blob: 7eedcccc2f948284191e936b64eb864df030a153 [file] [log] [blame] [edit]
/*
* Copyright 2023 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef parser_context_h
#define parser_context_h
#include "common.h"
#include "input.h"
#include "ir/names.h"
#include "support/name.h"
#include "support/result.h"
#include "wasm-builder.h"
#include "wasm-ir-builder.h"
#include "wasm.h"
namespace wasm::WATParser {
using IndexMap = std::unordered_map<Name, Index>;
inline std::vector<Type> getUnnamedTypes(const std::vector<NameType>& named) {
std::vector<Type> types;
types.reserve(named.size());
for (auto& t : named) {
types.push_back(t.type);
}
return types;
}
struct Limits {
uint64_t initial;
uint64_t max;
};
struct MemType {
Type type;
Limits limits;
bool shared;
};
struct Memarg {
uint64_t offset;
uint32_t align;
};
// The location, possible name, and index in the respective module index space
// of a module-level definition in the input.
struct DefPos {
Name name;
Index pos;
Index index;
};
struct GlobalType {
Mutability mutability;
Type type;
};
// A signature type and parameter names (possibly empty), used for parsing
// function types.
struct TypeUse {
HeapType type;
std::vector<Name> names;
};
struct NullTypeParserCtx {
using IndexT = Ok;
using HeapTypeT = Ok;
using TypeT = Ok;
using ParamsT = Ok;
using ResultsT = size_t;
using BlockTypeT = Ok;
using SignatureT = Ok;
using StorageT = Ok;
using FieldT = Ok;
using FieldsT = Ok;
using StructT = Ok;
using ArrayT = Ok;
using LimitsT = Ok;
using MemTypeT = Ok;
using GlobalTypeT = Ok;
using TypeUseT = Ok;
using LocalsT = Ok;
using DataStringT = Ok;
HeapTypeT makeFunc() { return Ok{}; }
HeapTypeT makeAny() { return Ok{}; }
HeapTypeT makeExtern() { return Ok{}; }
HeapTypeT makeEq() { return Ok{}; }
HeapTypeT makeI31() { return Ok{}; }
HeapTypeT makeStructType() { return Ok{}; }
HeapTypeT makeArrayType() { return Ok{}; }
TypeT makeI32() { return Ok{}; }
TypeT makeI64() { return Ok{}; }
TypeT makeF32() { return Ok{}; }
TypeT makeF64() { return Ok{}; }
TypeT makeV128() { return Ok{}; }
TypeT makeRefType(HeapTypeT, Nullability) { return Ok{}; }
ParamsT makeParams() { return Ok{}; }
void appendParam(ParamsT&, Name, TypeT) {}
// We have to count results because whether or not a block introduces a
// typeuse that may implicitly define a type depends on how many results it
// has.
size_t makeResults() { return 0; }
void appendResult(size_t& results, TypeT) { ++results; }
size_t getResultsSize(size_t results) { return results; }
SignatureT makeFuncType(ParamsT*, ResultsT*) { return Ok{}; }
StorageT makeI8() { return Ok{}; }
StorageT makeI16() { return Ok{}; }
StorageT makeStorageType(TypeT) { return Ok{}; }
FieldT makeFieldType(StorageT, Mutability) { return Ok{}; }
FieldsT makeFields() { return Ok{}; }
void appendField(FieldsT&, Name, FieldT) {}
StructT makeStruct(FieldsT&) { return Ok{}; }
std::optional<ArrayT> makeArray(FieldsT&) { return Ok{}; }
GlobalTypeT makeGlobalType(Mutability, TypeT) { return Ok{}; }
LocalsT makeLocals() { return Ok{}; }
void appendLocal(LocalsT&, Name, TypeT) {}
Result<Index> getTypeIndex(Name) { return 1; }
Result<HeapTypeT> getHeapTypeFromIdx(Index) { return Ok{}; }
DataStringT makeDataString() { return Ok{}; }
void appendDataString(DataStringT&, std::string_view) {}
MemTypeT makeMemType(Type, LimitsT, bool) { return Ok{}; }
BlockTypeT getBlockTypeFromResult(size_t results) { return Ok{}; }
Result<> getBlockTypeFromTypeUse(Index, TypeUseT) { return Ok{}; }
};
template<typename Ctx> struct TypeParserCtx {
using IndexT = Index;
using HeapTypeT = HeapType;
using TypeT = Type;
using ParamsT = std::vector<NameType>;
using ResultsT = std::vector<Type>;
using BlockTypeT = HeapType;
using SignatureT = Signature;
using StorageT = Field;
using FieldT = Field;
using FieldsT = std::pair<std::vector<Name>, std::vector<Field>>;
using StructT = std::pair<std::vector<Name>, Struct>;
using ArrayT = Array;
using LimitsT = Ok;
using MemTypeT = Ok;
using LocalsT = std::vector<NameType>;
using DataStringT = Ok;
// Map heap type names to their indices.
