|  | /* | 
|  | * Copyright (C) 2008-2020 Apple Inc. All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | 
|  | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR | 
|  | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
|  | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
|  | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
|  | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #pragma once | 
|  |  | 
|  | #if ENABLE(ASSEMBLER) && (CPU(X86) || CPU(X86_64)) | 
|  |  | 
|  | #include "AssemblerBuffer.h" | 
|  | #include "AssemblerCommon.h" | 
|  | #include "JITCompilationEffort.h" | 
|  | #include "RegisterInfo.h" | 
|  | #include <limits.h> | 
|  | #include <stdint.h> | 
|  | #include <wtf/Assertions.h> | 
|  | #include <wtf/Vector.h> | 
|  |  | 
|  | namespace JSC { | 
|  |  | 
|  | inline bool CAN_SIGN_EXTEND_8_32(int32_t value) { return value == (int32_t)(signed char)value; } | 
|  |  | 
|  | namespace RegisterNames { | 
|  |  | 
|  | #if COMPILER(MSVC) | 
|  | #define JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE | 
|  | #else | 
|  | #define JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE : int8_t | 
|  | #endif | 
|  |  | 
|  | #define REGISTER_ID(id, name, res, cs) id, | 
|  |  | 
|  | typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE { | 
|  | FOR_EACH_GP_REGISTER(REGISTER_ID) | 
|  | InvalidGPRReg = -1, | 
|  | } RegisterID; | 
|  |  | 
|  | typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE { | 
|  | FOR_EACH_SP_REGISTER(REGISTER_ID) | 
|  | } SPRegisterID; | 
|  |  | 
|  | typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE { | 
|  | FOR_EACH_FP_REGISTER(REGISTER_ID) | 
|  | InvalidFPRReg = -1, | 
|  | } XMMRegisterID; | 
|  |  | 
|  | #undef REGISTER_ID | 
|  |  | 
|  | } // namespace X86Registers | 
|  |  | 
|  | class X86Assembler { | 
|  | public: | 
|  | typedef X86Registers::RegisterID RegisterID; | 
|  |  | 
|  | static constexpr RegisterID firstRegister() { return X86Registers::eax; } | 
|  | static constexpr RegisterID lastRegister() | 
|  | { | 
|  | #if CPU(X86_64) | 
|  | return X86Registers::r15; | 
|  | #else | 
|  | return X86Registers::edi; | 
|  | #endif | 
|  | } | 
|  | static constexpr unsigned numberOfRegisters() { return lastRegister() - firstRegister() + 1; } | 
|  |  | 
|  | typedef X86Registers::SPRegisterID SPRegisterID; | 
|  |  | 
|  | static constexpr SPRegisterID firstSPRegister() { return X86Registers::eip; } | 
|  | static constexpr SPRegisterID lastSPRegister() { return X86Registers::eflags; } | 
|  | static constexpr unsigned numberOfSPRegisters() { return lastSPRegister() - firstSPRegister() + 1; } | 
|  |  | 
|  | typedef X86Registers::XMMRegisterID XMMRegisterID; | 
|  | typedef XMMRegisterID FPRegisterID; | 
|  |  | 
|  | static constexpr FPRegisterID firstFPRegister() { return X86Registers::xmm0; } | 
|  | static constexpr FPRegisterID lastFPRegister() | 
|  | { | 
|  | #if CPU(X86_64) | 
|  | return X86Registers::xmm15; | 
|  | #else | 
|  | return X86Registers::xmm7; | 
|  | #endif | 
|  | } | 
|  | static constexpr unsigned numberOfFPRegisters() { return lastFPRegister() - firstFPRegister() + 1; } | 
|  |  | 
|  | static const char* gprName(RegisterID id) | 
|  | { | 
|  | ASSERT(id >= firstRegister() && id <= lastRegister()); | 
|  | static const char* const nameForRegister[numberOfRegisters()] = { | 
|  | #define REGISTER_NAME(id, name, res, cs) name, | 
|  | FOR_EACH_GP_REGISTER(REGISTER_NAME) | 
|  | #undef REGISTER_NAME | 
|  | }; | 
|  | return nameForRegister[id]; | 
|  | } | 
|  |  | 
|  | static const char* sprName(SPRegisterID id) | 
|  | { | 
|  | ASSERT(id >= firstSPRegister() && id <= lastSPRegister()); | 
|  | static const char* const nameForRegister[numberOfSPRegisters()] = { | 
|  | #define REGISTER_NAME(id, name, res, cs) name, | 
|  | FOR_EACH_SP_REGISTER(REGISTER_NAME) | 
|  | #undef REGISTER_NAME | 
|  | }; | 
|  | return nameForRegister[id]; | 
|  | } | 
|  |  | 
|  | static const char* fprName(FPRegisterID reg) | 
|  | { | 
|  | ASSERT(reg >= firstFPRegister() && reg <= lastFPRegister()); | 
|  | static const char* const nameForRegister[numberOfFPRegisters()] = { | 
|  | #define REGISTER_NAME(id, name, res, cs) name, | 
|  | FOR_EACH_FP_REGISTER(REGISTER_NAME) | 
|  | #undef REGISTER_NAME | 
|  | }; | 
|  | return nameForRegister[reg]; | 
|  | } | 
|  |  | 
|  | typedef enum { | 
|  | ConditionO, | 
|  | ConditionNO, | 
|  | ConditionB, | 
|  | ConditionAE, | 
|  | ConditionE, | 
|  | ConditionNE, | 
|  | ConditionBE, | 
|  | ConditionA, | 
|  | ConditionS, | 
|  | ConditionNS, | 
|  | ConditionP, | 
|  | ConditionNP, | 
|  | ConditionL, | 
|  | ConditionGE, | 
|  | ConditionLE, | 
|  | ConditionG, | 
|  |  | 
|  | ConditionC  = ConditionB, | 
|  | ConditionNC = ConditionAE, | 
|  | } Condition; | 
|  |  | 
|  | private: | 
|  | // OneByteOpcodeID defines the bytecode for 1 byte instruction. It also contains the prefixes | 
|  | // for two bytes instructions. | 
|  | // TwoByteOpcodeID, ThreeByteOpcodeID define the opcodes for the multibytes instructions. | 
|  | // | 
|  | // The encoding for each instruction can be found in the Intel Architecture Manual in the appendix | 
|  | // "Opcode Map." | 
|  | // | 
|  | // Each opcode can have a suffix describing the type of argument. The full list of suffixes is | 
|  | // in the "Key to Abbreviations" section of the "Opcode Map". | 
|  | // The most common argument types are: | 
|  | //     -E: The argument is either a GPR or a memory address. | 
|  | //     -G: The argument is a GPR. | 
|  | //     -I: The argument is an immediate. | 
|  | // The most common sizes are: | 
|  | //     -v: 32 or 64bit depending on the operand-size attribute. | 
|  | //     -z: 32bit in both 32bit and 64bit mode. Common for immediate values. | 
|  | typedef enum { | 
|  | OP_ADD_EbGb                     = 0x00, | 
|  | OP_ADD_EvGv                     = 0x01, | 
|  | OP_ADD_GvEv                     = 0x03, | 
|  | OP_ADD_EAXIv                    = 0x05, | 
|  | OP_OR_EvGb                      = 0x08, | 
|  | OP_OR_EvGv                      = 0x09, | 
|  | OP_OR_GvEv                      = 0x0B, | 
|  | OP_OR_EAXIv                     = 0x0D, | 
|  | OP_2BYTE_ESCAPE                 = 0x0F, | 
|  | OP_AND_EvGb                     = 0x20, | 
|  | OP_AND_EvGv                     = 0x21, | 
|  | OP_AND_GvEv                     = 0x23, | 
|  | OP_SUB_EvGb                     = 0x28, | 
|  | OP_SUB_EvGv                     = 0x29, | 
|  | OP_SUB_GvEv                     = 0x2B, | 
|  | OP_SUB_EAXIv                    = 0x2D, | 
|  | PRE_PREDICT_BRANCH_NOT_TAKEN    = 0x2E, | 
|  | OP_XOR_EvGb                     = 0x30, | 
|  | OP_XOR_EvGv                     = 0x31, | 
|  | OP_XOR_GvEv                     = 0x33, | 
|  | OP_XOR_EAXIv                    = 0x35, | 
|  | OP_CMP_EvGv                     = 0x39, | 
|  | OP_CMP_GvEv                     = 0x3B, | 
|  | OP_CMP_EAXIv                    = 0x3D, | 
|  | #if CPU(X86_64) | 
|  | PRE_REX                         = 0x40, | 
|  | #endif | 
|  | OP_PUSH_EAX                     = 0x50, | 
|  | OP_POP_EAX                      = 0x58, | 
