blob: e2e76089332a31f2a3b13aa31232b15f1436806a [file] [log] [blame] [edit]
open Types
open Ast
open Script
open Source
(* Harness *)
let harness =
{|
'use strict';
let externrefs = {};
let externsym = Symbol("externref");
function externref(s) {
if (! (s in externrefs)) externrefs[s] = {[externsym]: s};
return externrefs[s];
}
function is_externref(x) {
return (x !== null && externsym in x) ? 1 : 0;
}
function is_funcref(x) {
return typeof x === "function" ? 1 : 0;
}
function eq_externref(x, y) {
return x === y ? 1 : 0;
}
function eq_funcref(x, y) {
return x === y ? 1 : 0;
}
let spectest = {
externref: externref,
is_externref: is_externref,
is_funcref: is_funcref,
eq_externref: eq_externref,
eq_funcref: eq_funcref,
print: console.log.bind(console),
print_i32: console.log.bind(console),
print_i64: console.log.bind(console),
print_i32_f32: console.log.bind(console),
print_f64_f64: console.log.bind(console),
print_f32: console.log.bind(console),
print_f64: console.log.bind(console),
global_i32: 666,
global_i64: 666n,
global_f32: 666,
global_f64: 666,
table: new WebAssembly.Table({initial: 10, maximum: 20, element: 'anyfunc'}),
memory: new WebAssembly.Memory({initial: 1, maximum: 2})
};
let handler = {
get(target, prop) {
return (prop in target) ? target[prop] : {};
}
};
let registry = new Proxy({spectest}, handler);
function register(name, instance) {
registry[name] = instance.exports;
}
function module(bytes, valid = true) {
let buffer = new ArrayBuffer(bytes.length);
let view = new Uint8Array(buffer);
for (let i = 0; i < bytes.length; ++i) {
view[i] = bytes.charCodeAt(i);
}
let validated;
try {
validated = WebAssembly.validate(buffer);
} catch (e) {
throw new Error("Wasm validate throws");
}
if (validated !== valid) {
throw new Error("Wasm validate failure" + (valid ? "" : " expected"));
}
return new WebAssembly.Module(buffer);
}
function instance(bytes, imports = registry) {
return new WebAssembly.Instance(module(bytes), imports);
}
function call(instance, name, args) {
return instance.exports[name](...args);
}
function get(instance, name) {
let v = instance.exports[name];
return (v instanceof WebAssembly.Global) ? v.value : v;
}
function exports(instance) {
return {module: instance.exports, spectest: spectest};
}
function run(action) {
action();
}
function assert_malformed(bytes) {
try { module(bytes, false) } catch (e) {
if (e instanceof WebAssembly.CompileError) return;
}
throw new Error("Wasm decoding failure expected");
}
function assert_invalid(bytes) {
try { module(bytes, false) } catch (e) {
if (e instanceof WebAssembly.CompileError) return;
}
throw new Error("Wasm validation failure expected");
}
function assert_unlinkable(bytes) {
let mod = module(bytes);
try { new WebAssembly.Instance(mod, registry) } catch (e) {
if (e instanceof WebAssembly.LinkError) return;
}
throw new Error("Wasm linking failure expected");
}
function assert_uninstantiable(bytes) {
let mod = module(bytes);
try { new WebAssembly.Instance(mod, registry) } catch (e) {
if (e instanceof WebAssembly.RuntimeError) return;
}
throw new Error("Wasm trap expected");
}
function assert_trap(action) {
try { action() } catch (e) {
if (e instanceof WebAssembly.RuntimeError) return;
}
throw new Error("Wasm trap expected");
}
let StackOverflow;
try { (function f() { 1 + f() })() } catch (e) { StackOverflow = e.constructor }
function assert_exhaustion(action) {
try { action() } catch (e) {
if (e instanceof StackOverflow) return;
}
throw new Error("Wasm resource exhaustion expected");
}
function assert_return(action, ...expected) {
let actual = action();
if (actual === undefined) {
actual = [];
} else if (!Array.isArray(actual)) {
actual = [actual];
}
if (actual.length !== expected.length) {
throw new Error(expected.length + " value(s) expected, got " + actual.length);
}
for (let i = 0; i < actual.length; ++i) {
switch (expected[i]) {
case "nan:canonical":
case "nan:arithmetic":
case "nan:any":
// Note that JS can't reliably distinguish different NaN values,
// so there's no good way to test that it's a canonical NaN.