const IndexMap& typeIndices;
TypeParserCtx(const IndexMap& typeIndices) : typeIndices(typeIndices) {}
Ctx& self() { return *static_cast<Ctx*>(this); }
HeapTypeT makeFunc() { return HeapType::func; }
HeapTypeT makeAny() { return HeapType::any; }
HeapTypeT makeExtern() { return HeapType::ext; }
HeapTypeT makeEq() { return HeapType::eq; }
HeapTypeT makeI31() { return HeapType::i31; }
HeapTypeT makeStructType() { return HeapType::struct_; }
HeapTypeT makeArrayType() { return HeapType::array; }
TypeT makeI32() { return Type::i32; }
TypeT makeI64() { return Type::i64; }
TypeT makeF32() { return Type::f32; }
TypeT makeF64() { return Type::f64; }
TypeT makeV128() { return Type::v128; }
TypeT makeRefType(HeapTypeT ht, Nullability nullability) {
return Type(ht, nullability);
}
TypeT makeTupleType(const std::vector<Type> types) { return Tuple(types); }
ParamsT makeParams() { return {}; }
void appendParam(ParamsT& params, Name id, TypeT type) {
params.push_back({id, type});
}
ResultsT makeResults() { return {}; }
void appendResult(ResultsT& results, TypeT type) { results.push_back(type); }
size_t getResultsSize(const ResultsT& results) { return results.size(); }
SignatureT makeFuncType(ParamsT* params, ResultsT* results) {
std::vector<Type> empty;
const auto& paramTypes = params ? getUnnamedTypes(*params) : empty;
const auto& resultTypes = results ? *results : empty;
return Signature(self().makeTupleType(paramTypes),
self().makeTupleType(resultTypes));
}
StorageT makeI8() { return Field(Field::i8, Immutable); }
StorageT makeI16() { return Field(Field::i16, Immutable); }
StorageT makeStorageType(TypeT type) { return Field(type, Immutable); }
FieldT makeFieldType(FieldT field, Mutability mutability) {
if (field.packedType == Field::not_packed) {
return Field(field.type, mutability);
}
return Field(field.packedType, mutability);
}
FieldsT makeFields() { return {}; }
void appendField(FieldsT& fields, Name name, FieldT field) {
fields.first.push_back(name);
fields.second.push_back(field);
}
StructT makeStruct(FieldsT& fields) {
return {std::move(fields.first), Struct(std::move(fields.second))};
}
std::optional<ArrayT> makeArray(FieldsT& fields) {
if (fields.second.size() == 1) {
return Array(fields.second[0]);
}
return {};
}
LocalsT makeLocals() { return {}; }
void appendLocal(LocalsT& locals, Name id, TypeT type) {
locals.push_back({id, type});
}
Result<Index> getTypeIndex(Name id) {
auto it = typeIndices.find(id);
if (it == typeIndices.end()) {
return self().in.err("unknown type identifier");
}
return it->second;
}
DataStringT makeDataString() { return Ok{}; }
void appendDataString(DataStringT&, std::string_view) {}
LimitsT makeLimits(uint64_t, std::optional<uint64_t>) { return Ok{}; }
LimitsT getLimitsFromData(DataStringT) { return Ok{}; }
MemTypeT makeMemType(Type, LimitsT, bool) { return Ok{}; }
HeapType getBlockTypeFromResult(const std::vector<Type> results) {
assert(results.size() == 1);
return HeapType(Signature(Type::none, results[0]));
}
};
struct NullInstrParserCtx {
using ExprT = Ok;
using FieldIdxT = Ok;
using LocalIdxT = Ok;
using GlobalIdxT = Ok;
using MemoryIdxT = Ok;
using DataIdxT = Ok;
using MemargT = Ok;
Result<> makeExpr() { return Ok{}; }
template<typename HeapTypeT> FieldIdxT getFieldFromIdx(HeapTypeT, uint32_t) {
return Ok{};
}
template<typename HeapTypeT> FieldIdxT getFieldFromName(HeapTypeT, Name) {
return Ok{};
}
LocalIdxT getLocalFromIdx(uint32_t) { return Ok{}; }
LocalIdxT getLocalFromName(Name) { return Ok{}; }
GlobalIdxT getGlobalFromIdx(uint32_t) { return Ok{}; }
GlobalIdxT getGlobalFromName(Name) { return Ok{}; }
MemoryIdxT getMemoryFromIdx(uint32_t) { return Ok{}; }
MemoryIdxT getMemoryFromName(Name) { return Ok{}; }
DataIdxT getDataFromIdx(uint32_t) { return Ok{}; }
DataIdxT getDataFromName(Name) { return Ok{}; }
MemargT getMemarg(uint64_t, uint32_t) { return Ok{}; }
template<typename BlockTypeT>
Result<> makeBlock(Index, std::optional<Name>, BlockTypeT) {
return Ok{};
}
template<typename BlockTypeT>
Result<> makeIf(Index, std::optional<Name>, BlockTypeT) {
return Ok{};
}
Result<> visitElse() { return Ok{}; }
template<typename BlockTypeT>
Result<> makeLoop(Index, std::optional<Name>, BlockTypeT) {
return Ok{};
}
Result<> visitEnd() { return Ok{}; }
