|  | /* | 
|  | * Copyright (C) 2009, 2013 Apple Inc. All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | 
|  | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR | 
|  | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
|  | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
|  | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
|  | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include "config.h" | 
|  | #include "YarrJIT.h" | 
|  |  | 
|  | #include <wtf/ASCIICType.h> | 
|  | #include "LinkBuffer.h" | 
|  | #include "Options.h" | 
|  | #include "Yarr.h" | 
|  | #include "YarrCanonicalizeUCS2.h" | 
|  |  | 
|  | #if ENABLE(YARR_JIT) | 
|  |  | 
|  | using namespace WTF; | 
|  |  | 
|  | namespace JSC { namespace Yarr { | 
|  |  | 
|  | template<YarrJITCompileMode compileMode> | 
|  | class YarrGenerator : private MacroAssembler { | 
|  | friend void jitCompile(VM*, YarrCodeBlock& jitObject, const String& pattern, unsigned& numSubpatterns, const char*& error, bool ignoreCase, bool multiline); | 
|  |  | 
|  | #if CPU(ARM) | 
|  | static const RegisterID input = ARMRegisters::r0; | 
|  | static const RegisterID index = ARMRegisters::r1; | 
|  | static const RegisterID length = ARMRegisters::r2; | 
|  | static const RegisterID output = ARMRegisters::r3; | 
|  |  | 
|  | static const RegisterID regT0 = ARMRegisters::r4; | 
|  | static const RegisterID regT1 = ARMRegisters::r5; | 
|  |  | 
|  | static const RegisterID returnRegister = ARMRegisters::r0; | 
|  | static const RegisterID returnRegister2 = ARMRegisters::r1; | 
|  | #elif CPU(ARM64) | 
|  | static const RegisterID input = ARM64Registers::x0; | 
|  | static const RegisterID index = ARM64Registers::x1; | 
|  | static const RegisterID length = ARM64Registers::x2; | 
|  | static const RegisterID output = ARM64Registers::x3; | 
|  |  | 
|  | static const RegisterID regT0 = ARM64Registers::x4; | 
|  | static const RegisterID regT1 = ARM64Registers::x5; | 
|  |  | 
|  | static const RegisterID returnRegister = ARM64Registers::x0; | 
|  | static const RegisterID returnRegister2 = ARM64Registers::x1; | 
|  | #elif CPU(MIPS) | 
|  | static const RegisterID input = MIPSRegisters::a0; | 
|  | static const RegisterID index = MIPSRegisters::a1; | 
|  | static const RegisterID length = MIPSRegisters::a2; | 
|  | static const RegisterID output = MIPSRegisters::a3; | 
|  |  | 
|  | static const RegisterID regT0 = MIPSRegisters::t4; | 
|  | static const RegisterID regT1 = MIPSRegisters::t5; | 
|  |  | 
|  | static const RegisterID returnRegister = MIPSRegisters::v0; | 
|  | static const RegisterID returnRegister2 = MIPSRegisters::v1; | 
|  | #elif CPU(SH4) | 
|  | static const RegisterID input = SH4Registers::r4; | 
|  | static const RegisterID index = SH4Registers::r5; | 
|  | static const RegisterID length = SH4Registers::r6; | 
|  | static const RegisterID output = SH4Registers::r7; | 
|  |  | 
|  | static const RegisterID regT0 = SH4Registers::r0; | 
|  | static const RegisterID regT1 = SH4Registers::r1; | 
|  |  | 
|  | static const RegisterID returnRegister = SH4Registers::r0; | 
|  | static const RegisterID returnRegister2 = SH4Registers::r1; | 
|  | #elif CPU(X86) | 
|  | static const RegisterID input = X86Registers::eax; | 
|  | static const RegisterID index = X86Registers::edx; | 
|  | static const RegisterID length = X86Registers::ecx; | 
|  | static const RegisterID output = X86Registers::edi; | 
|  |  | 
|  | static const RegisterID regT0 = X86Registers::ebx; | 
|  | static const RegisterID regT1 = X86Registers::esi; | 
|  |  | 
|  | static const RegisterID returnRegister = X86Registers::eax; | 
|  | static const RegisterID returnRegister2 = X86Registers::edx; | 
|  | #elif CPU(X86_64) | 
|  | #if !OS(WINDOWS) | 
|  | static const RegisterID input = X86Registers::edi; | 
|  | static const RegisterID index = X86Registers::esi; | 
|  | static const RegisterID length = X86Registers::edx; | 
|  | static const RegisterID output = X86Registers::ecx; | 
|  | #else | 
|  | // If the return value doesn't fit in 64bits, its destination is pointed by rcx and the parameters are shifted. | 
|  | // http://msdn.microsoft.com/en-us/library/7572ztz4.aspx | 
|  | COMPILE_ASSERT(sizeof(MatchResult) > sizeof(void*), MatchResult_does_not_fit_in_64bits); | 
|  | static const RegisterID input = X86Registers::edx; | 
|  | static const RegisterID index = X86Registers::r8; | 
|  | static const RegisterID length = X86Registers::r9; | 
|  | static const RegisterID output = X86Registers::r10; | 
|  | #endif | 
|  |  | 
|  | static const RegisterID regT0 = X86Registers::eax; | 
|  | static const RegisterID regT1 = X86Registers::ebx; | 
|  |  | 
|  | static const RegisterID returnRegister = X86Registers::eax; | 
|  | static const RegisterID returnRegister2 = X86Registers::edx; | 
|  | #endif | 
|  |  | 
|  | void optimizeAlternative(PatternAlternative* alternative) | 
|  | { | 
|  | if (!alternative->m_terms.size()) | 
|  | return; | 
|  |  | 
|  | for (unsigned i = 0; i < alternative->m_terms.size() - 1; ++i) { | 
|  | PatternTerm& term = alternative->m_terms[i]; | 
|  | PatternTerm& nextTerm = alternative->m_terms[i + 1]; | 
|  |  | 
|  | if ((term.type == PatternTerm::TypeCharacterClass) | 
|  | && (term.quantityType == QuantifierFixedCount) | 
|  | && (nextTerm.type == PatternTerm::TypePatternCharacter) | 
|  | && (nextTerm.quantityType == QuantifierFixedCount)) { | 
|  | PatternTerm termCopy = term; | 
|  | alternative->m_terms[i] = nextTerm; | 
|  | alternative->m_terms[i + 1] = termCopy; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void matchCharacterClassRange(RegisterID character, JumpList& failures, JumpList& matchDest, const CharacterRange* ranges, unsigned count, unsigned* matchIndex, const UChar* matches, unsigned matchCount) | 
|  | { | 
|  | do { | 
|  | // pick which range we're going to generate | 
|  | int which = count >> 1; | 
|  | char lo = ranges[which].begin; | 
|  | char hi = ranges[which].end; | 
|  |  | 
|  | // check if there are any ranges or matches below lo.  If not, just jl to failure - | 
|  | // if there is anything else to check, check that first, if it falls through jmp to failure. | 
|  | if ((*matchIndex < matchCount) && (matches[*matchIndex] < lo)) { | 
|  | Jump loOrAbove = branch32(GreaterThanOrEqual, character, Imm32((unsigned short)lo)); | 
|  |  | 
|  | // generate code for all ranges before this one | 
|  | if (which) | 
|  | matchCharacterClassRange(character, failures, matchDest, ranges, which, matchIndex, matches, matchCount); | 
|  |  | 
|  | while ((*matchIndex < matchCount) && (matches[*matchIndex] < lo)) { | 
|  | matchDest.append(branch32(Equal, character, Imm32((unsigned short)matches[*matchIndex]))); | 
|  | ++*matchIndex; | 
|  | } | 
|  | failures.append(jump()); | 
|  |  | 
|  | loOrAbove.link(this); | 
|  | } else if (which) { | 
|  | Jump loOrAbove = branch32(GreaterThanOrEqual, character, Imm32((unsigned short)lo)); | 
|  |  | 
|  | matchCharacterClassRange(character, failures, matchDest, ranges, which, matchIndex, matches, matchCount); | 
|  | failures.append(jump()); | 
|  |  | 
|  | loOrAbove.link(this); | 
|  | } else | 
|  | failures.append(branch32(LessThan, character, Imm32((unsigned short)lo))); | 
|  |  | 
|  | while ((*matchIndex < matchCount) && (matches[*matchIndex] <= hi)) | 
|  | ++*matchIndex; | 
|  |  | 
|  | matchDest.append(branch32(LessThanOrEqual, character, Imm32((unsigned short)hi))); | 
|  | // fall through to here, the value is above hi. | 
|  |  | 
|  | // shuffle along & loop around if there are any more matches to handle. | 
|  | unsigned next = which + 1; | 
|  | ranges += next; | 
|  | count -= next; | 
|  | } while (count); | 
|  | } | 
|  |  | 
|  | void matchCharacterClass(RegisterID character, JumpList& matchDest, const CharacterClass* charClass) | 
|  | { | 
|  | if (charClass->m_table) { | 
|  | ExtendedAddress tableEntry(character, reinterpret_cast<intptr_t>(charClass->m_table)); | 
|  | matchDest.append(branchTest8(charClass->m_tableInverted ? Zero : NonZero, tableEntry)); | 
|  | return; | 
|  | } | 
|  | Jump unicodeFail; | 
|  | if (charClass->m_matchesUnicode.size() || charClass->m_rangesUnicode.size()) { | 
|  | Jump isAscii = branch32(LessThanOrEqual, character, TrustedImm32(0x7f)); | 
|  |  | 
|  | if (charClass->m_matchesUnicode.size()) { | 
|  | for (unsigned i = 0; i < charClass->m_matchesUnicode.size(); ++i) { | 
|  | UChar ch = charClass->m_matchesUnicode[i]; | 
|  | matchDest.append(branch32(Equal, character, Imm32(ch))); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (charClass->m_rangesUnicode.size()) { | 
|  | for (unsigned i = 0; i < charClass->m_rangesUnicode.size(); ++i) { | 
|  | UChar lo = charClass->m_rangesUnicode[i].begin; | 
|  | UChar hi = charClass->m_rangesUnicode[i].end; | 
|  |  | 
|  | Jump below = branch32(LessThan, character, Imm32(lo)); | 
|  | matchDest.append(branch32(LessThanOrEqual, character, Imm32(hi))); | 
|  | below.link(this); | 
|  | } | 
|  | } | 
|  |  | 
|  | unicodeFail = jump(); | 
|  | isAscii.link(this); | 
|  | } | 
|  |  | 
|  | if (charClass->m_ranges.size()) { | 
|  | unsigned matchIndex = 0; | 
|  | JumpList failures; | 
|  | matchCharacterClassRange(character, failures, matchDest, charClass->m_ranges.begin(), charClass->m_ranges.size(), &matchIndex, charClass->m_matches.begin(), charClass->m_matches.size()); | 
|  | while (matchIndex < charClass->m_matches.size()) | 
|  | matchDest.append(branch32(Equal, character, Imm32((unsigned short)charClass->m_matches[matchIndex++]))); | 
|  |  | 
|  | failures.link(this); | 
|  | } else if (charClass->m_matches.size()) { | 
|  | // optimization: gather 'a','A' etc back together, can mask & test once. | 
|  | Vector<char> matchesAZaz; | 
|  |  | 
|  | for (unsigned i = 0; i < charClass->m_matches.size(); ++i) { | 
|  | char ch = charClass->m_matches[i]; | 
|  | if (m_pattern.m_ignoreCase) { | 
|  | if (isASCIILower(ch)) { | 
|  | matchesAZaz.append(ch); | 
|  | continue; | 
|  | } | 
|  | if (isASCIIUpper(ch)) | 
|  | continue; | 
|  | } | 
|  | matchDest.append(branch32(Equal, character, Imm32((unsigned short)ch))); | 
|  | } | 
|  |  | 
|  | if (unsigned countAZaz = matchesAZaz.size()) { | 
|  | or32(TrustedImm32(32), character); | 
|  | for (unsigned i = 0; i < countAZaz; ++i) | 
|  | matchDest.append(branch32(Equal, character, TrustedImm32(matchesAZaz[i]))); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (charClass->m_matchesUnicode.size() || charClass->m_rangesUnicode.size()) | 
|  | unicodeFail.link(this); | 
|  | } | 
|  |  | 
|  | // Jumps if input not available; will have (incorrectly) incremented already! | 
|  | Jump jumpIfNoAvailableInput(unsigned countToCheck = 0) | 
|  | { | 
|  | if (countToCheck) | 
|  | add32(Imm32(countToCheck), index); | 
|  | return branch32(Above, index, length); | 
|  | } | 
|  |  | 
|  | Jump jumpIfAvailableInput(unsigned countToCheck) | 
|  | { | 
|  | add32(Imm32(countToCheck), index); | 
|  | return branch32(BelowOrEqual, index, length); | 
|  | } | 
|  |  | 
|  | Jump checkInput() | 
|  | { | 
|  | return branch32(BelowOrEqual, index, length); | 
|  | } | 
|  |  | 
|  | Jump atEndOfInput() | 
|  | { | 
|  | return branch32(Equal, index, length); | 
|  | } | 
|  |  | 
|  | Jump notAtEndOfInput() | 
|  | { | 
|  | return branch32(NotEqual, index, length); | 
|  | } | 
|  |  | 
|  | Jump jumpIfCharNotEquals(UChar ch, int inputPosition, RegisterID character) | 
|  | { | 
|  | readCharacter(inputPosition, character); | 
|  |  | 
|  | // For case-insesitive compares, non-ascii characters that have different | 
|  | // upper & lower case representations are converted to a character class. | 
|  | ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(ch) || isCanonicallyUnique(ch)); | 
|  | if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) { | 
|  | or32(TrustedImm32(0x20), character); | 
|  | ch |= 0x20; | 
|  | } | 
|  |  | 
|  | return branch32(NotEqual, character, Imm32(ch)); | 
|  | } | 
|  |  | 
|  | void readCharacter(int inputPosition, RegisterID reg) | 
|  | { | 
|  | if (m_charSize == Char8) | 
|  | load8(BaseIndex(input, index, TimesOne, inputPosition * sizeof(char)), reg); | 
|  | else | 
|  | load16(BaseIndex(input, index, TimesTwo, inputPosition * sizeof(UChar)), reg); | 
|  | } | 
|  |  | 
|  | void storeToFrame(RegisterID reg, unsigned frameLocation) | 
|  | { | 
|  | poke(reg, frameLocation); | 
|  | } | 
|  |  | 
|  | void storeToFrame(TrustedImm32 imm, unsigned frameLocation) | 
|  | { | 
|  | poke(imm, frameLocation); | 
|  | } | 
|  |  | 
|  | DataLabelPtr storeToFrameWithPatch(unsigned frameLocation) | 
|  | { | 
|  | return storePtrWithPatch(TrustedImmPtr(0), Address(stackPointerRegister, frameLocation * sizeof(void*))); | 
|  | } | 
|  |  | 
|  | void loadFromFrame(unsigned frameLocation, RegisterID reg) | 
|  | { | 
|  | peek(reg, frameLocation); | 
|  | } | 
|  |  | 
|  | void loadFromFrameAndJump(unsigned frameLocation) | 
|  | { | 
|  | jump(Address(stackPointerRegister, frameLocation * sizeof(void*))); | 
|  | } | 
|  |  | 
|  | unsigned alignCallFrameSizeInBytes(unsigned callFrameSize) | 
|  | { | 
|  | callFrameSize *= sizeof(void*); | 
|  | if (callFrameSize / sizeof(void*) != m_pattern.m_body->m_callFrameSize) | 
|  | CRASH(); | 
|  | callFrameSize = (callFrameSize + 0x3f) & ~0x3f; | 
|  | if (!callFrameSize) | 
|  | CRASH(); | 
|  | return callFrameSize; | 
|  | } | 
|  | void initCallFrame() | 
|  | { | 
|  | unsigned callFrameSize = m_pattern.m_body->m_callFrameSize; | 
|  | if (callFrameSize) | 
|  | subPtr(Imm32(alignCallFrameSizeInBytes(callFrameSize)), stackPointerRegister); | 
|  | } | 
|  | void removeCallFrame() | 
|  | { | 
|  | unsigned callFrameSize = m_pattern.m_body->m_callFrameSize; | 
|  | if (callFrameSize) | 
|  | addPtr(Imm32(alignCallFrameSizeInBytes(callFrameSize)), stackPointerRegister); | 
