| /* |
| * Copyright 2016 WebAssembly Community Group participants |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "literal.h" |
| |
| #include <cassert> |
| #include <cmath> |
| |
| #include "emscripten-optimizer/simple_ast.h" |
| #include "ir/bits.h" |
| #include "pretty_printing.h" |
| #include "support/bits.h" |
| #include "support/utilities.h" |
| |
| namespace wasm { |
| |
| template<int N> using LaneArray = std::array<Literal, N>; |
| |
| Literal::Literal(Type type) : type(type) { |
| if (type == Type::i31ref) { |
| // i31ref is special in that it is non-nullable, so we construct with zero |
| i32 = 0; |
| } else { |
| assert(type != Type::unreachable && (!type.isRef() || type.isNullable())); |
| if (isData()) { |
| new (&gcData) std::shared_ptr<GCData>(); |
| } else if (type.isRtt()) { |
| // Allocate a new RttSupers (with no data). |
| new (&rttSupers) auto(std::make_unique<RttSupers>()); |
| } else { |
| memset(&v128, 0, 16); |
| } |
| } |
| } |
| |
| Literal::Literal(const uint8_t init[16]) : type(Type::v128) { |
| memcpy(&v128, init, 16); |
| } |
| |
| Literal::Literal(std::shared_ptr<GCData> gcData, Type type) |
| : gcData(gcData), type(type) { |
| // Null data is only allowed if nullable. |
| assert(gcData || type.isNullable()); |
| // The type must be a proper type for GC data. |
| assert(isData()); |
| } |
| |
| Literal::Literal(std::unique_ptr<RttSupers>&& rttSupers, Type type) |
| : rttSupers(std::move(rttSupers)), type(type) { |
| assert(type.isRtt()); |
| } |
| |
| Literal::Literal(const Literal& other) : type(other.type) { |
| if (other.isData()) { |
| new (&gcData) std::shared_ptr<GCData>(other.gcData); |
| return; |
| } |
| if (type.isFunction()) { |
| func = other.func; |
| return; |
| } |
| if (type.isRtt()) { |
| // Allocate a new RttSupers with a copy of the other's data. |
| new (&rttSupers) auto(std::make_unique<RttSupers>(*other.rttSupers)); |
| return; |
| } |
| if (type.isRef()) { |
| auto heapType = type.getHeapType(); |
| if (heapType.isBasic()) { |
| switch (heapType.getBasic()) { |
| case HeapType::any: |
| case HeapType::ext: |
| case HeapType::eq: |
| return; // null |
| case HeapType::i31: |
| i32 = other.i32; |
| return; |
| case HeapType::func: |
| case HeapType::data: |
| WASM_UNREACHABLE("invalid type"); |
| } |
| } |
| } |
| TODO_SINGLE_COMPOUND(type); |
| switch (type.getBasic()) { |
| case Type::i32: |
| case Type::f32: |
| i32 = other.i32; |
| break; |
| case Type::i64: |
| case Type::f64: |
| i64 = other.i64; |
| break; |
| case Type::v128: |
| memcpy(&v128, other.v128, 16); |
| break; |
| case Type::none: |
| break; |
| case Type::unreachable: |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::i31ref: |
| case Type::dataref: |
| WASM_UNREACHABLE("invalid type"); |
| } |
| } |
| |
| Literal::~Literal() { |
| if (isData()) { |
| gcData.~shared_ptr(); |
| } else if (type.isRtt()) { |
| rttSupers.~unique_ptr(); |
| } else if (type.isFunction() || type.isRef()) { |
| // Nothing special to do for a function or a non-GC reference (GC data was |
| // handled earlier). For references, this handles the case of (ref ? i31) |
| // for example, which may or may not be basic. |
| } else { |
| // Basic types need no special handling. |
| // TODO: change this to an assert after we figure out the underlying issue |
| // on the release builder |
| // https://github.com/WebAssembly/binaryen/issues/3459 |
| if (!type.isBasic()) { |
| Fatal() << "~Literal on unhandled type: " << type << '\n'; |
| } |
| } |
| } |
| |
| Literal& Literal::operator=(const Literal& other) { |
| if (this != &other) { |
| this->~Literal(); |
| new (this) auto(other); |
| } |
| return *this; |
| } |
| |
| template<typename LaneT, int Lanes> |
| static void extractBytes(uint8_t (&dest)[16], const LaneArray<Lanes>& lanes) { |
| std::array<uint8_t, 16> bytes; |
| const size_t lane_width = 16 / Lanes; |
| for (size_t lane_index = 0; lane_index < Lanes; ++lane_index) { |
| uint8_t bits[16]; |
| lanes[lane_index].getBits(bits); |
| LaneT lane; |
| memcpy(&lane, bits, sizeof(lane)); |
| for (size_t offset = 0; offset < lane_width; ++offset) { |
| bytes.at(lane_index * lane_width + offset) = |
| uint8_t(lane >> (8 * offset)); |
| } |
| } |
| memcpy(&dest, bytes.data(), sizeof(bytes)); |
| } |
| |
| Literal::Literal(const LaneArray<16>& lanes) : type(Type::v128) { |
| extractBytes<uint8_t, 16>(v128, lanes); |
| } |
| |
| Literal::Literal(const LaneArray<8>& lanes) : type(Type::v128) { |
| extractBytes<uint16_t, 8>(v128, lanes); |
| } |
| |
| Literal::Literal(const LaneArray<4>& lanes) : type(Type::v128) { |
| extractBytes<uint32_t, 4>(v128, lanes); |
| } |
| |
| Literal::Literal(const LaneArray<2>& lanes) : type(Type::v128) { |
| extractBytes<uint64_t, 2>(v128, lanes); |
| } |
| |
| Literals Literal::makeZeros(Type type) { |
| assert(type.isConcrete()); |
| Literals zeroes; |
| for (const auto& t : type) { |
| zeroes.push_back(makeZero(t)); |
| } |
| return zeroes; |
| } |
| |
| Literals Literal::makeOnes(Type type) { |
| assert(type.isConcrete()); |
| Literals units; |
| for (const auto& t : type) { |
| units.push_back(makeOne(t)); |
| } |
| return units; |
| } |
| |
| Literals Literal::makeNegOnes(Type type) { |
| assert(type.isConcrete()); |
| Literals units; |
| for (const auto& t : type) { |
| units.push_back(makeNegOne(t)); |
| } |
| return units; |
| } |
| |
| Literal Literal::makeZero(Type type) { |
| assert(type.isSingle()); |
| if (type.isRef()) { |
| if (type == Type::i31ref) { |
| return makeI31(0); |
| } else { |
| return makeNull(type); |
| } |
| } else if (type.isRtt()) { |
| return Literal(type); |
| } else { |
| return makeFromInt32(0, type); |
| } |
| } |
| |
| Literal Literal::makeOne(Type type) { |
| assert(type.isNumber()); |
| return makeFromInt32(1, type); |
| } |
| |
| Literal Literal::makeNegOne(Type type) { |
| assert(type.isNumber()); |
| return makeFromInt32(-1, type); |
| } |
| |
| std::array<uint8_t, 16> Literal::getv128() const { |
| assert(type == Type::v128); |
| std::array<uint8_t, 16> ret; |
| memcpy(ret.data(), v128, sizeof(ret)); |
| return ret; |
| } |
| |
| std::shared_ptr<GCData> Literal::getGCData() const { |
| assert(isData()); |
| return gcData; |
| } |
| |
| const RttSupers& Literal::getRttSupers() const { |
| assert(type.isRtt()); |
| return *rttSupers; |
| } |
| |
| Literal Literal::castToF32() { |
| assert(type == Type::i32); |
| Literal ret(Type::f32); |
| ret.i32 = i32; |
| return ret; |
| } |
| |
| Literal Literal::castToF64() { |
| assert(type == Type::i64); |
| Literal ret(Type::f64); |
| ret.i64 = i64; |
| return ret; |
| } |
| |
| Literal Literal::castToI32() { |
| assert(type == Type::f32); |
| Literal ret(Type::i32); |
| ret.i32 = i32; |
| return ret; |
| } |
| |
| Literal Literal::castToI64() { |
| assert(type == Type::f64); |
| Literal ret(Type::i64); |
| ret.i64 = i64; |
| return ret; |
| } |
| |
| int64_t Literal::getInteger() const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return i32; |
| case Type::i64: |
| return i64; |
| default: |
| abort(); |
| } |
| } |
| |
| uint64_t Literal::getUnsigned() const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return static_cast<uint32_t>(i32); |
| case Type::i64: |
| return i64; |
| default: |
| abort(); |
| } |
| } |
| |
| double Literal::getFloat() const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| return getf32(); |
| case Type::f64: |
| return getf64(); |
| default: |
| abort(); |
| } |
| } |
| |
| void Literal::getBits(uint8_t (&buf)[16]) const { |
| memset(buf, 0, 16); |
| switch (type.getBasic()) { |
| case Type::i32: |
| case Type::f32: |
| memcpy(buf, &i32, sizeof(i32)); |
| break; |
| case Type::i64: |
| case Type::f64: |
| memcpy(buf, &i64, sizeof(i64)); |
| break; |
| case Type::v128: |
| memcpy(buf, &v128, sizeof(v128)); |
| break; |
| case Type::none: |
| case Type::unreachable: |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::i31ref: |
| case Type::dataref: |
| WASM_UNREACHABLE("invalid type"); |
| } |
| } |
| |
| bool Literal::operator==(const Literal& other) const { |
| if (type != other.type) { |
| return false; |
| } |
| auto compareRef = [&]() { |
| assert(type.isRef()); |
| if (isNull() || other.isNull()) { |
| return isNull() == other.isNull(); |
| } |
| if (type.isFunction()) { |
| assert(func.is() && other.func.is()); |
| return func == other.func; |
| } |
| if (type.isData()) { |
| return gcData == other.gcData; |
| } |
| // other non-null reference type literals cannot represent concrete values, |
| // i.e. there is no concrete externref, anyref or eqref other than null. |
| WASM_UNREACHABLE("unexpected type"); |
| }; |
| if (type.isBasic()) { |
| switch (type.getBasic()) { |
| case Type::none: |
| return true; // special voided literal |
| case Type::i32: |
| case Type::f32: |
| case Type::i31ref: |
| return i32 == other.i32; |
| case Type::i64: |
| case Type::f64: |
| return i64 == other.i64; |
| case Type::v128: |
| return memcmp(v128, other.v128, 16) == 0; |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::dataref: |
| return compareRef(); |
| case Type::unreachable: |
| break; |
| } |
| } else if (type.isRef()) { |
| return compareRef(); |
| } else if (type.isRtt()) { |
