| /* |
| * Copyright 2020 WebAssembly Community Group participants |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef WABT_INTERP_MATH_H_ |
| #define WABT_INTERP_MATH_H_ |
| |
| #include <cmath> |
| #include <limits> |
| #include <string> |
| #include <type_traits> |
| |
| #if COMPILER_IS_MSVC |
| #include <emmintrin.h> |
| #include <immintrin.h> |
| #endif |
| |
| #include "src/common.h" |
| #include "src/interp/interp.h" |
| |
| namespace wabt { |
| namespace interp { |
| |
| template < |
| typename T, |
| typename std::enable_if<!std::is_floating_point<T>::value, int>::type = 0> |
| bool WABT_VECTORCALL IsNaN(T val) { |
| return false; |
| } |
| |
| template < |
| typename T, |
| typename std::enable_if<std::is_floating_point<T>::value, int>::type = 0> |
| bool WABT_VECTORCALL IsNaN(T val) { |
| return std::isnan(val); |
| } |
| |
| template < |
| typename T, |
| typename std::enable_if<!std::is_floating_point<T>::value, int>::type = 0> |
| T WABT_VECTORCALL CanonNaN(T val) { |
| return val; |
| } |
| |
| template < |
| typename T, |
| typename std::enable_if<std::is_floating_point<T>::value, int>::type = 0> |
| T WABT_VECTORCALL CanonNaN(T val) { |
| if (WABT_UNLIKELY(std::isnan(val))) { |
| return std::numeric_limits<f32>::quiet_NaN(); |
| } |
| return val; |
| } |
| |
| template <typename T> T ShiftMask(T val) { return val & (sizeof(T)*8-1); } |
| |
| template <typename T> bool WABT_VECTORCALL IntEqz(T val) { return val == 0; } |
| template <typename T> bool WABT_VECTORCALL Eq(T lhs, T rhs) { return lhs == rhs; } |
| template <typename T> bool WABT_VECTORCALL Ne(T lhs, T rhs) { return lhs != rhs; } |
| template <typename T> bool WABT_VECTORCALL Lt(T lhs, T rhs) { return lhs < rhs; } |
| template <typename T> bool WABT_VECTORCALL Le(T lhs, T rhs) { return lhs <= rhs; } |
| template <typename T> bool WABT_VECTORCALL Gt(T lhs, T rhs) { return lhs > rhs; } |
| template <typename T> bool WABT_VECTORCALL Ge(T lhs, T rhs) { return lhs >= rhs; } |
| template <typename T> T WABT_VECTORCALL IntClz(T val) { return Clz(val); } |
| template <typename T> T WABT_VECTORCALL IntCtz(T val) { return Ctz(val); } |
| template <typename T> T WABT_VECTORCALL IntPopcnt(T val) { return Popcount(val); } |
| template <typename T> T WABT_VECTORCALL IntNot(T val) { return ~val; } |
| template <typename T> T WABT_VECTORCALL IntNeg(T val) { return ~val + 1; } |
| template <typename T> T WABT_VECTORCALL Add(T lhs, T rhs) { return CanonNaN(lhs + rhs); } |
| template <typename T> T WABT_VECTORCALL Sub(T lhs, T rhs) { return CanonNaN(lhs - rhs); } |
| template <typename T> T WABT_VECTORCALL IntAnd(T lhs, T rhs) { return lhs & rhs; } |
| template <typename T> T WABT_VECTORCALL IntOr(T lhs, T rhs) { return lhs | rhs; } |
| template <typename T> T WABT_VECTORCALL IntXor(T lhs, T rhs) { return lhs ^ rhs; } |
| template <typename T> T WABT_VECTORCALL IntShl(T lhs, T rhs) { return lhs << ShiftMask(rhs); } |
| template <typename T> T WABT_VECTORCALL IntShr(T lhs, T rhs) { return lhs >> ShiftMask(rhs); } |
| template <typename T> T WABT_VECTORCALL IntMin(T lhs, T rhs) { return std::min(lhs, rhs); } |