Result<> makeUnreachable(Index) { return Ok{}; }
Result<> makeNop(Index) { return Ok{}; }
Result<> makeBinary(Index, BinaryOp) { return Ok{}; }
Result<> makeUnary(Index, UnaryOp) { return Ok{}; }
template<typename ResultsT> Result<> makeSelect(Index, ResultsT*) {
return Ok{};
}
Result<> makeDrop(Index) { return Ok{}; }
Result<> makeMemorySize(Index, MemoryIdxT*) { return Ok{}; }
Result<> makeMemoryGrow(Index, MemoryIdxT*) { return Ok{}; }
Result<> makeLocalGet(Index, LocalIdxT) { return Ok{}; }
Result<> makeLocalTee(Index, LocalIdxT) { return Ok{}; }
Result<> makeLocalSet(Index, LocalIdxT) { return Ok{}; }
Result<> makeGlobalGet(Index, GlobalIdxT) { return Ok{}; }
Result<> makeGlobalSet(Index, GlobalIdxT) { return Ok{}; }
Result<> makeI32Const(Index, uint32_t) { return Ok{}; }
Result<> makeI64Const(Index, uint64_t) { return Ok{}; }
Result<> makeF32Const(Index, float) { return Ok{}; }
Result<> makeF64Const(Index, double) { return Ok{}; }
Result<> makeLoad(Index, Type, bool, int, bool, MemoryIdxT*, MemargT) {
return Ok{};
}
Result<> makeStore(Index, Type, int, bool, MemoryIdxT*, MemargT) {
return Ok{};
}
Result<> makeAtomicRMW(Index, AtomicRMWOp, Type, int, MemoryIdxT*, MemargT) {
return Ok{};
}
Result<> makeAtomicCmpxchg(Index, Type, int, MemoryIdxT*, MemargT) {
return Ok{};
}
Result<> makeAtomicWait(Index, Type, MemoryIdxT*, MemargT) { return Ok{}; }
Result<> makeAtomicNotify(Index, MemoryIdxT*, MemargT) { return Ok{}; }
Result<> makeAtomicFence(Index) { return Ok{}; }
Result<> makeSIMDExtract(Index, SIMDExtractOp, uint8_t) { return Ok{}; }
Result<> makeSIMDReplace(Index, SIMDReplaceOp, uint8_t) { return Ok{}; }
Result<> makeSIMDShuffle(Index, const std::array<uint8_t, 16>&) {
return Ok{};
}
Result<> makeSIMDTernary(Index, SIMDTernaryOp) { return Ok{}; }
Result<> makeSIMDShift(Index, SIMDShiftOp) { return Ok{}; }
Result<> makeSIMDLoad(Index, SIMDLoadOp, MemoryIdxT*, MemargT) {
return Ok{};
}
Result<> makeSIMDLoadStoreLane(
Index, SIMDLoadStoreLaneOp, MemoryIdxT*, MemargT, uint8_t) {
return Ok{};
}
Result<> makeMemoryInit(Index, MemoryIdxT*, DataIdxT) { return Ok{}; }
Result<> makeDataDrop(Index, DataIdxT) { return Ok{}; }
Result<> makeMemoryCopy(Index, MemoryIdxT*, MemoryIdxT*) { return Ok{}; }
Result<> makeMemoryFill(Index, MemoryIdxT*) { return Ok{}; }
Result<> makeReturn(Index) { return Ok{}; }
template<typename HeapTypeT> Result<> makeRefNull(Index, HeapTypeT) {
return Ok{};
}
Result<> makeRefIsNull(Index) { return Ok{}; }
Result<> makeRefEq(Index) { return Ok{}; }
Result<> makeRefI31(Index) { return Ok{}; }
Result<> makeI31Get(Index, bool) { return Ok{}; }
template<typename HeapTypeT> Result<> makeStructNew(Index, HeapTypeT) {
return Ok{};
}
template<typename HeapTypeT> Result<> makeStructNewDefault(Index, HeapTypeT) {
return Ok{};
}
template<typename HeapTypeT>
Result<> makeStructGet(Index, HeapTypeT, FieldIdxT, bool) {
return Ok{};
}
template<typename HeapTypeT>
Result<> makeStructSet(Index, HeapTypeT, FieldIdxT) {
return Ok{};
}
template<typename HeapTypeT> Result<> makeArrayNew(Index, HeapTypeT) {
return Ok{};
}
template<typename HeapTypeT> Result<> makeArrayNewDefault(Index, HeapTypeT) {
return Ok{};
}
template<typename HeapTypeT>
Result<> makeArrayNewData(Index, HeapTypeT, DataIdxT) {
return Ok{};
}
template<typename HeapTypeT>
Result<> makeArrayNewElem(Index, HeapTypeT, DataIdxT) {
return Ok{};
}
template<typename HeapTypeT> Result<> makeArrayGet(Index, HeapTypeT, bool) {
return Ok{};
}
template<typename HeapTypeT> Result<> makeArraySet(Index, HeapTypeT) {
return Ok{};
}
Result<> makeArrayLen(Index) { return Ok{}; }
template<typename HeapTypeT>
Result<> makeArrayCopy(Index, HeapTypeT, HeapTypeT) {
return Ok{};
}
template<typename HeapTypeT> Result<> makeArrayFill(Index, HeapTypeT) {
return Ok{};
}
};
// Phase 1: Parse definition spans for top-level module elements and determine
// their indices and names.
struct ParseDeclsCtx : NullTypeParserCtx, NullInstrParserCtx {
using DataStringT = std::vector<char>;
using LimitsT = Limits;
using MemTypeT = MemType;
ParseInput in;
// At this stage we only look at types to find implicit type definitions,
// which are inserted directly into the context. We cannot materialize or
// validate any types because we don't know what types exist yet.