| return *rttSupers == *other.rttSupers; |
| } |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| |
| bool Literal::operator!=(const Literal& other) const { |
| return !(*this == other); |
| } |
| |
| bool Literal::isNaN() { |
| if (type == Type::f32 && std::isnan(getf32())) { |
| return true; |
| } |
| if (type == Type::f64 && std::isnan(getf64())) { |
| return true; |
| } |
| // TODO: SIMD? |
| return false; |
| } |
| |
| uint32_t Literal::NaNPayload(float f) { |
| assert(std::isnan(f) && "expected a NaN"); |
| // SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF |
| // NaN has all-one exponent and non-zero fraction. |
| return ~0xff800000u & bit_cast<uint32_t>(f); |
| } |
| |
| uint64_t Literal::NaNPayload(double f) { |
| assert(std::isnan(f) && "expected a NaN"); |
| // SEEEEEEE EEEEFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF |
| // NaN has all-one exponent and non-zero fraction. |
| return ~0xfff0000000000000ull & bit_cast<uint64_t>(f); |
| } |
| |
| float Literal::setQuietNaN(float f) { |
| assert(std::isnan(f) && "expected a NaN"); |
| // An SNaN is a NaN with the most significant fraction bit clear. |
| return bit_cast<float>(0x00400000u | bit_cast<uint32_t>(f)); |
| } |
| |
| double Literal::setQuietNaN(double f) { |
| assert(std::isnan(f) && "expected a NaN"); |
| // An SNaN is a NaN with the most significant fraction bit clear. |
| return bit_cast<double>(0x0008000000000000ull | bit_cast<uint64_t>(f)); |
| } |
| |
| void Literal::printFloat(std::ostream& o, float f) { |
| if (std::isnan(f)) { |
| const char* sign = std::signbit(f) ? "-" : ""; |
| o << sign << "nan"; |
| if (uint32_t payload = NaNPayload(f)) { |
| o << ":0x" << std::hex << payload << std::dec; |
| } |
| return; |
| } |
| printDouble(o, f); |
| } |
| |
| void Literal::printDouble(std::ostream& o, double d) { |
| if (d == 0 && std::signbit(d)) { |
| o << "-0"; |
| return; |
| } |
| if (std::isnan(d)) { |
| const char* sign = std::signbit(d) ? "-" : ""; |
| o << sign << "nan"; |
| if (uint64_t payload = NaNPayload(d)) { |
| o << ":0x" << std::hex << payload << std::dec; |
| } |
| return; |
| } |
| if (!std::isfinite(d)) { |
| o << (std::signbit(d) ? "-inf" : "inf"); |
| return; |
| } |
| const char* text = cashew::JSPrinter::numToString(d); |
| // spec interpreter hates floats starting with '.' |
| if (text[0] == '.') { |
| o << '0'; |
| } else if (text[0] == '-' && text[1] == '.') { |
| o << "-0"; |
| text++; |
| } |
| o << text; |
| } |
| |
| void Literal::printVec128(std::ostream& o, const std::array<uint8_t, 16>& v) { |
| o << std::hex; |
| for (auto i = 0; i < 16; i += 4) { |
| if (i) { |
| o << " "; |
| } |
| o << "0x" << std::setfill('0') << std::setw(8) |
| << uint32_t(v[i] | (v[i + 1] << 8) | (v[i + 2] << 16) | (v[i + 3] << 24)); |
| } |
| o << std::dec; |
| } |
| |
| std::ostream& operator<<(std::ostream& o, Literal literal) { |
| prepareMinorColor(o); |
| if (literal.type.isFunction()) { |
| if (literal.isNull()) { |
| o << "funcref(null)"; |
| } else { |
| o << "funcref(" << literal.getFunc() << ")"; |
| } |
| } else if (literal.type.isRef()) { |
| if (literal.isData()) { |
| auto data = literal.getGCData(); |
| if (data) { |
| o << "[ref " << data->rtt << ' ' << data->values << ']'; |
| } else { |
| o << "[ref null " << literal.type << ']'; |
| } |
| } else { |
| switch (literal.type.getHeapType().getBasic()) { |
| case HeapType::ext: |
| assert(literal.isNull() && "unexpected non-null externref literal"); |
| o << "externref(null)"; |
| break; |
| case HeapType::any: |
| assert(literal.isNull() && "unexpected non-null anyref literal"); |
| o << "anyref(null)"; |
| break; |
| case HeapType::eq: |
| assert(literal.isNull() && "unexpected non-null eqref literal"); |
| o << "eqref(null)"; |
| break; |
| case HeapType::i31: |
| o << "i31ref(" << literal.geti31() << ")"; |
| break; |
| case HeapType::func: |
| case HeapType::data: |
| WASM_UNREACHABLE("type should have been handled above"); |
| } |
| } |
| } else if (literal.type.isRtt()) { |
| o << "[rtt "; |
| for (Type super : literal.getRttSupers()) { |
| o << super << " :> "; |
| } |
| o << literal.type << ']'; |
| } else { |
| TODO_SINGLE_COMPOUND(literal.type); |
| switch (literal.type.getBasic()) { |
| case Type::none: |
| o << "?"; |
| break; |
| case Type::i32: |
| o << literal.geti32(); |
| break; |
| case Type::i64: |
| o << literal.geti64(); |
| break; |
| case Type::f32: |
| literal.printFloat(o, literal.getf32()); |
| break; |
| case Type::f64: |
| literal.printDouble(o, literal.getf64()); |
| break; |
| case Type::v128: |
| o << "i32x4 "; |
| literal.printVec128(o, literal.getv128()); |
| break; |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::i31ref: |
| case Type::dataref: |
| case Type::unreachable: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| restoreNormalColor(o); |
| return o; |
| } |
| |
| std::ostream& operator<<(std::ostream& o, wasm::Literals literals) { |
| if (literals.size() == 1) { |
| return o << literals[0]; |
| } else { |
| o << '('; |
| if (literals.size() > 0) { |
| o << literals[0]; |
| } |
| for (size_t i = 1; i < literals.size(); ++i) { |
| o << ", " << literals[i]; |
| } |
| return o << ')'; |
| } |
| } |
| |
| Literal Literal::countLeadingZeroes() const { |
| if (type == Type::i32) { |
| return Literal((int32_t)Bits::countLeadingZeroes(i32)); |
| } |
| if (type == Type::i64) { |
| return Literal((int64_t)Bits::countLeadingZeroes(i64)); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::countTrailingZeroes() const { |
| if (type == Type::i32) { |
| return Literal((int32_t)Bits::countTrailingZeroes(i32)); |
| } |
| if (type == Type::i64) { |
| return Literal((int64_t)Bits::countTrailingZeroes(i64)); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::popCount() const { |
| if (type == Type::i32) { |
| return Literal((int32_t)Bits::popCount(i32)); |
| } |
| if (type == Type::i64) { |
| return Literal((int64_t)Bits::popCount(i64)); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::extendToSI64() const { |
| assert(type == Type::i32); |
| return Literal((int64_t)i32); |
| } |
| |
| Literal Literal::extendToUI64() const { |
| assert(type == Type::i32); |
| return Literal((uint64_t)(uint32_t)i32); |
| } |
| |
| Literal Literal::extendToF64() const { |
| assert(type == Type::f32); |
| return Literal(double(getf32())); |
| } |
| |
| Literal Literal::extendS8() const { |
| if (type == Type::i32) { |
| return Literal(int32_t(int8_t(geti32() & 0xFF))); |
| } |
| if (type == Type::i64) { |
| return Literal(int64_t(int8_t(geti64() & 0xFF))); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::extendS16() const { |
| if (type == Type::i32) { |
| return Literal(int32_t(int16_t(geti32() & 0xFFFF))); |
| } |
| if (type == Type::i64) { |
| return Literal(int64_t(int16_t(geti64() & 0xFFFF))); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::extendS32() const { |
| if (type == Type::i64) { |
| return Literal(int64_t(int32_t(geti64() & 0xFFFFFFFF))); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::wrapToI32() const { |
| assert(type == Type::i64); |
| return Literal((int32_t)i64); |
| } |
| |
| Literal Literal::convertSIToF32() const { |
| if (type == Type::i32) { |
| return Literal(float(i32)); |
| } |
| if (type == Type::i64) { |
| return Literal(float(i64)); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::convertUIToF32() const { |
| if (type == Type::i32) { |
| return Literal(float(uint32_t(i32))); |
| } |
| if (type == Type::i64) { |
| return Literal(float(uint64_t(i64))); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::convertSIToF64() const { |
| if (type == Type::i32) { |
| return Literal(double(i32)); |
| } |
| if (type == Type::i64) { |
| return Literal(double(i64)); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::convertUIToF64() const { |
| if (type == Type::i32) { |
| return Literal(double(uint32_t(i32))); |
| } |
| if (type == Type::i64) { |
| return Literal(double(uint64_t(i64))); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| template<typename F> struct AsInt { using type = void; }; |
| template<> struct AsInt<float> { using type = int32_t; }; |
| template<> struct AsInt<double> { using type = int64_t; }; |
| |
| template<typename F, typename I, bool (*RangeCheck)(typename AsInt<F>::type)> |
| static Literal saturating_trunc(typename AsInt<F>::type val) { |
| if (std::isnan(bit_cast<F>(val))) { |
| return Literal(I(0)); |
| } |
| if (!RangeCheck(val)) { |
| if (std::signbit(bit_cast<F>(val))) { |
| return Literal(std::numeric_limits<I>::min()); |
| } else { |
| return Literal(std::numeric_limits<I>::max()); |
| } |
| } |
| return Literal(I(std::trunc(bit_cast<F>(val)))); |
| } |
| |
| Literal Literal::truncSatToSI32() const { |
| if (type == Type::f32) { |
| return saturating_trunc<float, int32_t, isInRangeI32TruncS>( |
| Literal(*this).castToI32().geti32()); |
| } |
| if (type == Type::f64) { |
| return saturating_trunc<double, int32_t, isInRangeI32TruncS>( |
| Literal(*this).castToI64().geti64()); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::truncSatToSI64() const { |
| if (type == Type::f32) { |
| return saturating_trunc<float, int64_t, isInRangeI64TruncS>( |
| Literal(*this).castToI32().geti32()); |
| } |