|  | #if CPU(X86_64) | 
|  | OP_MOVSXD_GvEv                  = 0x63, | 
|  | #endif | 
|  | PRE_GS                          = 0x65, | 
|  | PRE_OPERAND_SIZE                = 0x66, | 
|  | PRE_SSE_66                      = 0x66, | 
|  | OP_PUSH_Iz                      = 0x68, | 
|  | OP_IMUL_GvEvIz                  = 0x69, | 
|  | OP_GROUP1_EbIb                  = 0x80, | 
|  | OP_GROUP1_EvIz                  = 0x81, | 
|  | OP_GROUP1_EvIb                  = 0x83, | 
|  | OP_TEST_EbGb                    = 0x84, | 
|  | OP_TEST_EvGv                    = 0x85, | 
|  | OP_XCHG_EvGb                    = 0x86, | 
|  | OP_XCHG_EvGv                    = 0x87, | 
|  | OP_MOV_EbGb                     = 0x88, | 
|  | OP_MOV_EvGv                     = 0x89, | 
|  | OP_MOV_GvEv                     = 0x8B, | 
|  | OP_LEA                          = 0x8D, | 
|  | OP_GROUP1A_Ev                   = 0x8F, | 
|  | OP_NOP                          = 0x90, | 
|  | OP_XCHG_EAX                     = 0x90, | 
|  | OP_PAUSE                        = 0x90, | 
|  | OP_CDQ                          = 0x99, | 
|  | OP_MOV_EAXOv                    = 0xA1, | 
|  | OP_MOV_OvEAX                    = 0xA3, | 
|  | OP_TEST_ALIb                    = 0xA8, | 
|  | OP_TEST_EAXIv                   = 0xA9, | 
|  | OP_MOV_EAXIv                    = 0xB8, | 
|  | OP_GROUP2_EvIb                  = 0xC1, | 
|  | OP_RET                          = 0xC3, | 
|  | OP_GROUP11_EvIb                 = 0xC6, | 
|  | OP_GROUP11_EvIz                 = 0xC7, | 
|  | OP_INT3                         = 0xCC, | 
|  | OP_GROUP2_Ev1                   = 0xD1, | 
|  | OP_GROUP2_EvCL                  = 0xD3, | 
|  | OP_ESCAPE_D9                    = 0xD9, | 
|  | OP_ESCAPE_DD                    = 0xDD, | 
|  | OP_CALL_rel32                   = 0xE8, | 
|  | OP_JMP_rel32                    = 0xE9, | 
|  | PRE_LOCK                        = 0xF0, | 
|  | PRE_SSE_F2                      = 0xF2, | 
|  | PRE_SSE_F3                      = 0xF3, | 
|  | OP_HLT                          = 0xF4, | 
|  | OP_GROUP3_Eb                    = 0xF6, | 
|  | OP_GROUP3_EbIb                  = 0xF6, | 
|  | OP_GROUP3_Ev                    = 0xF7, | 
|  | OP_GROUP3_EvIz                  = 0xF7, // OP_GROUP3_Ev has an immediate, when instruction is a test. | 
|  | OP_GROUP5_Ev                    = 0xFF, | 
|  | } OneByteOpcodeID; | 
|  |  | 
|  | typedef enum { | 
|  | OP2_UD2             = 0xB, | 
|  | OP2_MOVSD_VsdWsd    = 0x10, | 
|  | OP2_MOVSD_WsdVsd    = 0x11, | 
|  | OP2_MOVSS_VsdWsd    = 0x10, | 
|  | OP2_MOVSS_WsdVsd    = 0x11, | 
|  | OP2_MOVAPD_VpdWpd   = 0x28, | 
|  | OP2_MOVAPS_VpdWpd   = 0x28, | 
|  | OP2_CVTSI2SD_VsdEd  = 0x2A, | 
|  | OP2_CVTTSD2SI_GdWsd = 0x2C, | 
|  | OP2_CVTTSS2SI_GdWsd = 0x2C, | 
|  | OP2_UCOMISD_VsdWsd  = 0x2E, | 
|  | OP2_RDTSC           = 0x31, | 
|  | OP2_3BYTE_ESCAPE_3A = 0x3A, | 
|  | OP2_CMOVCC          = 0x40, | 
|  | OP2_ADDSD_VsdWsd    = 0x58, | 
|  | OP2_MULSD_VsdWsd    = 0x59, | 
|  | OP2_CVTSD2SS_VsdWsd = 0x5A, | 
|  | OP2_CVTSS2SD_VsdWsd = 0x5A, | 
|  | OP2_SUBSD_VsdWsd    = 0x5C, | 
|  | OP2_DIVSD_VsdWsd    = 0x5E, | 
|  | OP2_MOVMSKPD_VdEd   = 0x50, | 
|  | OP2_SQRTSD_VsdWsd   = 0x51, | 
|  | OP2_ANDPS_VpdWpd    = 0x54, | 
|  | OP2_ANDNPD_VpdWpd   = 0x55, | 
|  | OP2_ORPS_VpdWpd     = 0x56, | 
|  | OP2_XORPD_VpdWpd    = 0x57, | 
|  | OP2_MOVD_VdEd       = 0x6E, | 
|  | OP2_MOVD_EdVd       = 0x7E, | 
|  | OP2_JCC_rel32       = 0x80, | 
|  | OP_SETCC            = 0x90, | 
|  | OP2_CPUID           = 0xA2, | 
|  | OP2_3BYTE_ESCAPE_AE = 0xAE, | 
|  | OP2_IMUL_GvEv       = 0xAF, | 
|  | OP2_CMPXCHGb        = 0xB0, | 
|  | OP2_CMPXCHG         = 0xB1, | 
|  | OP2_BTR             = 0xB3, | 
|  | OP2_MOVZX_GvEb      = 0xB6, | 
|  | OP2_POPCNT          = 0xB8, | 
|  | OP2_GROUP_BT_EvIb   = 0xBA, | 
|  | OP2_BT_EvEv         = 0xA3, | 
|  | OP2_BSF             = 0xBC, | 
|  | OP2_TZCNT           = 0xBC, | 
|  | OP2_BSR             = 0xBD, | 
|  | OP2_LZCNT           = 0xBD, | 
|  | OP2_MOVSX_GvEb      = 0xBE, | 
|  | OP2_MOVZX_GvEw      = 0xB7, | 
|  | OP2_MOVSX_GvEw      = 0xBF, | 
|  | OP2_XADDb           = 0xC0, | 
|  | OP2_XADD            = 0xC1, | 
|  | OP2_PEXTRW_GdUdIb   = 0xC5, | 
|  | OP2_BSWAP           = 0xC8, | 
|  | OP2_PSLLQ_UdqIb     = 0x73, | 
|  | OP2_PSRLQ_UdqIb     = 0x73, | 
|  | OP2_POR_VdqWdq      = 0XEB, | 
|  | } TwoByteOpcodeID; | 
|  |  | 
|  | typedef enum { | 
|  | OP3_ROUNDSS_VssWssIb = 0x0A, | 
|  | OP3_ROUNDSD_VsdWsdIb = 0x0B, | 
|  | OP3_LFENCE           = 0xE8, | 
|  | OP3_MFENCE           = 0xF0, | 
|  | OP3_SFENCE           = 0xF8, | 
|  | } ThreeByteOpcodeID; | 
|  |  | 
|  | struct VexPrefix { | 
|  | enum : uint8_t { | 
|  | TwoBytes = 0xC5, | 
|  | ThreeBytes = 0xC4 | 
|  | }; | 
|  | }; | 
|  | enum class VexImpliedBytes : uint8_t { | 
|  | TwoBytesOp = 1, | 
|  | ThreeBytesOp38 = 2, | 
|  | ThreeBytesOp3A = 3 | 
|  | }; | 
|  |  | 
|  | TwoByteOpcodeID cmovcc(Condition cond) | 
|  | { | 
|  | return (TwoByteOpcodeID)(OP2_CMOVCC + static_cast<TwoByteOpcodeID>(cond)); | 
|  | } | 
|  |  | 
|  | TwoByteOpcodeID jccRel32(Condition cond) | 
|  | { | 
|  | return (TwoByteOpcodeID)(OP2_JCC_rel32 + static_cast<TwoByteOpcodeID>(cond)); | 
|  | } | 
|  |  | 
|  | TwoByteOpcodeID setccOpcode(Condition cond) | 
|  | { | 
|  | return (TwoByteOpcodeID)(OP_SETCC + static_cast<TwoByteOpcodeID>(cond)); | 
|  | } | 
|  |  | 
|  | typedef enum { | 
|  | GROUP1_OP_ADD = 0, | 
|  | GROUP1_OP_OR  = 1, | 
|  | GROUP1_OP_ADC = 2, | 
|  | GROUP1_OP_AND = 4, | 
|  | GROUP1_OP_SUB = 5, | 
|  | GROUP1_OP_XOR = 6, | 
|  | GROUP1_OP_CMP = 7, | 
|  |  | 
|  | GROUP1A_OP_POP = 0, | 
|  |  | 
|  | GROUP2_OP_ROL = 0, | 
|  | GROUP2_OP_ROR = 1, | 
|  | GROUP2_OP_RCL = 2, | 
|  | GROUP2_OP_RCR = 3, | 
|  |  | 
|  | GROUP2_OP_SHL = 4, | 
|  | GROUP2_OP_SHR = 5, | 
|  | GROUP2_OP_SAR = 7, | 
|  |  | 
|  | GROUP3_OP_TEST = 0, | 
|  | GROUP3_OP_NOT  = 2, | 
|  | GROUP3_OP_NEG  = 3, | 
|  | GROUP3_OP_DIV = 6, | 
|  | GROUP3_OP_IDIV = 7, | 
|  |  | 
|  | GROUP5_OP_CALLN = 2, | 
|  | GROUP5_OP_JMPN  = 4, | 
|  | GROUP5_OP_PUSH  = 6, | 
|  |  | 
|  | GROUP11_MOV = 0, | 
|  |  | 
|  | GROUP14_OP_PSLLQ = 6, | 
|  | GROUP14_OP_PSRLQ = 2, | 
|  |  | 
|  | ESCAPE_D9_FSTP_singleReal = 3, | 
|  | ESCAPE_DD_FSTP_doubleReal = 3, | 
|  |  | 
|  | GROUP_BT_OP_BT = 4, | 
|  | } GroupOpcodeID; | 
|  |  | 
|  | class X86InstructionFormatter; | 
|  | public: | 
|  |  | 
|  | X86Assembler() | 
|  | : m_indexOfLastWatchpoint(INT_MIN) | 
|  | , m_indexOfTailOfLastWatchpoint(INT_MIN) | 
|  | { | 
|  | } | 
|  |  | 
|  | AssemblerBuffer& buffer() { return m_formatter.m_buffer; } | 
|  |  | 
|  | // Stack operations: | 
|  |  | 
|  | void push_r(RegisterID reg) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_PUSH_EAX, reg); | 
|  | } | 
|  |  | 
|  | void pop_r(RegisterID reg) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_POP_EAX, reg); | 
|  | } | 
|  |  | 
|  | void push_i32(int imm) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_PUSH_Iz); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | void push_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_PUSH, base, offset); | 