| template <typename T> T WABT_VECTORCALL IntMax(T lhs, T rhs) { return std::max(lhs, rhs); } |
| template <typename T> T WABT_VECTORCALL IntAndNot(T lhs, T rhs) { return lhs & ~rhs; } |
| template <typename T> T WABT_VECTORCALL IntAvgr(T lhs, T rhs) { return (lhs + rhs + 1) / 2; } |
| template <typename T> T WABT_VECTORCALL Xchg(T lhs, T rhs) { return rhs; } |
| |
| // This is a wrapping absolute value function, so a negative number that is not |
| // representable as a positive number will be unchanged (e.g. abs(-128) = 128). |
| // |
| // Note that std::abs() does not have this behavior (e.g. abs(-128) is UB). |
| // Similarly, using unary minus is also UB. |
| template <typename T> |
| T WABT_VECTORCALL IntAbs(T val) { |
| static_assert(std::is_unsigned<T>::value, "T must be unsigned."); |
| const auto signbit = T(-1) << (sizeof(T) * 8 - 1); |
| return (val & signbit) ? ~val + 1 : val; |
| } |
| |
| // Because of the integer promotion rules [1], any value of a type T which is |
| // smaller than `int` will be converted to an `int`, as long as `int` can hold |
| // any value of type T. |
| // |
| // So type `u16` will be promoted to `int`, since all values can be stored in |
| // an int. Unfortunately, the product of two `u16` values cannot always be |
| // stored in an `int` (e.g. 65535 * 65535). This triggers an error in UBSan. |
| // |
| // As a result, we make sure to promote the type ahead of time for `u16`. Note |
| // that this isn't a problem for any other unsigned types. |
| // |
| // [1]; https://en.cppreference.com/w/cpp/language/implicit_conversion#Integral_promotion |
| template <typename T> struct PromoteMul { using type = T; }; |
| template <> struct PromoteMul<u16> { using type = u32; }; |
| |
| template <typename T> |
| T WABT_VECTORCALL Mul(T lhs, T rhs) { |
| using U = typename PromoteMul<T>::type; |
| return CanonNaN(U(lhs) * U(rhs)); |
| } |
| |
| template <typename T> struct Mask { using Type = T; }; |
| template <> struct Mask<f32> { using Type = u32; }; |
| template <> struct Mask<f64> { using Type = u64; }; |
| |
| template <typename T> typename Mask<T>::Type WABT_VECTORCALL EqMask(T lhs, T rhs) { return lhs == rhs ? -1 : 0; } |
| template <typename T> typename Mask<T>::Type WABT_VECTORCALL NeMask(T lhs, T rhs) { return lhs != rhs ? -1 : 0; } |
| template <typename T> typename Mask<T>::Type WABT_VECTORCALL LtMask(T lhs, T rhs) { return lhs < rhs ? -1 : 0; } |
| template <typename T> typename Mask<T>::Type WABT_VECTORCALL LeMask(T lhs, T rhs) { return lhs <= rhs ? -1 : 0; } |
| template <typename T> typename Mask<T>::Type WABT_VECTORCALL GtMask(T lhs, T rhs) { return lhs > rhs ? -1 : 0; } |
| template <typename T> typename Mask<T>::Type WABT_VECTORCALL GeMask(T lhs, T rhs) { return lhs >= rhs ? -1 : 0; } |
| |
| template <typename T> |
| T WABT_VECTORCALL IntRotl(T lhs, T rhs) { |
| return (lhs << ShiftMask(rhs)) | (lhs >> ShiftMask<T>(0 - rhs)); |
| } |
| |
| template <typename T> |
| T WABT_VECTORCALL IntRotr(T lhs, T rhs) { |
| return (lhs >> ShiftMask(rhs)) | (lhs << ShiftMask<T>(0 - rhs)); |
| } |
| |
| // i{32,64}.{div,rem}_s are special-cased because they trap when dividing the |