| if (type == Type::f64) { |
| return saturating_trunc<double, int64_t, isInRangeI64TruncS>( |
| Literal(*this).castToI64().geti64()); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::truncSatToUI32() const { |
| if (type == Type::f32) { |
| return saturating_trunc<float, uint32_t, isInRangeI32TruncU>( |
| Literal(*this).castToI32().geti32()); |
| } |
| if (type == Type::f64) { |
| return saturating_trunc<double, uint32_t, isInRangeI32TruncU>( |
| Literal(*this).castToI64().geti64()); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::truncSatToUI64() const { |
| if (type == Type::f32) { |
| return saturating_trunc<float, uint64_t, isInRangeI64TruncU>( |
| Literal(*this).castToI32().geti32()); |
| } |
| if (type == Type::f64) { |
| return saturating_trunc<double, uint64_t, isInRangeI64TruncU>( |
| Literal(*this).castToI64().geti64()); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::eqz() const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return eq(Literal(int32_t(0))); |
| case Type::i64: |
| return eq(Literal(int64_t(0))); |
| case Type::f32: |
| return eq(Literal(float(0))); |
| case Type::f64: |
| return eq(Literal(double(0))); |
| case Type::v128: |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::i31ref: |
| case Type::dataref: |
| case Type::none: |
| case Type::unreachable: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::neg() const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(-uint32_t(i32)); |
| case Type::i64: |
| return Literal(-uint64_t(i64)); |
| case Type::f32: |
| return Literal(i32 ^ 0x80000000).castToF32(); |
| case Type::f64: |
| return Literal(int64_t(i64 ^ 0x8000000000000000ULL)).castToF64(); |
| case Type::v128: |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::i31ref: |
| case Type::dataref: |
| case Type::none: |
| case Type::unreachable: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| WASM_UNREACHABLE("invalid type"); |
| } |
| |
| Literal Literal::abs() const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(std::abs(i32)); |
| case Type::i64: |
| return Literal(std::abs(i64)); |
| case Type::f32: |
| return Literal(i32 & 0x7fffffff).castToF32(); |
| case Type::f64: |
| return Literal(int64_t(i64 & 0x7fffffffffffffffULL)).castToF64(); |
| case Type::v128: |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::i31ref: |
| case Type::dataref: |
| case Type::none: |
| case Type::unreachable: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| |
| Literal Literal::ceil() const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| return Literal(std::ceil(getf32())); |
| case Type::f64: |
| return Literal(std::ceil(getf64())); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::floor() const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| return Literal(std::floor(getf32())); |
| case Type::f64: |
| return Literal(std::floor(getf64())); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::trunc() const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| return Literal(std::trunc(getf32())); |
| case Type::f64: |
| return Literal(std::trunc(getf64())); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::nearbyint() const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| return Literal(std::nearbyint(getf32())); |
| case Type::f64: |
| return Literal(std::nearbyint(getf64())); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::sqrt() const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| return Literal(std::sqrt(getf32())); |
| case Type::f64: |
| return Literal(std::sqrt(getf64())); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::demote() const { |
| auto f64 = getf64(); |
| if (std::isnan(f64)) { |
| return Literal(float(f64)); |
| } |
| if (std::isinf(f64)) { |
| return Literal(float(f64)); |
| } |
| // when close to the limit, but still truncatable to a valid value, do that |
| // see |
| // https://github.com/WebAssembly/sexpr-wasm-prototype/blob/2d375e8d502327e814d62a08f22da9d9b6b675dc/src/wasm-interpreter.c#L247 |
| uint64_t bits = reinterpreti64(); |
| if (bits > 0x47efffffe0000000ULL && bits < 0x47effffff0000000ULL) { |
| return Literal(std::numeric_limits<float>::max()); |
| } |
| if (bits > 0xc7efffffe0000000ULL && bits < 0xc7effffff0000000ULL) { |
| return Literal(-std::numeric_limits<float>::max()); |
| } |
| // when we must convert to infinity, do that |
| if (f64 < -std::numeric_limits<float>::max()) { |
| return Literal(-std::numeric_limits<float>::infinity()); |
| } |
| if (f64 > std::numeric_limits<float>::max()) { |
| return Literal(std::numeric_limits<float>::infinity()); |
| } |
| return Literal(float(getf64())); |
| } |
| |
| // Wasm has nondeterministic rules for NaN propagation in some operations. For |
| // example. f32.neg is deterministic and just flips the sign, even of a NaN, but |
| // f32.add is nondeterministic, and if one or more of the inputs is a NaN, then |
| // |
| // * if all NaNs are canonical NaNs, the output is some arbitrary canonical NaN |
| // * otherwise the output is some arbitrary arithmetic NaN |
| // |
| // (canonical = NaN payload is 1000..000; arithmetic: 1???..???, that is, the |
| // high bit is 1 and all others can be 0 or 1) |
| // |
| // For many things we don't need to care, and can just do a normal C++ add for |
| // an f32.add, for example - the wasm rules are specified so that things like |
| // that just work (in order for such math to be fast). However, for our |
| // optimizer, it is useful to "standardize" NaNs when there is nondeterminism. |
| // That is, when there are multiple valid outputs, it's nice to emit the same |
| // one consistently, so that it doesn't look like the optimization changed |
| // something. In other words, if the valid output of an expression is a set of |
| // valid NaNs, and after optimization the output is still that same set, then |
| // the optimization is valid. And if the interpreter picks the same NaN in both |
| // cases from that identical set then nothing looks wrong to the fuzzer. |
| template<typename T> static Literal standardizeNaN(T result) { |
| if (!std::isnan(result)) { |
| return Literal(result); |
| } |
| // Pick a simple canonical payload, and positive. |
| if (sizeof(T) == 4) { |
| return Literal(Literal(uint32_t(0x7fc00000u)).reinterpretf32()); |
| } else if (sizeof(T) == 8) { |
| return Literal(Literal(uint64_t(0x7ff8000000000000ull)).reinterpretf64()); |
| } else { |
| WASM_UNREACHABLE("invalid float"); |
| } |
| } |
| |
| Literal Literal::add(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(uint32_t(i32) + uint32_t(other.i32)); |
| case Type::i64: |
| return Literal(uint64_t(i64) + uint64_t(other.i64)); |
| case Type::f32: |
| return standardizeNaN(getf32() + other.getf32()); |
| case Type::f64: |
| return standardizeNaN(getf64() + other.getf64()); |
| case Type::v128: |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::i31ref: |
| case Type::dataref: |
| case Type::none: |
| case Type::unreachable: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| |
| Literal Literal::sub(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(uint32_t(i32) - uint32_t(other.i32)); |
| case Type::i64: |
| return Literal(uint64_t(i64) - uint64_t(other.i64)); |
| case Type::f32: |
| return standardizeNaN(getf32() - other.getf32()); |
| case Type::f64: |
| return standardizeNaN(getf64() - other.getf64()); |
| case Type::v128: |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::i31ref: |
| case Type::dataref: |
| case Type::none: |
| case Type::unreachable: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| |
| template<typename T> static T add_sat_s(T a, T b) { |
| static_assert(std::is_signed<T>::value, |
| "Trying to instantiate add_sat_s with unsigned type"); |
| using UT = typename std::make_unsigned<T>::type; |
| UT ua = static_cast<UT>(a); |
| UT ub = static_cast<UT>(b); |
| UT ures = ua + ub; |
| // overflow if sign of result is different from sign of a and b |
| if (static_cast<T>((ures ^ ua) & (ures ^ ub)) < 0) { |
| return (a < 0) ? std::numeric_limits<T>::min() |
| : std::numeric_limits<T>::max(); |
| } |
| return static_cast<T>(ures); |
| } |
| |
| template<typename T> static T sub_sat_s(T a, T b) { |
| static_assert(std::is_signed<T>::value, |
| "Trying to instantiate sub_sat_s with unsigned type"); |
| using UT = typename std::make_unsigned<T>::type; |
| UT ua = static_cast<UT>(a); |
| UT ub = static_cast<UT>(b); |
| UT ures = ua - ub; |
| // overflow if a and b have different signs and result and a differ in sign |
| if (static_cast<T>((ua ^ ub) & (ures ^ ua)) < 0) { |
| return (a < 0) ? std::numeric_limits<T>::min() |
| : std::numeric_limits<T>::max(); |
| } |
| return static_cast<T>(ures); |
| } |
| |
| template<typename T> static T add_sat_u(T a, T b) { |
| static_assert(std::is_unsigned<T>::value, |
| "Trying to instantiate add_sat_u with signed type"); |
| T res = a + b; |
| // overflow if result is less than arguments |
| return (res < a) ? std::numeric_limits<T>::max() : res; |
| } |
| |
| template<typename T> static T sub_sat_u(T a, T b) { |
| static_assert(std::is_unsigned<T>::value, |
| "Trying to instantiate sub_sat_u with signed type"); |
| T res = a - b; |
| // overflow if result is greater than a |
| return (res > a) ? 0 : res; |