|  | } | 
|  |  | 
|  | void pop_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1A_Ev, GROUP1A_OP_POP, base, offset); | 
|  | } | 
|  |  | 
|  | // Arithmetic operations: | 
|  |  | 
|  | #if !CPU(X86_64) | 
|  | void adcl_im(int imm, const void* addr) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_ADC, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_ADC, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void addl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_ADD_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void addl_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void addl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | #if !CPU(X86_64) | 
|  | void addl_mr(const void* addr, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOpAddr(OP_ADD_GvEv, dst, bitwise_cast<uint32_t>(addr)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void addl_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_ADD_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void addl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_ADD_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void addb_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp8(OP_ADD_EbGb, src, base, offset); | 
|  | } | 
|  |  | 
|  | void addb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp8(OP_ADD_EbGb, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void addw_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp8(OP_ADD_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void addw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp8(OP_ADD_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void addl_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp(OP_ADD_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void addl_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void addl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void addb_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp8(OP_GROUP1_EbIb, GROUP1_OP_ADD, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void addb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp8(OP_GROUP1_EbIb, GROUP1_OP_ADD, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void addw_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp8(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp8(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void addw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp8(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp8(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void addq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_ADD_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void addq_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_ADD_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void addq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_ADD_GvEv, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void addq_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_ADD_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void addq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_ADD_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void addq_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp64(OP_ADD_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void addq_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void addq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  | #else | 
|  | void addl_im(int imm, const void* addr) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_ADD, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_ADD, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void andl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_AND_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void andl_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_AND_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void andl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_AND_GvEv, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void andw_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | andl_mr(offset, base, dst); | 
|  | } | 
|  |  | 
|  | void andw_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | andl_mr(offset, base, index, scale, dst); | 
|  | } | 
|  |  | 
|  | void andl_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_AND_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void andl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_AND_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void andw_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | andl_rm(src, offset, base); | 
|  | } | 
|  |  | 
|  | void andw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | andl_rm(src, offset, base, index, scale); | 
|  | } | 
|  |  | 
|  | void andb_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_AND_EvGb, src, base, offset); | 
|  | } | 
|  |  | 
|  | void andb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_AND_EvGb, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void andl_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void andl_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void andl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void andw_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void andw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void andb_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_AND, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void andb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_AND, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void andq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_AND_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void andq_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void andq_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_AND_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void andq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_AND_GvEv, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void andq_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_AND_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void andq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_AND_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void andq_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void andq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  | #else | 
|  | void andl_im(int imm, const void* addr) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_AND, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_AND, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void dec_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP1_OP_OR, dst); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void decq_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_OR, dst); | 
|  | } | 
|  | #endif // CPU(X86_64) | 
|  |  | 
|  | // Only used for testing purposes. | 
|  | void illegalInstruction() | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_UD2); | 
|  | } | 
|  |  | 
|  | void inc_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP1_OP_ADD, dst); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void incq_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, dst); | 