| // max signed value by -1. The modulo operation on x86 uses the same |
| // instruction to generate the quotient and the remainder. |
| template <typename T, |
| typename std::enable_if<std::is_signed<T>::value, int>::type = 0> |
| bool IsNormalDivRem(T lhs, T rhs) { |
| return !(lhs == std::numeric_limits<T>::min() && rhs == -1); |
| } |
| |
| template <typename T, |
| typename std::enable_if<!std::is_signed<T>::value, int>::type = 0> |
| bool IsNormalDivRem(T lhs, T rhs) { |
| return true; |
| } |
| |
| template <typename T> |
| RunResult WABT_VECTORCALL IntDiv(T lhs, T rhs, T* out, std::string* out_msg) { |
| if (WABT_UNLIKELY(rhs == 0)) { |
| *out_msg = "integer divide by zero"; |
| return RunResult::Trap; |
| } |
| if (WABT_LIKELY(IsNormalDivRem(lhs, rhs))) { |
| *out = lhs / rhs; |
| return RunResult::Ok; |
| } else { |
| *out_msg = "integer overflow"; |
| return RunResult::Trap; |
| } |
| } |
| |
| template <typename T> |
| RunResult WABT_VECTORCALL IntRem(T lhs, T rhs, T* out, std::string* out_msg) { |
| if (WABT_UNLIKELY(rhs == 0)) { |
| *out_msg = "integer divide by zero"; |
| return RunResult::Trap; |
| } |
| if (WABT_LIKELY(IsNormalDivRem(lhs, rhs))) { |
| *out = lhs % rhs; |
| } else { |
| *out = 0; |
| } |
| return RunResult::Ok; |
| } |
| |
| #if COMPILER_IS_MSVC |
| template <typename T> T WABT_VECTORCALL FloatAbs(T val); |
| template <typename T> T WABT_VECTORCALL FloatCopysign(T lhs, T rhs); |
| |
| // Don't use std::{abs,copysign} directly on MSVC, since that seems to lose |
| // the NaN tag. |
| template <> |
| inline f32 WABT_VECTORCALL FloatAbs(f32 val) { |
| return _mm_cvtss_f32(_mm_and_ps( |
| _mm_set1_ps(val), _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff)))); |
| } |
| |
| template <> |
| inline f64 WABT_VECTORCALL FloatAbs(f64 val) { |
| return _mm_cvtsd_f64( |
| _mm_and_pd(_mm_set1_pd(val), |
| _mm_castsi128_pd(_mm_set1_epi64x(0x7fffffffffffffffull)))); |
| } |
| |
| template <> |
| inline f32 WABT_VECTORCALL FloatCopysign(f32 lhs, f32 rhs) { |
| return _mm_cvtss_f32( |
| _mm_or_ps( |
| _mm_and_ps(_mm_set1_ps(lhs), _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff))), |
| _mm_and_ps(_mm_set1_ps(rhs), _mm_castsi128_ps(_mm_set1_epi32(0x80000000))))); |
| } |
| |
| template <> |
| inline f64 WABT_VECTORCALL FloatCopysign(f64 lhs, f64 rhs) { |
| return _mm_cvtsd_f64( |
| _mm_or_pd( |
| _mm_and_pd(_mm_set1_pd(lhs), _mm_castsi128_pd(_mm_set1_epi64x(0x7fffffffffffffffull))), |
| _mm_and_pd(_mm_set1_pd(rhs), _mm_castsi128_pd(_mm_set1_epi64x(0x8000000000000000ull))))); |
| } |
| |
| #else |
| template <typename T> |
| T WABT_VECTORCALL FloatAbs(T val) { |
| return std::abs(val); |
| } |
| |
| template <typename T> |
| T WABT_VECTORCALL FloatCopysign(T lhs, T rhs) { |
| return std::copysign(lhs, rhs); |
| } |
| #endif |
| |
| #if COMPILER_IS_MSVC |
| #else |
| #endif |
| |
| template <typename T> T WABT_VECTORCALL FloatNeg(T val) { return -val; } |
| template <typename T> T WABT_VECTORCALL FloatCeil(T val) { return CanonNaN(std::ceil(val)); } |
| template <typename T> T WABT_VECTORCALL FloatFloor(T val) { return CanonNaN(std::floor(val)); } |
