|  | /* | 
|  | * Copyright (C) 2011-2019 Apple Inc. All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | 
|  | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR | 
|  | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
|  | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
|  | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
|  | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include "config.h" | 
|  | #include "DFGOSREntry.h" | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  |  | 
|  | #include "BytecodeStructs.h" | 
|  | #include "CallFrame.h" | 
|  | #include "CodeBlock.h" | 
|  | #include "DFGJITCode.h" | 
|  | #include "DFGNode.h" | 
|  | #include "JSCJSValueInlines.h" | 
|  | #include "RegisterAtOffsetList.h" | 
|  | #include "VMInlines.h" | 
|  | #include <wtf/CommaPrinter.h> | 
|  |  | 
|  | namespace JSC { namespace DFG { | 
|  |  | 
|  | void OSREntryData::dumpInContext(PrintStream& out, DumpContext* context) const | 
|  | { | 
|  | out.print(m_bytecodeIndex, ", machine code = ", RawPointer(m_machineCode.executableAddress())); | 
|  | out.print(", stack rules = ["); | 
|  |  | 
|  | auto printOperand = [&] (VirtualRegister reg) { | 
|  | out.print(inContext(m_expectedValues.operand(reg), context), " ("); | 
|  | VirtualRegister toReg; | 
|  | bool overwritten = false; | 
|  | for (OSREntryReshuffling reshuffling : m_reshufflings) { | 
|  | if (reg == VirtualRegister(reshuffling.fromOffset)) { | 
|  | toReg = VirtualRegister(reshuffling.toOffset); | 
|  | break; | 
|  | } | 
|  | if (reg == VirtualRegister(reshuffling.toOffset)) | 
|  | overwritten = true; | 
|  | } | 
|  | if (!overwritten && !toReg.isValid()) | 
|  | toReg = reg; | 
|  | if (toReg.isValid()) { | 
|  | if (toReg.isLocal() && !m_machineStackUsed.get(toReg.toLocal())) | 
|  | out.print("ignored"); | 
|  | else | 
|  | out.print("maps to ", toReg); | 
|  | } else | 
|  | out.print("overwritten"); | 
|  | if (reg.isLocal() && m_localsForcedDouble.get(reg.toLocal())) | 
|  | out.print(", forced double"); | 
|  | if (reg.isLocal() && m_localsForcedAnyInt.get(reg.toLocal())) | 
|  | out.print(", forced machine int"); | 
|  | out.print(")"); | 
|  | }; | 
|  |  | 
|  | CommaPrinter comma; | 
|  | for (size_t argumentIndex = m_expectedValues.numberOfArguments(); argumentIndex--;) { | 
|  | out.print(comma, "arg", argumentIndex, ":"); | 
|  | printOperand(virtualRegisterForArgumentIncludingThis(argumentIndex)); | 
|  | } | 
|  | for (size_t localIndex = 0; localIndex < m_expectedValues.numberOfLocals(); ++localIndex) { | 
|  | out.print(comma, "loc", localIndex, ":"); | 
|  | printOperand(virtualRegisterForLocal(localIndex)); | 
|  | } | 
|  |  | 
|  | out.print("], machine stack used = ", m_machineStackUsed); | 
|  | } | 
|  |  | 
|  | void OSREntryData::dump(PrintStream& out) const | 
|  | { | 
|  | dumpInContext(out, nullptr); | 
|  | } | 
|  |  | 
|  | SUPPRESS_ASAN | 
|  | void* prepareOSREntry(VM& vm, CallFrame* callFrame, CodeBlock* codeBlock, BytecodeIndex bytecodeIndex) | 
|  | { | 
|  | ASSERT(JITCode::isOptimizingJIT(codeBlock->jitType())); | 
|  | ASSERT(codeBlock->alternative()); | 
|  | ASSERT(codeBlock->alternative()->jitType() == JITType::BaselineJIT); | 
|  | ASSERT(!codeBlock->jitCodeMap()); | 
|  | ASSERT(codeBlock->jitCode()->dfgCommon()->isStillValid); | 
|  |  | 
|  | if (!Options::useOSREntryToDFG()) | 
|  | return nullptr; | 
|  |  | 
|  | dataLogLnIf(Options::verboseOSR(), | 
|  | "DFG OSR in ", *codeBlock->alternative(), " -> ", *codeBlock, | 
|  | " from ", bytecodeIndex); | 
|  |  | 
|  | sanitizeStackForVM(vm); | 
|  |  | 
|  | if (bytecodeIndex) | 
|  | codeBlock->ownerExecutable()->setDidTryToEnterInLoop(true); | 
|  |  | 
|  | if (codeBlock->jitType() != JITType::DFGJIT) { | 
|  | RELEASE_ASSERT(codeBlock->jitType() == JITType::FTLJIT); | 