|  | } | 
|  |  | 
|  | void incq_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, base, offset); | 
|  | } | 
|  |  | 
|  | void incq_m(int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, base, index, scale, offset); | 
|  | } | 
|  | #endif // CPU(X86_64) | 
|  |  | 
|  | void negl_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, dst); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void negq_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, dst); | 
|  | } | 
|  |  | 
|  | void negq_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset); | 
|  | } | 
|  |  | 
|  | void negq_m(int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, base, index, scale, offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void negl_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset); | 
|  | } | 
|  |  | 
|  | void negl_m(int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void negw_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | negl_m(offset, base); | 
|  | } | 
|  |  | 
|  | void negw_m(int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | negl_m(offset, base, index, scale); | 
|  | } | 
|  |  | 
|  | void negb_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NEG, base, offset); | 
|  | } | 
|  |  | 
|  | void negb_m(int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NEG, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void notl_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, dst); | 
|  | } | 
|  |  | 
|  | void notl_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset); | 
|  | } | 
|  |  | 
|  | void notl_m(int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void notw_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | notl_m(offset, base); | 
|  | } | 
|  |  | 
|  | void notw_m(int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | notl_m(offset, base, index, scale); | 
|  | } | 
|  |  | 
|  | void notb_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NOT, base, offset); | 
|  | } | 
|  |  | 
|  | void notb_m(int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NOT, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void notq_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, dst); | 
|  | } | 
|  |  | 
|  | void notq_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset); | 
|  | } | 
|  |  | 
|  | void notq_m(int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, base, index, scale, offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void orl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_OR_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void orl_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_OR_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void orl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_OR_GvEv, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void orl_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_OR_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void orl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_OR_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void orw_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | orl_rm(src, offset, base); | 
|  | } | 
|  |  | 
|  | void orw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | orl_rm(src, offset, base, index, scale); | 
|  | } | 
|  |  | 
|  | void orb_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_OR_EvGb, src, base, offset); | 
|  | } | 
|  |  | 
|  | void orb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_OR_EvGb, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void orl_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp(OP_OR_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void orl_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void orl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void orw_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void orw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void orb_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_OR, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void orb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_OR, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void orq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_OR_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void orq_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_OR_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void orq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_OR_GvEv, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void orq_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_OR_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void orq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_OR_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void orq_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void orq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void orq_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp64(OP_OR_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  | #else | 
|  | void orl_im(int imm, const void* addr) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_OR, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_OR, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void orl_rm(RegisterID src, const void* addr) | 
|  | { | 
|  | m_formatter.oneByteOpAddr(OP_OR_EvGv, src, bitwise_cast<uint32_t>(addr)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void subl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_SUB_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void subl_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void subl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void subl_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void subl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_SUB_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void subw_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void subw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_SUB_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void subb_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_SUB_EvGb, src, base, offset); | 
|  | } | 
|  |  | 
|  | void subb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_SUB_EvGb, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void subl_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp(OP_SUB_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void subl_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void subl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void subw_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void subw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void subb_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_SUB, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void subb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_SUB, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void subq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_SUB_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void subq_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_SUB_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void subq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_SUB_GvEv, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void subq_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_SUB_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void subq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_SUB_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void subq_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp64(OP_SUB_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void subq_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void subq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  | #else | 