|  | } | 
|  |  | 
|  | // Used to record subpatters, should only be called if compileMode is IncludeSubpatterns. | 
|  | void setSubpatternStart(RegisterID reg, unsigned subpattern) | 
|  | { | 
|  | ASSERT(subpattern); | 
|  | // FIXME: should be able to ASSERT(compileMode == IncludeSubpatterns), but then this function is conditionally NORETURN. :-( | 
|  | store32(reg, Address(output, (subpattern << 1) * sizeof(int))); | 
|  | } | 
|  | void setSubpatternEnd(RegisterID reg, unsigned subpattern) | 
|  | { | 
|  | ASSERT(subpattern); | 
|  | // FIXME: should be able to ASSERT(compileMode == IncludeSubpatterns), but then this function is conditionally NORETURN. :-( | 
|  | store32(reg, Address(output, ((subpattern << 1) + 1) * sizeof(int))); | 
|  | } | 
|  | void clearSubpatternStart(unsigned subpattern) | 
|  | { | 
|  | ASSERT(subpattern); | 
|  | // FIXME: should be able to ASSERT(compileMode == IncludeSubpatterns), but then this function is conditionally NORETURN. :-( | 
|  | store32(TrustedImm32(-1), Address(output, (subpattern << 1) * sizeof(int))); | 
|  | } | 
|  |  | 
|  | // We use one of three different strategies to track the start of the current match, | 
|  | // while matching. | 
|  | // 1) If the pattern has a fixed size, do nothing! - we calculate the value lazily | 
|  | //    at the end of matching. This is irrespective of compileMode, and in this case | 
|  | //    these methods should never be called. | 
|  | // 2) If we're compiling IncludeSubpatterns, 'output' contains a pointer to an output | 
|  | //    vector, store the match start in the output vector. | 
|  | // 3) If we're compiling MatchOnly, 'output' is unused, store the match start directly | 
|  | //    in this register. | 
|  | void setMatchStart(RegisterID reg) | 
|  | { | 
|  | ASSERT(!m_pattern.m_body->m_hasFixedSize); | 
|  | if (compileMode == IncludeSubpatterns) | 
|  | store32(reg, output); | 
|  | else | 
|  | move(reg, output); | 
|  | } | 
|  | void getMatchStart(RegisterID reg) | 
|  | { | 
|  | ASSERT(!m_pattern.m_body->m_hasFixedSize); | 
|  | if (compileMode == IncludeSubpatterns) | 
|  | load32(output, reg); | 
|  | else | 
|  | move(output, reg); | 
|  | } | 
|  |  | 
|  | enum YarrOpCode { | 
|  | // These nodes wrap body alternatives - those in the main disjunction, | 
|  | // rather than subpatterns or assertions. These are chained together in | 
|  | // a doubly linked list, with a 'begin' node for the first alternative, | 
|  | // a 'next' node for each subsequent alternative, and an 'end' node at | 
|  | // the end. In the case of repeating alternatives, the 'end' node also | 
|  | // has a reference back to 'begin'. | 
|  | OpBodyAlternativeBegin, | 
|  | OpBodyAlternativeNext, | 
|  | OpBodyAlternativeEnd, | 
|  | // Similar to the body alternatives, but used for subpatterns with two | 
|  | // or more alternatives. | 
|  | OpNestedAlternativeBegin, | 
|  | OpNestedAlternativeNext, | 
|  | OpNestedAlternativeEnd, | 
|  | // Used for alternatives in subpatterns where there is only a single | 
|  | // alternative (backtrackingis easier in these cases), or for alternatives | 
|  | // which never need to be backtracked (those in parenthetical assertions, | 
|  | // terminal subpatterns). | 
|  | OpSimpleNestedAlternativeBegin, | 
|  | OpSimpleNestedAlternativeNext, | 
|  | OpSimpleNestedAlternativeEnd, | 
|  | // Used to wrap 'Once' subpattern matches (quantityCount == 1). | 
|  | OpParenthesesSubpatternOnceBegin, | 
|  | OpParenthesesSubpatternOnceEnd, | 
|  | // Used to wrap 'Terminal' subpattern matches (at the end of the regexp). | 
|  | OpParenthesesSubpatternTerminalBegin, | 
|  | OpParenthesesSubpatternTerminalEnd, | 
|  | // Used to wrap parenthetical assertions. | 
|  | OpParentheticalAssertionBegin, | 
|  | OpParentheticalAssertionEnd, | 
|  | // Wraps all simple terms (pattern characters, character classes). | 
|  | OpTerm, | 
|  | // Where an expression contains only 'once through' body alternatives | 
|  | // and no repeating ones, this op is used to return match failure. | 
|  | OpMatchFailed | 
|  | }; | 
|  |  | 
|  | // This structure is used to hold the compiled opcode information, | 
|  | // including reference back to the original PatternTerm/PatternAlternatives, | 
|  | // and JIT compilation data structures. | 
|  | struct YarrOp { | 
|  | explicit YarrOp(PatternTerm* term) | 
|  | : m_op(OpTerm) | 
|  | , m_term(term) | 
|  | , m_isDeadCode(false) | 
|  | { | 
|  | } | 
|  |  | 
|  | explicit YarrOp(YarrOpCode op) | 
|  | : m_op(op) | 
|  | , m_isDeadCode(false) | 
|  | { | 
|  | } | 
|  |  | 
|  | // The operation, as a YarrOpCode, and also a reference to the PatternTerm. | 
|  | YarrOpCode m_op; | 
|  | PatternTerm* m_term; | 
|  |  | 
|  | // For alternatives, this holds the PatternAlternative and doubly linked | 
|  | // references to this alternative's siblings. In the case of the | 
|  | // OpBodyAlternativeEnd node at the end of a section of repeating nodes, | 
|  | // m_nextOp will reference the OpBodyAlternativeBegin node of the first | 
|  | // repeating alternative. | 
|  | PatternAlternative* m_alternative; | 
|  | size_t m_previousOp; | 
|  | size_t m_nextOp; | 
|  |  | 
|  | // Used to record a set of Jumps out of the generated code, typically | 
|  | // used for jumps out to backtracking code, and a single reentry back | 
|  | // into the code for a node (likely where a backtrack will trigger | 
|  | // rematching). | 
|  | Label m_reentry; | 
|  | JumpList m_jumps; | 
|  |  | 
|  | // Used for backtracking when the prior alternative did not consume any | 
|  | // characters but matched. | 
|  | Jump m_zeroLengthMatch; | 
|  |  | 
|  | // This flag is used to null out the second pattern character, when | 
|  | // two are fused to match a pair together. | 
|  | bool m_isDeadCode; | 
|  |  | 
|  | // Currently used in the case of some of the more complex management of | 
|  | // 'm_checked', to cache the offset used in this alternative, to avoid | 
|  | // recalculating it. | 
|  | int m_checkAdjust; | 
|  |  | 
|  | // Used by OpNestedAlternativeNext/End to hold the pointer to the | 
|  | // value that will be pushed into the pattern's frame to return to, | 
|  | // upon backtracking back into the disjunction. | 
|  | DataLabelPtr m_returnAddress; | 
|  | }; | 
|  |  | 
|  | // BacktrackingState | 
|  | // This class encapsulates information about the state of code generation | 
|  | // whilst generating the code for backtracking, when a term fails to match. | 
|  | // Upon entry to code generation of the backtracking code for a given node, | 
|  | // the Backtracking state will hold references to all control flow sources | 
|  | // that are outputs in need of further backtracking from the prior node | 
|  | // generated (which is the subsequent operation in the regular expression, | 
|  | // and in the m_ops Vector, since we generated backtracking backwards). | 
|  | // These references to control flow take the form of: | 
|  | //  - A jump list of jumps, to be linked to code that will backtrack them | 
|  | //    further. | 
|  | //  - A set of DataLabelPtr values, to be populated with values to be | 
|  | //    treated effectively as return addresses backtracking into complex | 
|  | //    subpatterns. | 
|  | //  - A flag indicating that the current sequence of generated code up to | 
|  | //    this point requires backtracking. | 
|  | class BacktrackingState { | 
|  | public: | 
|  | BacktrackingState() | 
|  | : m_pendingFallthrough(false) | 
|  | { | 
|  | } | 
|  |  | 
|  | // Add a jump or jumps, a return address, or set the flag indicating | 
|  | // that the current 'fallthrough' control flow requires backtracking. | 
|  | void append(const Jump& jump) | 
|  | { | 
|  | m_laterFailures.append(jump); | 
|  | } | 
|  | void append(JumpList& jumpList) | 
|  | { | 
|  | m_laterFailures.append(jumpList); | 
|  | } | 
|  | void append(const DataLabelPtr& returnAddress) | 
|  | { | 
|  | m_pendingReturns.append(returnAddress); | 
|  | } | 
|  | void fallthrough() | 
|  | { | 
|  | ASSERT(!m_pendingFallthrough); | 
|  | m_pendingFallthrough = true; | 
|  | } | 
|  |  | 
|  | // These methods clear the backtracking state, either linking to the | 
|  | // current location, a provided label, or copying the backtracking out | 
|  | // to a JumpList. All actions may require code generation to take place, | 
|  | // and as such are passed a pointer to the assembler. | 
|  | void link(MacroAssembler* assembler) | 
|  | { | 
|  | if (m_pendingReturns.size()) { | 
|  | Label here(assembler); | 
|  | for (unsigned i = 0; i < m_pendingReturns.size(); ++i) | 
|  | m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here)); | 
|  | m_pendingReturns.clear(); | 
|  | } | 
|  | m_laterFailures.link(assembler); | 
|  | m_laterFailures.clear(); | 
|  | m_pendingFallthrough = false; | 
|  | } | 
|  | void linkTo(Label label, MacroAssembler* assembler) | 
|  | { | 
|  | if (m_pendingReturns.size()) { | 
|  | for (unsigned i = 0; i < m_pendingReturns.size(); ++i) | 
|  | m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], label)); | 
|  | m_pendingReturns.clear(); | 
|  | } | 
|  | if (m_pendingFallthrough) | 
|  | assembler->jump(label); | 
|  | m_laterFailures.linkTo(label, assembler); | 
|  | m_laterFailures.clear(); | 
|  | m_pendingFallthrough = false; | 
|  | } | 
|  | void takeBacktracksToJumpList(JumpList& jumpList, MacroAssembler* assembler) | 
|  | { | 
|  | if (m_pendingReturns.size()) { | 
|  | Label here(assembler); | 
|  | for (unsigned i = 0; i < m_pendingReturns.size(); ++i) | 
|  | m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here)); | 
|  | m_pendingReturns.clear(); | 
|  | m_pendingFallthrough = true; | 
|  | } | 
|  | if (m_pendingFallthrough) | 
|  | jumpList.append(assembler->jump()); | 
|  | jumpList.append(m_laterFailures); | 
|  | m_laterFailures.clear(); | 
|  | m_pendingFallthrough = false; | 
|  | } | 
|  |  | 
|  | bool isEmpty() | 
|  | { | 
|  | return m_laterFailures.empty() && m_pendingReturns.isEmpty() && !m_pendingFallthrough; | 
|  | } | 
|  |  | 
|  | // Called at the end of code generation to link all return addresses. | 
|  | void linkDataLabels(LinkBuffer& linkBuffer) | 
|  | { | 
|  | ASSERT(isEmpty()); | 
|  | for (unsigned i = 0; i < m_backtrackRecords.size(); ++i) | 
|  | linkBuffer.patch(m_backtrackRecords[i].m_dataLabel, linkBuffer.locationOf(m_backtrackRecords[i].m_backtrackLocation)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | struct ReturnAddressRecord { | 
|  | ReturnAddressRecord(DataLabelPtr dataLabel, Label backtrackLocation) | 
|  | : m_dataLabel(dataLabel) | 
|  | , m_backtrackLocation(backtrackLocation) | 
|  | { | 
|  | } | 
|  |  | 
|  | DataLabelPtr m_dataLabel; | 
|  | Label m_backtrackLocation; | 
|  | }; | 
|  |  | 
|  | JumpList m_laterFailures; | 
|  | bool m_pendingFallthrough; | 
|  | Vector<DataLabelPtr, 4> m_pendingReturns; | 
|  | Vector<ReturnAddressRecord, 4> m_backtrackRecords; | 
|  | }; | 
|  |  | 
|  | // Generation methods: | 
|  | // =================== | 
|  |  | 
|  | // This method provides a default implementation of backtracking common | 
|  | // to many terms; terms commonly jump out of the forwards  matching path | 
|  | // on any failed conditions, and add these jumps to the m_jumps list. If | 
|  | // no special handling is required we can often just backtrack to m_jumps. | 
|  | void backtrackTermDefault(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | m_backtrackingState.append(op.m_jumps); | 
|  | } | 
|  |  | 
|  | void generateAssertionBOL(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | if (m_pattern.m_multiline) { | 
|  | const RegisterID character = regT0; | 
|  |  | 
|  | JumpList matchDest; | 
|  | if (!term->inputPosition) | 
|  | matchDest.append(branch32(Equal, index, Imm32(m_checked))); | 
|  |  | 
|  | readCharacter((term->inputPosition - m_checked) - 1, character); | 
|  | matchCharacterClass(character, matchDest, m_pattern.newlineCharacterClass()); | 
|  | op.m_jumps.append(jump()); | 
|  |  | 
|  | matchDest.link(this); | 
|  | } else { | 
|  | // Erk, really should poison out these alternatives early. :-/ | 
|  | if (term->inputPosition) | 
|  | op.m_jumps.append(jump()); | 
|  | else | 
|  | op.m_jumps.append(branch32(NotEqual, index, Imm32(m_checked))); | 
|  | } | 
|  | } | 
|  | void backtrackAssertionBOL(size_t opIndex) | 
|  | { | 
|  | backtrackTermDefault(opIndex); | 
|  | } | 
|  |  | 
|  | void generateAssertionEOL(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | if (m_pattern.m_multiline) { | 
|  | const RegisterID character = regT0; | 
|  |  | 
|  | JumpList matchDest; | 
|  | if (term->inputPosition == m_checked) | 
|  | matchDest.append(atEndOfInput()); | 
|  |  | 
|  | readCharacter(term->inputPosition - m_checked, character); | 
|  | matchCharacterClass(character, matchDest, m_pattern.newlineCharacterClass()); | 
|  | op.m_jumps.append(jump()); | 
|  |  | 
|  | matchDest.link(this); | 
|  | } else { | 
|  | if (term->inputPosition == m_checked) | 
|  | op.m_jumps.append(notAtEndOfInput()); | 
|  | // Erk, really should poison out these alternatives early. :-/ | 
|  | else | 
|  | op.m_jumps.append(jump()); | 
|  | } | 
|  | } | 
|  | void backtrackAssertionEOL(size_t opIndex) | 
|  | { | 
|  | backtrackTermDefault(opIndex); | 
|  | } | 
|  |  | 
|  | // Also falls though on nextIsNotWordChar. | 
|  | void matchAssertionWordchar(size_t opIndex, JumpList& nextIsWordChar, JumpList& nextIsNotWordChar) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | const RegisterID character = regT0; | 
|  |  | 
|  | if (term->inputPosition == m_checked) | 
|  | nextIsNotWordChar.append(atEndOfInput()); | 
|  |  | 
|  | readCharacter((term->inputPosition - m_checked), character); | 
