto c = in.takeI64()) {
return ctx.makeI64Const(*c);
}
return in.err("expected i64");
case Type::f32:
if (auto c = in.takeF32()) {
return ctx.makeF32Const(*c);
}
return in.err("expected f32");
case Type::f64:
if (auto c = in.takeF64()) {
return ctx.makeF64Const(*c);
}
return in.err("expected f64");
case Type::v128:
return in.err("unimplemented instruction");
case Type::none:
case Type::unreachable:
break;
}
WASM_UNREACHABLE("unexpected type");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeLoad(Ctx& ctx, ParseInput& in, Type type, bool isAtomic) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStore(Ctx& ctx, ParseInput& in, Type type, bool isAtomic) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeAtomicRMWOrCmpxchg(Ctx& ctx, ParseInput& in, Type type) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeAtomicRMW(
Ctx& ctx, ParseInput& in, Type type, uint8_t bytes, const char* extra) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeAtomicCmpxchg(
Ctx& ctx, ParseInput& in, Type type, uint8_t bytes, const char* extra) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeAtomicWait(Ctx& ctx, ParseInput& in, Type type) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeAtomicNotify(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeAtomicFence(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeSIMDExtract(Ctx& ctx, ParseInput& in, SIMDExtractOp op, size_t lanes) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeSIMDReplace(Ctx& ctx, ParseInput& in, SIMDReplaceOp op, size_t lanes) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeSIMDShuffle(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeSIMDTernary(Ctx& ctx, ParseInput& in, SIMDTernaryOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeSIMDShift(Ctx& ctx, ParseInput& in, SIMDShiftOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeSIMDLoad(Ctx& ctx, ParseInput& in, SIMDLoadOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeSIMDLoadStoreLane(Ctx& ctx, ParseInput& in, SIMDLoadStoreLaneOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeMemoryInit(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeDataDrop(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeMemoryCopy(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeMemoryFill(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makePush(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makePop(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeIf(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeMaybeBlock(Ctx& ctx, ParseInput& in, size_t i, Type type) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeLoop(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeCall(Ctx& ctx, ParseInput& in, bool isReturn) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeCallIndirect(Ctx& ctx, ParseInput& in, bool isReturn) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeBreak(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeBreakTable(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeReturn(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefNull(Ctx& ctx, ParseInput& in) {
auto t = heaptype(ctx, in);
CHECK_ERR(t);
return ctx.makeRefNull(*t);
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefIs(Ctx& ctx, ParseInput& in, RefIsOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefFunc(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefEq(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeTableGet(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeTableSet(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeTableSize(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeTableGrow(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeTry(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeTryOrCatchBody(Ctx& ctx, ParseInput& in, Type type, bool isTry) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeThrow(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeRethrow(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeTupleMake(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeTupleExtract(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeCallRef(Ctx& ctx, ParseInput& in, bool isReturn) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeI31New(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeI31Get(Ctx& ctx, ParseInput& in, bool signed_) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefTest(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefTestStatic(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefCast(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefCastStatic(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefCastNopStatic(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeBrOn(Ctx& ctx, ParseInput& in, BrOnOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeBrOnStatic(Ctx& ctx, ParseInput& in, BrOnOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStructNewStatic(Ctx& ctx, ParseInput& in, bool default_) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStructGet(Ctx& ctx, ParseInput& in, bool signed_) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeStructSet(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeArrayNewStatic(Ctx& ctx, ParseInput& in, bool default_) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeArrayInitStatic(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeArrayGet(Ctx& ctx, ParseInput& in, bool signed_) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeArraySet(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeArrayLen(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeArrayCopy(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeRefAs(Ctx& ctx, ParseInput& in, RefAsOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStringNew(Ctx& ctx, ParseInput& in, StringNewOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringConst(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStringMeasure(Ctx& ctx, ParseInput& in, StringMeasureOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStringEncode(Ctx& ctx, ParseInput& in, StringEncodeOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringConcat(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringEq(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStringAs(Ctx& ctx, ParseInput& in, StringAsOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringWTF8Advance(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringWTF16Get(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringIterNext(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStringIterMove(Ctx& ctx, ParseInput& in, StringIterMoveOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT>
makeStringSliceWTF(Ctx& ctx, ParseInput& in, StringSliceWTFOp op) {
return in.err("unimplemented instruction");
}
template<typename Ctx>
Result<typename Ctx::InstrT> makeStringSliceIter(Ctx& ctx, ParseInput& in) {
return in.err("unimplemented instruction");
}
// =======
// Modules
// =======
// typeidx ::= x:u32 => x
// | v:id => x (if types[x] = v)
template<typename Ctx>
MaybeResult<Index> maybeTypeidx(Ctx& ctx, ParseInput& in) {
if (auto x = in.takeU32()) {
return *x;
}
if (auto id = in.takeID()) {
// TODO: Fix position to point to start of id, not next element.