| } |
| |
| Literal Literal::addSatSI8(const Literal& other) const { |
| return Literal(add_sat_s<int8_t>(geti32(), other.geti32())); |
| } |
| Literal Literal::addSatUI8(const Literal& other) const { |
| return Literal(add_sat_u<uint8_t>(geti32(), other.geti32())); |
| } |
| Literal Literal::addSatSI16(const Literal& other) const { |
| return Literal(add_sat_s<int16_t>(geti32(), other.geti32())); |
| } |
| Literal Literal::addSatUI16(const Literal& other) const { |
| return Literal(add_sat_u<uint16_t>(geti32(), other.geti32())); |
| } |
| Literal Literal::subSatSI8(const Literal& other) const { |
| return Literal(sub_sat_s<int8_t>(geti32(), other.geti32())); |
| } |
| Literal Literal::subSatUI8(const Literal& other) const { |
| return Literal(sub_sat_u<uint8_t>(geti32(), other.geti32())); |
| } |
| Literal Literal::subSatSI16(const Literal& other) const { |
| return Literal(sub_sat_s<int16_t>(geti32(), other.geti32())); |
| } |
| Literal Literal::subSatUI16(const Literal& other) const { |
| return Literal(sub_sat_u<uint16_t>(geti32(), other.geti32())); |
| } |
| |
| Literal Literal::mul(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(uint32_t(i32) * uint32_t(other.i32)); |
| case Type::i64: |
| return Literal(uint64_t(i64) * uint64_t(other.i64)); |
| case Type::f32: |
| return standardizeNaN(getf32() * other.getf32()); |
| case Type::f64: |
| return standardizeNaN(getf64() * other.getf64()); |
| case Type::v128: |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::i31ref: |
| case Type::dataref: |
| case Type::none: |
| case Type::unreachable: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| |
| Literal Literal::div(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::f32: { |
| float lhs = getf32(), rhs = other.getf32(); |
| float sign = std::signbit(lhs) == std::signbit(rhs) ? 0.f : -0.f; |
| switch (std::fpclassify(rhs)) { |
| case FP_ZERO: |
| switch (std::fpclassify(lhs)) { |
| case FP_NAN: |
| case FP_ZERO: |
| return standardizeNaN(lhs / rhs); |
| case FP_NORMAL: // fallthrough |
| case FP_SUBNORMAL: // fallthrough |
| case FP_INFINITE: |
| return Literal( |
| std::copysign(std::numeric_limits<float>::infinity(), sign)); |
| default: |
| WASM_UNREACHABLE("invalid fp classification"); |
| } |
| case FP_NAN: // fallthrough |
| case FP_INFINITE: // fallthrough |
| case FP_NORMAL: // fallthrough |
| case FP_SUBNORMAL: |
| return standardizeNaN(lhs / rhs); |
| default: |
| WASM_UNREACHABLE("invalid fp classification"); |
| } |
| } |
| case Type::f64: { |
| double lhs = getf64(), rhs = other.getf64(); |
| double sign = std::signbit(lhs) == std::signbit(rhs) ? 0. : -0.; |
| switch (std::fpclassify(rhs)) { |
| case FP_ZERO: |
| switch (std::fpclassify(lhs)) { |
| case FP_NAN: |
| case FP_ZERO: |
| return standardizeNaN(lhs / rhs); |
| case FP_NORMAL: // fallthrough |
| case FP_SUBNORMAL: // fallthrough |
| case FP_INFINITE: |
| return Literal( |
| std::copysign(std::numeric_limits<double>::infinity(), sign)); |
| default: |
| WASM_UNREACHABLE("invalid fp classification"); |
| } |
| case FP_NAN: // fallthrough |
| case FP_INFINITE: // fallthrough |
| case FP_NORMAL: // fallthrough |
| case FP_SUBNORMAL: |
| return standardizeNaN(lhs / rhs); |
| default: |
| WASM_UNREACHABLE("invalid fp classification"); |
| } |
| } |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::divS(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 / other.i32); |
| case Type::i64: |
| return Literal(i64 / other.i64); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::divU(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(uint32_t(i32) / uint32_t(other.i32)); |
| case Type::i64: |
| return Literal(uint64_t(i64) / uint64_t(other.i64)); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::remS(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 % other.i32); |
| case Type::i64: |
| return Literal(i64 % other.i64); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::remU(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(uint32_t(i32) % uint32_t(other.i32)); |
| case Type::i64: |
| return Literal(uint64_t(i64) % uint64_t(other.i64)); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::minInt(const Literal& other) const { |
| return geti32() < other.geti32() ? *this : other; |
| } |
| Literal Literal::maxInt(const Literal& other) const { |
| return geti32() > other.geti32() ? *this : other; |
| } |
| Literal Literal::minUInt(const Literal& other) const { |
| return uint32_t(geti32()) < uint32_t(other.geti32()) ? *this : other; |
| } |
| Literal Literal::maxUInt(const Literal& other) const { |
| return uint32_t(geti32()) > uint32_t(other.geti32()) ? *this : other; |
| } |
| |
| Literal Literal::avgrUInt(const Literal& other) const { |
| return Literal((geti32() + other.geti32() + 1) / 2); |
| } |
| |
| Literal Literal::and_(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 & other.i32); |
| case Type::i64: |
| return Literal(i64 & other.i64); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::or_(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 | other.i32); |
| case Type::i64: |
| return Literal(i64 | other.i64); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::xor_(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 ^ other.i32); |
| case Type::i64: |
| return Literal(i64 ^ other.i64); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::shl(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(uint32_t(i32) |
| << Bits::getEffectiveShifts(other.i32, Type::i32)); |
| case Type::i64: |
| return Literal(uint64_t(i64) |
| << Bits::getEffectiveShifts(other.i64, Type::i64)); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::shrS(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 >> Bits::getEffectiveShifts(other.i32, Type::i32)); |
| case Type::i64: |
| return Literal(i64 >> Bits::getEffectiveShifts(other.i64, Type::i64)); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::shrU(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(uint32_t(i32) >> |
| Bits::getEffectiveShifts(other.i32, Type::i32)); |
| case Type::i64: |
| return Literal(uint64_t(i64) >> |
| Bits::getEffectiveShifts(other.i64, Type::i64)); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::rotL(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(Bits::rotateLeft(uint32_t(i32), uint32_t(other.i32))); |
| case Type::i64: |
| return Literal(Bits::rotateLeft(uint64_t(i64), uint64_t(other.i64))); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::rotR(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(Bits::rotateRight(uint32_t(i32), uint32_t(other.i32))); |
| case Type::i64: |
| return Literal(Bits::rotateRight(uint64_t(i64), uint64_t(other.i64))); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::eq(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 == other.i32); |
| case Type::i64: |
| return Literal(i64 == other.i64); |
| case Type::f32: |
| return Literal(getf32() == other.getf32()); |
| case Type::f64: |
| return Literal(getf64() == other.getf64()); |
| case Type::v128: |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::i31ref: |
| case Type::dataref: |
| case Type::none: |
| case Type::unreachable: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| |
| Literal Literal::ne(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 != other.i32); |
| case Type::i64: |
| return Literal(i64 != other.i64); |
| case Type::f32: |
| return Literal(getf32() != other.getf32()); |
| case Type::f64: |
| return Literal(getf64() != other.getf64()); |
| case Type::v128: |
| case Type::funcref: |
| case Type::externref: |
| case Type::anyref: |
| case Type::eqref: |
| case Type::i31ref: |
| case Type::dataref: |
| case Type::none: |
| case Type::unreachable: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| |
| Literal Literal::ltS(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 < other.i32); |
| case Type::i64: |
| return Literal(i64 < other.i64); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::ltU(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(uint32_t(i32) < uint32_t(other.i32)); |
| case Type::i64: |
| return Literal(uint64_t(i64) < uint64_t(other.i64)); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::lt(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| return Literal(getf32() < other.getf32()); |
| case Type::f64: |
| return Literal(getf64() < other.getf64()); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::leS(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 <= other.i32); |
| case Type::i64: |
| return Literal(i64 <= other.i64); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::leU(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(uint32_t(i32) <= uint32_t(other.i32)); |
| case Type::i64: |
| return Literal(uint64_t(i64) <= uint64_t(other.i64)); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::le(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| return Literal(getf32() <= other.getf32()); |
| case Type::f64: |
| return Literal(getf64() <= other.getf64()); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::gtS(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 > other.i32); |
| case Type::i64: |
