| exception Overflow |
| exception DivideByZero |
| exception InvalidConversion |
| |
| module type RepType = |
| sig |
| type t |
| |
| val zero : t |
| val one : t |
| val minus_one : t |
| val max_int : t |
| val min_int : t |
| |
| val abs : t -> t |
| val neg : t -> t |
| val add : t -> t -> t |
| val sub : t -> t -> t |
| val mul : t -> t -> t |
| val div : t -> t -> t (* raises DivideByZero *) |
| val rem : t -> t -> t (* raises DivideByZero *) |
| |
| val logand : t -> t -> t |
| val lognot : t -> t |
| val logor : t -> t -> t |
| val logxor : t -> t -> t |
| val shift_left : t -> int -> t |
| val shift_right : t -> int -> t |
| val shift_right_logical : t -> int -> t |
| |
| val of_int : int -> t |
| val to_int : t -> int |
| val of_int64 : int64 -> t |
| val to_int64 : t -> int64 |
| val to_string : t -> string |
| val to_hex_string : t -> string |
| |
| val bitwidth : int |
| end |
| |
| module type S = |
| sig |
| type t |
| type bits |
| |
| val of_bits : bits -> t |
| val to_bits : t -> bits |
| |
| val zero : t |
| |
| val lognot : t -> t |
| val abs : t -> t |
| val neg : t -> t |
| val add : t -> t -> t |
| val sub : t -> t -> t |
| val mul : t -> t -> t |
| val div_s : t -> t -> t (* raises IntegerDivideByZero, IntegerOverflow *) |
| val div_u : t -> t -> t (* raises IntegerDivideByZero *) |
| val rem_s : t -> t -> t (* raises IntegerDivideByZero *) |
| val rem_u : t -> t -> t (* raises IntegerDivideByZero *) |
| val avgr_u : t -> t -> t |
| val and_ : t -> t -> t |
| val or_ : t -> t -> t |
| val xor : t -> t -> t |
| val shl : t -> t -> t |
| val shr_s : t -> t -> t |
| val shr_u : t -> t -> t |
| val rotl : t -> t -> t |
| val rotr : t -> t -> t |
| val clz : t -> t |
| val ctz : t -> t |
| val popcnt : t -> t |
| val extend_s : int -> t -> t |
| val eqz : t -> bool |
| val eq : t -> t -> bool |
| val ne : t -> t -> bool |
| val lt_s : t -> t -> bool |
| val lt_u : t -> t -> bool |
| val le_s : t -> t -> bool |
| val le_u : t -> t -> bool |
| val gt_s : t -> t -> bool |
| val gt_u : t -> t -> bool |
| val ge_s : t -> t -> bool |
| val ge_u : t -> t -> bool |
| |
| val as_unsigned : t -> t |
| |
| (* Saturating arithmetic, used for small ints. *) |
| val saturate_s : t -> t |
| val saturate_u : t -> t |
| val add_sat_s : t -> t -> t |
| val add_sat_u : t -> t -> t |
| val sub_sat_s : t -> t -> t |
| val sub_sat_u : t -> t -> t |
| val q15mulr_sat_s : t -> t -> t |
| |
| val of_int_s : int -> t |
| val of_int_u : int -> t |
| val of_string_s : string -> t |
| val of_string_u : string -> t |
| val of_string : string -> t |
| val to_int_s : t -> int |
| val to_int_u : t -> int |
| val to_string_s : t -> string |
| val to_string_u : t -> string |
| val to_hex_string : t -> string |
| end |
| |
| module Make (Rep : RepType) : S with type bits = Rep.t and type t = Rep.t = |
| struct |
| (* |
| * Unsigned comparison in terms of signed comparison. |
| *) |
| let cmp_u x op y = |
| op (Rep.add x Rep.min_int) (Rep.add y Rep.min_int) |
| |
| (* |
| * Unsigned division and remainder in terms of signed division; algorithm from |
| * Hacker's Delight, Second Edition, by Henry S. Warren, Jr., section 9-3 |
| * "Unsigned Short Division from Signed Division". |
| *) |
| let divrem_u n d = |