|  | matchCharacterClass(character, nextIsWordChar, m_pattern.wordcharCharacterClass()); | 
|  | } | 
|  |  | 
|  | void generateAssertionWordBoundary(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | const RegisterID character = regT0; | 
|  |  | 
|  | Jump atBegin; | 
|  | JumpList matchDest; | 
|  | if (!term->inputPosition) | 
|  | atBegin = branch32(Equal, index, Imm32(m_checked)); | 
|  | readCharacter((term->inputPosition - m_checked) - 1, character); | 
|  | matchCharacterClass(character, matchDest, m_pattern.wordcharCharacterClass()); | 
|  | if (!term->inputPosition) | 
|  | atBegin.link(this); | 
|  |  | 
|  | // We fall through to here if the last character was not a wordchar. | 
|  | JumpList nonWordCharThenWordChar; | 
|  | JumpList nonWordCharThenNonWordChar; | 
|  | if (term->invert()) { | 
|  | matchAssertionWordchar(opIndex, nonWordCharThenNonWordChar, nonWordCharThenWordChar); | 
|  | nonWordCharThenWordChar.append(jump()); | 
|  | } else { | 
|  | matchAssertionWordchar(opIndex, nonWordCharThenWordChar, nonWordCharThenNonWordChar); | 
|  | nonWordCharThenNonWordChar.append(jump()); | 
|  | } | 
|  | op.m_jumps.append(nonWordCharThenNonWordChar); | 
|  |  | 
|  | // We jump here if the last character was a wordchar. | 
|  | matchDest.link(this); | 
|  | JumpList wordCharThenWordChar; | 
|  | JumpList wordCharThenNonWordChar; | 
|  | if (term->invert()) { | 
|  | matchAssertionWordchar(opIndex, wordCharThenNonWordChar, wordCharThenWordChar); | 
|  | wordCharThenWordChar.append(jump()); | 
|  | } else { | 
|  | matchAssertionWordchar(opIndex, wordCharThenWordChar, wordCharThenNonWordChar); | 
|  | // This can fall-though! | 
|  | } | 
|  |  | 
|  | op.m_jumps.append(wordCharThenWordChar); | 
|  |  | 
|  | nonWordCharThenWordChar.link(this); | 
|  | wordCharThenNonWordChar.link(this); | 
|  | } | 
|  | void backtrackAssertionWordBoundary(size_t opIndex) | 
|  | { | 
|  | backtrackTermDefault(opIndex); | 
|  | } | 
|  |  | 
|  | void generatePatternCharacterOnce(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  |  | 
|  | if (op.m_isDeadCode) | 
|  | return; | 
|  |  | 
|  | // m_ops always ends with a OpBodyAlternativeEnd or OpMatchFailed | 
|  | // node, so there must always be at least one more node. | 
|  | ASSERT(opIndex + 1 < m_ops.size()); | 
|  | YarrOp* nextOp = &m_ops[opIndex + 1]; | 
|  |  | 
|  | PatternTerm* term = op.m_term; | 
|  | UChar ch = term->patternCharacter; | 
|  |  | 
|  | if ((ch > 0xff) && (m_charSize == Char8)) { | 
|  | // Have a 16 bit pattern character and an 8 bit string - short circuit | 
|  | op.m_jumps.append(jump()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const RegisterID character = regT0; | 
|  | int maxCharactersAtOnce = m_charSize == Char8 ? 4 : 2; | 
|  | unsigned ignoreCaseMask = 0; | 
|  | #if CPU(BIG_ENDIAN) | 
|  | int allCharacters = ch << (m_charSize == Char8 ? 24 : 16); | 
|  | #else | 
|  | int allCharacters = ch; | 
|  | #endif | 
|  | int numberCharacters; | 
|  | int startTermPosition = term->inputPosition; | 
|  |  | 
|  | // For case-insesitive compares, non-ascii characters that have different | 
|  | // upper & lower case representations are converted to a character class. | 
|  | ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(ch) || isCanonicallyUnique(ch)); | 
|  |  | 
|  | if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) | 
|  | #if CPU(BIG_ENDIAN) | 
|  | ignoreCaseMask |= 32 << (m_charSize == Char8 ? 24 : 16); | 
|  | #else | 
|  | ignoreCaseMask |= 32; | 
|  | #endif | 
|  |  | 
|  | for (numberCharacters = 1; numberCharacters < maxCharactersAtOnce && nextOp->m_op == OpTerm; ++numberCharacters, nextOp = &m_ops[opIndex + numberCharacters]) { | 
|  | PatternTerm* nextTerm = nextOp->m_term; | 
|  |  | 
|  | if (nextTerm->type != PatternTerm::TypePatternCharacter | 
|  | || nextTerm->quantityType != QuantifierFixedCount | 
|  | || nextTerm->quantityCount != 1 | 
|  | || nextTerm->inputPosition != (startTermPosition + numberCharacters)) | 
|  | break; | 
|  |  | 
|  | nextOp->m_isDeadCode = true; | 
|  |  | 
|  | #if CPU(BIG_ENDIAN) | 
|  | int shiftAmount = (m_charSize == Char8 ? 24 : 16) - ((m_charSize == Char8 ? 8 : 16) * numberCharacters); | 
|  | #else | 
|  | int shiftAmount = (m_charSize == Char8 ? 8 : 16) * numberCharacters; | 
|  | #endif | 
|  |  | 
|  | UChar currentCharacter = nextTerm->patternCharacter; | 
|  |  | 
|  | if ((currentCharacter > 0xff) && (m_charSize == Char8)) { | 
|  | // Have a 16 bit pattern character and an 8 bit string - short circuit | 
|  | op.m_jumps.append(jump()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // For case-insesitive compares, non-ascii characters that have different | 
|  | // upper & lower case representations are converted to a character class. | 
|  | ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(currentCharacter) || isCanonicallyUnique(currentCharacter)); | 
|  |  | 
|  | allCharacters |= (currentCharacter << shiftAmount); | 
|  |  | 
|  | if ((m_pattern.m_ignoreCase) && (isASCIIAlpha(currentCharacter))) | 
|  | ignoreCaseMask |= 32 << shiftAmount; | 
|  | } | 
|  |  | 
|  | if (m_charSize == Char8) { | 
|  | switch (numberCharacters) { | 
|  | case 1: | 
|  | op.m_jumps.append(jumpIfCharNotEquals(ch, startTermPosition - m_checked, character)); | 
|  | return; | 
|  | case 2: { | 
|  | BaseIndex address(input, index, TimesOne, (startTermPosition - m_checked) * sizeof(LChar)); | 
|  | load16Unaligned(address, character); | 
|  | break; | 
|  | } | 
|  | case 3: { | 
|  | BaseIndex highAddress(input, index, TimesOne, (startTermPosition - m_checked) * sizeof(LChar)); | 
|  | load16Unaligned(highAddress, character); | 
|  | if (ignoreCaseMask) | 
|  | or32(Imm32(ignoreCaseMask), character); | 
|  | op.m_jumps.append(branch32(NotEqual, character, Imm32((allCharacters & 0xffff) | ignoreCaseMask))); | 
|  | op.m_jumps.append(jumpIfCharNotEquals(allCharacters >> 16, startTermPosition + 2 - m_checked, character)); | 
|  | return; | 
|  | } | 
|  | case 4: { | 
|  | BaseIndex address(input, index, TimesOne, (startTermPosition - m_checked) * sizeof(LChar)); | 
|  | load32WithUnalignedHalfWords(address, character); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | switch (numberCharacters) { | 
|  | case 1: | 
|  | op.m_jumps.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked, character)); | 
|  | return; | 
|  | case 2: | 
|  | BaseIndex address(input, index, TimesTwo, (term->inputPosition - m_checked) * sizeof(UChar)); | 
|  | load32WithUnalignedHalfWords(address, character); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ignoreCaseMask) | 
|  | or32(Imm32(ignoreCaseMask), character); | 
|  | op.m_jumps.append(branch32(NotEqual, character, Imm32(allCharacters | ignoreCaseMask))); | 
|  | return; | 
|  | } | 
|  | void backtrackPatternCharacterOnce(size_t opIndex) | 
|  | { | 
|  | backtrackTermDefault(opIndex); | 
|  | } | 
|  |  | 
|  | void generatePatternCharacterFixed(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  | UChar ch = term->patternCharacter; | 
|  |  | 
|  | const RegisterID character = regT0; | 
|  | const RegisterID countRegister = regT1; | 
|  |  | 
|  | move(index, countRegister); | 
|  | sub32(Imm32(term->quantityCount.unsafeGet()), countRegister); | 
|  |  | 
|  | Label loop(this); | 
|  | BaseIndex address(input, countRegister, m_charScale, (Checked<int>(term->inputPosition - m_checked + Checked<int64_t>(term->quantityCount)) * static_cast<int>(m_charSize == Char8 ? sizeof(char) : sizeof(UChar))).unsafeGet()); | 
|  |  | 
|  | if (m_charSize == Char8) | 
|  | load8(address, character); | 
|  | else | 
|  | load16(address, character); | 
|  |  | 
|  | // For case-insesitive compares, non-ascii characters that have different | 
|  | // upper & lower case representations are converted to a character class. | 
|  | ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(ch) || isCanonicallyUnique(ch)); | 
|  | if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) { | 
|  | or32(TrustedImm32(0x20), character); | 
|  | ch |= 0x20; | 
|  | } | 
|  |  | 
|  | op.m_jumps.append(branch32(NotEqual, character, Imm32(ch))); | 
|  | add32(TrustedImm32(1), countRegister); | 
|  | branch32(NotEqual, countRegister, index).linkTo(loop, this); | 
|  | } | 
|  | void backtrackPatternCharacterFixed(size_t opIndex) | 
|  | { | 
|  | backtrackTermDefault(opIndex); | 
|  | } | 
|  |  | 
|  | void generatePatternCharacterGreedy(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  | UChar ch = term->patternCharacter; | 
|  |  | 
|  | const RegisterID character = regT0; | 
|  | const RegisterID countRegister = regT1; | 
|  |  | 
|  | move(TrustedImm32(0), countRegister); | 
|  |  | 
|  | // Unless have a 16 bit pattern character and an 8 bit string - short circuit | 
|  | if (!((ch > 0xff) && (m_charSize == Char8))) { | 
|  | JumpList failures; | 
|  | Label loop(this); | 
|  | failures.append(atEndOfInput()); | 
|  | failures.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked, character)); | 
|  |  | 
|  | add32(TrustedImm32(1), countRegister); | 
|  | add32(TrustedImm32(1), index); | 
|  | if (term->quantityCount == quantifyInfinite) | 
|  | jump(loop); | 
|  | else | 
|  | branch32(NotEqual, countRegister, Imm32(term->quantityCount.unsafeGet())).linkTo(loop, this); | 
|  |  | 
|  | failures.link(this); | 
|  | } | 
|  | op.m_reentry = label(); | 
|  |  | 
|  | storeToFrame(countRegister, term->frameLocation); | 
|  | } | 
|  | void backtrackPatternCharacterGreedy(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | const RegisterID countRegister = regT1; | 
|  |  | 
|  | m_backtrackingState.link(this); | 
|  |  | 
|  | loadFromFrame(term->frameLocation, countRegister); | 
|  | m_backtrackingState.append(branchTest32(Zero, countRegister)); | 
|  | sub32(TrustedImm32(1), countRegister); | 
|  | sub32(TrustedImm32(1), index); | 
|  | jump(op.m_reentry); | 
|  | } | 
|  |  | 
|  | void generatePatternCharacterNonGreedy(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | const RegisterID countRegister = regT1; | 
|  |  | 
|  | move(TrustedImm32(0), countRegister); | 
|  | op.m_reentry = label(); | 
|  | storeToFrame(countRegister, term->frameLocation); | 
|  | } | 
|  | void backtrackPatternCharacterNonGreedy(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  | UChar ch = term->patternCharacter; | 
|  |  | 
|  | const RegisterID character = regT0; | 
|  | const RegisterID countRegister = regT1; | 
|  |  | 
|  | m_backtrackingState.link(this); | 
|  |  | 
|  | loadFromFrame(term->frameLocation, countRegister); | 
|  |  | 
|  | // Unless have a 16 bit pattern character and an 8 bit string - short circuit | 
|  | if (!((ch > 0xff) && (m_charSize == Char8))) { | 
|  | JumpList nonGreedyFailures; | 
|  | nonGreedyFailures.append(atEndOfInput()); | 
|  | if (term->quantityCount != quantifyInfinite) | 
|  | nonGreedyFailures.append(branch32(Equal, countRegister, Imm32(term->quantityCount.unsafeGet()))); | 
|  | nonGreedyFailures.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked, character)); | 
|  |  | 
|  | add32(TrustedImm32(1), countRegister); | 
|  | add32(TrustedImm32(1), index); | 
|  |  | 
|  | jump(op.m_reentry); | 
|  | nonGreedyFailures.link(this); | 
|  | } | 
|  |  | 
|  | sub32(countRegister, index); | 
|  | m_backtrackingState.fallthrough(); | 
|  | } | 
|  |  | 
|  | void generateCharacterClassOnce(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | const RegisterID character = regT0; | 
|  |  | 
|  | JumpList matchDest; | 
|  | readCharacter(term->inputPosition - m_checked, character); | 
|  | matchCharacterClass(character, matchDest, term->characterClass); | 
|  |  | 
|  | if (term->invert()) | 
|  | op.m_jumps.append(matchDest); | 
|  | else { | 
|  | op.m_jumps.append(jump()); | 
|  | matchDest.link(this); | 
|  | } | 
|  | } | 
|  | void backtrackCharacterClassOnce(size_t opIndex) | 
|  | { | 
|  | backtrackTermDefault(opIndex); | 
|  | } | 
|  |  | 
|  | void generateCharacterClassFixed(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | const RegisterID character = regT0; | 
|  | const RegisterID countRegister = regT1; | 
|  |  | 
|  | move(index, countRegister); | 
|  | sub32(Imm32(term->quantityCount.unsafeGet()), countRegister); | 
|  |  | 
|  | Label loop(this); | 
|  | JumpList matchDest; | 
|  | if (m_charSize == Char8) | 
|  | load8(BaseIndex(input, countRegister, TimesOne, (Checked<int>(term->inputPosition - m_checked + Checked<int64_t>(term->quantityCount)) * static_cast<int>(sizeof(char))).unsafeGet()), character); | 
|  | else | 
|  | load16(BaseIndex(input, countRegister, TimesTwo, (Checked<int>(term->inputPosition - m_checked + Checked<int64_t>(term->quantityCount)) * static_cast<int>(sizeof(UChar))).unsafeGet()), character); | 
|  | matchCharacterClass(character, matchDest, term->characterClass); | 
|  |  | 
|  | if (term->invert()) | 
|  | op.m_jumps.append(matchDest); | 
|  | else { | 
|  | op.m_jumps.append(jump()); | 
|  | matchDest.link(this); | 
|  | } | 
|  |  | 
|  | add32(TrustedImm32(1), countRegister); | 
|  | branch32(NotEqual, countRegister, index).linkTo(loop, this); | 
|  | } | 
|  | void backtrackCharacterClassFixed(size_t opIndex) | 
|  | { | 
|  | backtrackTermDefault(opIndex); | 
|  | } | 
|  |  | 
|  | void generateCharacterClassGreedy(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | const RegisterID character = regT0; | 
|  | const RegisterID countRegister = regT1; | 
|  |  | 
|  | move(TrustedImm32(0), countRegister); | 
|  |  | 
|  | JumpList failures; | 
|  | Label loop(this); | 
|  | failures.append(atEndOfInput()); | 
|  |  | 
|  | if (term->invert()) { | 
|  | readCharacter(term->inputPosition - m_checked, character); | 
|  | matchCharacterClass(character, failures, term->characterClass); | 
|  | } else { | 
|  | JumpList matchDest; | 