|  | void subl_im(int imm, const void* addr) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_SUB, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_SUB, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void xorl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_XOR_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void xorl_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void xorl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void xorl_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_XOR_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void xorl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_XOR_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void xorl_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void xorl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void xorw_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | xorl_rm(src, offset, base); | 
|  | } | 
|  |  | 
|  | void xorw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | xorl_rm(src, offset, base, index, scale); | 
|  | } | 
|  |  | 
|  | void xorw_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void xorw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void xorb_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_XOR_EvGb, src, base, offset); | 
|  | } | 
|  |  | 
|  | void xorb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_XOR_EvGb, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void xorb_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_XOR, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void xorb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_XOR, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void xorl_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp(OP_XOR_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void xorq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_XOR_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void xorq_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp64(OP_XOR_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void xorq_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void xorq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void xorq_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_XOR_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void xorq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_XOR_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void xorq_mr(int offset, RegisterID base, RegisterID dest) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_XOR_GvEv, dest, base, offset); | 
|  | } | 
|  |  | 
|  | void xorq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dest) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_XOR_GvEv, dest, base, index, scale, offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void lzcnt_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_LZCNT, dst, src); | 
|  | } | 
|  |  | 
|  | void lzcnt_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_LZCNT, dst, base, offset); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void lzcntq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp64(OP2_LZCNT, dst, src); | 
|  | } | 
|  |  | 
|  | void lzcntq_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp64(OP2_LZCNT, dst, base, offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void bsr_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_BSR, dst, src); | 
|  | } | 
|  |  | 
|  | void bsr_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_BSR, dst, base, offset); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void bsrq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_BSR, dst, src); | 
|  | } | 
|  |  | 
|  | void bsrq_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_BSR, dst, base, offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void bswapl_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_BSWAP, dst); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void bswapq_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_BSWAP, dst); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void tzcnt_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_TZCNT, dst, src); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void tzcntq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp64(OP2_TZCNT, dst, src); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void bsf_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_BSF, dst, src); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void bsfq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_BSF, dst, src); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void btrq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_BTR, dst, src); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void popcnt_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_POPCNT, dst, src); | 
|  | } | 
|  |  | 
|  | void popcnt_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_POPCNT, dst, base, offset); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void popcntq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp64(OP2_POPCNT, dst, src); | 
|  | } | 
|  |  | 
|  | void popcntq_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp64(OP2_POPCNT, dst, base, offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | private: | 
|  | template<GroupOpcodeID op> | 
|  | void shiftInstruction32(int imm, RegisterID dst) | 
|  | { | 
|  | if (imm == 1) | 
|  | m_formatter.oneByteOp(OP_GROUP2_Ev1, op, dst); | 
|  | else { | 
|  | m_formatter.oneByteOp(OP_GROUP2_EvIb, op, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<GroupOpcodeID op> | 
|  | void shiftInstruction16(int imm, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | if (imm == 1) | 
|  | m_formatter.oneByteOp(OP_GROUP2_Ev1, op, dst); | 
|  | else { | 
|  | m_formatter.oneByteOp(OP_GROUP2_EvIb, op, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  | } | 
|  | public: | 
|  |  | 
|  | void sarl_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | shiftInstruction32<GROUP2_OP_SAR>(imm, dst); | 
|  | } | 
|  |  | 
|  | void sarl_CLr(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst); | 
|  | } | 
|  |  | 
|  | void shrl_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | shiftInstruction32<GROUP2_OP_SHR>(imm, dst); | 
|  | } | 
|  |  | 
|  | void shrl_CLr(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst); | 
|  | } | 
|  |  | 
|  | void shll_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | shiftInstruction32<GROUP2_OP_SHL>(imm, dst); | 
|  | } | 
|  |  | 