|  |  | 
|  | // When will this happen? We could have: | 
|  | // | 
|  | // - An exit from the FTL JIT into the baseline JIT followed by an attempt | 
|  | //   to reenter. We're fine with allowing this to fail. If it happens | 
|  | //   enough we'll just reoptimize. It basically means that the OSR exit cost | 
|  | //   us dearly and so reoptimizing is the right thing to do. | 
|  | // | 
|  | // - We have recursive code with hot loops. Consider that foo has a hot loop | 
|  | //   that calls itself. We have two foo's on the stack, lets call them foo1 | 
|  | //   and foo2, with foo1 having called foo2 from foo's hot loop. foo2 gets | 
|  | //   optimized all the way into the FTL. Then it returns into foo1, and then | 
|  | //   foo1 wants to get optimized. It might reach this conclusion from its | 
|  | //   hot loop and attempt to OSR enter. And we'll tell it that it can't. It | 
|  | //   might be worth addressing this case, but I just think this case will | 
|  | //   be super rare. For now, if it does happen, it'll cause some compilation | 
|  | //   thrashing. | 
|  |  | 
|  | dataLogLnIf(Options::verboseOSR(), "    OSR failed because the target code block is not DFG."); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | JITCode* jitCode = codeBlock->jitCode()->dfg(); | 
|  | OSREntryData* entry = jitCode->osrEntryDataForBytecodeIndex(bytecodeIndex); | 
|  |  | 
|  | if (!entry) { | 
|  | dataLogLnIf(Options::verboseOSR(), "    OSR failed because the entrypoint was optimized out."); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ASSERT(entry->m_bytecodeIndex == bytecodeIndex); | 
|  |  | 
|  | // The code below checks if it is safe to perform OSR entry. It may find | 
|  | // that it is unsafe to do so, for any number of reasons, which are documented | 
|  | // below. If the code decides not to OSR then it returns 0, and it's the caller's | 
|  | // responsibility to patch up the state in such a way as to ensure that it's | 
|  | // both safe and efficient to continue executing baseline code for now. This | 
|  | // should almost certainly include calling either codeBlock->optimizeAfterWarmUp() | 
|  | // or codeBlock->dontOptimizeAnytimeSoon(). | 
|  |  | 
|  | // 1) Verify predictions. If the predictions are inconsistent with the actual | 
|  | //    values, then OSR entry is not possible at this time. It's tempting to | 
|  | //    assume that we could somehow avoid this case. We can certainly avoid it | 
|  | //    for first-time loop OSR - that is, OSR into a CodeBlock that we have just | 
|  | //    compiled. Then we are almost guaranteed that all of the predictions will | 
|  | //    check out. It would be pretty easy to make that a hard guarantee. But | 
|  | //    then there would still be the case where two call frames with the same | 
|  | //    baseline CodeBlock are on the stack at the same time. The top one | 
|  | //    triggers compilation and OSR. In that case, we may no longer have | 
|  | //    accurate value profiles for the one deeper in the stack. Hence, when we | 
|  | //    pop into the CodeBlock that is deeper on the stack, we might OSR and | 
|  | //    realize that the predictions are wrong. Probably, in most cases, this is | 
|  | //    just an anomaly in the sense that the older CodeBlock simply went off | 
|  | //    into a less-likely path. So, the wisest course of action is to simply not | 
|  | //    OSR at this time. | 
|  |  | 
|  | for (size_t argument = 0; argument < entry->m_expectedValues.numberOfArguments(); ++argument) { | 
|  | JSValue value; | 
|  | if (!argument) | 
|  | value = callFrame->thisValue(); | 
|  | else | 
|  | value = callFrame->argument(argument - 1); | 
|  |  | 
|  | if (!entry->m_expectedValues.argument(argument).validateOSREntryValue(value, FlushedJSValue)) { | 