//
// Declared module elements are inserted into the module, but their bodies are
// not filled out until later parsing phases.
Module& wasm;
// The module element definitions we are parsing in this phase.
std::vector<DefPos> typeDefs;
std::vector<DefPos> subtypeDefs;
std::vector<DefPos> funcDefs;
std::vector<DefPos> memoryDefs;
std::vector<DefPos> globalDefs;
std::vector<DefPos> dataDefs;
// Positions of typeuses that might implicitly define new types.
std::vector<Index> implicitTypeDefs;
// Counters used for generating names for module elements.
int funcCounter = 0;
int memoryCounter = 0;
int globalCounter = 0;
int dataCounter = 0;
// Used to verify that all imports come before all non-imports.
bool hasNonImport = false;
ParseDeclsCtx(std::string_view in, Module& wasm) : in(in), wasm(wasm) {}
void addFuncType(SignatureT) {}
void addStructType(StructT) {}
void addArrayType(ArrayT) {}
void setOpen() {}
Result<> addSubtype(Index) { return Ok{}; }
void finishSubtype(Name name, Index pos) {
subtypeDefs.push_back({name, pos, Index(subtypeDefs.size())});
}
size_t getRecGroupStartIndex() { return 0; }
void addRecGroup(Index, size_t) {}
void finishDeftype(Index pos) {
typeDefs.push_back({{}, pos, Index(typeDefs.size())});
}
std::vector<char> makeDataString() { return {}; }
void appendDataString(std::vector<char>& data, std::string_view str) {
data.insert(data.end(), str.begin(), str.end());
}
Limits makeLimits(uint64_t n, std::optional<uint64_t> m) {
return m ? Limits{n, *m} : Limits{n, Memory::kUnlimitedSize};
}
Limits getLimitsFromData(const std::vector<char>& data) {
uint64_t size = (data.size() + Memory::kPageSize - 1) / Memory::kPageSize;
return {size, size};
}
MemType makeMemType(Type type, Limits limits, bool shared) {
return {type, limits, shared};
}
Result<TypeUseT>
makeTypeUse(Index pos, std::optional<HeapTypeT> type, ParamsT*, ResultsT*) {
if (!type) {
implicitTypeDefs.push_back(pos);
}
return Ok{};
}
Result<Function*> addFuncDecl(Index pos, Name name, ImportNames* importNames);
Result<> addFunc(Name name,
const std::vector<Name>& exports,
ImportNames* import,
TypeUseT type,
std::optional<LocalsT>,
Index pos);
Result<Memory*>
addMemoryDecl(Index pos, Name name, ImportNames* importNames, MemType type);
Result<> addMemory(Name name,
const std::vector<Name>& exports,
ImportNames* import,
MemType type,
Index pos);
Result<> addImplicitData(DataStringT&& data);
Result<Global*> addGlobalDecl(Index pos, Name name, ImportNames* importNames);
Result<> addGlobal(Name name,
const std::vector<Name>& exports,
ImportNames* import,
GlobalTypeT,
std::optional<ExprT>,
Index pos);
Result<> addData(Name name,
MemoryIdxT*,
std::optional<ExprT>,
std::vector<char>&& data,
Index pos);
};
// Phase 2: Parse type definitions into a TypeBuilder.
struct ParseTypeDefsCtx : TypeParserCtx<ParseTypeDefsCtx> {
ParseInput in;
// We update slots in this builder as we parse type definitions.
TypeBuilder& builder;
// Parse the names of types and fields as we go.
std::vector<TypeNames> names;
// The index of the subtype definition we are parsing.
Index index = 0;
ParseTypeDefsCtx(std::string_view in,
TypeBuilder& builder,
const IndexMap& typeIndices)
: TypeParserCtx<ParseTypeDefsCtx>(typeIndices), in(in), builder(builder),
names(builder.size()) {}
TypeT makeRefType(HeapTypeT ht, Nullability nullability) {
return builder.getTempRefType(ht, nullability);
}
TypeT makeTupleType(const std::vector<Type> types) {
return builder.getTempTupleType(types);
}
Result<HeapTypeT> getHeapTypeFromIdx(Index idx) {
if (idx >= builder.size()) {
return in.err("type index out of bounds");
}
return builder[idx];
}
void addFuncType(SignatureT& type) { builder[index] = type; }
void addStructType(StructT& type) {
auto& [fieldNames, str] = type;
builder[index] = str;
for (Index i = 0; i < fieldNames.size(); ++i) {
if (auto name = fieldNames[i]; name.is()) {
names[index].fieldNames[i] = name;
}
}
}
void addArrayType(ArrayT& type) { builder[index] = type; }
void setOpen() { builder[index].setOpen(); }
Result<> addSubtype(Index super) {
if (super >= builder.size()) {
return in.err("supertype index out of bounds");
}
builder[index].subTypeOf(builder[super]);
return Ok{};
}
void finishSubtype(Name name, Index pos) { names[index++].name = name; }
size_t getRecGroupStartIndex() { return index; }
void addRecGroup(Index start, size_t len) {
builder.createRecGroup(start, len);
}
void finishDeftype(Index) {}
};
// Phase 3: Parse type uses to find implicitly defined types.