if (!Number.isNaN(actual[i])) {
throw new Error("Wasm return value NaN expected, got " + actual[i]);
};
return;
case "ref.func":
if (typeof actual[i] !== "function") {
throw new Error("Wasm function return value expected, got " + actual[i]);
};
return;
case "ref.extern":
if (actual[i] === null) {
throw new Error("Wasm reference return value expected, got " + actual[i]);
};
return;
default:
if (!Object.is(actual[i], expected[i])) {
throw new Error("Wasm return value " + expected[i] + " expected, got " + actual[i]);
};
}
}
}
|}
(* Context *)
module NameMap = Map.Make(struct type t = Ast.name let compare = compare end)
module Map = Map.Make(String)
type exports = extern_type NameMap.t
type modules = {mutable env : exports Map.t; mutable current : int}
let exports m : exports =
List.fold_left
(fun map exp -> NameMap.add exp.it.name (export_type m exp) map)
NameMap.empty m.it.exports
let modules () : modules = {env = Map.empty; current = 0}
let current_var (mods : modules) = "$" ^ string_of_int mods.current
let of_var_opt (mods : modules) = function
| None -> current_var mods
| Some x -> x.it
let bind (mods : modules) x_opt m =
let exports = exports m in
mods.current <- mods.current + 1;
mods.env <- Map.add (of_var_opt mods x_opt) exports mods.env;
if x_opt <> None then mods.env <- Map.add (current_var mods) exports mods.env
let lookup (mods : modules) x_opt name at =
let exports =
try Map.find (of_var_opt mods x_opt) mods.env with Not_found ->
raise (Eval.Crash (at,
if x_opt = None then "no module defined within script"
else "unknown module " ^ of_var_opt mods x_opt ^ " within script"))
in try NameMap.find name exports with Not_found ->
raise (Eval.Crash (at, "unknown export \"" ^
string_of_name name ^ "\" within module"))
(* Wrappers *)
let subject_idx = 0l
let externref_idx = 1l
let is_externref_idx = 2l
let is_funcref_idx = 3l
let eq_externref_idx = 4l
let _eq_funcref_idx = 5l
let subject_type_idx = 6l
let eq_of = function
| I32Type -> Values.I32 I32Op.Eq
| I64Type -> Values.I64 I64Op.Eq
| F32Type -> Values.F32 F32Op.Eq
| F64Type -> Values.F64 F64Op.Eq
let and_of = function
| I32Type | F32Type -> Values.I32 I32Op.And
| I64Type | F64Type -> Values.I64 I64Op.And
let reinterpret_of = function
| I32Type -> I32Type, Nop
| I64Type -> I64Type, Nop
| F32Type -> I32Type, Convert (Values.I32 I32Op.ReinterpretFloat)
| F64Type -> I64Type, Convert (Values.I64 I64Op.ReinterpretFloat)
let canonical_nan_of = function
| I32Type | F32Type -> Values.I32 (F32.to_bits F32.pos_nan)
| I64Type | F64Type -> Values.I64 (F64.to_bits F64.pos_nan)
let abs_mask_of = function
| I32Type | F32Type -> Values.I32 Int32.max_int
| I64Type | F64Type -> Values.I64 Int64.max_int
let value v =
match v.it with
| Values.Num n -> [Const (n @@ v.at) @@ v.at]
| Values.Vec s -> [VecConst (s @@ v.at) @@ v.at]
| Values.Ref (Values.NullRef t) -> [RefNull t @@ v.at]
| Values.Ref (ExternRef n) ->
[Const (Values.I32 n @@ v.at) @@ v.at; Call (externref_idx @@ v.at) @@ v.at]
| Values.Ref _ -> assert false
let invoke ft vs at =
[ft @@ at], FuncImport (subject_type_idx @@ at) @@ at,
List.concat (List.map value vs) @ [Call (subject_idx @@ at) @@ at]
let get t at =
[], GlobalImport t @@ at, [GlobalGet (subject_idx @@ at) @@ at]
let run ts at =
[], []
let assert_return ress ts at =
let test res =
let nan_bitmask_of = function
| CanonicalNan -> abs_mask_of (* must only differ from the canonical NaN in its sign bit *)
| ArithmeticNan -> canonical_nan_of (* can be any NaN that's one everywhere the canonical NaN is one *)
in
match res.it with
| NumResult (NumPat {it = num; at = at'}) ->
let t', reinterpret = reinterpret_of (Values.type_of_num num) in
[ reinterpret @@ at;
Const (num @@ at') @@ at;
reinterpret @@ at;
Compare (eq_of t') @@ at;
Test (Values.I32 I32Op.Eqz) @@ at;
BrIf (0l @@ at) @@ at ]
| NumResult (NanPat nanop) ->
let nan =
match nanop.it with
| Values.I32 _ | Values.I64 _ -> .