|  | dataLogLnIf(Options::verboseOSR(), | 
|  | "    OSR failed because argument ", argument, " is ", value, | 
|  | ", expected ", entry->m_expectedValues.argument(argument)); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (size_t local = 0; local < entry->m_expectedValues.numberOfLocals(); ++local) { | 
|  | int localOffset = virtualRegisterForLocal(local).offset(); | 
|  | JSValue value = callFrame->registers()[localOffset].asanUnsafeJSValue(); | 
|  | FlushFormat format = FlushedJSValue; | 
|  |  | 
|  | if (entry->m_localsForcedAnyInt.get(local)) { | 
|  | if (!value.isAnyInt()) { | 
|  | dataLogLnIf(Options::verboseOSR(), | 
|  | "    OSR failed because variable ", localOffset, " is ", | 
|  | value, ", expected ", | 
|  | "machine int."); | 
|  | return nullptr; | 
|  | } | 
|  | value = jsDoubleNumber(value.asAnyInt()); | 
|  | format = FlushedInt52; | 
|  | } | 
|  |  | 
|  | if (entry->m_localsForcedDouble.get(local)) { | 
|  | if (!value.isNumber()) { | 
|  | dataLogLnIf(Options::verboseOSR(), | 
|  | "    OSR failed because variable ", localOffset, " is ", | 
|  | value, ", expected number."); | 
|  | return nullptr; | 
|  | } | 
|  | value = jsDoubleNumber(value.asNumber()); | 
|  | format = FlushedDouble; | 
|  | } | 
|  |  | 
|  | if (!entry->m_expectedValues.local(local).validateOSREntryValue(value, format)) { | 
|  | dataLogLnIf(Options::verboseOSR(), | 
|  | "    OSR failed because variable ", VirtualRegister(localOffset), " is ", | 
|  | value, ", expected ", | 
|  | entry->m_expectedValues.local(local), "."); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // 2) Check the stack height. The DFG JIT may require a taller stack than the | 
|  | //    baseline JIT, in some cases. If we can't grow the stack, then don't do | 
|  | //    OSR right now. That's the only option we have unless we want basic block | 
|  | //    boundaries to start throwing RangeErrors. Although that would be possible, | 
|  | //    it seems silly: you'd be diverting the program to error handling when it | 
|  | //    would have otherwise just kept running albeit less quickly. | 
|  |  | 
|  | unsigned frameSizeForCheck = jitCode->common.requiredRegisterCountForExecutionAndExit(); | 
|  | if (UNLIKELY(!vm.ensureStackCapacityFor(&callFrame->registers()[virtualRegisterForLocal(frameSizeForCheck - 1).offset()]))) { | 
|  | dataLogLnIf(Options::verboseOSR(), "    OSR failed because stack growth failed."); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | dataLogLnIf(Options::verboseOSR(), "    OSR should succeed."); | 
|  |  | 
|  | // At this point we're committed to entering. We will do some work to set things up, | 
|  | // but we also rely on our caller recognizing that when we return a non-null pointer, | 
|  | // that means that we're already past the point of no return and we must succeed at | 
|  | // entering. | 
|  |  | 
|  | // 3) Set up the data in the scratch buffer and perform data format conversions. | 
|  |  | 
|  | unsigned frameSize = jitCode->common.frameRegisterCount; | 
|  | unsigned baselineFrameSize = entry->m_expectedValues.numberOfLocals(); | 
|  | unsigned maxFrameSize = std::max(frameSize, baselineFrameSize); | 
|  |  | 
|  | Register* scratch = bitwise_cast<Register*>(vm.scratchBufferForSize(sizeof(Register) * (2 + CallFrame::headerSizeInRegisters + maxFrameSize))->dataBuffer()); | 
|  |  | 
|  | *bitwise_cast<size_t*>(scratch + 0) = frameSize; | 
|  |  | 
|  | void* targetPC = entry->m_machineCode.executableAddress(); | 
|  | RELEASE_ASSERT(codeBlock->jitCode()->contains(entry->m_machineCode.untaggedExecutableAddress())); | 
|  | dataLogLnIf(Options::verboseOSR(), "    OSR using target PC ", RawPointer(targetPC)); | 
|  | RELEASE_ASSERT(targetPC); | 
|  | *bitwise_cast<void**>(scratch + 1) = tagCodePtrWithStackPointerForJITCall(untagCodePtr<OSREntryPtrTag>(targetPC), callFrame); | 