auto idx = ctx.getTypeIndex(*id, in);
CHECK_ERR(idx);
return *idx;
}
return {};
}
template<typename Ctx>
Result<typename Ctx::HeapTypeT> typeidx(Ctx& ctx, ParseInput& in) {
if (auto idx = maybeTypeidx(ctx, in)) {
CHECK_ERR(idx);
return ctx.getHeapTypeFromIdx(*idx, in);
}
return in.err("expected type index or identifier");
}
// ('(' 'import' mod:name nm:name ')')?
MaybeResult<ImportNames> inlineImport(ParseInput& in) {
if (!in.takeSExprStart("import"sv)) {
return {};
}
auto mod = in.takeName();
if (!mod) {
return in.err("expected import module");
}
auto nm = in.takeName();
if (!nm) {
return in.err("expected import name");
}
if (!in.takeRParen()) {
return in.err("expected end of import");
}
// TODO: Return Ok when parsing Decls.
return {{*mod, *nm}};
}
// ('(' 'export' name ')')*
Result<std::vector<Name>> inlineExports(ParseInput& in) {
std::vector<Name> exports;
while (in.takeSExprStart("export"sv)) {
auto name = in.takeName();
if (!name) {
return in.err("expected export name");
}
if (!in.takeRParen()) {
return in.err("expected end of import");
}
exports.push_back(*name);
}
return exports;
}
// strtype ::= ft:functype => ft
// | st:structtype => st
// | at:arraytype => at
template<typename Ctx> Result<> strtype(Ctx& ctx, ParseInput& in) {
if (auto type = functype(ctx, in)) {
CHECK_ERR(type);
ctx.addFuncType(*type);
return Ok{};
}
if (auto type = structtype(ctx, in)) {
CHECK_ERR(type);
ctx.addStructType(*type);
return Ok{};
}
if (auto type = arraytype(ctx, in)) {
CHECK_ERR(type);
ctx.addArrayType(*type);
return Ok{};
}
return in.err("expected type description");
}
// subtype ::= '(' 'type' id? '(' 'sub' typeidx? strtype ')' ')'
// | '(' 'type' id? strtype ')'
template<typename Ctx> MaybeResult<> subtype(Ctx& ctx, ParseInput& in) {
auto pos = in.getPos();
if (!in.takeSExprStart("type"sv)) {
return {};
}
Name name;
if (auto id = in.takeID()) {
name = *id;
}
if (in.takeSExprStart("sub"sv)) {
if (auto super = maybeTypeidx(ctx, in)) {
CHECK_ERR(super);
CHECK_ERR(ctx.addSubtype(*super, in));
}
CHECK_ERR(strtype(ctx, in));
if (!in.takeRParen()) {
return in.err("expected end of subtype definition");
}
} else {
CHECK_ERR(strtype(ctx, in));
}
if (!in.takeRParen()) {
return in.err("expected end of type definition");
}
ctx.finishSubtype(name, pos);
return Ok{};
}
// deftype ::= '(' 'rec' subtype* ')'
// | subtype
template<typename Ctx> MaybeResult<> deftype(Ctx& ctx, ParseInput& in) {
auto pos = in.getPos();
if (in.takeSExprStart("rec"sv)) {
size_t startIndex = ctx.getRecGroupStartIndex();
size_t groupLen = 0;
while (auto type = subtype(ctx, in)) {
CHECK_ERR(type);
++groupLen;
}
if (!in.takeRParen()) {
return in.err("expected type definition or end of recursion group");
}
ctx.addRecGroup(startIndex, groupLen);
} else if (auto type = subtype(ctx, in)) {
CHECK_ERR(type);
} else {
return {};
}
ctx.finishDeftype(pos);
return Ok{};
}
// global ::= '(' 'global' id? ('(' 'export' name ')')* gt:globaltype e:expr ')'
// | '(' 'global' id? '(' 'import' mod:name nm:name ')'
// gt:globaltype ')'
template<typename Ctx> MaybeResult<> global(Ctx& ctx, ParseInput& in) {
auto pos = in.getPos();
if (!in.takeSExprStart("global"sv)) {
return {};
}
Name name;
if (auto id = in.takeID()) {
name = *id;
}
auto exports = inlineExports(in);
CHECK_ERR(exports);
auto import = inlineImport(in);
CHECK_ERR(import);
auto type = globaltype(ctx, in);
CHECK_ERR(type);
std::optional<typename Ctx::ExprT> exp;
if (!import) {
auto e = expr(ctx, in);
CHECK_ERR(e);
exp = *e;
}
if (!in.takeRParen()) {
return in.err("expected end of global");
}
// TODO: Use `pos` instead of `in` for error position.