|  | void shll_CLr(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst); | 
|  | } | 
|  |  | 
|  | void rorl_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | shiftInstruction32<GROUP2_OP_ROR>(imm, dst); | 
|  | } | 
|  |  | 
|  | void rorl_CLr(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_ROR, dst); | 
|  | } | 
|  |  | 
|  | void roll_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | shiftInstruction32<GROUP2_OP_ROL>(imm, dst); | 
|  | } | 
|  |  | 
|  | void roll_CLr(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_ROL, dst); | 
|  | } | 
|  |  | 
|  | void rolw_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | shiftInstruction16<GROUP2_OP_ROL>(imm, dst); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | private: | 
|  | template<GroupOpcodeID op> | 
|  | void shiftInstruction64(int imm, RegisterID dst) | 
|  | { | 
|  | if (imm == 1) | 
|  | m_formatter.oneByteOp64(OP_GROUP2_Ev1, op, dst); | 
|  | else { | 
|  | m_formatter.oneByteOp64(OP_GROUP2_EvIb, op, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  | } | 
|  | public: | 
|  | void sarq_CLr(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst); | 
|  | } | 
|  |  | 
|  | void sarq_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | shiftInstruction64<GROUP2_OP_SAR>(imm, dst); | 
|  | } | 
|  |  | 
|  | void shrq_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | shiftInstruction64<GROUP2_OP_SHR>(imm, dst); | 
|  | } | 
|  |  | 
|  | void shrq_CLr(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst); | 
|  | } | 
|  |  | 
|  | void shlq_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | shiftInstruction64<GROUP2_OP_SHL>(imm, dst); | 
|  | } | 
|  |  | 
|  | void shlq_CLr(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst); | 
|  | } | 
|  |  | 
|  | void rorq_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | shiftInstruction64<GROUP2_OP_ROR>(imm, dst); | 
|  | } | 
|  |  | 
|  | void rorq_CLr(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_ROR, dst); | 
|  | } | 
|  |  | 
|  | void rolq_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | shiftInstruction64<GROUP2_OP_ROL>(imm, dst); | 
|  | } | 
|  |  | 
|  | void rolq_CLr(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_ROL, dst); | 
|  | } | 
|  | #endif // CPU(X86_64) | 
|  |  | 
|  | void imull_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, src); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void imulq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_IMUL_GvEv, dst, src); | 
|  | } | 
|  | #endif // CPU(X86_64) | 
|  |  | 
|  | void imull_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void imull_i32r(RegisterID src, int32_t value, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_IMUL_GvEvIz, dst, src); | 
|  | m_formatter.immediate32(value); | 
|  | } | 
|  |  | 
|  | void divl_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_DIV, dst); | 
|  | } | 
|  |  | 
|  | void idivl_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void divq_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_DIV, dst); | 
|  | } | 
|  |  | 
|  | void idivq_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst); | 
|  | } | 
|  | #endif // CPU(X86_64) | 
|  |  | 
|  | // Comparisons: | 
|  |  | 
|  | void cmpl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_CMP_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void cmpl_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_CMP_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void cmpl_mr(int offset, RegisterID base, RegisterID src) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_CMP_GvEv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void cmpl_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp(OP_CMP_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cmpl_ir_force32(int imm, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | void cmpl_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cmpb_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void cmpb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | #if CPU(X86) | 
|  | void cmpb_im(int imm, const void* addr) | 
|  | { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EbIb, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void cmpl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cmpl_im_force32(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void cmpq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_CMP_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void cmpq_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void cmpq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void cmpq_mr(int offset, RegisterID base, RegisterID src) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_CMP_GvEv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void cmpq_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp64(OP_CMP_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cmpq_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cmpq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  | #else | 
|  | void cmpl_rm(RegisterID reg, const void* addr) | 
|  | { | 
|  | m_formatter.oneByteOpAddr(OP_CMP_EvGv, reg, bitwise_cast<uint32_t>(addr)); | 
|  | } | 
|  |  | 
|  | void cmpl_im(int imm, const void* addr) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void cmpw_ir(int imm, RegisterID dst) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cmpw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_CMP_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void cmpw_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cmpw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | if (CAN_SIGN_EXTEND_8_32(imm)) { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } else { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void testl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_TEST_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void testl_i32r(int imm, RegisterID dst) | 
|  | { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp(OP_TEST_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | void testl_i32m(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | void testb_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp8(OP_TEST_EbGb, src, dst); | 
|  | } | 
|  |  | 
|  | void testb_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void testb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | #if CPU(X86) | 
|  | void testb_im(int imm, const void* addr) | 
|  | { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP3_EbIb, GROUP3_OP_TEST, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void testl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void testq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_TEST_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void testq_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_TEST_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void testq_i32r(int imm, RegisterID dst) | 
|  | { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp64(OP_TEST_EAXIv); | 
|  | else | 