|  | readCharacter(term->inputPosition - m_checked, character); | 
|  | matchCharacterClass(character, matchDest, term->characterClass); | 
|  | failures.append(jump()); | 
|  | matchDest.link(this); | 
|  | } | 
|  |  | 
|  | add32(TrustedImm32(1), countRegister); | 
|  | add32(TrustedImm32(1), index); | 
|  | if (term->quantityCount != quantifyInfinite) { | 
|  | branch32(NotEqual, countRegister, Imm32(term->quantityCount.unsafeGet())).linkTo(loop, this); | 
|  | failures.append(jump()); | 
|  | } else | 
|  | jump(loop); | 
|  |  | 
|  | failures.link(this); | 
|  | op.m_reentry = label(); | 
|  |  | 
|  | storeToFrame(countRegister, term->frameLocation); | 
|  | } | 
|  | void backtrackCharacterClassGreedy(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | const RegisterID countRegister = regT1; | 
|  |  | 
|  | m_backtrackingState.link(this); | 
|  |  | 
|  | loadFromFrame(term->frameLocation, countRegister); | 
|  | m_backtrackingState.append(branchTest32(Zero, countRegister)); | 
|  | sub32(TrustedImm32(1), countRegister); | 
|  | sub32(TrustedImm32(1), index); | 
|  | jump(op.m_reentry); | 
|  | } | 
|  |  | 
|  | void generateCharacterClassNonGreedy(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | const RegisterID countRegister = regT1; | 
|  |  | 
|  | move(TrustedImm32(0), countRegister); | 
|  | op.m_reentry = label(); | 
|  | storeToFrame(countRegister, term->frameLocation); | 
|  | } | 
|  | void backtrackCharacterClassNonGreedy(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | const RegisterID character = regT0; | 
|  | const RegisterID countRegister = regT1; | 
|  |  | 
|  | JumpList nonGreedyFailures; | 
|  |  | 
|  | m_backtrackingState.link(this); | 
|  |  | 
|  | loadFromFrame(term->frameLocation, countRegister); | 
|  |  | 
|  | nonGreedyFailures.append(atEndOfInput()); | 
|  | nonGreedyFailures.append(branch32(Equal, countRegister, Imm32(term->quantityCount.unsafeGet()))); | 
|  |  | 
|  | JumpList matchDest; | 
|  | readCharacter(term->inputPosition - m_checked, character); | 
|  | matchCharacterClass(character, matchDest, term->characterClass); | 
|  |  | 
|  | if (term->invert()) | 
|  | nonGreedyFailures.append(matchDest); | 
|  | else { | 
|  | nonGreedyFailures.append(jump()); | 
|  | matchDest.link(this); | 
|  | } | 
|  |  | 
|  | add32(TrustedImm32(1), countRegister); | 
|  | add32(TrustedImm32(1), index); | 
|  |  | 
|  | jump(op.m_reentry); | 
|  |  | 
|  | nonGreedyFailures.link(this); | 
|  | sub32(countRegister, index); | 
|  | m_backtrackingState.fallthrough(); | 
|  | } | 
|  |  | 
|  | void generateDotStarEnclosure(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | const RegisterID character = regT0; | 
|  | const RegisterID matchPos = regT1; | 
|  |  | 
|  | JumpList foundBeginningNewLine; | 
|  | JumpList saveStartIndex; | 
|  | JumpList foundEndingNewLine; | 
|  |  | 
|  | ASSERT(!m_pattern.m_body->m_hasFixedSize); | 
|  | getMatchStart(matchPos); | 
|  |  | 
|  | saveStartIndex.append(branchTest32(Zero, matchPos)); | 
|  | Label findBOLLoop(this); | 
|  | sub32(TrustedImm32(1), matchPos); | 
|  | if (m_charSize == Char8) | 
|  | load8(BaseIndex(input, matchPos, TimesOne, 0), character); | 
|  | else | 
|  | load16(BaseIndex(input, matchPos, TimesTwo, 0), character); | 
|  | matchCharacterClass(character, foundBeginningNewLine, m_pattern.newlineCharacterClass()); | 
|  | branchTest32(NonZero, matchPos).linkTo(findBOLLoop, this); | 
|  | saveStartIndex.append(jump()); | 
|  |  | 
|  | foundBeginningNewLine.link(this); | 
|  | add32(TrustedImm32(1), matchPos); // Advance past newline | 
|  | saveStartIndex.link(this); | 
|  |  | 
|  | if (!m_pattern.m_multiline && term->anchors.bolAnchor) | 
|  | op.m_jumps.append(branchTest32(NonZero, matchPos)); | 
|  |  | 
|  | ASSERT(!m_pattern.m_body->m_hasFixedSize); | 
|  | setMatchStart(matchPos); | 
|  |  | 
|  | move(index, matchPos); | 
|  |  | 
|  | Label findEOLLoop(this); | 
|  | foundEndingNewLine.append(branch32(Equal, matchPos, length)); | 
|  | if (m_charSize == Char8) | 
|  | load8(BaseIndex(input, matchPos, TimesOne, 0), character); | 
|  | else | 
|  | load16(BaseIndex(input, matchPos, TimesTwo, 0), character); | 
|  | matchCharacterClass(character, foundEndingNewLine, m_pattern.newlineCharacterClass()); | 
|  | add32(TrustedImm32(1), matchPos); | 
|  | jump(findEOLLoop); | 
|  |  | 
|  | foundEndingNewLine.link(this); | 
|  |  | 
|  | if (!m_pattern.m_multiline && term->anchors.eolAnchor) | 
|  | op.m_jumps.append(branch32(NotEqual, matchPos, length)); | 
|  |  | 
|  | move(matchPos, index); | 
|  | } | 
|  |  | 
|  | void backtrackDotStarEnclosure(size_t opIndex) | 
|  | { | 
|  | backtrackTermDefault(opIndex); | 
|  | } | 
|  |  | 
|  | // Code generation/backtracking for simple terms | 
|  | // (pattern characters, character classes, and assertions). | 
|  | // These methods farm out work to the set of functions above. | 
|  | void generateTerm(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | switch (term->type) { | 
|  | case PatternTerm::TypePatternCharacter: | 
|  | switch (term->quantityType) { | 
|  | case QuantifierFixedCount: | 
|  | if (term->quantityCount == 1) | 
|  | generatePatternCharacterOnce(opIndex); | 
|  | else | 
|  | generatePatternCharacterFixed(opIndex); | 
|  | break; | 
|  | case QuantifierGreedy: | 
|  | generatePatternCharacterGreedy(opIndex); | 
|  | break; | 
|  | case QuantifierNonGreedy: | 
|  | generatePatternCharacterNonGreedy(opIndex); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeCharacterClass: | 
|  | switch (term->quantityType) { | 
|  | case QuantifierFixedCount: | 
|  | if (term->quantityCount == 1) | 
|  | generateCharacterClassOnce(opIndex); | 
|  | else | 
|  | generateCharacterClassFixed(opIndex); | 
|  | break; | 
|  | case QuantifierGreedy: | 
|  | generateCharacterClassGreedy(opIndex); | 
|  | break; | 
|  | case QuantifierNonGreedy: | 
|  | generateCharacterClassNonGreedy(opIndex); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeAssertionBOL: | 
|  | generateAssertionBOL(opIndex); | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeAssertionEOL: | 
|  | generateAssertionEOL(opIndex); | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeAssertionWordBoundary: | 
|  | generateAssertionWordBoundary(opIndex); | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeForwardReference: | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeParenthesesSubpattern: | 
|  | case PatternTerm::TypeParentheticalAssertion: | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | case PatternTerm::TypeBackReference: | 
|  | m_shouldFallBack = true; | 
|  | break; | 
|  | case PatternTerm::TypeDotStarEnclosure: | 
|  | generateDotStarEnclosure(opIndex); | 
|  | break; | 
|  | } | 
|  | } | 
|  | void backtrackTerm(size_t opIndex) | 
|  | { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | switch (term->type) { | 
|  | case PatternTerm::TypePatternCharacter: | 
|  | switch (term->quantityType) { | 
|  | case QuantifierFixedCount: | 
|  | if (term->quantityCount == 1) | 
|  | backtrackPatternCharacterOnce(opIndex); | 
|  | else | 
|  | backtrackPatternCharacterFixed(opIndex); | 
|  | break; | 
|  | case QuantifierGreedy: | 
|  | backtrackPatternCharacterGreedy(opIndex); | 
|  | break; | 
|  | case QuantifierNonGreedy: | 
|  | backtrackPatternCharacterNonGreedy(opIndex); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeCharacterClass: | 
|  | switch (term->quantityType) { | 
|  | case QuantifierFixedCount: | 
|  | if (term->quantityCount == 1) | 
|  | backtrackCharacterClassOnce(opIndex); | 
|  | else | 
|  | backtrackCharacterClassFixed(opIndex); | 
|  | break; | 
|  | case QuantifierGreedy: | 
|  | backtrackCharacterClassGreedy(opIndex); | 
|  | break; | 
|  | case QuantifierNonGreedy: | 
|  | backtrackCharacterClassNonGreedy(opIndex); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeAssertionBOL: | 
|  | backtrackAssertionBOL(opIndex); | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeAssertionEOL: | 
|  | backtrackAssertionEOL(opIndex); | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeAssertionWordBoundary: | 
|  | backtrackAssertionWordBoundary(opIndex); | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeForwardReference: | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeParenthesesSubpattern: | 
|  | case PatternTerm::TypeParentheticalAssertion: | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  |  | 
|  | case PatternTerm::TypeDotStarEnclosure: | 
|  | backtrackDotStarEnclosure(opIndex); | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeBackReference: | 
|  | m_shouldFallBack = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void generate() | 
|  | { | 
|  | // Forwards generate the matching code. | 
|  | ASSERT(m_ops.size()); | 
|  | size_t opIndex = 0; | 
|  |  | 
|  | do { | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | switch (op.m_op) { | 
|  |  | 
|  | case OpTerm: | 
|  | generateTerm(opIndex); | 
|  | break; | 
|  |  | 
|  | // OpBodyAlternativeBegin/Next/End | 
|  | // | 
|  | // These nodes wrap the set of alternatives in the body of the regular expression. | 
|  | // There may be either one or two chains of OpBodyAlternative nodes, one representing | 
|  | // the 'once through' sequence of alternatives (if any exist), and one representing | 
|  | // the repeating alternatives (again, if any exist). | 
|  | // | 
|  | // Upon normal entry to the Begin alternative, we will check that input is available. | 
|  | // Reentry to the Begin alternative will take place after the check has taken place, | 
|  | // and will assume that the input position has already been progressed as appropriate. | 
|  | // | 
|  | // Entry to subsequent Next/End alternatives occurs when the prior alternative has | 
|  | // successfully completed a match - return a success state from JIT code. | 
|  | // | 
|  | // Next alternatives allow for reentry optimized to suit backtracking from its | 
|  | // preceding alternative. It expects the input position to still be set to a position | 
|  | // appropriate to its predecessor, and it will only perform an input check if the | 
|  | // predecessor had a minimum size less than its own. | 
|  | // | 
|  | // In the case 'once through' expressions, the End node will also have a reentry | 
|  | // point to jump to when the last alternative fails. Again, this expects the input | 
|  | // position to still reflect that expected by the prior alternative. | 
|  | case OpBodyAlternativeBegin: { | 
|  | PatternAlternative* alternative = op.m_alternative; | 
|  |  | 
|  | // Upon entry at the head of the set of alternatives, check if input is available | 
|  | // to run the first alternative. (This progresses the input position). | 
|  | op.m_jumps.append(jumpIfNoAvailableInput(alternative->m_minimumSize)); | 
|  | // We will reenter after the check, and assume the input position to have been | 
|  | // set as appropriate to this alternative. | 
|  | op.m_reentry = label(); | 
|  |  | 
|  | m_checked += alternative->m_minimumSize; | 
|  | break; | 
|  | } | 
|  | case OpBodyAlternativeNext: | 
|  | case OpBodyAlternativeEnd: { | 
|  | PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative; | 
|  | PatternAlternative* alternative = op.m_alternative; | 
|  |  | 
|  | // If we get here, the prior alternative matched - return success. | 
|  |  | 
|  | // Adjust the stack pointer to remove the pattern's frame. | 
|  | removeCallFrame(); | 
|  |  | 
|  | // Load appropriate values into the return register and the first output | 
|  | // slot, and return. In the case of pattern with a fixed size, we will | 
|  | // not have yet set the value in the first | 
|  | ASSERT(index != returnRegister); | 
|  | if (m_pattern.m_body->m_hasFixedSize) { | 
|  | move(index, returnRegister); | 
|  | if (priorAlternative->m_minimumSize) | 
|  | sub32(Imm32(priorAlternative->m_minimumSize), returnRegister); | 
|  | if (compileMode == IncludeSubpatterns) | 
|  | store32(returnRegister, output); | 
|  | } else | 
|  | getMatchStart(returnRegister); | 
|  | if (compileMode == IncludeSubpatterns) | 
|  | store32(index, Address(output, 4)); | 
|  | move(index, returnRegister2); | 
|  |  | 
|  | generateReturn(); | 
|  |  | 
|  | // This is the divide between the tail of the prior alternative, above, and | 
|  | // the head of the subsequent alternative, below. | 
|  |  | 
|  | if (op.m_op == OpBodyAlternativeNext) { | 
|  | // This is the reentry point for the Next alternative. We expect any code | 
|  | // that jumps here to do so with the input position matching that of the | 
|  | // PRIOR alteranative, and we will only check input availability if we | 
|  | // need to progress it forwards. | 
|  | op.m_reentry = label(); | 
|  | if (alternative->m_minimumSize > priorAlternative->m_minimumSize) { | 
|  | add32(Imm32(alternative->m_minimumSize - priorAlternative->m_minimumSize), index); | 
|  | op.m_jumps.append(jumpIfNoAvailableInput()); | 
|  | } else if (priorAlternative->m_minimumSize > alternative->m_minimumSize) | 
|  | sub32(Imm32(priorAlternative->m_minimumSize - alternative->m_minimumSize), index); | 
|  | } else if (op.m_nextOp == notFound) { | 
|  | // This is the reentry point for the End of 'once through' alternatives, | 
|  | // jumped to when the last alternative fails to match. | 
|  | op.m_reentry = label(); | 
|  | sub32(Imm32(priorAlternative->m_minimumSize), index); | 
|  | } | 
|  |  | 
|  | if (op.m_op == OpBodyAlternativeNext) | 
|  | m_checked += alternative->m_minimumSize; | 
|  | m_checked -= priorAlternative->m_minimumSize; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // OpSimpleNestedAlternativeBegin/Next/End | 
|  | // OpNestedAlternativeBegin/Next/End | 
|  | // | 
|  | // These nodes are used to handle sets of alternatives that are nested within | 
