blob: 03b19062686ee7e1f3f0c8a6ad530730f772e15e [file] [log] [blame]
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Implementation of the shell interpreter execution environment
//
#ifndef wasm_shell_interface_h
#define wasm_shell_interface_h
#include "asmjs/shared-constants.h"
#include "ir/module-utils.h"
#include "shared-constants.h"
#include "support/name.h"
#include "wasm-interpreter.h"
#include "wasm.h"
namespace wasm {
struct ExitException {};
struct TrapException {};
struct ShellExternalInterface : ModuleInstance::ExternalInterface {
// The underlying memory can be accessed through unaligned pointers which
// isn't well-behaved in C++. WebAssembly nonetheless expects it to behave
// properly. Avoid emitting unaligned load/store by checking for alignment
// explicitly, and performing memcpy if unaligned.
//
// The allocated memory tries to have the same alignment as the memory being
// simulated.
class Memory {
// Use char because it doesn't run afoul of aliasing rules.
std::vector<char> memory;
template<typename T> static bool aligned(const char* address) {
static_assert(!(sizeof(T) & (sizeof(T) - 1)), "must be a power of 2");
return 0 == (reinterpret_cast<uintptr_t>(address) & (sizeof(T) - 1));
}
Memory(Memory&) = delete;
Memory& operator=(const Memory&) = delete;
public:
Memory() = default;
void resize(size_t newSize) {
// Ensure the smallest allocation is large enough that most allocators
// will provide page-aligned storage. This hopefully allows the
// interpreter's memory to be as aligned as the memory being simulated,
// ensuring that the performance doesn't needlessly degrade.
//
// The code is optimistic this will work until WG21's p0035r0 happens.
const size_t minSize = 1 << 12;
size_t oldSize = memory.size();
memory.resize(std::max(minSize, newSize));
if (newSize < oldSize && newSize < minSize) {
std::memset(&memory[newSize], 0, minSize - newSize);
}
}
template<typename T> void set(size_t address, T value) {
if (aligned<T>(&memory[address])) {
*reinterpret_cast<T*>(&memory[address]) = value;
} else {
std::memcpy(&memory[address], &value, sizeof(T));
}
}
template<typename T> T get(size_t address) {
if (aligned<T>(&memory[address])) {
return *reinterpret_cast<T*>(&memory[address]);
} else {
T loaded;
std::memcpy(&loaded, &memory[address], sizeof(T));
return loaded;
}
}
} memory;
std::vector<Name> table;
ShellExternalInterface() : memory() {}
virtual ~ShellExternalInterface() = default;
void init(Module& wasm, ModuleInstance& instance) override {
memory.resize(wasm.memory.initial * wasm::Memory::kPageSize);
table.resize(wasm.table.initial);
}
void importGlobals(std::map<Name, Literal>& globals, Module& wasm) override {
// add spectest globals
ModuleUtils::iterImportedGlobals(wasm, [&](Global* import) {
if (import->module == SPECTEST && import->base.startsWith(GLOBAL)) {
switch (import->type.getSingle()) {
case Type::i32:
globals[import->name] = Literal(int32_t(666));
break;
case Type::i64:
globals[import->name] = Literal(int64_t(666));
break;
case Type::f32:
globals[import->name] = Literal(float(666.6));
break;
case Type::f64:
globals[import->name] = Literal(double(666.6));
break;
case Type::v128:
assert(false && "v128 not implemented yet");
case Type::funcref:
case Type::anyref:
case Type::nullref:
case Type::exnref:
globals[import->name] = Literal::makeNullref();
break;
case Type::none:
case Type::unreachable:
WASM_UNREACHABLE("unexpected type");
}
}
});
if (wasm.memory.imported() && wasm.memory.module == SPECTEST &&
wasm.memory.base == MEMORY) {
// imported memory has initial 1 and max 2
wasm.memory.initial = 1;
wasm.memory.max = 2;
}
}
Literal callImport(Function* import, LiteralList& arguments) override {
if (import->module == SPECTEST && import->base.startsWith(PRINT)) {
for (auto argument : arguments) {
std::cout << argument << " : " << argument.type << '\n';
}
return Literal();
} else if (import->module == ENV && import->base == EXIT) {
// XXX hack for torture tests
std::cout << "exit()\n";
throw ExitException();
}
Fatal() << "callImport: unknown import: " << import->module.str << "."
<< import->name.str;
}
Literal callTable(Index index,
Signature sig,
LiteralList& arguments,
Type results,
ModuleInstance& instance) override {
if (index >= table.size()) {
trap("callTable overflow");
}
auto* func = instance.wasm.getFunctionOrNull(table[index]);
if (!func) {
trap("uninitialized table element");
}
if (sig != func->sig) {
trap("callIndirect: function signatures don't match");
}
const std::vector<Type>& params = func->sig.params.expand();
if (params.size() != arguments.size()) {
trap("callIndirect: bad # of arguments");
}
for (size_t i = 0; i < params.size(); i++) {
if (!Type::isSubType(arguments[i].type, params[i])) {
trap("callIndirect: bad argument type");
}
}
if (func->sig.results != results) {
trap("callIndirect: bad result type");
}
if (func->imported()) {
return callImport(func, arguments);
} else {
return instance.callFunctionInternal(func->name, arguments);
}
}
int8_t load8s(Address addr) override { return memory.get<int8_t>(addr); }
uint8_t load8u(Address addr) override { return memory.get<uint8_t>(addr); }
int16_t load16s(Address addr) override { return memory.get<int16_t>(addr); }
uint16_t load16u(Address addr) override { return memory.get<uint16_t>(addr); }
int32_t load32s(Address addr) override { return memory.get<int32_t>(addr); }
uint32_t load32u(Address addr) override { return memory.get<uint32_t>(addr); }
int64_t load64s(Address addr) override { return memory.get<int64_t>(addr); }
uint64_t load64u(Address addr) override { return memory.get<uint64_t>(addr); }
std::array<uint8_t, 16> load128(Address addr) override {
return memory.get<std::array<uint8_t, 16>>(addr);
}
void store8(Address addr, int8_t value) override {
memory.set<int8_t>(addr, value);
}
void store16(Address addr, int16_t value) override {
memory.set<int16_t>(addr, value);
}
void store32(Address addr, int32_t value) override {
memory.set<int32_t>(addr, value);
}
void store64(Address addr, int64_t value) override {
memory.set<int64_t>(addr, value);
}
void store128(Address addr, const std::array<uint8_t, 16>& value) override {
memory.set<std::array<uint8_t, 16>>(addr, value);
}
void tableStore(Address addr, Name entry) override { table[addr] = entry; }
void growMemory(Address /*oldSize*/, Address newSize) override {
memory.resize(newSize);
}
void trap(const char* why) override {
std::cerr << "[trap " << why << "]\n";
throw TrapException();
}
};
} // namespace wasm
#endif // wasm_shell_interface_h