|  | m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | void testq_i32m(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | void testq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void testw_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_TEST_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void testw_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  |  | 
|  | void testw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  |  | 
|  | void testb_i8r(int imm, RegisterID dst) | 
|  | { | 
|  | if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp(OP_TEST_ALIb); | 
|  | else | 
|  | m_formatter.oneByteOp8(OP_GROUP3_EbIb, GROUP3_OP_TEST, dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void bt_ir(int bitOffset, RegisterID testValue) | 
|  | { | 
|  | ASSERT(-128 <= bitOffset && bitOffset < 128); | 
|  | m_formatter.twoByteOp(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, testValue); | 
|  | m_formatter.immediate8(bitOffset); | 
|  | } | 
|  |  | 
|  | void bt_im(int bitOffset, int offset, RegisterID base) | 
|  | { | 
|  | ASSERT(-128 <= bitOffset && bitOffset < 128); | 
|  | m_formatter.twoByteOp(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, base, offset); | 
|  | m_formatter.immediate8(bitOffset); | 
|  | } | 
|  |  | 
|  | void bt_ir(RegisterID bitOffset, RegisterID testValue) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_BT_EvEv, bitOffset, testValue); | 
|  | } | 
|  |  | 
|  | void bt_im(RegisterID bitOffset, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_BT_EvEv, bitOffset, base, offset); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void btw_ir(int bitOffset, RegisterID testValue) | 
|  | { | 
|  | ASSERT(-128 <= bitOffset && bitOffset < 128); | 
|  | m_formatter.twoByteOp64(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, testValue); | 
|  | m_formatter.immediate8(bitOffset); | 
|  | } | 
|  |  | 
|  | void btw_im(int bitOffset, int offset, RegisterID base) | 
|  | { | 
|  | ASSERT(-128 <= bitOffset && bitOffset < 128); | 
|  | m_formatter.twoByteOp64(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, base, offset); | 
|  | m_formatter.immediate8(bitOffset); | 
|  | } | 
|  |  | 
|  | void btw_ir(RegisterID bitOffset, RegisterID testValue) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_BT_EvEv, bitOffset, testValue); | 
|  | } | 
|  |  | 
|  | void btw_im(RegisterID bitOffset, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_BT_EvEv, bitOffset, base, offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void setCC_r(Condition cond, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp8(setccOpcode(cond), (GroupOpcodeID)0, dst); | 
|  | } | 
|  |  | 
|  | void sete_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp8(setccOpcode(ConditionE), (GroupOpcodeID)0, dst); | 
|  | } | 
|  |  | 
|  | void setz_r(RegisterID dst) | 
|  | { | 
|  | sete_r(dst); | 
|  | } | 
|  |  | 
|  | void setne_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp8(setccOpcode(ConditionNE), (GroupOpcodeID)0, dst); | 
|  | } | 
|  |  | 
|  | void setnz_r(RegisterID dst) | 
|  | { | 
|  | setne_r(dst); | 
|  | } | 
|  |  | 
|  | void setnp_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp8(setccOpcode(ConditionNP), (GroupOpcodeID)0, dst); | 
|  | } | 
|  |  | 
|  | void setp_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp8(setccOpcode(ConditionP), (GroupOpcodeID)0, dst); | 
|  | } | 
|  |  | 
|  | // Various move ops: | 
|  |  | 
|  | void cdq() | 
|  | { | 
|  | m_formatter.oneByteOp(OP_CDQ); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void cqo() | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_CDQ); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void fstps(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_ESCAPE_D9, ESCAPE_D9_FSTP_singleReal, base, offset); | 
|  | } | 
|  |  | 
|  | void fstpl(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_ESCAPE_DD, ESCAPE_DD_FSTP_doubleReal, base, offset); | 
|  | } | 
|  |  | 
|  | void xchgl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | if (src == X86Registers::eax) | 
|  | m_formatter.oneByteOp(OP_XCHG_EAX, dst); | 
|  | else if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp(OP_XCHG_EAX, src); | 
|  | else | 
|  | m_formatter.oneByteOp(OP_XCHG_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void xchgb_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp8(OP_XCHG_EvGb, src, base, offset); | 
|  | } | 
|  |  | 
|  | void xchgb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp8(OP_XCHG_EvGb, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void xchgw_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void xchgw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void xchgl_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void xchgl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void xchgq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | if (src == X86Registers::eax) | 
|  | m_formatter.oneByteOp64(OP_XCHG_EAX, dst); | 
|  | else if (dst == X86Registers::eax) | 
|  | m_formatter.oneByteOp64(OP_XCHG_EAX, src); | 
|  | else | 
|  | m_formatter.oneByteOp64(OP_XCHG_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void xchgq_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_XCHG_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void xchgq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_XCHG_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void movl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_MOV_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void movl_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_MOV_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void movl_rm_disp32(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp_disp32(OP_MOV_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void movl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_MOV_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movl_mEAX(const void* addr) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_MOV_EAXOv); | 
|  | #if CPU(X86_64) | 
|  | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); | 
|  | #else | 
|  | m_formatter.immediate32(reinterpret_cast<int>(addr)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void movl_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movl_mr_disp32(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp_disp32(OP_MOV_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movl_mr_disp8(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp_disp8(OP_MOV_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movl_i32r(int imm, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_MOV_EAXIv, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | void movl_i32m(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | void movl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | #if !CPU(X86_64) | 
|  | void movb_i8m(int imm, const void* addr) | 
|  | { | 
|  | ASSERT(-128 <= imm && imm < 128); | 
|  | m_formatter.oneByteOpAddr(OP_GROUP11_EvIb, GROUP11_MOV, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void movb_i8m(int imm, int offset, RegisterID base) | 
|  | { | 
|  | ASSERT(-128 <= imm && imm < 128); | 
|  | m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void movb_i8m(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | ASSERT(-128 <= imm && imm < 128); | 