| template <typename T> T WABT_VECTORCALL FloatTrunc(T val) { return CanonNaN(std::trunc(val)); } |
| template <typename T> T WABT_VECTORCALL FloatNearest(T val) { return CanonNaN(std::nearbyint(val)); } |
| template <typename T> T WABT_VECTORCALL FloatSqrt(T val) { return CanonNaN(std::sqrt(val)); } |
| |
| template <typename T> |
| T WABT_VECTORCALL FloatDiv(T lhs, T rhs) { |
| // IEE754 specifies what should happen when dividing a float by zero, but |
| // C/C++ says it is undefined behavior. |
| if (WABT_UNLIKELY(rhs == 0)) { |
| return std::isnan(lhs) || lhs == 0 |
| ? std::numeric_limits<T>::quiet_NaN() |
| : ((std::signbit(lhs) ^ std::signbit(rhs)) |
| ? -std::numeric_limits<T>::infinity() |
| : std::numeric_limits<T>::infinity()); |
| } |
| return CanonNaN(lhs / rhs); |
| } |
| |
| template <typename T> |
| T WABT_VECTORCALL FloatMin(T lhs, T rhs) { |
| if (WABT_UNLIKELY(std::isnan(lhs) || std::isnan(rhs))) { |
| return std::numeric_limits<T>::quiet_NaN(); |
| } else if (WABT_UNLIKELY(lhs == 0 && rhs == 0)) { |
| return std::signbit(lhs) ? lhs : rhs; |
| } else { |
| return std::min(lhs, rhs); |
| } |
| } |
| |
| template <typename T> |
| T WABT_VECTORCALL FloatPMin(T lhs, T rhs) { |
| return std::min(lhs, rhs); |
| } |
| |
| template <typename T> |
| T WABT_VECTORCALL FloatMax(T lhs, T rhs) { |
| if (WABT_UNLIKELY(std::isnan(lhs) || std::isnan(rhs))) { |
| return std::numeric_limits<T>::quiet_NaN(); |
| } else if (WABT_UNLIKELY(lhs == 0 && rhs == 0)) { |
| return std::signbit(lhs) ? rhs : lhs; |
| } else { |
| return std::max(lhs, rhs); |
| } |
| } |
| |
| template <typename T> |
| T WABT_VECTORCALL FloatPMax(T lhs, T rhs) { |
| return std::max(lhs, rhs); |
| } |
| |
| template <typename R, typename T> bool WABT_VECTORCALL CanConvert(T val) { return true; } |
| template <> inline bool WABT_VECTORCALL CanConvert<s32, f32>(f32 val) { return val >= -2147483648.f && val < 2147483648.f; } |
| template <> inline bool WABT_VECTORCALL CanConvert<s32, f64>(f64 val) { return val > -2147483649. && val < 2147483648.; } |
| template <> inline bool WABT_VECTORCALL CanConvert<u32, f32>(f32 val) { return val > -1.f && val < 4294967296.f; } |
| template <> inline bool WABT_VECTORCALL CanConvert<u32, f64>(f64 val) { return val > -1. && val < 4294967296.; } |
| template <> inline bool WABT_VECTORCALL CanConvert<s64, f32>(f32 val) { return val >= -9223372036854775808.f && val < 9223372036854775808.f; } |
| template <> inline bool WABT_VECTORCALL CanConvert<s64, f64>(f64 val) { return val >= -9223372036854775808. && val < 9223372036854775808.; } |
| template <> inline bool WABT_VECTORCALL CanConvert<u64, f32>(f32 val) { return val > -1.f && val < 18446744073709551616.f; } |
| template <> inline bool WABT_VECTORCALL CanConvert<u64, f64>(f64 val) { return val > -1. && val < 18446744073709551616.; } |
| |
| template <typename R, typename T> |
| R WABT_VECTORCALL Convert(T val) { |
| assert((CanConvert<R, T>(val))); |
| return static_cast<R>(val); |
| } |
| |
| template <> |
| inline f32 WABT_VECTORCALL Convert(f64 val) { |
| // The WebAssembly rounding mode means that these values (which are > F32_MAX) |