struct ParseImplicitTypeDefsCtx : TypeParserCtx<ParseImplicitTypeDefsCtx> {
using TypeUseT = Ok;
ParseInput in;
// Types parsed so far.
std::vector<HeapType>& types;
// Map typeuse positions without an explicit type to the correct type.
std::unordered_map<Index, HeapType>& implicitTypes;
// Map signatures to the first defined heap type they match.
std::unordered_map<Signature, HeapType> sigTypes;
ParseImplicitTypeDefsCtx(std::string_view in,
std::vector<HeapType>& types,
std::unordered_map<Index, HeapType>& implicitTypes,
const IndexMap& typeIndices)
: TypeParserCtx<ParseImplicitTypeDefsCtx>(typeIndices), in(in),
types(types), implicitTypes(implicitTypes) {
for (auto type : types) {
if (type.isSignature() && type.getRecGroup().size() == 1) {
sigTypes.insert({type.getSignature(), type});
}
}
}
Result<HeapTypeT> getHeapTypeFromIdx(Index idx) {
if (idx >= types.size()) {
return in.err("type index out of bounds");
}
return types[idx];
}
Result<TypeUseT> makeTypeUse(Index pos,
std::optional<HeapTypeT>,
ParamsT* params,
ResultsT* results) {
std::vector<Type> paramTypes;
if (params) {
paramTypes = getUnnamedTypes(*params);
}
std::vector<Type> resultTypes;
if (results) {
resultTypes = *results;
}
auto sig = Signature(Type(paramTypes), Type(resultTypes));
auto [it, inserted] = sigTypes.insert({sig, HeapType::func});
if (inserted) {
auto type = HeapType(sig);
it->second = type;
types.push_back(type);
}
implicitTypes.insert({pos, it->second});
return Ok{};
}
};
// Phase 4: Parse and set the types of module elements.
struct ParseModuleTypesCtx : TypeParserCtx<ParseModuleTypesCtx>,
NullInstrParserCtx {
// In this phase we have constructed all the types, so we can materialize and
// validate them when they are used.
using GlobalTypeT = GlobalType;
using TypeUseT = TypeUse;
ParseInput in;
Module& wasm;
const std::vector<HeapType>& types;
const std::unordered_map<Index, HeapType>& implicitTypes;
// The index of the current type.
Index index = 0;
ParseModuleTypesCtx(std::string_view in,
Module& wasm,
const std::vector<HeapType>& types,
const std::unordered_map<Index, HeapType>& implicitTypes,
const IndexMap& typeIndices)
: TypeParserCtx<ParseModuleTypesCtx>(typeIndices), in(in), wasm(wasm),
types(types), implicitTypes(implicitTypes) {}
Result<HeapTypeT> getHeapTypeFromIdx(Index idx) {
if (idx >= types.size()) {
return in.err("type index out of bounds");
}
return types[idx];
}
Result<TypeUseT> makeTypeUse(Index pos,
std::optional<HeapTypeT> type,
ParamsT* params,
ResultsT* results) {
std::vector<Name> ids;
if (params) {
ids.reserve(params->size());
for (auto& p : *params) {
ids.push_back(p.name);
}
}
if (type) {
return TypeUse{*type, ids};
}
auto it = implicitTypes.find(pos);
assert(it != implicitTypes.end());
return TypeUse{it->second, ids};
}
Result<HeapType> getBlockTypeFromTypeUse(Index pos, TypeUse use) {
assert(use.type.isSignature());
if (use.type.getSignature().params != Type::none) {
return in.err(pos, "block parameters not yet supported");
}
// TODO: Once we support block parameters, return an error here if any of
// them are named.
return use.type;
}
GlobalTypeT makeGlobalType(Mutability mutability, TypeT type) {
return {mutability, type};
}
Result<> addFunc(Name name,
const std::vector<Name>&,
ImportNames*,
TypeUse type,
std::optional<LocalsT> locals,
Index pos) {
auto& f = wasm.functions[index];
if (!type.type.isSignature()) {
return in.err(pos, "expected signature type");
}
f->type = type.type;
for (Index i = 0; i < type.names.size(); ++i) {
if (type.names[i].is()) {
f->setLocalName(i, type.names[i]);
}
}
if (locals) {
for (auto& l : *locals) {
Builder::addVar(f.get(), l.name, l.type);
}
}
return Ok{};
}
Result<>
addMemory(Name, const std::vector<Name>&, ImportNames*, MemTypeT, Index) {
return Ok{};
}
Result<> addImplicitData(DataStringT&& data) { return Ok{}; }
Result<> addGlobal(Name,
const std::vector<Name>&,
ImportNames*,
GlobalType type,
std::optional<ExprT>,
Index) {
auto& g = wasm.globals[index];
g->mutable_ = type.mutability;
g->type = type.type;
return Ok{};
}
};
// Phase 5: Parse module element definitions, including instructions.
struct ParseDefsCtx : TypeParserCtx<ParseDefsCtx> {
using GlobalTypeT = Ok;
using TypeUseT = HeapType;
using ExprT = Expression*;
using FieldIdxT = Index;
using LocalIdxT = Index;
using GlobalIdxT = Name;
using MemoryIdxT = Name;
using DataIdxT = Name;
using MemargT = Memarg;
ParseInput in;
Module& wasm;
Builder builder;
const std::vector<HeapType>& types;
const std::unordered_map<Index, HeapType>& implicitTypes;
// The index of the current module element.