| return Literal(i64 > other.i64); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::gtU(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(uint32_t(i32) > uint32_t(other.i32)); |
| case Type::i64: |
| return Literal(uint64_t(i64) > uint64_t(other.i64)); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::gt(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| return Literal(getf32() > other.getf32()); |
| case Type::f64: |
| return Literal(getf64() > other.getf64()); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::geS(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(i32 >= other.i32); |
| case Type::i64: |
| return Literal(i64 >= other.i64); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::geU(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::i32: |
| return Literal(uint32_t(i32) >= uint32_t(other.i32)); |
| case Type::i64: |
| return Literal(uint64_t(i64) >= uint64_t(other.i64)); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::ge(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| return Literal(getf32() >= other.getf32()); |
| case Type::f64: |
| return Literal(getf64() >= other.getf64()); |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::min(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::f32: { |
| auto l = getf32(), r = other.getf32(); |
| if (std::isnan(l)) { |
| return standardizeNaN(l); |
| } |
| if (std::isnan(r)) { |
| return standardizeNaN(r); |
| } |
| if (l == r && l == 0) { |
| return Literal(std::signbit(l) ? l : r); |
| } |
| return Literal(std::min(l, r)); |
| } |
| case Type::f64: { |
| auto l = getf64(), r = other.getf64(); |
| if (std::isnan(l)) { |
| return standardizeNaN(l); |
| } |
| if (std::isnan(r)) { |
| return standardizeNaN(r); |
| } |
| if (l == r && l == 0) { |
| return Literal(std::signbit(l) ? l : r); |
| } |
| return Literal(std::min(l, r)); |
| } |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::max(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::f32: { |
| auto l = getf32(), r = other.getf32(); |
| if (std::isnan(l)) { |
| return standardizeNaN(l); |
| } |
| if (std::isnan(r)) { |
| return standardizeNaN(r); |
| } |
| if (l == r && l == 0) { |
| return Literal(std::signbit(l) ? r : l); |
| } |
| return Literal(std::max(l, r)); |
| } |
| case Type::f64: { |
| auto l = getf64(), r = other.getf64(); |
| if (std::isnan(l)) { |
| return standardizeNaN(l); |
| } |
| if (std::isnan(r)) { |
| return standardizeNaN(r); |
| } |
| if (l == r && l == 0) { |
| return Literal(std::signbit(l) ? r : l); |
| } |
| return Literal(std::max(l, r)); |
| } |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::pmin(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| case Type::f64: |
| return other.lt(*this).geti32() ? other : *this; |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::pmax(const Literal& other) const { |
| switch (type.getBasic()) { |
| case Type::f32: |
| case Type::f64: |
| return this->lt(other).geti32() ? other : *this; |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| Literal Literal::copysign(const Literal& other) const { |
| // operate on bits directly, to avoid signalling bit being set on a float |
| switch (type.getBasic()) { |
| case Type::f32: |
| return Literal((i32 & 0x7fffffff) | (other.i32 & 0x80000000)).castToF32(); |
| break; |
| case Type::f64: |
| return Literal((i64 & 0x7fffffffffffffffUL) | |
| (other.i64 & 0x8000000000000000UL)) |
| .castToF64(); |
| break; |
| default: |
| WASM_UNREACHABLE("unexpected type"); |
| } |
| } |
| |
| template<typename LaneT, int Lanes> |
| static LaneArray<Lanes> getLanes(const Literal& val) { |
| assert(val.type == Type::v128); |
| const size_t lane_width = 16 / Lanes; |
| std::array<uint8_t, 16> bytes = val.getv128(); |
| LaneArray<Lanes> lanes; |
| for (size_t lane_index = 0; lane_index < Lanes; ++lane_index) { |
| LaneT lane(0); |
| for (size_t offset = 0; offset < lane_width; ++offset) { |
| lane |= LaneT(bytes.at(lane_index * lane_width + offset)) |
| << LaneT(8 * offset); |
| } |
| lanes.at(lane_index) = Literal(lane); |
| } |
| return lanes; |
| } |
| |
| LaneArray<16> Literal::getLanesSI8x16() const { |
| return getLanes<int8_t, 16>(*this); |
| } |
| LaneArray<16> Literal::getLanesUI8x16() const { |
| return getLanes<uint8_t, 16>(*this); |
| } |
| LaneArray<8> Literal::getLanesSI16x8() const { |
| return getLanes<int16_t, 8>(*this); |
| } |
| LaneArray<8> Literal::getLanesUI16x8() const { |
| return getLanes<uint16_t, 8>(*this); |
| } |
| LaneArray<4> Literal::getLanesI32x4() const { |
| return getLanes<int32_t, 4>(*this); |
| } |
| LaneArray<2> Literal::getLanesI64x2() const { |
| return getLanes<int64_t, 2>(*this); |
| } |
| LaneArray<4> Literal::getLanesF32x4() const { |
| auto lanes = getLanesI32x4(); |
| for (size_t i = 0; i < lanes.size(); ++i) { |
| lanes[i] = lanes[i].castToF32(); |
| } |
| return lanes; |
| } |
| LaneArray<2> Literal::getLanesF64x2() const { |
| auto lanes = getLanesI64x2(); |
| for (size_t i = 0; i < lanes.size(); ++i) { |
| lanes[i] = lanes[i].castToF64(); |
| } |
| return lanes; |
| } |
| |
| Literal Literal::shuffleV8x16(const Literal& other, |
| const std::array<uint8_t, 16>& mask) const { |
| assert(type == Type::v128); |
| uint8_t bytes[16]; |
| for (size_t i = 0; i < mask.size(); ++i) { |
| bytes[i] = (mask[i] < 16) ? v128[mask[i]] : other.v128[mask[i] - 16]; |
| } |
| return Literal(bytes); |
| } |
| |
| template<Type::BasicType Ty, int Lanes> |
| static Literal splat(const Literal& val) { |
| assert(val.type == Ty); |
| LaneArray<Lanes> lanes; |
| lanes.fill(val); |
| return Literal(lanes); |
| } |
| |
| Literal Literal::splatI8x16() const { return splat<Type::i32, 16>(*this); } |
| Literal Literal::splatI16x8() const { return splat<Type::i32, 8>(*this); } |
| Literal Literal::splatI32x4() const { return splat<Type::i32, 4>(*this); } |
| Literal Literal::splatI64x2() const { return splat<Type::i64, 2>(*this); } |
| Literal Literal::splatF32x4() const { return splat<Type::f32, 4>(*this); } |
| Literal Literal::splatF64x2() const { return splat<Type::f64, 2>(*this); } |
| |
| Literal Literal::extractLaneSI8x16(uint8_t index) const { |
| return getLanesSI8x16().at(index); |
| } |
| Literal Literal::extractLaneUI8x16(uint8_t index) const { |
| return getLanesUI8x16().at(index); |
| } |
| Literal Literal::extractLaneSI16x8(uint8_t index) const { |
| return getLanesSI16x8().at(index); |
| } |
| Literal Literal::extractLaneUI16x8(uint8_t index) const { |
| return getLanesUI16x8().at(index); |
| } |
| Literal Literal::extractLaneI32x4(uint8_t index) const { |
| return getLanesI32x4().at(index); |
| } |
| Literal Literal::extractLaneI64x2(uint8_t index) const { |
| return getLanesI64x2().at(index); |
| } |
| Literal Literal::extractLaneF32x4(uint8_t index) const { |
| return getLanesF32x4().at(index); |
| } |
| Literal Literal::extractLaneF64x2(uint8_t index) const { |
| return getLanesF64x2().at(index); |
| } |
| |
| template<int Lanes, LaneArray<Lanes> (Literal::*IntoLanes)() const> |
| static Literal |
| replace(const Literal& val, const Literal& other, uint8_t index) { |
| LaneArray<Lanes> lanes = (val.*IntoLanes)(); |
| lanes.at(index) = other; |
| auto ret = Literal(lanes); |
| return ret; |
| } |
| |
| Literal Literal::replaceLaneI8x16(const Literal& other, uint8_t index) const { |
| return replace<16, &Literal::getLanesUI8x16>(*this, other, index); |
| } |
| Literal Literal::replaceLaneI16x8(const Literal& other, uint8_t index) const { |
| return replace<8, &Literal::getLanesUI16x8>(*this, other, index); |
| } |
| Literal Literal::replaceLaneI32x4(const Literal& other, uint8_t index) const { |
| return replace<4, &Literal::getLanesI32x4>(*this, other, index); |
| } |
| Literal Literal::replaceLaneI64x2(const Literal& other, uint8_t index) const { |
| return replace<2, &Literal::getLanesI64x2>(*this, other, index); |
| } |
| Literal Literal::replaceLaneF32x4(const Literal& other, uint8_t index) const { |
| return replace<4, &Literal::getLanesF32x4>(*this, other, index); |
| } |
| Literal Literal::replaceLaneF64x2(const Literal& other, uint8_t index) const { |
| return replace<2, &Literal::getLanesF64x2>(*this, other, index); |
| } |
| |
| template<int Lanes, |
| LaneArray<Lanes> (Literal::*IntoLanes)() const, |
| Literal (Literal::*UnaryOp)(void) const> |
| static Literal unary(const Literal& val) { |
| LaneArray<Lanes> lanes = (val.*IntoLanes)(); |
| for (size_t i = 0; i < Lanes; ++i) { |
| lanes[i] = (lanes[i].*UnaryOp)(); |
| } |
| return Literal(lanes); |
| } |
| |
| Literal Literal::notV128() const { |
| std::array<uint8_t, 16> ones; |
| ones.fill(0xff); |
| return xorV128(Literal(ones.data())); |
| } |
| Literal Literal::absI8x16() const { |
| return unary<16, &Literal::getLanesSI8x16, &Literal::abs>(*this); |
| } |
| Literal Literal::absI16x8() const { |
| return unary<8, &Literal::getLanesSI16x8, &Literal::abs>(*this); |
| } |
| Literal Literal::absI32x4() const { |
| return unary<4, &Literal::getLanesI32x4, &Literal::abs>(*this); |
| } |
| Literal Literal::absI64x2() const { |
| return unary<2, &Literal::getLanesI64x2, &Literal::abs>(*this); |
| } |
| Literal Literal::negI8x16() const { |
| return unary<16, &Literal::getLanesUI8x16, &Literal::neg>(*this); |
| } |
| Literal Literal::popcntI8x16() const { |