| if d = Rep.zero then raise DivideByZero else |
| let t = Rep.shift_right d (Rep.bitwidth - 1) in |
| let n' = Rep.logand n (Rep.lognot t) in |
| let q = Rep.shift_left (Rep.div (Rep.shift_right_logical n' 1) d) 1 in |
| let r = Rep.sub n (Rep.mul q d) in |
| if cmp_u r (<) d then |
| q, r |
| else |
| Rep.add q Rep.one, Rep.sub r d |
| |
| type t = Rep.t |
| type bits = Rep.t |
| |
| let of_bits x = x |
| let to_bits x = x |
| |
| let zero = Rep.zero |
| let one = Rep.one |
| let ten = Rep.of_int 10 |
| |
| let lognot = Rep.lognot |
| let abs = Rep.abs |
| let neg = Rep.neg |
| |
| (* If bit (bitwidth - 1) is set, sx will sign-extend t to maintain the |
| * invariant that small ints are stored sign-extended inside a wider int. *) |
| let sx x = |
| let i = 64 - Rep.bitwidth in |
| Rep.of_int64 Int64.(shift_right (shift_left (Rep.to_int64 x) i) i) |
| |
| (* add, sub, and mul are sign-agnostic and do not trap on overflow. *) |
| let add x y = sx (Rep.add x y) |
| let sub x y = sx (Rep.sub x y) |
| |
| let mul x y = sx (Rep.mul x y) |
| |
| (* We don't override min_int and max_int since those are used |
| * by other functions (like parsing), and rely on it being |
| * min/max for int32 *) |
| (* The smallest signed |bitwidth|-bits int. *) |
| let low_int = Rep.shift_left Rep.minus_one (Rep.bitwidth - 1) |
| (* The largest signed |bitwidth|-bits int. *) |
| let high_int = Rep.logxor low_int Rep.minus_one |
| |
| (* result is truncated toward zero *) |
| let div_s x y = |
| if y = Rep.zero then |
| raise DivideByZero |
| else if x = low_int && y = Rep.minus_one then |
| raise Overflow |
| else |
| Rep.div x y |
| |
| (* result is floored (which is the same as truncating for unsigned values) *) |
| let div_u x y = |
| let q, r = divrem_u x y in q |
| |
| (* result has the sign of the dividend *) |
| let rem_s x y = |
| if y = Rep.zero then |
| raise DivideByZero |
| else |
| Rep.rem x y |
| |
| let rem_u x y = |
| let q, r = divrem_u x y in r |
| |
| let avgr_u x y = |
| let open Int64 in |
| (* Mask with bottom #bitwidth bits set *) |
| let mask = shift_right_logical minus_one (64 - Rep.bitwidth) in |
| let x64 = logand mask (Rep.to_int64 x) in |
| let y64 = logand mask (Rep.to_int64 y) in |
| Rep.of_int64 (div (add (add x64 y64) one) (of_int 2)) |
| |
| let and_ = Rep.logand |
| let or_ = Rep.logor |
| let xor = Rep.logxor |
| |
| (* WebAssembly's shifts mask the shift count according to the bitwidth. *) |
| let shift f x y = |
| f x Rep.(to_int (logand y (of_int (bitwidth - 1)))) |
| |
| let shl x y = |
| sx (shift Rep.shift_left x y) |
| |
| let shr_s x y = |
| shift Rep.shift_right x y |
| |
| (* Check if we are storing smaller ints. *) |
| let needs_extend = shl one (Rep.of_int (Rep.bitwidth - 1)) <> Rep.min_int |
| |
| (* |
| * When Int is used to store a smaller int, it is stored in signed extended |
| * form. Some instructions require the unsigned form, which requires masking |
| * away the top 32-bitwidth bits. |
| *) |
| let as_unsigned x = |
| if not needs_extend then x else |
| (* Mask with bottom #bitwidth bits set *) |
| let mask = Rep.(shift_right_logical minus_one (32 - bitwidth)) in |
| Rep.logand x mask |
| |
| let shr_u x y = |
| sx (shift Rep.shift_right_logical (as_unsigned x) y) |
| |