|  |  | 
|  | Register* pivot = scratch + 2 + CallFrame::headerSizeInRegisters; | 
|  |  | 
|  | for (int index = -CallFrame::headerSizeInRegisters; index < static_cast<int>(baselineFrameSize); ++index) { | 
|  | VirtualRegister reg(-1 - index); | 
|  |  | 
|  | if (reg.isLocal()) { | 
|  | if (entry->m_localsForcedDouble.get(reg.toLocal())) { | 
|  | *bitwise_cast<double*>(pivot + index) = callFrame->registers()[reg.offset()].asanUnsafeJSValue().asNumber(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (entry->m_localsForcedAnyInt.get(reg.toLocal())) { | 
|  | *bitwise_cast<int64_t*>(pivot + index) = callFrame->registers()[reg.offset()].asanUnsafeJSValue().asAnyInt() << JSValue::int52ShiftAmount; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | pivot[index] = callFrame->registers()[reg.offset()].asanUnsafeJSValue(); | 
|  | } | 
|  |  | 
|  | // 4) Reshuffle those registers that need reshuffling. | 
|  | Vector<JSValue> temporaryLocals(entry->m_reshufflings.size()); | 
|  | for (unsigned i = entry->m_reshufflings.size(); i--;) | 
|  | temporaryLocals[i] = pivot[VirtualRegister(entry->m_reshufflings[i].fromOffset).toLocal()].asanUnsafeJSValue(); | 
|  | for (unsigned i = entry->m_reshufflings.size(); i--;) | 
|  | pivot[VirtualRegister(entry->m_reshufflings[i].toOffset).toLocal()] = temporaryLocals[i]; | 
|  |  | 
|  | // 5) Clear those parts of the call frame that the DFG ain't using. This helps GC on | 
|  | //    some programs by eliminating some stale pointer pathologies. | 
|  | for (unsigned i = frameSize; i--;) { | 
|  | if (entry->m_machineStackUsed.get(i)) | 
|  | continue; | 
|  | pivot[i] = JSValue(); | 
|  | } | 
|  |  | 
|  | // 6) Copy our callee saves to buffer. | 
|  | #if NUMBER_OF_CALLEE_SAVES_REGISTERS > 0 | 
|  | const RegisterAtOffsetList* registerSaveLocations = codeBlock->calleeSaveRegisters(); | 
|  | RegisterAtOffsetList* allCalleeSaves = RegisterSet::vmCalleeSaveRegisterOffsets(); | 
|  | RegisterSet dontSaveRegisters = RegisterSet(RegisterSet::stackRegisters(), RegisterSet::allFPRs()); | 
|  |  | 
|  | unsigned registerCount = registerSaveLocations->size(); | 
|  | VMEntryRecord* record = vmEntryRecord(vm.topEntryFrame); | 
|  | for (unsigned i = 0; i < registerCount; i++) { | 
|  | RegisterAtOffset currentEntry = registerSaveLocations->at(i); | 
|  | if (dontSaveRegisters.get(currentEntry.reg())) | 
|  | continue; | 
|  | RegisterAtOffset* calleeSavesEntry = allCalleeSaves->find(currentEntry.reg()); | 
|  |  | 
|  | if constexpr (CallerFrameAndPC::sizeInRegisters == 2) | 
|  | *(bitwise_cast<intptr_t*>(pivot - 1) - currentEntry.offsetAsIndex()) = record->calleeSaveRegistersBuffer[calleeSavesEntry->offsetAsIndex()]; | 
|  | else { | 
|  | // We need to adjust 4-bytes on 32-bits, otherwise we will clobber some parts of | 
|  | // pivot[-1] when currentEntry.offsetAsIndex() returns -1. This region contains | 
|  | // CallerFrameAndPC and if it is cloberred, we will have a corrupted stack. | 
|  | // Also, we need to store callee-save registers swapped in pairs on scratch buffer, | 
|  | // otherwise they will be swapped when copied to call frame during OSR Entry code. | 
|  | // Here is how we would like to have the buffer configured: | 
|  | // | 
|  | // pivot[-4] = ArgumentCountIncludingThis | 
|  | // pivot[-3] = Callee | 
|  | // pivot[-2] = CodeBlock | 
|  | // pivot[-1] = CallerFrameAndReturnPC | 
|  | // pivot[0]  = csr1/csr0 | 
|  | // pivot[1]  = csr3/csr2 | 
|  | // ... | 
|  | ASSERT(sizeof(intptr_t) == 4); | 
|  | ASSERT(CallerFrameAndPC::sizeInRegisters == 1); | 
|  | ASSERT(currentEntry.offsetAsIndex() < 0); | 
|  |  | 
|  | int offsetAsIndex = currentEntry.offsetAsIndex(); | 
|  | int properIndex = offsetAsIndex % 2 ? offsetAsIndex - 1 : offsetAsIndex + 1; | 