| Values.F32 n | Values.F64 n -> n
in
let t = Values.type_of_num nanop.it in
let t', reinterpret = reinterpret_of t in
[ reinterpret @@ at;
Const (nan_bitmask_of nan t' @@ at) @@ at;
Binary (and_of t') @@ at;
Const (canonical_nan_of t' @@ at) @@ at;
Compare (eq_of t') @@ at;
Test (Values.I32 I32Op.Eqz) @@ at;
BrIf (0l @@ at) @@ at ]
| VecResult (VecPat (Values.V128 (shape, pats))) ->
let open Values in
(* VecResult is a list of NumPat or LitPat. For float shapes, we can have a mix of literals
* and NaNs. For NaNs, we need to mask it and compare with a canonical NaN. To simplify
* comparison, we build masks even for literals (will just be all set), collect them into
* a v128, then compare the entire 128 bits.
*)
let mask_and_canonical = function
| NumPat {it = I32 _ as i; _} -> I32 (Int32.minus_one), i
| NumPat {it = I64 _ as i; _} -> I64 (Int64.minus_one), i
| NumPat {it = F32 f; _} ->
I32 (Int32.minus_one), I32 (I32_convert.reinterpret_f32 f)
| NumPat {it = F64 f; _} ->
I64 (Int64.minus_one), I64 (I64_convert.reinterpret_f64 f)
| NanPat {it = F32 nan; _} ->
nan_bitmask_of nan I32Type, canonical_nan_of I32Type
| NanPat {it = F64 nan; _} ->
nan_bitmask_of nan I64Type, canonical_nan_of I64Type
| _ -> .
in
let masks, canons = List.split (List.map (fun p -> mask_and_canonical p) pats) in
let all_ones = V128.I32x4.of_lanes (List.init 4 (fun _ -> Int32.minus_one)) in
let mask, expected = match shape with
| V128.I8x16 () ->
all_ones, V128.I8x16.of_lanes (List.map (I32Num.of_num 0) canons)
| V128.I16x8 () ->
all_ones, V128.I16x8.of_lanes (List.map (I32Num.of_num 0) canons)
| V128.I32x4 () ->
all_ones, V128.I32x4.of_lanes (List.map (I32Num.of_num 0) canons)
| V128.I64x2 () ->
all_ones, V128.I64x2.of_lanes (List.map (I64Num.of_num 0) canons)
| V128.F32x4 () ->
V128.I32x4.of_lanes (List.map (I32Num.of_num 0) masks),
V128.I32x4.of_lanes (List.map (I32Num.of_num 0) canons)
| V128.F64x2 () ->
V128.I64x2.of_lanes (List.map (I64Num.of_num 0) masks),
V128.I64x2.of_lanes (List.map (I64Num.of_num 0) canons)
in
[ VecConst (V128 mask @@ at) @@ at;
VecBinaryBits (V128 V128Op.And) @@ at;
VecConst (V128 expected @@ at) @@ at;
VecCompare (V128 (V128.I8x16 V128Op.Eq)) @@ at;
(* If all lanes are non-zero, then they are equal *)
VecTest (V128 (V128.I8x16 V128Op.AllTrue)) @@ at;
Test (I32 I32Op.Eqz) @@ at;
BrIf (0l @@ at) @@ at ]
| RefResult (RefPat {it = Values.NullRef t; _}) ->
[ RefIsNull @@ at;
Test (Values.I32 I32Op.Eqz) @@ at;
BrIf (0l @@ at) @@ at ]
| RefResult (RefPat {it = ExternRef n; _}) ->
[ Const (Values.I32 n @@ at) @@ at;
Call (externref_idx @@ at) @@ at;
Call (eq_externref_idx @@ at) @@ at;
Test (Values.I32 I32Op.Eqz) @@ at;
BrIf (0l @@ at) @@ at ]
| RefResult (RefPat _) ->
assert false
| RefResult (RefTypePat t) ->
let is_ref_idx =
match t with
| FuncRefType -> is_funcref_idx
| ExternRefType -> is_externref_idx
in
[ Call (is_ref_idx @@ at) @@ at;
Test (Values.I32 I32Op.Eqz) @@ at;
BrIf (0l @@ at) @@ at ]
in [], List.flatten (List.rev_map test ress)
let wrap item_name wrap_action wrap_assertion at =
let itypes, idesc, action = wrap_action at in
let locals, assertion = wrap_assertion at in
let types =
(FuncType ([], []) @@ at) ::
(FuncType ([NumType I32Type], [RefType ExternRefType]) @@ at) ::
(FuncType ([RefType ExternRefType], [NumType I32Type]) @@ at) ::
(FuncType ([RefType FuncRefType], [NumType I32Type]) @@ at) ::