| (* We must mask the count to implement rotates via shifts. *) |
| let clamp_rotate_count n = |
| Rep.to_int (Rep.logand n (Rep.of_int (Rep.bitwidth - 1))) |
| |
| let rotl x y = |
| let n = clamp_rotate_count y in |
| or_ (shl x (Rep.of_int n)) (shr_u x (Rep.of_int (Rep.bitwidth - n))) |
| |
| let rotr x y = |
| let n = clamp_rotate_count y in |
| or_ (shr_u x (Rep.of_int n)) (shl x (Rep.of_int (Rep.bitwidth - n))) |
| |
| (* clz is defined for all values, including all-zeros. *) |
| let clz x = |
| let rec loop acc n = |
| if n = Rep.zero then |
| Rep.bitwidth |
| else if and_ n (Rep.shift_left Rep.one (Rep.bitwidth - 1)) = zero then |
| loop (1 + acc) (Rep.shift_left n 1) |
| else |
| acc |
| in Rep.of_int (loop 0 x) |
| |
| (* ctz is defined for all values, including all-zeros. *) |
| let ctz x = |
| let rec loop acc n = |
| if n = Rep.zero then |
| Rep.bitwidth |
| else if and_ n Rep.one = Rep.one then |
| acc |
| else |
| loop (1 + acc) (Rep.shift_right_logical n 1) |
| in Rep.of_int (loop 0 x) |
| |
| let popcnt x = |
| let rec loop acc i n = |
| if i = 0 then |
| acc |
| else |
| let acc' = if and_ n Rep.one = Rep.one then acc + 1 else acc in |
| loop acc' (i - 1) (Rep.shift_right_logical n 1) |
| in Rep.of_int (loop 0 Rep.bitwidth x) |
| |
| let extend_s n x = |
| let shift = Rep.bitwidth - n in |
| Rep.shift_right (Rep.shift_left x shift) shift |
| |
| let eqz x = x = Rep.zero |
| |
| let eq x y = x = y |
| let ne x y = x <> y |
| let lt_s x y = x < y |
| let lt_u x y = cmp_u x (<) y |
| let le_s x y = x <= y |
| let le_u x y = cmp_u x (<=) y |
| let gt_s x y = x > y |
| let gt_u x y = cmp_u x (>) y |
| let ge_s x y = x >= y |
| let ge_u x y = cmp_u x (>=) y |
| |
| let saturate_s x = sx (min (max x low_int) high_int) |
| let saturate_u x = sx (min (max x Rep.zero) (as_unsigned Rep.minus_one)) |
| |
| (* add/sub for int, used for higher-precision arithmetic for I8 and I16 *) |
| let add_int x y = |
| assert (Rep.bitwidth < 32); |
| Rep.(of_int ((to_int x) + (to_int y))) |
| |
| let sub_int x y = |
| assert (Rep.bitwidth < 32); |
| Rep.(of_int ((to_int x) - (to_int y))) |
| |
| let add_sat_s x y = saturate_s (add_int x y) |
| let add_sat_u x y = saturate_u (add_int (as_unsigned x) (as_unsigned y)) |
| let sub_sat_s x y = saturate_s (sub_int x y) |
| let sub_sat_u x y = saturate_u (sub_int (as_unsigned x) (as_unsigned y)) |
| |
| let q15mulr_sat_s x y = |
| (* mul x64 y64 can overflow int64 when both are int32 min, but this is only |
| * used by i16x8, so we are fine for now. *) |
| assert (Rep.bitwidth < 32); |
| let x64 = Rep.to_int64 x in |
| let y64 = Rep.to_int64 y in |
| saturate_s (Rep.of_int64 Int64.((shift_right (add (mul x64 y64) 0x4000L) 15))) |
| |
| let to_int_s = Rep.to_int |
| let to_int_u i = Rep.to_int i land ((Rep.to_int Rep.max_int lsl 1) lor 1) |
| |
| let of_int_s = Rep.of_int |
| let of_int_u i = and_ (Rep.of_int i) (or_ (shl (Rep.of_int max_int) one) one) |
| |
| (* String conversion that allows leading signs and unsigned values *) |
| |
| let require b = if not b then failwith "of_string" |
| |
| let dec_digit = function |
| | '0' .. '9' as c -> Char.code c - Char.code '0' |
| | _ -> failwith "of_string" |
| |
| let hex_digit = function |
| | '0' .. '9' as c -> Char.code c - Char.code '0' |