Index index = 0;
// The current function being parsed, used to create scratch locals, type
// local.get, etc.
Function* func = nullptr;
IRBuilder irBuilder;
Result<> visitFunctionStart(Function* func) {
this->func = func;
CHECK_ERR(irBuilder.visitFunctionStart(func));
return Ok{};
}
ParseDefsCtx(std::string_view in,
Module& wasm,
const std::vector<HeapType>& types,
const std::unordered_map<Index, HeapType>& implicitTypes,
const IndexMap& typeIndices)
: TypeParserCtx(typeIndices), in(in), wasm(wasm), builder(wasm),
types(types), implicitTypes(implicitTypes), irBuilder(wasm) {}
template<typename T> Result<T> withLoc(Index pos, Result<T> res) {
if (auto err = res.getErr()) {
return in.err(pos, err->msg);
}
return res;
}
template<typename T> Result<T> withLoc(Result<T> res) {
return withLoc(in.getPos(), res);
}
HeapType getBlockTypeFromResult(const std::vector<Type> results) {
assert(results.size() == 1);
return HeapType(Signature(Type::none, results[0]));
}
Result<HeapType> getBlockTypeFromTypeUse(Index pos, HeapType type) {
return type;
}
GlobalTypeT makeGlobalType(Mutability, TypeT) { return Ok{}; }
Result<HeapTypeT> getHeapTypeFromIdx(Index idx) {
if (idx >= types.size()) {
return in.err("type index out of bounds");
}
return types[idx];
}
Result<Index> getFieldFromIdx(HeapType type, uint32_t idx) {
if (!type.isStruct()) {
return in.err("expected struct type");
}
if (idx >= type.getStruct().fields.size()) {
return in.err("struct index out of bounds");
}
return idx;
}
Result<Index> getFieldFromName(HeapType type, Name name) {
// TODO: Field names
return in.err("symbolic field names note yet supported");
}
Result<Index> getLocalFromIdx(uint32_t idx) {
if (!func) {
return in.err("cannot access locals outside of a function");
}
if (idx >= func->getNumLocals()) {
return in.err("local index out of bounds");
}
return idx;
}
Result<Index> getLocalFromName(Name name) {
if (!func) {
return in.err("cannot access locals outside of a function");
}
if (!func->hasLocalIndex(name)) {
return in.err("local $" + name.toString() + " does not exist");
}
return func->getLocalIndex(name);
}
Result<Name> getGlobalFromIdx(uint32_t idx) {
if (idx >= wasm.globals.size()) {
return in.err("global index out of bounds");
}
return wasm.globals[idx]->name;
}
Result<Name> getGlobalFromName(Name name) {
if (!wasm.getGlobalOrNull(name)) {
return in.err("global $" + name.toString() + " does not exist");
}
return name;
}
Result<Name> getMemoryFromIdx(uint32_t idx) {
if (idx >= wasm.memories.size()) {
return in.err("memory index out of bounds");
}
return wasm.memories[idx]->name;
}
Result<Name> getMemoryFromName(Name name) {
if (!wasm.getMemoryOrNull(name)) {
return in.err("memory $" + name.toString() + " does not exist");
}
return name;
}
Result<Name> getDataFromIdx(uint32_t idx) {
if (idx >= wasm.dataSegments.size()) {
return in.err("data index out of bounds");
}
return wasm.dataSegments[idx]->name;
}
Result<Name> getDataFromName(Name name) {
if (!wasm.getDataSegmentOrNull(name)) {
return in.err("data $" + name.toString() + " does not exist");
}
return name;
}
Result<TypeUseT> makeTypeUse(Index pos,
std::optional<HeapTypeT> type,
ParamsT* params,
ResultsT* results);
Result<> addFunc(Name,
const std::vector<Name>&,
ImportNames*,
TypeUseT,
std::optional<LocalsT>,
Index pos);
Result<> addGlobal(Name,
const std::vector<Name>&,
ImportNames*,
GlobalTypeT,
std::optional<ExprT> exp,
Index);
Result<>
addData(Name, Name* mem, std::optional<ExprT> offset, DataStringT, Index pos);
Result<Index> addScratchLocal(Index pos, Type type) {
if (!func) {
return in.err(pos,
"scratch local required, but there is no function context");
}
Name name = Names::getValidLocalName(*func, "scratch");
return Builder::addVar(func, name, type);
}
Result<Expression*> makeExpr() { return irBuilder.build(); }
Memarg getMemarg(uint64_t offset, uint32_t align) { return {offset, align}; }
Result<Name> getMemory(Index pos, Name* mem) {
if (mem) {
return *mem;
}
if (wasm.memories.empty()) {
return in.err(pos, "memory required, but there is no memory");
}
return wasm.memories[0]->name;
}
Result<> makeBlock(Index pos, std::optional<Name> label, HeapType type) {
// TODO: validate labels?