|  | // subpatterns and parenthetical assertions. The 'simple' forms are used where | 
|  | // we do not need to be able to backtrack back into any alternative other than | 
|  | // the last, the normal forms allow backtracking into any alternative. | 
|  | // | 
|  | // Each Begin/Next node is responsible for planting an input check to ensure | 
|  | // sufficient input is available on entry. Next nodes additionally need to | 
|  | // jump to the end - Next nodes use the End node's m_jumps list to hold this | 
|  | // set of jumps. | 
|  | // | 
|  | // In the non-simple forms, successful alternative matches must store a | 
|  | // 'return address' using a DataLabelPtr, used to store the address to jump | 
|  | // to when backtracking, to get to the code for the appropriate alternative. | 
|  | case OpSimpleNestedAlternativeBegin: | 
|  | case OpNestedAlternativeBegin: { | 
|  | PatternTerm* term = op.m_term; | 
|  | PatternAlternative* alternative = op.m_alternative; | 
|  | PatternDisjunction* disjunction = term->parentheses.disjunction; | 
|  |  | 
|  | // Calculate how much input we need to check for, and if non-zero check. | 
|  | op.m_checkAdjust = alternative->m_minimumSize; | 
|  | if ((term->quantityType == QuantifierFixedCount) && (term->type != PatternTerm::TypeParentheticalAssertion)) | 
|  | op.m_checkAdjust -= disjunction->m_minimumSize; | 
|  | if (op.m_checkAdjust) | 
|  | op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust)); | 
|  |  | 
|  | m_checked += op.m_checkAdjust; | 
|  | break; | 
|  | } | 
|  | case OpSimpleNestedAlternativeNext: | 
|  | case OpNestedAlternativeNext: { | 
|  | PatternTerm* term = op.m_term; | 
|  | PatternAlternative* alternative = op.m_alternative; | 
|  | PatternDisjunction* disjunction = term->parentheses.disjunction; | 
|  |  | 
|  | // In the non-simple case, store a 'return address' so we can backtrack correctly. | 
|  | if (op.m_op == OpNestedAlternativeNext) { | 
|  | unsigned parenthesesFrameLocation = term->frameLocation; | 
|  | unsigned alternativeFrameLocation = parenthesesFrameLocation; | 
|  | if (term->quantityType != QuantifierFixedCount) | 
|  | alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce; | 
|  | op.m_returnAddress = storeToFrameWithPatch(alternativeFrameLocation); | 
|  | } | 
|  |  | 
|  | if (term->quantityType != QuantifierFixedCount && !m_ops[op.m_previousOp].m_alternative->m_minimumSize) { | 
|  | // If the previous alternative matched without consuming characters then | 
|  | // backtrack to try to match while consumming some input. | 
|  | op.m_zeroLengthMatch = branch32(Equal, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*))); | 
|  | } | 
|  |  | 
|  | // If we reach here then the last alternative has matched - jump to the | 
|  | // End node, to skip over any further alternatives. | 
|  | // | 
|  | // FIXME: this is logically O(N^2) (though N can be expected to be very | 
|  | // small). We could avoid this either by adding an extra jump to the JIT | 
|  | // data structures, or by making backtracking code that jumps to Next | 
|  | // alternatives are responsible for checking that input is available (if | 
|  | // we didn't need to plant the input checks, then m_jumps would be free). | 
|  | YarrOp* endOp = &m_ops[op.m_nextOp]; | 
|  | while (endOp->m_nextOp != notFound) { | 
|  | ASSERT(endOp->m_op == OpSimpleNestedAlternativeNext || endOp->m_op == OpNestedAlternativeNext); | 
|  | endOp = &m_ops[endOp->m_nextOp]; | 
|  | } | 
|  | ASSERT(endOp->m_op == OpSimpleNestedAlternativeEnd || endOp->m_op == OpNestedAlternativeEnd); | 
|  | endOp->m_jumps.append(jump()); | 
|  |  | 
|  | // This is the entry point for the next alternative. | 
|  | op.m_reentry = label(); | 
|  |  | 
|  | // Calculate how much input we need to check for, and if non-zero check. | 
|  | op.m_checkAdjust = alternative->m_minimumSize; | 
|  | if ((term->quantityType == QuantifierFixedCount) && (term->type != PatternTerm::TypeParentheticalAssertion)) | 
|  | op.m_checkAdjust -= disjunction->m_minimumSize; | 
|  | if (op.m_checkAdjust) | 
|  | op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust)); | 
|  |  | 
|  | YarrOp& lastOp = m_ops[op.m_previousOp]; | 
|  | m_checked -= lastOp.m_checkAdjust; | 
|  | m_checked += op.m_checkAdjust; | 
|  | break; | 
|  | } | 
|  | case OpSimpleNestedAlternativeEnd: | 
|  | case OpNestedAlternativeEnd: { | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | // In the non-simple case, store a 'return address' so we can backtrack correctly. | 
|  | if (op.m_op == OpNestedAlternativeEnd) { | 
|  | unsigned parenthesesFrameLocation = term->frameLocation; | 
|  | unsigned alternativeFrameLocation = parenthesesFrameLocation; | 
|  | if (term->quantityType != QuantifierFixedCount) | 
|  | alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce; | 
|  | op.m_returnAddress = storeToFrameWithPatch(alternativeFrameLocation); | 
|  | } | 
|  |  | 
|  | if (term->quantityType != QuantifierFixedCount && !m_ops[op.m_previousOp].m_alternative->m_minimumSize) { | 
|  | // If the previous alternative matched without consuming characters then | 
|  | // backtrack to try to match while consumming some input. | 
|  | op.m_zeroLengthMatch = branch32(Equal, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*))); | 
|  | } | 
|  |  | 
|  | // If this set of alternatives contains more than one alternative, | 
|  | // then the Next nodes will have planted jumps to the End, and added | 
|  | // them to this node's m_jumps list. | 
|  | op.m_jumps.link(this); | 
|  | op.m_jumps.clear(); | 
|  |  | 
|  | YarrOp& lastOp = m_ops[op.m_previousOp]; | 
|  | m_checked -= lastOp.m_checkAdjust; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // OpParenthesesSubpatternOnceBegin/End | 
|  | // | 
|  | // These nodes support (optionally) capturing subpatterns, that have a | 
|  | // quantity count of 1 (this covers fixed once, and ?/?? quantifiers). | 
|  | case OpParenthesesSubpatternOnceBegin: { | 
|  | PatternTerm* term = op.m_term; | 
|  | unsigned parenthesesFrameLocation = term->frameLocation; | 
|  | const RegisterID indexTemporary = regT0; | 
|  | ASSERT(term->quantityCount == 1); | 
|  |  | 
|  | // Upon entry to a Greedy quantified set of parenthese store the index. | 
|  | // We'll use this for two purposes: | 
|  | //  - To indicate which iteration we are on of mathing the remainder of | 
|  | //    the expression after the parentheses - the first, including the | 
|  | //    match within the parentheses, or the second having skipped over them. | 
|  | //  - To check for empty matches, which must be rejected. | 
|  | // | 
|  | // At the head of a NonGreedy set of parentheses we'll immediately set the | 
|  | // value on the stack to -1 (indicating a match skipping the subpattern), | 
|  | // and plant a jump to the end. We'll also plant a label to backtrack to | 
|  | // to reenter the subpattern later, with a store to set up index on the | 
|  | // second iteration. | 
|  | // | 
|  | // FIXME: for capturing parens, could use the index in the capture array? | 
|  | if (term->quantityType == QuantifierGreedy) | 
|  | storeToFrame(index, parenthesesFrameLocation); | 
|  | else if (term->quantityType == QuantifierNonGreedy) { | 
|  | storeToFrame(TrustedImm32(-1), parenthesesFrameLocation); | 
|  | op.m_jumps.append(jump()); | 
|  | op.m_reentry = label(); | 
|  | storeToFrame(index, parenthesesFrameLocation); | 
|  | } | 
|  |  | 
|  | // If the parenthese are capturing, store the starting index value to the | 
|  | // captures array, offsetting as necessary. | 
|  | // | 
|  | // FIXME: could avoid offsetting this value in JIT code, apply | 
|  | // offsets only afterwards, at the point the results array is | 
|  | // being accessed. | 
|  | if (term->capture() && compileMode == IncludeSubpatterns) { | 
|  | int inputOffset = term->inputPosition - m_checked; | 
|  | if (term->quantityType == QuantifierFixedCount) | 
|  | inputOffset -= term->parentheses.disjunction->m_minimumSize; | 
|  | if (inputOffset) { | 
|  | move(index, indexTemporary); | 
|  | add32(Imm32(inputOffset), indexTemporary); | 
|  | setSubpatternStart(indexTemporary, term->parentheses.subpatternId); | 
|  | } else | 
|  | setSubpatternStart(index, term->parentheses.subpatternId); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case OpParenthesesSubpatternOnceEnd: { | 
|  | PatternTerm* term = op.m_term; | 
|  | const RegisterID indexTemporary = regT0; | 
|  | ASSERT(term->quantityCount == 1); | 
|  |  | 
|  | // Runtime ASSERT to make sure that the nested alternative handled the | 
|  | // "no input consumed" check. | 
|  | if (!ASSERT_DISABLED && term->quantityType != QuantifierFixedCount && !term->parentheses.disjunction->m_minimumSize) { | 
|  | Jump pastBreakpoint; | 
|  | pastBreakpoint = branch32(NotEqual, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*))); | 
|  | abortWithReason(YARRNoInputConsumed); | 
|  | pastBreakpoint.link(this); | 
|  | } | 
|  |  | 
|  | // If the parenthese are capturing, store the ending index value to the | 
|  | // captures array, offsetting as necessary. | 
|  | // | 
|  | // FIXME: could avoid offsetting this value in JIT code, apply | 
|  | // offsets only afterwards, at the point the results array is | 
|  | // being accessed. | 
|  | if (term->capture() && compileMode == IncludeSubpatterns) { | 
|  | int inputOffset = term->inputPosition - m_checked; | 
|  | if (inputOffset) { | 
|  | move(index, indexTemporary); | 
|  | add32(Imm32(inputOffset), indexTemporary); | 
|  | setSubpatternEnd(indexTemporary, term->parentheses.subpatternId); | 
|  | } else | 
|  | setSubpatternEnd(index, term->parentheses.subpatternId); | 
|  | } | 
|  |  | 
|  | // If the parentheses are quantified Greedy then add a label to jump back | 
|  | // to if get a failed match from after the parentheses. For NonGreedy | 
|  | // parentheses, link the jump from before the subpattern to here. | 
|  | if (term->quantityType == QuantifierGreedy) | 
|  | op.m_reentry = label(); | 
|  | else if (term->quantityType == QuantifierNonGreedy) { | 
|  | YarrOp& beginOp = m_ops[op.m_previousOp]; | 
|  | beginOp.m_jumps.link(this); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // OpParenthesesSubpatternTerminalBegin/End | 
|  | case OpParenthesesSubpatternTerminalBegin: { | 
|  | PatternTerm* term = op.m_term; | 
|  | ASSERT(term->quantityType == QuantifierGreedy); | 
|  | ASSERT(term->quantityCount == quantifyInfinite); | 
|  | ASSERT(!term->capture()); | 
|  |  | 
|  | // Upon entry set a label to loop back to. | 
|  | op.m_reentry = label(); | 
|  |  | 
|  | // Store the start index of the current match; we need to reject zero | 
|  | // length matches. | 
|  | storeToFrame(index, term->frameLocation); | 
|  | break; | 
|  | } | 
|  | case OpParenthesesSubpatternTerminalEnd: { | 
|  | YarrOp& beginOp = m_ops[op.m_previousOp]; | 
|  | if (!ASSERT_DISABLED) { | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | // Runtime ASSERT to make sure that the nested alternative handled the | 
|  | // "no input consumed" check. | 
|  | Jump pastBreakpoint; | 
|  | pastBreakpoint = branch32(NotEqual, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*))); | 
|  | abortWithReason(YARRNoInputConsumed); | 
|  | pastBreakpoint.link(this); | 
|  | } | 
|  |  | 
|  | // We know that the match is non-zero, we can accept it  and | 
|  | // loop back up to the head of the subpattern. | 
|  | jump(beginOp.m_reentry); | 
|  |  | 
|  | // This is the entry point to jump to when we stop matching - we will | 
|  | // do so once the subpattern cannot match any more. | 
|  | op.m_reentry = label(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // OpParentheticalAssertionBegin/End | 
|  | case OpParentheticalAssertionBegin: { | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | // Store the current index - assertions should not update index, so | 
|  | // we will need to restore it upon a successful match. | 
|  | unsigned parenthesesFrameLocation = term->frameLocation; | 
|  | storeToFrame(index, parenthesesFrameLocation); | 
|  |  | 
|  | // Check | 
|  | op.m_checkAdjust = m_checked - term->inputPosition; | 
|  | if (op.m_checkAdjust) | 
|  | sub32(Imm32(op.m_checkAdjust), index); | 
|  |  | 
|  | m_checked -= op.m_checkAdjust; | 
|  | break; | 
|  | } | 
|  | case OpParentheticalAssertionEnd: { | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | // Restore the input index value. | 
|  | unsigned parenthesesFrameLocation = term->frameLocation; | 
|  | loadFromFrame(parenthesesFrameLocation, index); | 
|  |  | 
|  | // If inverted, a successful match of the assertion must be treated | 
|  | // as a failure, so jump to backtracking. | 
|  | if (term->invert()) { | 
|  | op.m_jumps.append(jump()); | 
|  | op.m_reentry = label(); | 
|  | } | 
|  |  | 
|  | YarrOp& lastOp = m_ops[op.m_previousOp]; | 
|  | m_checked += lastOp.m_checkAdjust; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OpMatchFailed: | 
|  | removeCallFrame(); | 
|  | move(TrustedImmPtr((void*)WTF::notFound), returnRegister); | 
|  | move(TrustedImm32(0), returnRegister2); | 
|  | generateReturn(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ++opIndex; | 
|  | } while (opIndex < m_ops.size()); | 
|  | } | 
|  |  | 
|  | void backtrack() | 
|  | { | 
|  | // Backwards generate the backtracking code. | 
|  | size_t opIndex = m_ops.size(); | 
|  | ASSERT(opIndex); | 
|  |  | 
|  | do { | 
|  | --opIndex; | 
|  | YarrOp& op = m_ops[opIndex]; | 
|  | switch (op.m_op) { | 
|  |  | 
|  | case OpTerm: | 
|  | backtrackTerm(opIndex); | 
|  | break; | 
|  |  | 
|  | // OpBodyAlternativeBegin/Next/End | 
|  | // | 
|  | // For each Begin/Next node representing an alternative, we need to decide what to do | 
|  | // in two circumstances: | 