| | 'a' .. 'f' as c -> 0xa + Char.code c - Char.code 'a' |
| | 'A' .. 'F' as c -> 0xa + Char.code c - Char.code 'A' |
| | _ -> failwith "of_string" |
| |
| let max_upper, max_lower = divrem_u Rep.minus_one ten |
| |
| let sign_extend i = |
| (* This module is used with I32 and I64, but the bitwidth can be less |
| * than that, e.g. for I16. When used for smaller integers, the stored value |
| * needs to be signed extended, e.g. parsing -1 into a I16 (backed by Int32) |
| * should have all high bits set. We can do that by logor with a mask, |
| * where the mask is minus_one left shifted by bitwidth. But if bitwidth |
| * matches the number of bits of Rep, the shift will be incorrect. |
| * -1 (Int32) << 32 = -1 |
| * Then the logor will be also wrong. So we check and bail out early. |
| * *) |
| if not needs_extend then i else |
| let sign_bit = Rep.logand (Rep.of_int (1 lsl (Rep.bitwidth - 1))) i in |
| if sign_bit = Rep.zero then i else |
| (* Build a sign-extension mask *) |
| let sign_mask = (Rep.shift_left Rep.minus_one Rep.bitwidth) in |
| Rep.logor sign_mask i |
| |
| let of_string s = |
| let open Rep in |
| let len = String.length s in |
| let rec parse_hex i num = |
| if i = len then num else |
| if s.[i] = '_' then parse_hex (i + 1) num else |
| let digit = of_int (hex_digit s.[i]) in |
| require (le_u num (shr_u minus_one (of_int 4))); |
| parse_hex (i + 1) (logor (shift_left num 4) digit) |
| in |
| let rec parse_dec i num = |
| if i = len then num else |
| if s.[i] = '_' then parse_dec (i + 1) num else |
| let digit = of_int (dec_digit s.[i]) in |
| require (lt_u num max_upper || num = max_upper && le_u digit max_lower); |
| parse_dec (i + 1) (add (mul num ten) digit) |
| in |
| let parse_int i = |
| require (len - i > 0); |
| if i + 2 <= len && s.[i] = '0' && s.[i + 1] = 'x' |
| then parse_hex (i + 2) zero |
| else parse_dec i zero |
| in |
| require (len > 0); |
| let parsed = |
| match s.[0] with |
| | '+' -> parse_int 1 |
| | '-' -> |
| let n = parse_int 1 in |
| require (ge_s (sub n one) minus_one); |
| Rep.neg n |
| | _ -> parse_int 0 |
| in |
| let n = sign_extend parsed in |
| require (low_int <= n && n <= high_int); |
| n |
| |
| let of_string_s s = |
| let n = of_string s in |
| require (s.[0] = '-' || ge_s n Rep.zero); |
| n |
| |
| let of_string_u s = |
| let n = of_string s in |
| require (s.[0] <> '+' && s.[0] <> '-'); |
| n |
| |
| (* String conversion that groups digits for readability *) |
| |
| let rec add_digits buf s i j k n = |
| if i < j then begin |
| if k = 0 then Buffer.add_char buf '_'; |
| Buffer.add_char buf s.[i]; |
| add_digits buf s (i + 1) j ((k + n - 1) mod n) n |
| end |
| |
| let group_digits n s = |
| let len = String.length s in |
| let num = if s.[0] = '-' then 1 else 0 in |
| let buf = Buffer.create (len*(n+1)/n) in |
| Buffer.add_substring buf s 0 num; |
| add_digits buf s num len ((len - num) mod n + n) n; |
| Buffer.contents buf |
| |
| let to_string_s i = group_digits 3 (Rep.to_string i) |
| let to_string_u i = |
| if i >= Rep.zero then |
| group_digits 3 (Rep.to_string i) |
| else |
| group_digits 3 (Rep.to_string (div_u i ten) ^ Rep.to_string (rem_u i ten)) |
| |
| let to_hex_string i = "0x" ^ group_digits 4 (Rep.to_hex_string i) |
| end |