|  | *(bitwise_cast<intptr_t*>(pivot - 1) + 1 - properIndex) = record->calleeSaveRegistersBuffer[calleeSavesEntry->offsetAsIndex()]; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // 7) Fix the call frame to have the right code block. | 
|  |  | 
|  | *bitwise_cast<CodeBlock**>(pivot - (CallFrameSlot::codeBlock + 1)) = codeBlock; | 
|  |  | 
|  | dataLogLnIf(Options::verboseOSR(), "    OSR returning data buffer ", RawPointer(scratch)); | 
|  | return scratch; | 
|  | } | 
|  |  | 
|  | MacroAssemblerCodePtr<ExceptionHandlerPtrTag> prepareCatchOSREntry(VM& vm, CallFrame* callFrame, CodeBlock* baselineCodeBlock, CodeBlock* optimizedCodeBlock, BytecodeIndex bytecodeIndex) | 
|  | { | 
|  | ASSERT(optimizedCodeBlock->jitType() == JITType::DFGJIT || optimizedCodeBlock->jitType() == JITType::FTLJIT); | 
|  | ASSERT(optimizedCodeBlock->jitCode()->dfgCommon()->isStillValid); | 
|  |  | 
|  | if (!Options::useOSREntryToDFG() && optimizedCodeBlock->jitCode()->jitType() == JITType::DFGJIT) | 
|  | return nullptr; | 
|  | if (!Options::useOSREntryToFTL() && optimizedCodeBlock->jitCode()->jitType() == JITType::FTLJIT) | 
|  | return nullptr; | 
|  |  | 
|  | CommonData* dfgCommon = optimizedCodeBlock->jitCode()->dfgCommon(); | 
|  | RELEASE_ASSERT(dfgCommon); | 
|  | DFG::CatchEntrypointData* catchEntrypoint = dfgCommon->catchOSREntryDataForBytecodeIndex(bytecodeIndex); | 
|  | if (!catchEntrypoint) { | 
|  | // This can be null under some circumstances. The most common is that we didn't | 
|  | // compile this op_catch as an entrypoint since it had never executed when starting | 
|  | // the compilation. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // We're only allowed to OSR enter if we've proven we have compatible argument types. | 
|  | for (unsigned argument = 0; argument < catchEntrypoint->argumentFormats.size(); ++argument) { | 
|  | JSValue value = callFrame->uncheckedR(virtualRegisterForArgumentIncludingThis(argument)).jsValue(); | 
|  | switch (catchEntrypoint->argumentFormats[argument]) { | 
|  | case DFG::FlushedInt32: | 
|  | if (!value.isInt32()) | 
|  | return nullptr; | 
|  | break; | 
|  | case DFG::FlushedCell: | 
|  | if (!value.isCell()) | 
|  | return nullptr; | 
|  | break; | 
|  | case DFG::FlushedBoolean: | 
|  | if (!value.isBoolean()) | 
|  | return nullptr; | 
|  | break; | 
|  | case DFG::DeadFlush: | 
|  | // This means the argument is not alive. Therefore, it's allowed to be any type. | 
|  | break; | 
|  | case DFG::FlushedJSValue: | 
|  | // An argument is trivially a JSValue. | 
|  | break; | 
|  | default: | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned frameSizeForCheck = dfgCommon->requiredRegisterCountForExecutionAndExit(); | 
|  | if (UNLIKELY(!vm.ensureStackCapacityFor(&callFrame->registers()[virtualRegisterForLocal(frameSizeForCheck).offset()]))) | 
|  | return nullptr; | 
|  |  | 
|  | auto instruction = baselineCodeBlock->instructions().at(callFrame->bytecodeIndex()); | 
|  | ASSERT(instruction->is<OpCatch>()); | 
|  | ValueProfileAndVirtualRegisterBuffer* buffer = instruction->as<OpCatch>().metadata(baselineCodeBlock).m_buffer; | 
|  | JSValue* dataBuffer = reinterpret_cast<JSValue*>(dfgCommon->catchOSREntryBuffer->dataBuffer()); | 
|  | unsigned index = 0; | 
|  | buffer->forEach([&] (ValueProfileAndVirtualRegister& profile) { | 
|  | if (!VirtualRegister(profile.m_operand).isLocal()) | 
|  | return; | 
|  | dataBuffer[index] = callFrame->uncheckedR(profile.m_operand).jsValue(); | 
|  | ++index; | 
|  | }); | 
|  |  | 
|  | // The active length of catchOSREntryBuffer will be zeroed by ClearCatchLocals node. | 
|  | dfgCommon->catchOSREntryBuffer->setActiveLength(sizeof(JSValue) * index); | 
|  | return catchEntrypoint->machineCode; | 
|  | } | 
|  |  | 
|  | } } // namespace JSC::DFG | 
|  |  | 
|  | #endif // ENABLE(DFG_JIT) |