// TODO: Move error on input types to here?
return withLoc(pos,
irBuilder.makeBlock(label ? *label : Name{},
type.getSignature().results));
}
Result<> makeIf(Index pos, std::optional<Name> label, HeapType type) {
// TODO: validate labels?
// TODO: Move error on input types to here?
return withLoc(
pos,
irBuilder.makeIf(label ? *label : Name{}, type.getSignature().results));
}
Result<> visitElse() { return withLoc(irBuilder.visitElse()); }
Result<> makeLoop(Index pos, std::optional<Name> label, HeapType type) {
// TODO: validate labels?
// TODO: Move error on input types to here?
return withLoc(
pos,
irBuilder.makeLoop(label ? *label : Name{}, type.getSignature().results));
}
Result<> visitEnd() { return withLoc(irBuilder.visitEnd()); }
Result<> makeUnreachable(Index pos) {
return withLoc(pos, irBuilder.makeUnreachable());
}
Result<> makeNop(Index pos) { return withLoc(pos, irBuilder.makeNop()); }
Result<> makeBinary(Index pos, BinaryOp op) {
return withLoc(pos, irBuilder.makeBinary(op));
}
Result<> makeUnary(Index pos, UnaryOp op) {
return withLoc(pos, irBuilder.makeUnary(op));
}
Result<> makeSelect(Index pos, std::vector<Type>* res) {
if (res && res->size()) {
if (res->size() > 1) {
return in.err(pos, "select may not have more than one result type");
}
return withLoc(pos, irBuilder.makeSelect((*res)[0]));
}
return withLoc(pos, irBuilder.makeSelect());
}
Result<> makeDrop(Index pos) { return withLoc(pos, irBuilder.makeDrop()); }
Result<> makeMemorySize(Index pos, Name* mem) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
return withLoc(pos, irBuilder.makeMemorySize(*m));
}
Result<> makeMemoryGrow(Index pos, Name* mem) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
return withLoc(pos, irBuilder.makeMemoryGrow(*m));
}
Result<> makeLocalGet(Index pos, Index local) {
return withLoc(pos, irBuilder.makeLocalGet(local));
}
Result<> makeLocalTee(Index pos, Index local) {
return withLoc(pos, irBuilder.makeLocalTee(local));
}
Result<> makeLocalSet(Index pos, Index local) {
return withLoc(pos, irBuilder.makeLocalSet(local));
}
Result<> makeGlobalGet(Index pos, Name global) {
return withLoc(pos, irBuilder.makeGlobalGet(global));
}
Result<> makeGlobalSet(Index pos, Name global) {
assert(wasm.getGlobalOrNull(global));
return withLoc(pos, irBuilder.makeGlobalSet(global));
}
Result<> makeI32Const(Index pos, uint32_t c) {
return withLoc(pos, irBuilder.makeConst(Literal(c)));
}
Result<> makeI64Const(Index pos, uint64_t c) {
return withLoc(pos, irBuilder.makeConst(Literal(c)));
}
Result<> makeF32Const(Index pos, float c) {
return withLoc(pos, irBuilder.makeConst(Literal(c)));
}
Result<> makeF64Const(Index pos, double c) {
return withLoc(pos, irBuilder.makeConst(Literal(c)));
}
Result<> makeLoad(Index pos,
Type type,
bool signed_,
int bytes,
bool isAtomic,
Name* mem,
Memarg memarg) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
if (isAtomic) {
return withLoc(pos,
irBuilder.makeAtomicLoad(bytes, memarg.offset, type, *m));
}
return withLoc(pos,
irBuilder.makeLoad(
bytes, signed_, memarg.offset, memarg.align, type, *m));
}
Result<> makeStore(
Index pos, Type type, int bytes, bool isAtomic, Name* mem, Memarg memarg) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
if (isAtomic) {
return withLoc(pos,
irBuilder.makeAtomicStore(bytes, memarg.offset, type, *m));
}
return withLoc(
pos, irBuilder.makeStore(bytes, memarg.offset, memarg.align, type, *m));
}
Result<> makeAtomicRMW(
Index pos, AtomicRMWOp op, Type type, int bytes, Name* mem, Memarg memarg) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
return withLoc(pos,
irBuilder.makeAtomicRMW(op, bytes, memarg.offset, type, *m));
}
Result<>
makeAtomicCmpxchg(Index pos, Type type, int bytes, Name* mem, Memarg memarg) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
return withLoc(pos,
irBuilder.makeAtomicCmpxchg(bytes, memarg.offset, type, *m));
}
Result<> makeAtomicWait(Index pos, Type type, Name* mem, Memarg memarg) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
return withLoc(pos, irBuilder.makeAtomicWait(type, memarg.offset, *m));
}