(FuncType ([RefType ExternRefType; RefType ExternRefType], [NumType I32Type]) @@ at) ::
(FuncType ([RefType FuncRefType; RefType FuncRefType], [NumType I32Type]) @@ at) ::
itypes
in
let imports =
[ {module_name = Utf8.decode "module"; item_name; idesc} @@ at;
{module_name = Utf8.decode "spectest"; item_name = Utf8.decode "externref";
idesc = FuncImport (1l @@ at) @@ at} @@ at;
{module_name = Utf8.decode "spectest"; item_name = Utf8.decode "is_externref";
idesc = FuncImport (2l @@ at) @@ at} @@ at;
{module_name = Utf8.decode "spectest"; item_name = Utf8.decode "is_funcref";
idesc = FuncImport (3l @@ at) @@ at} @@ at;
{module_name = Utf8.decode "spectest"; item_name = Utf8.decode "eq_externref";
idesc = FuncImport (4l @@ at) @@ at} @@ at;
{module_name = Utf8.decode "spectest"; item_name = Utf8.decode "eq_funcref";
idesc = FuncImport (5l @@ at) @@ at} @@ at ]
in
let item =
List.fold_left
(fun i im ->
match im.it.idesc.it with FuncImport _ -> Int32.add i 1l | _ -> i
) 0l imports @@ at
in
let edesc = FuncExport item @@ at in
let exports = [{name = Utf8.decode "run"; edesc} @@ at] in
let body =
[ Block (ValBlockType None, action @ assertion @ [Return @@ at]) @@ at;
Unreachable @@ at ]
in
let funcs = [{ftype = 0l @@ at; locals; body} @@ at] in
let m = {empty_module with types; funcs; imports; exports} @@ at in
Encode.encode m
let is_js_num_type = function
| I32Type -> true
| I64Type | F32Type | F64Type -> false
let is_js_value_type = function
| NumType t -> is_js_num_type t
| VecType t -> false
| RefType t -> true
let is_js_global_type = function
| GlobalType (t, mut) -> is_js_value_type t && mut = Immutable
let is_js_func_type = function
| FuncType (ins, out) -> List.for_all is_js_value_type (ins @ out)
(* Script conversion *)
let add_hex_char buf c = Printf.bprintf buf "\\x%02x" (Char.code c)
let add_char buf c =
if c < '\x20' || c >= '\x7f' then
add_hex_char buf c
else begin
if c = '\"' || c = '\\' then Buffer.add_char buf '\\';
Buffer.add_char buf c
end
let add_unicode_char buf uc =
if uc < 0x20 || uc >= 0x7f then
Printf.bprintf buf "\\u{%02x}" uc
else
add_char buf (Char.chr uc)
let of_string_with iter add_char s =
let buf = Buffer.create 256 in
Buffer.add_char buf '\"';
iter (add_char buf) s;
Buffer.add_char buf '\"';
Buffer.contents buf
let of_bytes = of_string_with String.iter add_hex_char
let of_name = of_string_with List.iter add_unicode_char
let of_float z =
match string_of_float z with
| "nan" -> "NaN"
| "-nan" -> "-NaN"
| "inf" -> "Infinity"
| "-inf" -> "-Infinity"
| s -> s
let of_num n =
let open Values in
match n with
| I32 i -> I32.to_string_s i
| I64 i -> "int64(\"" ^ I64.to_string_s i ^ "\")"
| F32 z -> of_float (F32.to_float z)
| F64 z -> of_float (F64.to_float z)
let of_vec v =
let open Values in
match v with
| V128 v -> "v128(\"" ^ V128.to_string v ^ "\")"
let of_ref r =
let open Values in
match r with
| NullRef _ -> "null"
| ExternRef n -> "externref(" ^ Int32.to_string n ^ ")"
| _ -> assert false
let of_value v =
let open Values in
match v.it with
| Num n -> of_num n
| Vec v -> of_vec v
| Ref r -> of_ref r
let of_nan = function
| CanonicalNan -> "\"nan:canonical\""
| ArithmeticNan -> "\"nan:arithmetic\""
let of_num_pat = function
| NumPat num -> of_num num.it
| NanPat nanop ->
match nanop.it with
| Values.I32 _ | Values.I64 _ -> .