CHECK_ERR(
ctx.addGlobal(name, *exports, import.getPtr(), *type, exp, pos, in));
return Ok{};
}
// modulefield ::= deftype
// | import
// | func
// | table
// | mem
// | global
// | export
// | start
// | elem
// | data
MaybeResult<> modulefield(ParseDeclsCtx& ctx, ParseInput& in) {
if (auto t = in.peek(); !t || t->isRParen()) {
return {};
}
if (auto res = deftype(ctx, in)) {
CHECK_ERR(res);
return Ok{};
}
if (auto res = global(ctx, in)) {
CHECK_ERR(res);
return Ok{};
}
return in.err("unrecognized module field");
}
// module ::= '(' 'module' id? (m:modulefield)* ')'
// | (m:modulefield)* eof
Result<> module(ParseDeclsCtx& ctx, ParseInput& in) {
bool outer = in.takeSExprStart("module"sv);
if (outer) {
if (auto id = in.takeID()) {
ctx.wasm.name = *id;
}
}
while (auto field = modulefield(ctx, in)) {
CHECK_ERR(field);
}
if (outer && !in.takeRParen()) {
return in.err("expected end of module");
}
return Ok{};
}
} // anonymous namespace
Result<> parseModule(Module& wasm, std::string_view input) {
// Parse module-level declarations.
ParseDeclsCtx decls(wasm);
{
ParseInput in(input);
CHECK_ERR(module(decls, in));
if (!in.empty()) {
return in.err("Unexpected tokens after module");
}
}
auto typeIndices = createIndexMap(input, decls.subtypeDefs);
CHECK_ERR(typeIndices);
// Parse type definitions.
std::vector<HeapType> types;
{
TypeBuilder builder(decls.subtypeDefs.size());
ParseTypeDefsCtx ctx(builder, *typeIndices);
for (auto& typeDef : decls.typeDefs) {
ParseInput in(input, typeDef.pos);
CHECK_ERR(deftype(ctx, in));
}
auto built = builder.build();
if (auto* err = built.getError()) {
std::stringstream msg;
msg << "invalid type: " << err->reason;
return ParseInput(input, decls.typeDefs[err->index].pos).err(msg.str());
}
types = *built;
// Record type names on the module.
for (size_t i = 0; i < types.size(); ++i) {
auto& names = ctx.names[i];
if (names.name.is() || names.fieldNames.size()) {
wasm.typeNames.insert({types[i], names});
}
}
}
// TODO: Parse implicit type definitions.
{
// Parse module-level types.
ParseModuleTypesCtx ctx(wasm, types, *typeIndices);
CHECK_ERR(parseDefs(ctx, input, decls.globalDefs, global));
// TODO: Parse types of other module elements.
}
{
// Parse definitions.
// TODO: Parallelize this.
ParseDefsCtx ctx(wasm, types, *typeIndices);
CHECK_ERR(parseDefs(ctx, input, decls.globalDefs, global));
}
return Ok{};
}
} // namespace wasm::WATParser