|  | //  - If we backtrack back into this node, from within the alternative. | 
|  | //  - If the input check at the head of the alternative fails (if this exists). | 
|  | // | 
|  | // We treat these two cases differently since in the former case we have slightly | 
|  | // more information - since we are backtracking out of a prior alternative we know | 
|  | // that at least enough input was available to run it. For example, given the regular | 
|  | // expression /a|b/, if we backtrack out of the first alternative (a failed pattern | 
|  | // character match of 'a'), then we need not perform an additional input availability | 
|  | // check before running the second alternative. | 
|  | // | 
|  | // Backtracking required differs for the last alternative, which in the case of the | 
|  | // repeating set of alternatives must loop. The code generated for the last alternative | 
|  | // will also be used to handle all input check failures from any prior alternatives - | 
|  | // these require similar functionality, in seeking the next available alternative for | 
|  | // which there is sufficient input. | 
|  | // | 
|  | // Since backtracking of all other alternatives simply requires us to link backtracks | 
|  | // to the reentry point for the subsequent alternative, we will only be generating any | 
|  | // code when backtracking the last alternative. | 
|  | case OpBodyAlternativeBegin: | 
|  | case OpBodyAlternativeNext: { | 
|  | PatternAlternative* alternative = op.m_alternative; | 
|  |  | 
|  | if (op.m_op == OpBodyAlternativeNext) { | 
|  | PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative; | 
|  | m_checked += priorAlternative->m_minimumSize; | 
|  | } | 
|  | m_checked -= alternative->m_minimumSize; | 
|  |  | 
|  | // Is this the last alternative? If not, then if we backtrack to this point we just | 
|  | // need to jump to try to match the next alternative. | 
|  | if (m_ops[op.m_nextOp].m_op != OpBodyAlternativeEnd) { | 
|  | m_backtrackingState.linkTo(m_ops[op.m_nextOp].m_reentry, this); | 
|  | break; | 
|  | } | 
|  | YarrOp& endOp = m_ops[op.m_nextOp]; | 
|  |  | 
|  | YarrOp* beginOp = &op; | 
|  | while (beginOp->m_op != OpBodyAlternativeBegin) { | 
|  | ASSERT(beginOp->m_op == OpBodyAlternativeNext); | 
|  | beginOp = &m_ops[beginOp->m_previousOp]; | 
|  | } | 
|  |  | 
|  | bool onceThrough = endOp.m_nextOp == notFound; | 
|  |  | 
|  | // First, generate code to handle cases where we backtrack out of an attempted match | 
|  | // of the last alternative. If this is a 'once through' set of alternatives then we | 
|  | // have nothing to do - link this straight through to the End. | 
|  | if (onceThrough) | 
|  | m_backtrackingState.linkTo(endOp.m_reentry, this); | 
|  | else { | 
|  | // If we don't need to move the input poistion, and the pattern has a fixed size | 
|  | // (in which case we omit the store of the start index until the pattern has matched) | 
|  | // then we can just link the backtrack out of the last alternative straight to the | 
|  | // head of the first alternative. | 
|  | if (m_pattern.m_body->m_hasFixedSize | 
|  | && (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize) | 
|  | && (alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize == 1)) | 
|  | m_backtrackingState.linkTo(beginOp->m_reentry, this); | 
|  | else { | 
|  | // We need to generate a trampoline of code to execute before looping back | 
|  | // around to the first alternative. | 
|  | m_backtrackingState.link(this); | 
|  |  | 
|  | // If the pattern size is not fixed, then store the start index, for use if we match. | 
|  | if (!m_pattern.m_body->m_hasFixedSize) { | 
|  | if (alternative->m_minimumSize == 1) | 
|  | setMatchStart(index); | 
|  | else { | 
|  | move(index, regT0); | 
|  | if (alternative->m_minimumSize) | 
|  | sub32(Imm32(alternative->m_minimumSize - 1), regT0); | 
|  | else | 
|  | add32(TrustedImm32(1), regT0); | 
|  | setMatchStart(regT0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Generate code to loop. Check whether the last alternative is longer than the | 
|  | // first (e.g. /a|xy/ or /a|xyz/). | 
|  | if (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize) { | 
|  | // We want to loop, and increment input position. If the delta is 1, it is | 
|  | // already correctly incremented, if more than one then decrement as appropriate. | 
|  | unsigned delta = alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize; | 
|  | ASSERT(delta); | 
|  | if (delta != 1) | 
|  | sub32(Imm32(delta - 1), index); | 
|  | jump(beginOp->m_reentry); | 
|  | } else { | 
|  | // If the first alternative has minimum size 0xFFFFFFFFu, then there cannot | 
|  | // be sufficent input available to handle this, so just fall through. | 
|  | unsigned delta = beginOp->m_alternative->m_minimumSize - alternative->m_minimumSize; | 
|  | if (delta != 0xFFFFFFFFu) { | 
|  | // We need to check input because we are incrementing the input. | 
|  | add32(Imm32(delta + 1), index); | 
|  | checkInput().linkTo(beginOp->m_reentry, this); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can reach this point in the code in two ways: | 
|  | //  - Fallthrough from the code above (a repeating alternative backtracked out of its | 
|  | //    last alternative, and did not have sufficent input to run the first). | 
|  | //  - We will loop back up to the following label when a releating alternative loops, | 
|  | //    following a failed input check. | 
|  | // | 
|  | // Either way, we have just failed the input check for the first alternative. | 
|  | Label firstInputCheckFailed(this); | 
|  |  | 
|  | // Generate code to handle input check failures from alternatives except the last. | 
|  | // prevOp is the alternative we're handling a bail out from (initially Begin), and | 
|  | // nextOp is the alternative we will be attempting to reenter into. | 
|  | // | 
|  | // We will link input check failures from the forwards matching path back to the code | 
|  | // that can handle them. | 
|  | YarrOp* prevOp = beginOp; | 
|  | YarrOp* nextOp = &m_ops[beginOp->m_nextOp]; | 
|  | while (nextOp->m_op != OpBodyAlternativeEnd) { | 
|  | prevOp->m_jumps.link(this); | 
|  |  | 
|  | // We only get here if an input check fails, it is only worth checking again | 
|  | // if the next alternative has a minimum size less than the last. | 
|  | if (prevOp->m_alternative->m_minimumSize > nextOp->m_alternative->m_minimumSize) { | 
|  | // FIXME: if we added an extra label to YarrOp, we could avoid needing to | 
|  | // subtract delta back out, and reduce this code. Should performance test | 
|  | // the benefit of this. | 
|  | unsigned delta = prevOp->m_alternative->m_minimumSize - nextOp->m_alternative->m_minimumSize; | 
|  | sub32(Imm32(delta), index); | 
|  | Jump fail = jumpIfNoAvailableInput(); | 
|  | add32(Imm32(delta), index); | 
|  | jump(nextOp->m_reentry); | 
|  | fail.link(this); | 
|  | } else if (prevOp->m_alternative->m_minimumSize < nextOp->m_alternative->m_minimumSize) | 
|  | add32(Imm32(nextOp->m_alternative->m_minimumSize - prevOp->m_alternative->m_minimumSize), index); | 
|  | prevOp = nextOp; | 
|  | nextOp = &m_ops[nextOp->m_nextOp]; | 
|  | } | 
|  |  | 
|  | // We fall through to here if there is insufficient input to run the last alternative. | 
|  |  | 
|  | // If there is insufficient input to run the last alternative, then for 'once through' | 
|  | // alternatives we are done - just jump back up into the forwards matching path at the End. | 
|  | if (onceThrough) { | 
|  | op.m_jumps.linkTo(endOp.m_reentry, this); | 
|  | jump(endOp.m_reentry); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // For repeating alternatives, link any input check failure from the last alternative to | 
|  | // this point. | 
|  | op.m_jumps.link(this); | 
|  |  | 
|  | bool needsToUpdateMatchStart = !m_pattern.m_body->m_hasFixedSize; | 
|  |  | 
|  | // Check for cases where input position is already incremented by 1 for the last | 
|  | // alternative (this is particularly useful where the minimum size of the body | 
|  | // disjunction is 0, e.g. /a*|b/). | 
|  | if (needsToUpdateMatchStart && alternative->m_minimumSize == 1) { | 
|  | // index is already incremented by 1, so just store it now! | 
|  | setMatchStart(index); | 
|  | needsToUpdateMatchStart = false; | 
|  | } | 
|  |  | 
|  | // Check whether there is sufficient input to loop. Increment the input position by | 
|  | // one, and check. Also add in the minimum disjunction size before checking - there | 
|  | // is no point in looping if we're just going to fail all the input checks around | 
|  | // the next iteration. | 
|  | ASSERT(alternative->m_minimumSize >= m_pattern.m_body->m_minimumSize); | 
|  | if (alternative->m_minimumSize == m_pattern.m_body->m_minimumSize) { | 
|  | // If the last alternative had the same minimum size as the disjunction, | 
|  | // just simply increment input pos by 1, no adjustment based on minimum size. | 
|  | add32(TrustedImm32(1), index); | 
|  | } else { | 
|  | // If the minumum for the last alternative was one greater than than that | 
|  | // for the disjunction, we're already progressed by 1, nothing to do! | 
|  | unsigned delta = (alternative->m_minimumSize - m_pattern.m_body->m_minimumSize) - 1; | 
|  | if (delta) | 
|  | sub32(Imm32(delta), index); | 
|  | } | 
|  | Jump matchFailed = jumpIfNoAvailableInput(); | 
|  |  | 
|  | if (needsToUpdateMatchStart) { | 
|  | if (!m_pattern.m_body->m_minimumSize) | 
|  | setMatchStart(index); | 
|  | else { | 
|  | move(index, regT0); | 
|  | sub32(Imm32(m_pattern.m_body->m_minimumSize), regT0); | 
|  | setMatchStart(regT0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate how much more input the first alternative requires than the minimum | 
|  | // for the body as a whole. If no more is needed then we dont need an additional | 
|  | // input check here - jump straight back up to the start of the first alternative. | 
|  | if (beginOp->m_alternative->m_minimumSize == m_pattern.m_body->m_minimumSize) | 
|  | jump(beginOp->m_reentry); | 
|  | else { | 
|  | if (beginOp->m_alternative->m_minimumSize > m_pattern.m_body->m_minimumSize) | 
|  | add32(Imm32(beginOp->m_alternative->m_minimumSize - m_pattern.m_body->m_minimumSize), index); | 
|  | else | 
|  | sub32(Imm32(m_pattern.m_body->m_minimumSize - beginOp->m_alternative->m_minimumSize), index); | 
|  | checkInput().linkTo(beginOp->m_reentry, this); | 
|  | jump(firstInputCheckFailed); | 
|  | } | 
|  |  | 
|  | // We jump to here if we iterate to the point that there is insufficient input to | 
|  | // run any matches, and need to return a failure state from JIT code. | 
|  | matchFailed.link(this); | 
|  |  | 
|  | removeCallFrame(); | 
|  | move(TrustedImmPtr((void*)WTF::notFound), returnRegister); | 
|  | move(TrustedImm32(0), returnRegister2); | 
|  | generateReturn(); | 
|  | break; | 
|  | } | 
|  | case OpBodyAlternativeEnd: { | 
|  | // We should never backtrack back into a body disjunction. | 
|  | ASSERT(m_backtrackingState.isEmpty()); | 
|  |  | 
|  | PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative; | 
|  | m_checked += priorAlternative->m_minimumSize; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // OpSimpleNestedAlternativeBegin/Next/End | 
|  | // OpNestedAlternativeBegin/Next/End | 
|  | // | 
|  | // Generate code for when we backtrack back out of an alternative into | 
|  | // a Begin or Next node, or when the entry input count check fails. If | 
|  | // there are more alternatives we need to jump to the next alternative, | 
|  | // if not we backtrack back out of the current set of parentheses. | 
|  | // | 
|  | // In the case of non-simple nested assertions we need to also link the | 
|  | // 'return address' appropriately to backtrack back out into the correct | 
|  | // alternative. | 
|  | case OpSimpleNestedAlternativeBegin: | 
|  | case OpSimpleNestedAlternativeNext: | 
|  | case OpNestedAlternativeBegin: | 
|  | case OpNestedAlternativeNext: { | 
|  | YarrOp& nextOp = m_ops[op.m_nextOp]; | 
|  | bool isBegin = op.m_previousOp == notFound; | 
|  | bool isLastAlternative = nextOp.m_nextOp == notFound; | 
|  | ASSERT(isBegin == (op.m_op == OpSimpleNestedAlternativeBegin || op.m_op == OpNestedAlternativeBegin)); | 
|  | ASSERT(isLastAlternative == (nextOp.m_op == OpSimpleNestedAlternativeEnd || nextOp.m_op == OpNestedAlternativeEnd)); | 
|  |  | 
|  | // Treat an input check failure the same as a failed match. | 
|  | m_backtrackingState.append(op.m_jumps); | 
|  |  | 
|  | // Set the backtracks to jump to the appropriate place. We may need | 
|  | // to link the backtracks in one of three different way depending on | 
|  | // the type of alternative we are dealing with: | 
|  | //  - A single alternative, with no simplings. | 
|  | //  - The last alternative of a set of two or more. | 
|  | //  - An alternative other than the last of a set of two or more. | 
|  | // | 
|  | // In the case of a single alternative on its own, we don't need to | 
|  | // jump anywhere - if the alternative fails to match we can just | 
|  | // continue to backtrack out of the parentheses without jumping. | 
|  | // | 
|  | // In the case of the last alternative in a set of more than one, we | 
|  | // need to jump to return back out to the beginning. We'll do so by | 
|  | // adding a jump to the End node's m_jumps list, and linking this | 
|  | // when we come to generate the Begin node. For alternatives other | 
|  | // than the last, we need to jump to the next alternative. | 
|  | // | 
|  | // If the alternative had adjusted the input position we must link | 
|  | // backtracking to here, correct, and then jump on. If not we can | 
|  | // link the backtracks directly to their destination. | 
|  | if (op.m_checkAdjust) { | 
|  | // Handle the cases where we need to link the backtracks here. | 