| return unary<16, &Literal::getLanesUI8x16, &Literal::popCount>(*this); |
| } |
| Literal Literal::negI16x8() const { |
| return unary<8, &Literal::getLanesUI16x8, &Literal::neg>(*this); |
| } |
| Literal Literal::negI32x4() const { |
| return unary<4, &Literal::getLanesI32x4, &Literal::neg>(*this); |
| } |
| Literal Literal::negI64x2() const { |
| return unary<2, &Literal::getLanesI64x2, &Literal::neg>(*this); |
| } |
| Literal Literal::absF32x4() const { |
| return unary<4, &Literal::getLanesF32x4, &Literal::abs>(*this); |
| } |
| Literal Literal::negF32x4() const { |
| return unary<4, &Literal::getLanesF32x4, &Literal::neg>(*this); |
| } |
| Literal Literal::sqrtF32x4() const { |
| return unary<4, &Literal::getLanesF32x4, &Literal::sqrt>(*this); |
| } |
| Literal Literal::ceilF32x4() const { |
| return unary<4, &Literal::getLanesF32x4, &Literal::ceil>(*this); |
| } |
| Literal Literal::floorF32x4() const { |
| return unary<4, &Literal::getLanesF32x4, &Literal::floor>(*this); |
| } |
| Literal Literal::truncF32x4() const { |
| return unary<4, &Literal::getLanesF32x4, &Literal::trunc>(*this); |
| } |
| Literal Literal::nearestF32x4() const { |
| return unary<4, &Literal::getLanesF32x4, &Literal::nearbyint>(*this); |
| } |
| Literal Literal::absF64x2() const { |
| return unary<2, &Literal::getLanesF64x2, &Literal::abs>(*this); |
| } |
| Literal Literal::negF64x2() const { |
| return unary<2, &Literal::getLanesF64x2, &Literal::neg>(*this); |
| } |
| Literal Literal::sqrtF64x2() const { |
| return unary<2, &Literal::getLanesF64x2, &Literal::sqrt>(*this); |
| } |
| Literal Literal::ceilF64x2() const { |
| return unary<2, &Literal::getLanesF64x2, &Literal::ceil>(*this); |
| } |
| Literal Literal::floorF64x2() const { |
| return unary<2, &Literal::getLanesF64x2, &Literal::floor>(*this); |
| } |
| Literal Literal::truncF64x2() const { |
| return unary<2, &Literal::getLanesF64x2, &Literal::trunc>(*this); |
| } |
| Literal Literal::nearestF64x2() const { |
| return unary<2, &Literal::getLanesF64x2, &Literal::nearbyint>(*this); |
| } |
| Literal Literal::truncSatToSI32x4() const { |
| return unary<4, &Literal::getLanesF32x4, &Literal::truncSatToSI32>(*this); |
| } |
| Literal Literal::truncSatToUI32x4() const { |
| return unary<4, &Literal::getLanesF32x4, &Literal::truncSatToUI32>(*this); |
| } |
| Literal Literal::convertSToF32x4() const { |
| return unary<4, &Literal::getLanesI32x4, &Literal::convertSIToF32>(*this); |
| } |
| Literal Literal::convertUToF32x4() const { |
| return unary<4, &Literal::getLanesI32x4, &Literal::convertUIToF32>(*this); |
| } |
| |
| Literal Literal::anyTrueV128() const { |
| auto lanes = getLanesI32x4(); |
| for (size_t i = 0; i < 4; ++i) { |
| if (lanes[i].geti32() != 0) { |
| return Literal(int32_t(1)); |
| } |
| } |
| return Literal(int32_t(0)); |
| } |
| |
| template<int Lanes, LaneArray<Lanes> (Literal::*IntoLanes)() const> |
| static Literal all_true(const Literal& val) { |
| LaneArray<Lanes> lanes = (val.*IntoLanes)(); |
| for (size_t i = 0; i < Lanes; ++i) { |
| if (lanes[i] == Literal::makeZero(lanes[i].type)) { |
| return Literal(int32_t(0)); |
| } |
| } |
| return Literal(int32_t(1)); |
| } |
| |
| template<int Lanes, LaneArray<Lanes> (Literal::*IntoLanes)() const> |
| static Literal bitmask(const Literal& val) { |
| uint32_t result = 0; |
| LaneArray<Lanes> lanes = (val.*IntoLanes)(); |
| for (size_t i = 0; i < Lanes; ++i) { |
| if (lanes[i].geti32() & (1 << 31)) { |
| result = result | (1 << i); |
| } |
| } |
| return Literal(result); |
| } |
| |
| Literal Literal::allTrueI8x16() const { |
| return all_true<16, &Literal::getLanesUI8x16>(*this); |
| } |
| Literal Literal::bitmaskI8x16() const { |
| return bitmask<16, &Literal::getLanesSI8x16>(*this); |
| } |
| Literal Literal::allTrueI16x8() const { |
| return all_true<8, &Literal::getLanesUI16x8>(*this); |
| } |
| Literal Literal::bitmaskI16x8() const { |
| return bitmask<8, &Literal::getLanesSI16x8>(*this); |
| } |
| Literal Literal::allTrueI32x4() const { |
| return all_true<4, &Literal::getLanesI32x4>(*this); |
| } |
| Literal Literal::bitmaskI32x4() const { |
| return bitmask<4, &Literal::getLanesI32x4>(*this); |
| } |
| Literal Literal::allTrueI64x2() const { |
| return all_true<2, &Literal::getLanesI64x2>(*this); |
| } |
| |
| template<int Lanes, |
| LaneArray<Lanes> (Literal::*IntoLanes)() const, |
| Literal (Literal::*ShiftOp)(const Literal&) const> |
| static Literal shift(const Literal& vec, const Literal& shift) { |
| assert(shift.type == Type::i32); |
| size_t lane_bits = 128 / Lanes; |
| LaneArray<Lanes> lanes = (vec.*IntoLanes)(); |
| for (size_t i = 0; i < Lanes; ++i) { |
| lanes[i] = |
| (lanes[i].*ShiftOp)(Literal(int32_t(shift.geti32() % lane_bits))); |
| } |
| return Literal(lanes); |
| } |
| |
| Literal Literal::shlI8x16(const Literal& other) const { |
| return shift<16, &Literal::getLanesUI8x16, &Literal::shl>(*this, other); |
| } |
| Literal Literal::shrSI8x16(const Literal& other) const { |
| return shift<16, &Literal::getLanesSI8x16, &Literal::shrS>(*this, other); |
| } |
| Literal Literal::shrUI8x16(const Literal& other) const { |
| return shift<16, &Literal::getLanesUI8x16, &Literal::shrU>(*this, other); |
| } |
| Literal Literal::shlI16x8(const Literal& other) const { |
| return shift<8, &Literal::getLanesUI16x8, &Literal::shl>(*this, other); |
| } |
| Literal Literal::shrSI16x8(const Literal& other) const { |
| return shift<8, &Literal::getLanesSI16x8, &Literal::shrS>(*this, other); |
| } |
| Literal Literal::shrUI16x8(const Literal& other) const { |
| return shift<8, &Literal::getLanesUI16x8, &Literal::shrU>(*this, other); |
| } |
| Literal Literal::shlI32x4(const Literal& other) const { |
| return shift<4, &Literal::getLanesI32x4, &Literal::shl>(*this, other); |
| } |
| Literal Literal::shrSI32x4(const Literal& other) const { |
| return shift<4, &Literal::getLanesI32x4, &Literal::shrS>(*this, other); |
| } |
| Literal Literal::shrUI32x4(const Literal& other) const { |
| return shift<4, &Literal::getLanesI32x4, &Literal::shrU>(*this, other); |
| } |
| Literal Literal::shlI64x2(const Literal& other) const { |
| return shift<2, &Literal::getLanesI64x2, &Literal::shl>(*this, other); |
| } |
| Literal Literal::shrSI64x2(const Literal& other) const { |
| return shift<2, &Literal::getLanesI64x2, &Literal::shrS>(*this, other); |
| } |
| Literal Literal::shrUI64x2(const Literal& other) const { |
| return shift<2, &Literal::getLanesI64x2, &Literal::shrU>(*this, other); |
| } |
| |
| template<int Lanes, |
| LaneArray<Lanes> (Literal::*IntoLanes)() const, |
| Literal (Literal::*CompareOp)(const Literal&) const, |
| typename LaneT = int32_t> |
| static Literal compare(const Literal& val, const Literal& other) { |
| LaneArray<Lanes> lanes = (val.*IntoLanes)(); |
| LaneArray<Lanes> other_lanes = (other.*IntoLanes)(); |
| for (size_t i = 0; i < Lanes; ++i) { |
| lanes[i] = (lanes[i].*CompareOp)(other_lanes[i]) == Literal(int32_t(1)) |
| ? Literal(LaneT(-1)) |
| : Literal(LaneT(0)); |
| } |
| return Literal(lanes); |
| } |
| |
| Literal Literal::eqI8x16(const Literal& other) const { |
| return compare<16, &Literal::getLanesUI8x16, &Literal::eq>(*this, other); |
| } |
| Literal Literal::neI8x16(const Literal& other) const { |
| return compare<16, &Literal::getLanesUI8x16, &Literal::ne>(*this, other); |
| } |
| Literal Literal::ltSI8x16(const Literal& other) const { |
| return compare<16, &Literal::getLanesSI8x16, &Literal::ltS>(*this, other); |
| } |
| Literal Literal::ltUI8x16(const Literal& other) const { |
| return compare<16, &Literal::getLanesUI8x16, &Literal::ltU>(*this, other); |
| } |
| Literal Literal::gtSI8x16(const Literal& other) const { |
| return compare<16, &Literal::getLanesSI8x16, &Literal::gtS>(*this, other); |
| } |
| Literal Literal::gtUI8x16(const Literal& other) const { |
| return compare<16, &Literal::getLanesUI8x16, &Literal::gtU>(*this, other); |
| } |
| Literal Literal::leSI8x16(const Literal& other) const { |
| return compare<16, &Literal::getLanesSI8x16, &Literal::leS>(*this, other); |
| } |
| Literal Literal::leUI8x16(const Literal& other) const { |
| return compare<16, &Literal::getLanesUI8x16, &Literal::leU>(*this, other); |
| } |
| Literal Literal::geSI8x16(const Literal& other) const { |
| return compare<16, &Literal::getLanesSI8x16, &Literal::geS>(*this, other); |
| } |
| Literal Literal::geUI8x16(const Literal& other) const { |
| return compare<16, &Literal::getLanesUI8x16, &Literal::geU>(*this, other); |
| } |
| Literal Literal::eqI16x8(const Literal& other) const { |
| return compare<8, &Literal::getLanesUI16x8, &Literal::eq>(*this, other); |
| } |
| Literal Literal::neI16x8(const Literal& other) const { |
| return compare<8, &Literal::getLanesUI16x8, &Literal::ne>(*this, other); |
| } |
| Literal Literal::ltSI16x8(const Literal& other) const { |
| return compare<8, &Literal::getLanesSI16x8, &Literal::ltS>(*this, other); |
| } |
| Literal Literal::ltUI16x8(const Literal& other) const { |
| return compare<8, &Literal::getLanesUI16x8, &Literal::ltU>(*this, other); |
| } |
| Literal Literal::gtSI16x8(const Literal& other) const { |
| return compare<8, &Literal::getLanesSI16x8, &Literal::gtS>(*this, other); |
| } |
| Literal Literal::gtUI16x8(const Literal& other) const { |