| Values.F32 n | Values.F64 n -> of_nan n
let of_vec_pat = function
| VecPat (Values.V128 (shape, pats)) ->
Printf.sprintf "v128(\"%s\")" (String.concat " " (List.map of_num_pat pats))
let of_ref_pat = function
| RefPat r -> of_ref r.it
| RefTypePat t -> "\"ref." ^ string_of_refed_type t ^ "\""
let of_result res =
match res.it with
| NumResult np -> of_num_pat np
| VecResult vp -> of_vec_pat vp
| RefResult rp -> of_ref_pat rp
let rec of_definition def =
match def.it with
| Textual m -> of_bytes (Encode.encode m)
| Encoded (_, bs) -> of_bytes bs
| Quoted (_, s) ->
try of_definition (Parse.string_to_module s) with Parse.Syntax _ ->
of_bytes "<malformed quote>"
let of_wrapper mods x_opt name wrap_action wrap_assertion at =
let x = of_var_opt mods x_opt in
let bs = wrap name wrap_action wrap_assertion at in
"call(instance(" ^ of_bytes bs ^ ", " ^
"exports(" ^ x ^ ")), " ^ " \"run\", [])"
let of_action mods act =
match act.it with
| Invoke (x_opt, name, vs) ->
"call(" ^ of_var_opt mods x_opt ^ ", " ^ of_name name ^ ", " ^
"[" ^ String.concat ", " (List.map of_value vs) ^ "])",
(match lookup mods x_opt name act.at with
| ExternFuncType ft when not (is_js_func_type ft) ->
let FuncType (_, out) = ft in
Some (of_wrapper mods x_opt name (invoke ft vs), out)
| _ -> None
)
| Get (x_opt, name) ->
"get(" ^ of_var_opt mods x_opt ^ ", " ^ of_name name ^ ")",
(match lookup mods x_opt name act.at with
| ExternGlobalType gt when not (is_js_global_type gt) ->
let GlobalType (t, _) = gt in
Some (of_wrapper mods x_opt name (get gt), [t])
| _ -> None
)
let of_assertion' mods act name args wrapper_opt =
let act_js, act_wrapper_opt = of_action mods act in
let js = name ^ "(() => " ^ act_js ^ String.concat ", " ("" :: args) ^ ")" in
match act_wrapper_opt with
| None -> js ^ ";"
| Some (act_wrapper, out) ->
let run_name, wrapper =
match wrapper_opt with
| None -> name, run
| Some wrapper -> "run", wrapper
in run_name ^ "(() => " ^ act_wrapper (wrapper out) act.at ^ "); // " ^ js
let of_assertion mods ass =
match ass.it with
| AssertMalformed (def, _) ->
"assert_malformed(" ^ of_definition def ^ ");"
| AssertInvalid (def, _) ->
"assert_invalid(" ^ of_definition def ^ ");"
| AssertUnlinkable (def, _) ->
"assert_unlinkable(" ^ of_definition def ^ ");"
| AssertUninstantiable (def, _) ->
"assert_uninstantiable(" ^ of_definition def ^ ");"
| AssertReturn (act, ress) ->
of_assertion' mods act "assert_return" (List.map of_result ress)
(Some (assert_return ress))
| AssertTrap (act, _) ->
of_assertion' mods act "assert_trap" [] None
| AssertExhaustion (act, _) ->
of_assertion' mods act "assert_exhaustion" [] None
let rec of_command mods cmd =
"\n// " ^ Filename.basename cmd.at.left.file ^
":" ^ string_of_int cmd.at.left.line ^ "\n" ^
match cmd.it with
| Module (x_opt, def) ->
let rec unquote def =
match def.it with
| Textual m -> m
| Encoded (_, bs) -> Decode.decode "binary" bs
| Quoted (_, s) -> unquote (Parse.string_to_module s)
in bind mods x_opt (unquote def);
"let " ^ current_var mods ^ " = instance(" ^ of_definition def ^ ");\n" ^
(if x_opt = None then "" else
"let " ^ of_var_opt mods x_opt ^ " = " ^ current_var mods ^ ";\n")
| Register (name, x_opt) ->
"register(" ^ of_name name ^ ", " ^ of_var_opt mods x_opt ^ ")\n"
| Action act ->
of_assertion' mods act "run" [] None ^ "\n"
| Assertion ass ->
of_assertion mods ass ^ "\n"
| Meta meta ->
of_meta meta
and of_meta cmd =
match cmd.it with
| Script (_, scr) ->
"\n// " ^ Filename.basename cmd.at.left.file ^
":" ^ string_of_int cmd.at.left.line ^ "\n" ^
"{" ^ of_script' scr ^ "}\n"
| _ -> assert false
and of_script' scr =
String.concat "" (List.map (of_command (modules ())) scr)
and of_script scr =
(if !Flags.harness then harness else "") ^
of_script' scr