|  | m_backtrackingState.link(this); | 
|  | sub32(Imm32(op.m_checkAdjust), index); | 
|  | if (!isLastAlternative) { | 
|  | // An alternative that is not the last should jump to its successor. | 
|  | jump(nextOp.m_reentry); | 
|  | } else if (!isBegin) { | 
|  | // The last of more than one alternatives must jump back to the beginning. | 
|  | nextOp.m_jumps.append(jump()); | 
|  | } else { | 
|  | // A single alternative on its own can fall through. | 
|  | m_backtrackingState.fallthrough(); | 
|  | } | 
|  | } else { | 
|  | // Handle the cases where we can link the backtracks directly to their destinations. | 
|  | if (!isLastAlternative) { | 
|  | // An alternative that is not the last should jump to its successor. | 
|  | m_backtrackingState.linkTo(nextOp.m_reentry, this); | 
|  | } else if (!isBegin) { | 
|  | // The last of more than one alternatives must jump back to the beginning. | 
|  | m_backtrackingState.takeBacktracksToJumpList(nextOp.m_jumps, this); | 
|  | } | 
|  | // In the case of a single alternative on its own do nothing - it can fall through. | 
|  | } | 
|  |  | 
|  | // If there is a backtrack jump from a zero length match link it here. | 
|  | if (op.m_zeroLengthMatch.isSet()) | 
|  | m_backtrackingState.append(op.m_zeroLengthMatch); | 
|  |  | 
|  | // At this point we've handled the backtracking back into this node. | 
|  | // Now link any backtracks that need to jump to here. | 
|  |  | 
|  | // For non-simple alternatives, link the alternative's 'return address' | 
|  | // so that we backtrack back out into the previous alternative. | 
|  | if (op.m_op == OpNestedAlternativeNext) | 
|  | m_backtrackingState.append(op.m_returnAddress); | 
|  |  | 
|  | // If there is more than one alternative, then the last alternative will | 
|  | // have planted a jump to be linked to the end. This jump was added to the | 
|  | // End node's m_jumps list. If we are back at the beginning, link it here. | 
|  | if (isBegin) { | 
|  | YarrOp* endOp = &m_ops[op.m_nextOp]; | 
|  | while (endOp->m_nextOp != notFound) { | 
|  | ASSERT(endOp->m_op == OpSimpleNestedAlternativeNext || endOp->m_op == OpNestedAlternativeNext); | 
|  | endOp = &m_ops[endOp->m_nextOp]; | 
|  | } | 
|  | ASSERT(endOp->m_op == OpSimpleNestedAlternativeEnd || endOp->m_op == OpNestedAlternativeEnd); | 
|  | m_backtrackingState.append(endOp->m_jumps); | 
|  | } | 
|  |  | 
|  | if (!isBegin) { | 
|  | YarrOp& lastOp = m_ops[op.m_previousOp]; | 
|  | m_checked += lastOp.m_checkAdjust; | 
|  | } | 
|  | m_checked -= op.m_checkAdjust; | 
|  | break; | 
|  | } | 
|  | case OpSimpleNestedAlternativeEnd: | 
|  | case OpNestedAlternativeEnd: { | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | // If there is a backtrack jump from a zero length match link it here. | 
|  | if (op.m_zeroLengthMatch.isSet()) | 
|  | m_backtrackingState.append(op.m_zeroLengthMatch); | 
|  |  | 
|  | // If we backtrack into the end of a simple subpattern do nothing; | 
|  | // just continue through into the last alternative. If we backtrack | 
|  | // into the end of a non-simple set of alterntives we need to jump | 
|  | // to the backtracking return address set up during generation. | 
|  | if (op.m_op == OpNestedAlternativeEnd) { | 
|  | m_backtrackingState.link(this); | 
|  |  | 
|  | // Plant a jump to the return address. | 
|  | unsigned parenthesesFrameLocation = term->frameLocation; | 
|  | unsigned alternativeFrameLocation = parenthesesFrameLocation; | 
|  | if (term->quantityType != QuantifierFixedCount) | 
|  | alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce; | 
|  | loadFromFrameAndJump(alternativeFrameLocation); | 
|  |  | 
|  | // Link the DataLabelPtr associated with the end of the last | 
|  | // alternative to this point. | 
|  | m_backtrackingState.append(op.m_returnAddress); | 
|  | } | 
|  |  | 
|  | YarrOp& lastOp = m_ops[op.m_previousOp]; | 
|  | m_checked += lastOp.m_checkAdjust; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // OpParenthesesSubpatternOnceBegin/End | 
|  | // | 
|  | // When we are backtracking back out of a capturing subpattern we need | 
|  | // to clear the start index in the matches output array, to record that | 
|  | // this subpattern has not been captured. | 
|  | // | 
|  | // When backtracking back out of a Greedy quantified subpattern we need | 
|  | // to catch this, and try running the remainder of the alternative after | 
|  | // the subpattern again, skipping the parentheses. | 
|  | // | 
|  | // Upon backtracking back into a quantified set of parentheses we need to | 
|  | // check whether we were currently skipping the subpattern. If not, we | 
|  | // can backtrack into them, if we were we need to either backtrack back | 
|  | // out of the start of the parentheses, or jump back to the forwards | 
|  | // matching start, depending of whether the match is Greedy or NonGreedy. | 
|  | case OpParenthesesSubpatternOnceBegin: { | 
|  | PatternTerm* term = op.m_term; | 
|  | ASSERT(term->quantityCount == 1); | 
|  |  | 
|  | // We only need to backtrack to thispoint if capturing or greedy. | 
|  | if ((term->capture() && compileMode == IncludeSubpatterns) || term->quantityType == QuantifierGreedy) { | 
|  | m_backtrackingState.link(this); | 
|  |  | 
|  | // If capturing, clear the capture (we only need to reset start). | 
|  | if (term->capture() && compileMode == IncludeSubpatterns) | 
|  | clearSubpatternStart(term->parentheses.subpatternId); | 
|  |  | 
|  | // If Greedy, jump to the end. | 
|  | if (term->quantityType == QuantifierGreedy) { | 
|  | // Clear the flag in the stackframe indicating we ran through the subpattern. | 
|  | unsigned parenthesesFrameLocation = term->frameLocation; | 
|  | storeToFrame(TrustedImm32(-1), parenthesesFrameLocation); | 
|  | // Jump to after the parentheses, skipping the subpattern. | 
|  | jump(m_ops[op.m_nextOp].m_reentry); | 
|  | // A backtrack from after the parentheses, when skipping the subpattern, | 
|  | // will jump back to here. | 
|  | op.m_jumps.link(this); | 
|  | } | 
|  |  | 
|  | m_backtrackingState.fallthrough(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case OpParenthesesSubpatternOnceEnd: { | 
|  | PatternTerm* term = op.m_term; | 
|  |  | 
|  | if (term->quantityType != QuantifierFixedCount) { | 
|  | m_backtrackingState.link(this); | 
|  |  | 
|  | // Check whether we should backtrack back into the parentheses, or if we | 
|  | // are currently in a state where we had skipped over the subpattern | 
|  | // (in which case the flag value on the stack will be -1). | 
|  | unsigned parenthesesFrameLocation = term->frameLocation; | 
|  | Jump hadSkipped = branch32(Equal, Address(stackPointerRegister, parenthesesFrameLocation * sizeof(void*)), TrustedImm32(-1)); | 
|  |  | 
|  | if (term->quantityType == QuantifierGreedy) { | 
|  | // For Greedy parentheses, we skip after having already tried going | 
|  | // through the subpattern, so if we get here we're done. | 
|  | YarrOp& beginOp = m_ops[op.m_previousOp]; | 
|  | beginOp.m_jumps.append(hadSkipped); | 
|  | } else { | 
|  | // For NonGreedy parentheses, we try skipping the subpattern first, | 
|  | // so if we get here we need to try running through the subpattern | 
|  | // next. Jump back to the start of the parentheses in the forwards | 
|  | // matching path. | 
|  | ASSERT(term->quantityType == QuantifierNonGreedy); | 
|  | YarrOp& beginOp = m_ops[op.m_previousOp]; | 
|  | hadSkipped.linkTo(beginOp.m_reentry, this); | 
|  | } | 
|  |  | 
|  | m_backtrackingState.fallthrough(); | 
|  | } | 
|  |  | 
|  | m_backtrackingState.append(op.m_jumps); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // OpParenthesesSubpatternTerminalBegin/End | 
|  | // | 
|  | // Terminal subpatterns will always match - there is nothing after them to | 
|  | // force a backtrack, and they have a minimum count of 0, and as such will | 
|  | // always produce an acceptable result. | 
|  | case OpParenthesesSubpatternTerminalBegin: { | 
|  | // We will backtrack to this point once the subpattern cannot match any | 
|  | // more. Since no match is accepted as a successful match (we are Greedy | 
|  | // quantified with a minimum of zero) jump back to the forwards matching | 
|  | // path at the end. | 
|  | YarrOp& endOp = m_ops[op.m_nextOp]; | 
|  | m_backtrackingState.linkTo(endOp.m_reentry, this); | 
|  | break; | 
|  | } | 
|  | case OpParenthesesSubpatternTerminalEnd: | 
|  | // We should never be backtracking to here (hence the 'terminal' in the name). | 
|  | ASSERT(m_backtrackingState.isEmpty()); | 
|  | m_backtrackingState.append(op.m_jumps); | 
|  | break; | 
|  |  | 
|  | // OpParentheticalAssertionBegin/End | 
|  | case OpParentheticalAssertionBegin: { | 
|  | PatternTerm* term = op.m_term; | 
|  | YarrOp& endOp = m_ops[op.m_nextOp]; | 
|  |  | 
|  | // We need to handle the backtracks upon backtracking back out | 
|  | // of a parenthetical assertion if either we need to correct | 
|  | // the input index, or the assertion was inverted. | 
|  | if (op.m_checkAdjust || term->invert()) { | 
|  | m_backtrackingState.link(this); | 
|  |  | 
|  | if (op.m_checkAdjust) | 
|  | add32(Imm32(op.m_checkAdjust), index); | 
|  |  | 
|  | // In an inverted assertion failure to match the subpattern | 
|  | // is treated as a successful match - jump to the end of the | 
|  | // subpattern. We already have adjusted the input position | 
|  | // back to that before the assertion, which is correct. | 
|  | if (term->invert()) | 
|  | jump(endOp.m_reentry); | 
|  |  | 
|  | m_backtrackingState.fallthrough(); | 
|  | } | 
|  |  | 
|  | // The End node's jump list will contain any backtracks into | 
|  | // the end of the assertion. Also, if inverted, we will have | 
|  | // added the failure caused by a successful match to this. | 
|  | m_backtrackingState.append(endOp.m_jumps); | 
|  |  | 
|  | m_checked += op.m_checkAdjust; | 
|  | break; | 
|  | } | 
|  | case OpParentheticalAssertionEnd: { | 
|  | // FIXME: We should really be clearing any nested subpattern | 
|  | // matches on bailing out from after the pattern. Firefox has | 
|  | // this bug too (presumably because they use YARR!) | 
|  |  | 
|  | // Never backtrack into an assertion; later failures bail to before the begin. | 
|  | m_backtrackingState.takeBacktracksToJumpList(op.m_jumps, this); | 
|  |  | 
|  | YarrOp& lastOp = m_ops[op.m_previousOp]; | 
|  | m_checked -= lastOp.m_checkAdjust; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OpMatchFailed: | 
|  | break; | 
|  | } | 
|  |  | 
|  | } while (opIndex); | 
|  | } | 
|  |  | 
|  | // Compilation methods: | 
|  | // ==================== | 
|  |  | 
|  | // opCompileParenthesesSubpattern | 
|  | // Emits ops for a subpattern (set of parentheses). These consist | 
|  | // of a set of alternatives wrapped in an outer set of nodes for | 
|  | // the parentheses. | 
|  | // Supported types of parentheses are 'Once' (quantityCount == 1) | 
|  | // and 'Terminal' (non-capturing parentheses quantified as greedy | 
|  | // and infinite). | 
|  | // Alternatives will use the 'Simple' set of ops if either the | 
|  | // subpattern is terminal (in which case we will never need to | 
|  | // backtrack), or if the subpattern only contains one alternative. | 
|  | void opCompileParenthesesSubpattern(PatternTerm* term) | 
|  | { | 
|  | YarrOpCode parenthesesBeginOpCode; | 
|  | YarrOpCode parenthesesEndOpCode; | 
|  | YarrOpCode alternativeBeginOpCode = OpSimpleNestedAlternativeBegin; | 
|  | YarrOpCode alternativeNextOpCode = OpSimpleNestedAlternativeNext; | 
|  | YarrOpCode alternativeEndOpCode = OpSimpleNestedAlternativeEnd; | 
|  |  | 
|  | // We can currently only compile quantity 1 subpatterns that are | 
|  | // not copies. We generate a copy in the case of a range quantifier, | 
|  | // e.g. /(?:x){3,9}/, or /(?:x)+/ (These are effectively expanded to | 
|  | // /(?:x){3,3}(?:x){0,6}/ and /(?:x)(?:x)*/ repectively). The problem | 
|  | // comes where the subpattern is capturing, in which case we would | 
|  | // need to restore the capture from the first subpattern upon a | 
|  | // failure in the second. | 
|  | if (term->quantityCount == 1 && !term->parentheses.isCopy) { | 
|  | // Select the 'Once' nodes. | 
|  | parenthesesBeginOpCode = OpParenthesesSubpatternOnceBegin; | 
|  | parenthesesEndOpCode = OpParenthesesSubpatternOnceEnd; | 
|  |  | 
|  | // If there is more than one alternative we cannot use the 'simple' nodes. | 
|  | if (term->parentheses.disjunction->m_alternatives.size() != 1) { | 
|  | alternativeBeginOpCode = OpNestedAlternativeBegin; | 
|  | alternativeNextOpCode = OpNestedAlternativeNext; | 
|  | alternativeEndOpCode = OpNestedAlternativeEnd; | 
|  | } | 
|  | } else if (term->parentheses.isTerminal) { | 
|  | // Select the 'Terminal' nodes. | 
|  | parenthesesBeginOpCode = OpParenthesesSubpatternTerminalBegin; | 
|  | parenthesesEndOpCode = OpParenthesesSubpatternTerminalEnd; | 
|  | } else { | 
|  | // This subpattern is not supported by the JIT. | 
|  | m_shouldFallBack = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | size_t parenBegin = m_ops.size(); | 
|  | m_ops.append(parenthesesBeginOpCode); | 
|  |  | 
|  | m_ops.append(alternativeBeginOpCode); | 
|  | m_ops.last().m_previousOp = notFound; | 
|  | m_ops.last().m_term = term; | 
|  | Vector<std::unique_ptr<PatternAlternative>>& alternatives = term->parentheses.disjunction->m_alternatives; | 
|  | for (unsigned i = 0; i < alternatives.size(); ++i) { | 
|  | size_t lastOpIndex = m_ops.size() - 1; | 
|  |  | 
|  | PatternAlternative* nestedAlternative = alternatives[i].get(); | 
|  | opCompileAlternative(nestedAlternative); | 
|  |  | 
|  | size_t thisOpIndex = m_ops.size(); | 
|  | m_ops.append(YarrOp(alternativeNextOpCode)); | 
|  |  | 
|  | YarrOp& lastOp = m_ops[lastOpIndex]; | 