Result<> makeAtomicNotify(Index pos, Name* mem, Memarg memarg) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
return withLoc(pos, irBuilder.makeAtomicNotify(memarg.offset, *m));
}
Result<> makeAtomicFence(Index pos) {
return withLoc(pos, irBuilder.makeAtomicFence());
}
Result<> makeSIMDExtract(Index pos, SIMDExtractOp op, uint8_t lane) {
return withLoc(pos, irBuilder.makeSIMDExtract(op, lane));
}
Result<> makeSIMDReplace(Index pos, SIMDReplaceOp op, uint8_t lane) {
return withLoc(pos, irBuilder.makeSIMDReplace(op, lane));
}
Result<> makeSIMDShuffle(Index pos, const std::array<uint8_t, 16>& lanes) {
return withLoc(pos, irBuilder.makeSIMDShuffle(lanes));
}
Result<> makeSIMDTernary(Index pos, SIMDTernaryOp op) {
return withLoc(pos, irBuilder.makeSIMDTernary(op));
}
Result<> makeSIMDShift(Index pos, SIMDShiftOp op) {
return withLoc(pos, irBuilder.makeSIMDShift(op));
}
Result<> makeSIMDLoad(Index pos, SIMDLoadOp op, Name* mem, Memarg memarg) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
return withLoc(pos,
irBuilder.makeSIMDLoad(op, memarg.offset, memarg.align, *m));
}
Result<> makeSIMDLoadStoreLane(
Index pos, SIMDLoadStoreLaneOp op, Name* mem, Memarg memarg, uint8_t lane) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
return withLoc(pos,
irBuilder.makeSIMDLoadStoreLane(
op, memarg.offset, memarg.align, lane, *m));
}
Result<> makeMemoryInit(Index pos, Name* mem, Name data) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
return withLoc(pos, irBuilder.makeMemoryInit(data, *m));
}
Result<> makeDataDrop(Index pos, Name data) {
return withLoc(pos, irBuilder.makeDataDrop(data));
}
Result<> makeMemoryCopy(Index pos, Name* destMem, Name* srcMem) {
auto destMemory = getMemory(pos, destMem);
CHECK_ERR(destMemory);
auto srcMemory = getMemory(pos, srcMem);
CHECK_ERR(srcMemory);
return withLoc(pos, irBuilder.makeMemoryCopy(*destMemory, *srcMemory));
}
Result<> makeMemoryFill(Index pos, Name* mem) {
auto m = getMemory(pos, mem);
CHECK_ERR(m);
return withLoc(pos, irBuilder.makeMemoryFill(*m));
}
Result<> makeReturn(Index pos) {
return withLoc(pos, irBuilder.makeReturn());
}
Result<> makeRefNull(Index pos, HeapType type) {
return withLoc(pos, irBuilder.makeRefNull(type));
}
Result<> makeRefIsNull(Index pos) {
return withLoc(pos, irBuilder.makeRefIsNull());
}
Result<> makeRefEq(Index pos) { return withLoc(pos, irBuilder.makeRefEq()); }
Result<> makeRefI31(Index pos) {
return withLoc(pos, irBuilder.makeRefI31());
}
Result<> makeI31Get(Index pos, bool signed_) {
return withLoc(pos, irBuilder.makeI31Get(signed_));
}
Result<> makeStructNew(Index pos, HeapType type) {
return withLoc(pos, irBuilder.makeStructNew(type));
}
Result<> makeStructNewDefault(Index pos, HeapType type) {
return withLoc(pos, irBuilder.makeStructNewDefault(type));
}
Result<> makeStructGet(Index pos, HeapType type, Index field, bool signed_) {
return withLoc(pos, irBuilder.makeStructGet(type, field, signed_));
}
Result<> makeStructSet(Index pos, HeapType type, Index field) {
return withLoc(pos, irBuilder.makeStructSet(type, field));
}
Result<> makeArrayNew(Index pos, HeapType type) {
return withLoc(pos, irBuilder.makeArrayNew(type));
}
Result<> makeArrayNewDefault(Index pos, HeapType type) {
return withLoc(pos, irBuilder.makeArrayNewDefault(type));
}
Result<> makeArrayNewData(Index pos, HeapType type, Name data) {
return withLoc(pos, irBuilder.makeArrayNewData(type, data));
}
Result<> makeArrayNewElem(Index pos, HeapType type, Name elem) {
return withLoc(pos, irBuilder.makeArrayNewElem(type, elem));
}
Result<> makeArrayGet(Index pos, HeapType type, bool signed_) {
return withLoc(pos, irBuilder.makeArrayGet(type, signed_));
}
Result<> makeArraySet(Index pos, HeapType type) {
return withLoc(pos, irBuilder.makeArraySet(type));
}
Result<> makeArrayLen(Index pos) {
return withLoc(pos, irBuilder.makeArrayLen());
}
Result<> makeArrayCopy(Index pos, HeapType destType, HeapType srcType) {
return withLoc(pos, irBuilder.makeArrayCopy(destType, srcType));
}
Result<> makeArrayFill(Index pos, HeapType type) {
return withLoc(pos, irBuilder.makeArrayFill(type));
}
};
} // namespace wasm::WATParser
#endif // parser_context_h