| return compare<8, &Literal::getLanesUI16x8, &Literal::gtU>(*this, other); |
| } |
| Literal Literal::leSI16x8(const Literal& other) const { |
| return compare<8, &Literal::getLanesSI16x8, &Literal::leS>(*this, other); |
| } |
| Literal Literal::leUI16x8(const Literal& other) const { |
| return compare<8, &Literal::getLanesUI16x8, &Literal::leU>(*this, other); |
| } |
| Literal Literal::geSI16x8(const Literal& other) const { |
| return compare<8, &Literal::getLanesSI16x8, &Literal::geS>(*this, other); |
| } |
| Literal Literal::geUI16x8(const Literal& other) const { |
| return compare<8, &Literal::getLanesUI16x8, &Literal::geU>(*this, other); |
| } |
| Literal Literal::eqI32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesI32x4, &Literal::eq>(*this, other); |
| } |
| Literal Literal::neI32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesI32x4, &Literal::ne>(*this, other); |
| } |
| Literal Literal::ltSI32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesI32x4, &Literal::ltS>(*this, other); |
| } |
| Literal Literal::ltUI32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesI32x4, &Literal::ltU>(*this, other); |
| } |
| Literal Literal::gtSI32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesI32x4, &Literal::gtS>(*this, other); |
| } |
| Literal Literal::gtUI32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesI32x4, &Literal::gtU>(*this, other); |
| } |
| Literal Literal::leSI32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesI32x4, &Literal::leS>(*this, other); |
| } |
| Literal Literal::leUI32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesI32x4, &Literal::leU>(*this, other); |
| } |
| Literal Literal::geSI32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesI32x4, &Literal::geS>(*this, other); |
| } |
| Literal Literal::geUI32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesI32x4, &Literal::geU>(*this, other); |
| } |
| Literal Literal::eqI64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesI64x2, &Literal::eq, int64_t>(*this, |
| other); |
| } |
| Literal Literal::neI64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesI64x2, &Literal::ne, int64_t>(*this, |
| other); |
| } |
| Literal Literal::ltSI64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesI64x2, &Literal::ltS, int64_t>(*this, |
| other); |
| } |
| Literal Literal::gtSI64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesI64x2, &Literal::gtS, int64_t>(*this, |
| other); |
| } |
| Literal Literal::leSI64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesI64x2, &Literal::leS, int64_t>(*this, |
| other); |
| } |
| Literal Literal::geSI64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesI64x2, &Literal::geS, int64_t>(*this, |
| other); |
| } |
| Literal Literal::eqF32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesF32x4, &Literal::eq>(*this, other); |
| } |
| Literal Literal::neF32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesF32x4, &Literal::ne>(*this, other); |
| } |
| Literal Literal::ltF32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesF32x4, &Literal::lt>(*this, other); |
| } |
| Literal Literal::gtF32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesF32x4, &Literal::gt>(*this, other); |
| } |
| Literal Literal::leF32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesF32x4, &Literal::le>(*this, other); |
| } |
| Literal Literal::geF32x4(const Literal& other) const { |
| return compare<4, &Literal::getLanesF32x4, &Literal::ge>(*this, other); |
| } |
| Literal Literal::eqF64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesF64x2, &Literal::eq, int64_t>(*this, |
| other); |
| } |
| Literal Literal::neF64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesF64x2, &Literal::ne, int64_t>(*this, |
| other); |
| } |
| Literal Literal::ltF64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesF64x2, &Literal::lt, int64_t>(*this, |
| other); |
| } |
| Literal Literal::gtF64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesF64x2, &Literal::gt, int64_t>(*this, |
| other); |
| } |
| Literal Literal::leF64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesF64x2, &Literal::le, int64_t>(*this, |
| other); |
| } |
| Literal Literal::geF64x2(const Literal& other) const { |
| return compare<2, &Literal::getLanesF64x2, &Literal::ge, int64_t>(*this, |
| other); |
| } |
| |
| template<int Lanes, |
| LaneArray<Lanes> (Literal::*IntoLanes)() const, |
| Literal (Literal::*BinaryOp)(const Literal&) const> |
| static Literal binary(const Literal& val, const Literal& other) { |
| LaneArray<Lanes> lanes = (val.*IntoLanes)(); |
| LaneArray<Lanes> other_lanes = (other.*IntoLanes)(); |
| for (size_t i = 0; i < Lanes; ++i) { |
| lanes[i] = (lanes[i].*BinaryOp)(other_lanes[i]); |
| } |
| return Literal(lanes); |
| } |
| |
| Literal Literal::andV128(const Literal& other) const { |
| return binary<4, &Literal::getLanesI32x4, &Literal::and_>(*this, other); |
| } |
| Literal Literal::orV128(const Literal& other) const { |
| return binary<4, &Literal::getLanesI32x4, &Literal::or_>(*this, other); |
| } |
| Literal Literal::xorV128(const Literal& other) const { |
| return binary<4, &Literal::getLanesI32x4, &Literal::xor_>(*this, other); |
| } |
| Literal Literal::addI8x16(const Literal& other) const { |
| return binary<16, &Literal::getLanesUI8x16, &Literal::add>(*this, other); |
| } |
| Literal Literal::addSaturateSI8x16(const Literal& other) const { |
| return binary<16, &Literal::getLanesUI8x16, &Literal::addSatSI8>(*this, |
| other); |
| } |
| Literal Literal::addSaturateUI8x16(const Literal& other) const { |
| return binary<16, &Literal::getLanesSI8x16, &Literal::addSatUI8>(*this, |
| other); |
| } |
| Literal Literal::subI8x16(const Literal& other) const { |
| return binary<16, &Literal::getLanesUI8x16, &Literal::sub>(*this, other); |
| } |
| Literal Literal::subSaturateSI8x16(const Literal& other) const { |
| return binary<16, &Literal::getLanesUI8x16, &Literal::subSatSI8>(*this, |
| other); |
| } |
| Literal Literal::subSaturateUI8x16(const Literal& other) const { |
| return binary<16, &Literal::getLanesSI8x16, &Literal::subSatUI8>(*this, |
| other); |
| } |
| Literal Literal::minSI8x16(const Literal& other) const { |
| return binary<16, &Literal::getLanesSI8x16, &Literal::minInt>(*this, other); |
| } |
| Literal Literal::minUI8x16(const Literal& other) const { |
| return binary<16, &Literal::getLanesUI8x16, &Literal::minInt>(*this, other); |
| } |
| Literal Literal::maxSI8x16(const Literal& other) const { |
| return binary<16, &Literal::getLanesSI8x16, &Literal::maxInt>(*this, other); |
| } |
| Literal Literal::maxUI8x16(const Literal& other) const { |
| return binary<16, &Literal::getLanesUI8x16, &Literal::maxInt>(*this, other); |
| } |
| Literal Literal::avgrUI8x16(const Literal& other) const { |
| return binary<16, &Literal::getLanesUI8x16, &Literal::avgrUInt>(*this, other); |
| } |
| Literal Literal::addI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesUI16x8, &Literal::add>(*this, other); |
| } |
| Literal Literal::addSaturateSI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesUI16x8, &Literal::addSatSI16>(*this, |
| other); |
| } |
| Literal Literal::addSaturateUI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesSI16x8, &Literal::addSatUI16>(*this, |
| other); |
| } |
| Literal Literal::subI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesUI16x8, &Literal::sub>(*this, other); |
| } |
| Literal Literal::subSaturateSI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesUI16x8, &Literal::subSatSI16>(*this, |
| other); |
| } |
| Literal Literal::subSaturateUI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesSI16x8, &Literal::subSatUI16>(*this, |
| other); |
| } |
| Literal Literal::mulI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesUI16x8, &Literal::mul>(*this, other); |
| } |
| Literal Literal::minSI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesSI16x8, &Literal::minInt>(*this, other); |
| } |
| Literal Literal::minUI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesUI16x8, &Literal::minInt>(*this, other); |
| } |
| Literal Literal::maxSI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesSI16x8, &Literal::maxInt>(*this, other); |
| } |
| Literal Literal::maxUI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesUI16x8, &Literal::maxInt>(*this, other); |
| } |
| Literal Literal::avgrUI16x8(const Literal& other) const { |
| return binary<8, &Literal::getLanesUI16x8, &Literal::avgrUInt>(*this, other); |
| } |
| Literal Literal::q15MulrSatSI16x8(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement Q15 rounding, saturating multiplication"); |
| } |
| Literal Literal::addI32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesI32x4, &Literal::add>(*this, other); |
| } |
| Literal Literal::subI32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesI32x4, &Literal::sub>(*this, other); |
| } |
| Literal Literal::mulI32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesI32x4, &Literal::mul>(*this, other); |
| } |
| Literal Literal::minSI32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesI32x4, &Literal::minInt>(*this, other); |
| } |
| Literal Literal::minUI32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesI32x4, &Literal::minUInt>(*this, other); |