|  | YarrOp& thisOp = m_ops[thisOpIndex]; | 
|  |  | 
|  | lastOp.m_alternative = nestedAlternative; | 
|  | lastOp.m_nextOp = thisOpIndex; | 
|  | thisOp.m_previousOp = lastOpIndex; | 
|  | thisOp.m_term = term; | 
|  | } | 
|  | YarrOp& lastOp = m_ops.last(); | 
|  | ASSERT(lastOp.m_op == alternativeNextOpCode); | 
|  | lastOp.m_op = alternativeEndOpCode; | 
|  | lastOp.m_alternative = 0; | 
|  | lastOp.m_nextOp = notFound; | 
|  |  | 
|  | size_t parenEnd = m_ops.size(); | 
|  | m_ops.append(parenthesesEndOpCode); | 
|  |  | 
|  | m_ops[parenBegin].m_term = term; | 
|  | m_ops[parenBegin].m_previousOp = notFound; | 
|  | m_ops[parenBegin].m_nextOp = parenEnd; | 
|  | m_ops[parenEnd].m_term = term; | 
|  | m_ops[parenEnd].m_previousOp = parenBegin; | 
|  | m_ops[parenEnd].m_nextOp = notFound; | 
|  | } | 
|  |  | 
|  | // opCompileParentheticalAssertion | 
|  | // Emits ops for a parenthetical assertion. These consist of an | 
|  | // OpSimpleNestedAlternativeBegin/Next/End set of nodes wrapping | 
|  | // the alternatives, with these wrapped by an outer pair of | 
|  | // OpParentheticalAssertionBegin/End nodes. | 
|  | // We can always use the OpSimpleNestedAlternative nodes in the | 
|  | // case of parenthetical assertions since these only ever match | 
|  | // once, and will never backtrack back into the assertion. | 
|  | void opCompileParentheticalAssertion(PatternTerm* term) | 
|  | { | 
|  | size_t parenBegin = m_ops.size(); | 
|  | m_ops.append(OpParentheticalAssertionBegin); | 
|  |  | 
|  | m_ops.append(OpSimpleNestedAlternativeBegin); | 
|  | m_ops.last().m_previousOp = notFound; | 
|  | m_ops.last().m_term = term; | 
|  | Vector<std::unique_ptr<PatternAlternative>>& alternatives =  term->parentheses.disjunction->m_alternatives; | 
|  | for (unsigned i = 0; i < alternatives.size(); ++i) { | 
|  | size_t lastOpIndex = m_ops.size() - 1; | 
|  |  | 
|  | PatternAlternative* nestedAlternative = alternatives[i].get(); | 
|  | opCompileAlternative(nestedAlternative); | 
|  |  | 
|  | size_t thisOpIndex = m_ops.size(); | 
|  | m_ops.append(YarrOp(OpSimpleNestedAlternativeNext)); | 
|  |  | 
|  | YarrOp& lastOp = m_ops[lastOpIndex]; | 
|  | YarrOp& thisOp = m_ops[thisOpIndex]; | 
|  |  | 
|  | lastOp.m_alternative = nestedAlternative; | 
|  | lastOp.m_nextOp = thisOpIndex; | 
|  | thisOp.m_previousOp = lastOpIndex; | 
|  | thisOp.m_term = term; | 
|  | } | 
|  | YarrOp& lastOp = m_ops.last(); | 
|  | ASSERT(lastOp.m_op == OpSimpleNestedAlternativeNext); | 
|  | lastOp.m_op = OpSimpleNestedAlternativeEnd; | 
|  | lastOp.m_alternative = 0; | 
|  | lastOp.m_nextOp = notFound; | 
|  |  | 
|  | size_t parenEnd = m_ops.size(); | 
|  | m_ops.append(OpParentheticalAssertionEnd); | 
|  |  | 
|  | m_ops[parenBegin].m_term = term; | 
|  | m_ops[parenBegin].m_previousOp = notFound; | 
|  | m_ops[parenBegin].m_nextOp = parenEnd; | 
|  | m_ops[parenEnd].m_term = term; | 
|  | m_ops[parenEnd].m_previousOp = parenBegin; | 
|  | m_ops[parenEnd].m_nextOp = notFound; | 
|  | } | 
|  |  | 
|  | // opCompileAlternative | 
|  | // Called to emit nodes for all terms in an alternative. | 
|  | void opCompileAlternative(PatternAlternative* alternative) | 
|  | { | 
|  | optimizeAlternative(alternative); | 
|  |  | 
|  | for (unsigned i = 0; i < alternative->m_terms.size(); ++i) { | 
|  | PatternTerm* term = &alternative->m_terms[i]; | 
|  |  | 
|  | switch (term->type) { | 
|  | case PatternTerm::TypeParenthesesSubpattern: | 
|  | opCompileParenthesesSubpattern(term); | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeParentheticalAssertion: | 
|  | opCompileParentheticalAssertion(term); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | m_ops.append(term); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // opCompileBody | 
|  | // This method compiles the body disjunction of the regular expression. | 
|  | // The body consists of two sets of alternatives - zero or more 'once | 
|  | // through' (BOL anchored) alternatives, followed by zero or more | 
|  | // repeated alternatives. | 
|  | // For each of these two sets of alteratives, if not empty they will be | 
|  | // wrapped in a set of OpBodyAlternativeBegin/Next/End nodes (with the | 
|  | // 'begin' node referencing the first alternative, and 'next' nodes | 
|  | // referencing any further alternatives. The begin/next/end nodes are | 
|  | // linked together in a doubly linked list. In the case of repeating | 
|  | // alternatives, the end node is also linked back to the beginning. | 
|  | // If no repeating alternatives exist, then a OpMatchFailed node exists | 
|  | // to return the failing result. | 
|  | void opCompileBody(PatternDisjunction* disjunction) | 
|  | { | 
|  | Vector<std::unique_ptr<PatternAlternative>>& alternatives = disjunction->m_alternatives; | 
|  | size_t currentAlternativeIndex = 0; | 
|  |  | 
|  | // Emit the 'once through' alternatives. | 
|  | if (alternatives.size() && alternatives[0]->onceThrough()) { | 
|  | m_ops.append(YarrOp(OpBodyAlternativeBegin)); | 
|  | m_ops.last().m_previousOp = notFound; | 
|  |  | 
|  | do { | 
|  | size_t lastOpIndex = m_ops.size() - 1; | 
|  | PatternAlternative* alternative = alternatives[currentAlternativeIndex].get(); | 
|  | opCompileAlternative(alternative); | 
|  |  | 
|  | size_t thisOpIndex = m_ops.size(); | 
|  | m_ops.append(YarrOp(OpBodyAlternativeNext)); | 
|  |  | 
|  | YarrOp& lastOp = m_ops[lastOpIndex]; | 
|  | YarrOp& thisOp = m_ops[thisOpIndex]; | 
|  |  | 
|  | lastOp.m_alternative = alternative; | 
|  | lastOp.m_nextOp = thisOpIndex; | 
|  | thisOp.m_previousOp = lastOpIndex; | 
|  |  | 
|  | ++currentAlternativeIndex; | 
|  | } while (currentAlternativeIndex < alternatives.size() && alternatives[currentAlternativeIndex]->onceThrough()); | 
|  |  | 
|  | YarrOp& lastOp = m_ops.last(); | 
|  |  | 
|  | ASSERT(lastOp.m_op == OpBodyAlternativeNext); | 
|  | lastOp.m_op = OpBodyAlternativeEnd; | 
|  | lastOp.m_alternative = 0; | 
|  | lastOp.m_nextOp = notFound; | 
|  | } | 
|  |  | 
|  | if (currentAlternativeIndex == alternatives.size()) { | 
|  | m_ops.append(YarrOp(OpMatchFailed)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Emit the repeated alternatives. | 
|  | size_t repeatLoop = m_ops.size(); | 
|  | m_ops.append(YarrOp(OpBodyAlternativeBegin)); | 
|  | m_ops.last().m_previousOp = notFound; | 
|  | do { | 
|  | size_t lastOpIndex = m_ops.size() - 1; | 
|  | PatternAlternative* alternative = alternatives[currentAlternativeIndex].get(); | 
|  | ASSERT(!alternative->onceThrough()); | 
|  | opCompileAlternative(alternative); | 
|  |  | 
|  | size_t thisOpIndex = m_ops.size(); | 
|  | m_ops.append(YarrOp(OpBodyAlternativeNext)); | 
|  |  | 
|  | YarrOp& lastOp = m_ops[lastOpIndex]; | 
|  | YarrOp& thisOp = m_ops[thisOpIndex]; | 
|  |  | 
|  | lastOp.m_alternative = alternative; | 
|  | lastOp.m_nextOp = thisOpIndex; | 
|  | thisOp.m_previousOp = lastOpIndex; | 
|  |  | 
|  | ++currentAlternativeIndex; | 
|  | } while (currentAlternativeIndex < alternatives.size()); | 
|  | YarrOp& lastOp = m_ops.last(); | 
|  | ASSERT(lastOp.m_op == OpBodyAlternativeNext); | 
|  | lastOp.m_op = OpBodyAlternativeEnd; | 
|  | lastOp.m_alternative = 0; | 
|  | lastOp.m_nextOp = repeatLoop; | 
|  | } | 
|  |  | 
|  | void generateEnter() | 
|  | { | 
|  | #if CPU(X86_64) | 
|  | push(X86Registers::ebp); | 
|  | move(stackPointerRegister, X86Registers::ebp); | 
|  | push(X86Registers::ebx); | 
|  | // The ABI doesn't guarantee the upper bits are zero on unsigned arguments, so clear them ourselves. | 
|  | zeroExtend32ToPtr(index, index); | 
|  | zeroExtend32ToPtr(length, length); | 
|  | #if OS(WINDOWS) | 
|  | if (compileMode == IncludeSubpatterns) | 
|  | loadPtr(Address(X86Registers::ebp, 6 * sizeof(void*)), output); | 
|  | #endif | 
|  | #elif CPU(X86) | 
|  | push(X86Registers::ebp); | 
|  | move(stackPointerRegister, X86Registers::ebp); | 
|  | // TODO: do we need spill registers to fill the output pointer if there are no sub captures? | 
|  | push(X86Registers::ebx); | 
|  | push(X86Registers::edi); | 
|  | push(X86Registers::esi); | 
|  | // load output into edi (2 = saved ebp + return address). | 
|  | #if COMPILER(MSVC) | 
|  | loadPtr(Address(X86Registers::ebp, 2 * sizeof(void*)), input); | 
|  | loadPtr(Address(X86Registers::ebp, 3 * sizeof(void*)), index); | 
|  | loadPtr(Address(X86Registers::ebp, 4 * sizeof(void*)), length); | 
|  | if (compileMode == IncludeSubpatterns) | 
|  | loadPtr(Address(X86Registers::ebp, 5 * sizeof(void*)), output); | 
|  | #else | 
|  | if (compileMode == IncludeSubpatterns) | 
|  | loadPtr(Address(X86Registers::ebp, 2 * sizeof(void*)), output); | 
|  | #endif | 
|  | #elif CPU(ARM64) | 
|  | // The ABI doesn't guarantee the upper bits are zero on unsigned arguments, so clear them ourselves. | 
|  | zeroExtend32ToPtr(index, index); | 
|  | zeroExtend32ToPtr(length, length); | 
|  | #elif CPU(ARM) | 
|  | push(ARMRegisters::r4); | 
|  | push(ARMRegisters::r5); | 
|  | push(ARMRegisters::r6); | 
|  | #elif CPU(SH4) | 
|  | push(SH4Registers::r11); | 
|  | push(SH4Registers::r13); | 
|  | #elif CPU(MIPS) | 
|  | // Do nothing. | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void generateReturn() | 
|  | { | 
|  | #if CPU(X86_64) | 
|  | #if OS(WINDOWS) | 
|  | // Store the return value in the allocated space pointed by rcx. | 
|  | store64(returnRegister, Address(X86Registers::ecx)); | 
|  | store64(returnRegister2, Address(X86Registers::ecx, sizeof(void*))); | 
|  | move(X86Registers::ecx, returnRegister); | 
|  | #endif | 
|  | pop(X86Registers::ebx); | 
|  | pop(X86Registers::ebp); | 
|  | #elif CPU(X86) | 
|  | pop(X86Registers::esi); | 
|  | pop(X86Registers::edi); | 
|  | pop(X86Registers::ebx); | 
|  | pop(X86Registers::ebp); | 
|  | #elif CPU(ARM) | 
|  | pop(ARMRegisters::r6); | 
|  | pop(ARMRegisters::r5); | 
|  | pop(ARMRegisters::r4); | 
|  | #elif CPU(SH4) | 
|  | pop(SH4Registers::r13); | 
|  | pop(SH4Registers::r11); | 
|  | #elif CPU(MIPS) | 
|  | // Do nothing | 
|  | #endif | 
|  | ret(); | 
|  | } | 
|  |  | 
|  | public: | 
|  | YarrGenerator(YarrPattern& pattern, YarrCharSize charSize) | 
|  | : m_pattern(pattern) | 
|  | , m_charSize(charSize) | 
|  | , m_charScale(m_charSize == Char8 ? TimesOne: TimesTwo) | 
|  | , m_shouldFallBack(false) | 
|  | , m_checked(0) | 
|  | { | 
|  | } | 
|  |  | 
|  | void compile(VM* vm, YarrCodeBlock& jitObject) | 
|  | { | 
|  | generateEnter(); | 
|  |  | 
|  | Jump hasInput = checkInput(); | 
|  | move(TrustedImmPtr((void*)WTF::notFound), returnRegister); | 
|  | move(TrustedImm32(0), returnRegister2); | 
|  | generateReturn(); | 
|  | hasInput.link(this); | 
|  |  | 
|  | if (compileMode == IncludeSubpatterns) { | 
|  | for (unsigned i = 0; i < m_pattern.m_numSubpatterns + 1; ++i) | 
|  | store32(TrustedImm32(-1), Address(output, (i << 1) * sizeof(int))); | 
|  | } | 
|  |  | 
|  | if (!m_pattern.m_body->m_hasFixedSize) | 
|  | setMatchStart(index); | 
|  |  | 
|  | initCallFrame(); | 
|  |  | 
|  | opCompileBody(m_pattern.m_body); | 
|  |  | 
|  | if (m_shouldFallBack) { | 
|  | jitObject.setFallBack(true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | generate(); | 
|  | backtrack(); | 
|  |  | 
|  | LinkBuffer linkBuffer(*vm, *this, REGEXP_CODE_ID, JITCompilationCanFail); | 
|  | if (linkBuffer.didFailToAllocate()) { | 
|  | jitObject.setFallBack(true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | m_backtrackingState.linkDataLabels(linkBuffer); | 
|  |  | 
|  | if (compileMode == MatchOnly) { | 
|  | if (m_charSize == Char8) | 
|  | jitObject.set8BitCodeMatchOnly(FINALIZE_CODE(linkBuffer, ("Match-only 8-bit regular expression"))); | 
|  | else | 
|  | jitObject.set16BitCodeMatchOnly(FINALIZE_CODE(linkBuffer, ("Match-only 16-bit regular expression"))); | 
|  | } else { | 
|  | if (m_charSize == Char8) | 
|  | jitObject.set8BitCode(FINALIZE_CODE(linkBuffer, ("8-bit regular expression"))); | 
|  | else | 
|  | jitObject.set16BitCode(FINALIZE_CODE(linkBuffer, ("16-bit regular expression"))); | 
|  | } | 
|  | jitObject.setFallBack(m_shouldFallBack); | 
|  | } | 
|  |  | 
|  | private: | 
|  | YarrPattern& m_pattern; | 
|  |  | 
|  | YarrCharSize m_charSize; | 
|  |  | 
|  | Scale m_charScale; | 
|  |  | 
|  | // Used to detect regular expression constructs that are not currently | 
|  | // supported in the JIT; fall back to the interpreter when this is detected. | 
|  | bool m_shouldFallBack; | 
|  |  | 
|  | // The regular expression expressed as a linear sequence of operations. | 
|  | Vector<YarrOp, 128> m_ops; | 
|  |  | 
|  | // This records the current input offset being applied due to the current | 
|  | // set of alternatives we are nested within. E.g. when matching the | 
|  | // character 'b' within the regular expression /abc/, we will know that | 
|  | // the minimum size for the alternative is 3, checked upon entry to the | 
|  | // alternative, and that 'b' is at offset 1 from the start, and as such | 
|  | // when matching 'b' we need to apply an offset of -2 to the load. | 
|  | // | 
|  | // FIXME: This should go away. Rather than tracking this value throughout | 
|  | // code generation, we should gather this information up front & store it | 
|  | // on the YarrOp structure. | 
|  | int m_checked; | 
|  |  | 
|  | // This class records state whilst generating the backtracking path of code. | 
|  | BacktrackingState m_backtrackingState; | 
|  | }; | 
|  |  | 
|  | void jitCompile(YarrPattern& pattern, YarrCharSize charSize, VM* vm, YarrCodeBlock& jitObject, YarrJITCompileMode mode) | 
|  | { | 
|  | if (mode == MatchOnly) | 
|  | YarrGenerator<MatchOnly>(pattern, charSize).compile(vm, jitObject); | 
|  | else | 
|  | YarrGenerator<IncludeSubpatterns>(pattern, charSize).compile(vm, jitObject); | 
|  | } | 
|  |  | 
|  | }} | 
|  |  | 
|  | #endif |