| // should be rounded to F32_MAX and not set to infinity. Unfortunately, UBSAN |
| // complains that the value is not representable as a float, so we'll special |
| // case them. |
| const f64 kMin = 3.4028234663852886e38; |
| const f64 kMax = 3.4028235677973366e38; |
| if (WABT_LIKELY(val >= -kMin && val <= kMin)) { |
| return val; |
| } else if (WABT_UNLIKELY(val > kMin && val < kMax)) { |
| return std::numeric_limits<f32>::max(); |
| } else if (WABT_UNLIKELY(val > -kMax && val < -kMin)) { |
| return -std::numeric_limits<f32>::max(); |
| } else if (WABT_UNLIKELY(std::isnan(val))) { |
| return std::numeric_limits<f32>::quiet_NaN(); |
| } else { |
| return std::copysign(std::numeric_limits<f32>::infinity(), val); |
| } |
| } |
| |
| template <> |
| inline f32 WABT_VECTORCALL Convert(u64 val) { |
| return wabt_convert_uint64_to_float(val); |
| } |
| |
| template <> |
| inline f64 WABT_VECTORCALL Convert(u64 val) { |
| return wabt_convert_uint64_to_double(val); |
| } |
| |
| template <> |
| inline f32 WABT_VECTORCALL Convert(s64 val) { |
| return wabt_convert_int64_to_float(val); |
| } |
| |
| template <> |
| inline f64 WABT_VECTORCALL Convert(s64 val) { |
| return wabt_convert_int64_to_double(val); |
| } |
| |
| template <typename T, int N> |
| T WABT_VECTORCALL IntExtend(T val) { |
| // Hacker's delight 2.6 - sign extension |
| auto bit = T{1} << N; |
| auto mask = (bit << 1) - 1; |
| return ((val & mask) ^ bit) - bit; |
| } |
| |
| template <typename R, typename T> |
| R WABT_VECTORCALL IntTruncSat(T val) { |
| if (WABT_UNLIKELY(std::isnan(val))) { |
| return 0; |
| } else if (WABT_UNLIKELY(!CanConvert<R>(val))) { |
| return std::signbit(val) ? std::numeric_limits<R>::min() |
| : std::numeric_limits<R>::max(); |
| } else { |
| return static_cast<R>(val); |
| } |
| } |
| |
| template <typename T> struct SatPromote; |
| template <> struct SatPromote<s8> { using type = s32; }; |
| template <> struct SatPromote<s16> { using type = s32; }; |
| template <> struct SatPromote<u8> { using type = s32; }; |
| template <> struct SatPromote<u16> { using type = s32; }; |
| |
| template <typename R, typename T> |
| R WABT_VECTORCALL Saturate(T val) { |
| static_assert(sizeof(R) < sizeof(T), "Incorrect types for Saturate"); |
| const T min = std::numeric_limits<R>::min(); |
| const T max = std::numeric_limits<R>::max(); |
| return val > max ? max : val < min ? min : val; |
| } |
| |
| template <typename T, typename U = typename SatPromote<T>::type> |
| T WABT_VECTORCALL IntAddSat(T lhs, T rhs) { |
| return Saturate<T, U>(lhs + rhs); |
| } |
| |
| template <typename T, typename U = typename SatPromote<T>::type> |
| T WABT_VECTORCALL IntSubSat(T lhs, T rhs) { |
| return Saturate<T, U>(lhs - rhs); |
| } |
| |
| template <typename T> |
| T WABT_VECTORCALL SaturatingRoundingQMul(T lhs, T rhs) { |
| constexpr int size_in_bits = sizeof(T) * 8; |
| int round_const = 1 << (size_in_bits - 2); |
| int64_t product = lhs * rhs; |
| product += round_const; |
| product >>= (size_in_bits - 1); |
| return Saturate<T, int64_t>(product); |
| } |
| |
| } // namespace interp |
| } // namespace wabt |
| |
| #endif // WABT_INTERP_MATH_H_ |