| } |
| Literal Literal::maxSI32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesI32x4, &Literal::maxInt>(*this, other); |
| } |
| Literal Literal::maxUI32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesI32x4, &Literal::maxUInt>(*this, other); |
| } |
| Literal Literal::addI64x2(const Literal& other) const { |
| return binary<2, &Literal::getLanesI64x2, &Literal::add>(*this, other); |
| } |
| Literal Literal::subI64x2(const Literal& other) const { |
| return binary<2, &Literal::getLanesI64x2, &Literal::sub>(*this, other); |
| } |
| Literal Literal::mulI64x2(const Literal& other) const { |
| return binary<2, &Literal::getLanesI64x2, &Literal::mul>(*this, other); |
| } |
| Literal Literal::addF32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesF32x4, &Literal::add>(*this, other); |
| } |
| Literal Literal::subF32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesF32x4, &Literal::sub>(*this, other); |
| } |
| Literal Literal::mulF32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesF32x4, &Literal::mul>(*this, other); |
| } |
| Literal Literal::divF32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesF32x4, &Literal::div>(*this, other); |
| } |
| Literal Literal::minF32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesF32x4, &Literal::min>(*this, other); |
| } |
| Literal Literal::maxF32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesF32x4, &Literal::max>(*this, other); |
| } |
| Literal Literal::pminF32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesF32x4, &Literal::pmin>(*this, other); |
| } |
| Literal Literal::pmaxF32x4(const Literal& other) const { |
| return binary<4, &Literal::getLanesF32x4, &Literal::pmax>(*this, other); |
| } |
| Literal Literal::addF64x2(const Literal& other) const { |
| return binary<2, &Literal::getLanesF64x2, &Literal::add>(*this, other); |
| } |
| Literal Literal::subF64x2(const Literal& other) const { |
| return binary<2, &Literal::getLanesF64x2, &Literal::sub>(*this, other); |
| } |
| Literal Literal::mulF64x2(const Literal& other) const { |
| return binary<2, &Literal::getLanesF64x2, &Literal::mul>(*this, other); |
| } |
| Literal Literal::divF64x2(const Literal& other) const { |
| return binary<2, &Literal::getLanesF64x2, &Literal::div>(*this, other); |
| } |
| Literal Literal::minF64x2(const Literal& other) const { |
| return binary<2, &Literal::getLanesF64x2, &Literal::min>(*this, other); |
| } |
| Literal Literal::maxF64x2(const Literal& other) const { |
| return binary<2, &Literal::getLanesF64x2, &Literal::max>(*this, other); |
| } |
| Literal Literal::pminF64x2(const Literal& other) const { |
| return binary<2, &Literal::getLanesF64x2, &Literal::pmin>(*this, other); |
| } |
| Literal Literal::pmaxF64x2(const Literal& other) const { |
| return binary<2, &Literal::getLanesF64x2, &Literal::pmax>(*this, other); |
| } |
| |
| Literal Literal::dotSI16x8toI32x4(const Literal& other) const { |
| LaneArray<8> lhs = getLanesSI16x8(); |
| LaneArray<8> rhs = other.getLanesSI16x8(); |
| LaneArray<4> result; |
| for (size_t i = 0; i < 4; ++i) { |
| result[i] = Literal(lhs[i * 2].geti32() * rhs[i * 2].geti32() + |
| lhs[i * 2 + 1].geti32() * rhs[i * 2 + 1].geti32()); |
| } |
| return Literal(result); |
| } |
| |
| Literal Literal::bitselectV128(const Literal& left, |
| const Literal& right) const { |
| return andV128(left).orV128(notV128().andV128(right)); |
| } |
| |
| template<typename T> struct TwiceWidth {}; |
| template<> struct TwiceWidth<int8_t> { using type = int16_t; }; |
| template<> struct TwiceWidth<int16_t> { using type = int32_t; }; |
| |
| template<typename T> |
| Literal saturating_narrow( |
| typename TwiceWidth<typename std::make_signed<T>::type>::type val) { |
| using WideT = typename TwiceWidth<typename std::make_signed<T>::type>::type; |
| if (val > WideT(std::numeric_limits<T>::max())) { |
| val = std::numeric_limits<T>::max(); |
| } else if (val < WideT(std::numeric_limits<T>::min())) { |
| val = std::numeric_limits<T>::min(); |
| } |
| return Literal(int32_t(val)); |
| } |
| |
| template<size_t Lanes, |
| typename T, |
| LaneArray<Lanes / 2> (Literal::*IntoLanes)() const> |
| Literal narrow(const Literal& low, const Literal& high) { |
| LaneArray<Lanes / 2> lowLanes = (low.*IntoLanes)(); |
| LaneArray<Lanes / 2> highLanes = (high.*IntoLanes)(); |
| LaneArray<Lanes> result; |
| for (size_t i = 0; i < Lanes / 2; ++i) { |
| result[i] = saturating_narrow<T>(lowLanes[i].geti32()); |
| result[Lanes / 2 + i] = saturating_narrow<T>(highLanes[i].geti32()); |
| } |
| return Literal(result); |
| } |
| |
| Literal Literal::narrowSToVecI8x16(const Literal& other) const { |
| return narrow<16, int8_t, &Literal::getLanesSI16x8>(*this, other); |
| } |
| Literal Literal::narrowUToVecI8x16(const Literal& other) const { |
| return narrow<16, uint8_t, &Literal::getLanesSI16x8>(*this, other); |
| } |
| Literal Literal::narrowSToVecI16x8(const Literal& other) const { |
| return narrow<8, int16_t, &Literal::getLanesI32x4>(*this, other); |
| } |
| Literal Literal::narrowUToVecI16x8(const Literal& other) const { |
| return narrow<8, uint16_t, &Literal::getLanesI32x4>(*this, other); |
| } |
| |
| enum class LaneOrder { Low, High }; |
| |
| template<size_t Lanes, |
| LaneArray<Lanes * 2> (Literal::*IntoLanes)() const, |
| LaneOrder Side> |
| Literal extend(const Literal& vec) { |
| LaneArray<Lanes* 2> lanes = (vec.*IntoLanes)(); |
| LaneArray<Lanes> result; |
| for (size_t i = 0; i < Lanes; ++i) { |
| result[i] = lanes[(Side == LaneOrder::Low) ? i : i + Lanes]; |
| } |
| return Literal(result); |
| } |
| |
| Literal Literal::extendLowSToVecI16x8() const { |
| return extend<8, &Literal::getLanesSI8x16, LaneOrder::Low>(*this); |
| } |
| Literal Literal::extendHighSToVecI16x8() const { |
| return extend<8, &Literal::getLanesSI8x16, LaneOrder::High>(*this); |
| } |
| Literal Literal::extendLowUToVecI16x8() const { |
| return extend<8, &Literal::getLanesUI8x16, LaneOrder::Low>(*this); |
| } |
| Literal Literal::extendHighUToVecI16x8() const { |
| return extend<8, &Literal::getLanesUI8x16, LaneOrder::High>(*this); |
| } |
| Literal Literal::extendLowSToVecI32x4() const { |
| return extend<4, &Literal::getLanesSI16x8, LaneOrder::Low>(*this); |
| } |
| Literal Literal::extendHighSToVecI32x4() const { |
| return extend<4, &Literal::getLanesSI16x8, LaneOrder::High>(*this); |
| } |
| Literal Literal::extendLowUToVecI32x4() const { |
| return extend<4, &Literal::getLanesUI16x8, LaneOrder::Low>(*this); |
| } |
| Literal Literal::extendHighUToVecI32x4() const { |
| return extend<4, &Literal::getLanesUI16x8, LaneOrder::High>(*this); |
| } |
| |
| Literal Literal::extMulLowSI16x8(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| Literal Literal::extMulHighSI16x8(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| Literal Literal::extMulLowUI16x8(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| Literal Literal::extMulHighUI16x8(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| Literal Literal::extMulLowSI32x4(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| Literal Literal::extMulHighSI32x4(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| Literal Literal::extMulLowUI32x4(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| Literal Literal::extMulHighUI32x4(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| Literal Literal::extMulLowSI64x2(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| Literal Literal::extMulHighSI64x2(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| Literal Literal::extMulLowUI64x2(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| Literal Literal::extMulHighUI64x2(const Literal& other) const { |
| WASM_UNREACHABLE("TODO: implement SIMD extending multiplications"); |
| } |
| |
| Literal Literal::swizzleVec8x16(const Literal& other) const { |
| auto lanes = getLanesUI8x16(); |
| auto indices = other.getLanesUI8x16(); |
| LaneArray<16> result; |
| for (size_t i = 0; i < 16; ++i) { |
| size_t index = indices[i].geti32(); |
| result[i] = index >= 16 ? Literal(int32_t(0)) : lanes[index]; |
| } |
| return Literal(result); |
| } |
| |
| bool Literal::isSubRtt(const Literal& other) const { |
| assert(type.isRtt() && other.type.isRtt()); |
| // For this literal to be a sub-rtt of the other rtt, the supers must be a |
| // superset. That is, if other is a->b->c then we should be a->b->c as well |
| // with possibly ->d->.. added. The rttSupers array represents those chains, |
| // but only the supers, which means the last item in the chain is simply the |
| // type of the literal. |
| const auto& supers = getRttSupers(); |
| const auto& otherSupers = other.getRttSupers(); |
| if (otherSupers.size() > supers.size()) { |
| return false; |
| } |
| for (Index i = 0; i < otherSupers.size(); i++) { |
| if (supers[i] != otherSupers[i]) { |
| return false; |
| } |
| } |
| // If we have more supers than other, compare that extra super. Otherwise, |
| // we have the same amount of supers, and must be completely identical to |
| // other. |
| if (otherSupers.size() < supers.size()) { |
| return other.type == supers[otherSupers.size()]; |
| } else { |
| return other.type == type; |
| } |
| } |
| |
| } // namespace wasm |