|  | m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, index, scale, offset); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | #if !CPU(X86_64) | 
|  | void movb_rm(RegisterID src, const void* addr) | 
|  | { | 
|  | m_formatter.oneByteOpAddr(OP_MOV_EbGb, src, bitwise_cast<uint32_t>(addr)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void movb_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp8(OP_MOV_EbGb, src, base, offset); | 
|  | } | 
|  |  | 
|  | void movb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp8(OP_MOV_EbGb, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movw_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  |  | 
|  | // FIXME: We often use oneByteOp8 for 16-bit operations. It's not clear that this is | 
|  | // necessary. https://bugs.webkit.org/show_bug.cgi?id=153433 | 
|  | m_formatter.oneByteOp8(OP_MOV_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void movw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp8(OP_MOV_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movw_im(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  |  | 
|  | void movw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset); | 
|  | m_formatter.immediate16(imm); | 
|  | } | 
|  |  | 
|  | void movl_EAXm(const void* addr) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_MOV_OvEAX); | 
|  | #if CPU(X86_64) | 
|  | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); | 
|  | #else | 
|  | m_formatter.immediate32(reinterpret_cast<int>(addr)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void movl_mr(uint32_t addr, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOpAddr(OP_MOV_GvEv, dst, addr); | 
|  | } | 
|  |  | 
|  | void movl_rm(RegisterID src, uint32_t addr) | 
|  | { | 
|  | m_formatter.oneByteOpAddr(OP_MOV_EvGv, src, addr); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void movq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_MOV_EvGv, src, dst); | 
|  | } | 
|  |  | 
|  | void movq_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void movq_rm_disp32(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64_disp32(OP_MOV_EvGv, src, base, offset); | 
|  | } | 
|  |  | 
|  | void movq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movq_rm(RegisterID src, int offset) | 
|  | { | 
|  | m_formatter.oneByteOp64Addr(OP_MOV_EvGv, src, offset); | 
|  | } | 
|  |  | 
|  | void movq_mEAX(const void* addr) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_MOV_EAXOv); | 
|  | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); | 
|  | } | 
|  |  | 
|  | void movq_EAXm(const void* addr) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_MOV_OvEAX); | 
|  | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); | 
|  | } | 
|  |  | 
|  | void movq_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movq_mr_disp32(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64_disp32(OP_MOV_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movq_mr_disp8(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64_disp8(OP_MOV_GvEv, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movq_mr(uint32_t addr, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64Addr(OP_MOV_GvEv, dst, addr); | 
|  | } | 
|  |  | 
|  | void movq_i32m(int imm, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | void movq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | void movq_i64r(int64_t imm, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_MOV_EAXIv, dst); | 
|  | m_formatter.immediate64(imm); | 
|  | } | 
|  |  | 
|  | void mov_i32r(int32_t imm, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, dst); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  |  | 
|  | void movsxd_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_MOVSXD_GvEv, dst, src); | 
|  | } | 
|  | #else | 
|  | void movl_mr(const void* addr, RegisterID dst) | 
|  | { | 
|  | if (dst == X86Registers::eax) | 
|  | movl_mEAX(addr); | 
|  | else | 
|  | m_formatter.oneByteOpAddr(OP_MOV_GvEv, dst, bitwise_cast<uint32_t>(addr)); | 
|  | } | 
|  |  | 
|  | void movl_rm(RegisterID src, const void* addr) | 
|  | { | 
|  | if (src == X86Registers::eax) | 
|  | movl_EAXm(addr); | 
|  | else | 
|  | m_formatter.oneByteOpAddr(OP_MOV_EvGv, src, bitwise_cast<uint32_t>(addr)); | 
|  | } | 
|  |  | 
|  | void movl_i32m(int imm, const void* addr) | 
|  | { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP11_EvIz, GROUP11_MOV, bitwise_cast<uint32_t>(addr)); | 
|  | m_formatter.immediate32(imm); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void movzwl_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movzwl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movswl_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movswl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movzbl_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movzbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | #if !CPU(X86_64) | 
|  | void movzbl_mr(const void* address, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOpAddr(OP2_MOVZX_GvEb, dst, bitwise_cast<uint32_t>(address)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void movsbl_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movsbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movzbl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | // In 64-bit, this may cause an unnecessary REX to be planted (if the dst register | 
|  | // is in the range ESP-EDI, and the src would not have required a REX).  Unneeded | 
|  | // REX prefixes are defined to be silently ignored by the processor. | 
|  | m_formatter.twoByteOp8(OP2_MOVZX_GvEb, dst, src); | 
|  | } | 
|  |  | 
|  | void movsbl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp8(OP2_MOVSX_GvEb, dst, src); | 
|  | } | 
|  |  | 
|  | void movzwl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp8(OP2_MOVZX_GvEw, dst, src); | 
|  | } | 
|  |  | 
|  | void movswl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp8(OP2_MOVSX_GvEw, dst, src); | 
|  | } | 
|  |  | 
|  | void cmovl_rr(Condition cond, RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(cmovcc(cond), dst, src); | 
|  | } | 
|  |  | 
|  | void cmovl_mr(Condition cond, int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(cmovcc(cond), dst, base, offset); | 
|  | } | 
|  |  | 
|  | void cmovl_mr(Condition cond, int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(cmovcc(cond), dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void cmovel_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(cmovcc(ConditionE), dst, src); | 
|  | } | 
|  |  | 
|  | void cmovnel_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(cmovcc(ConditionNE), dst, src); | 
|  | } | 
|  |  | 
|  | void cmovpl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(cmovcc(ConditionP), dst, src); | 
|  | } | 
|  |  | 
|  | void cmovnpl_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(cmovcc(ConditionNP), dst, src); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void cmovq_rr(Condition cond, RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(cmovcc(cond), dst, src); | 
|  | } | 
|  |  | 
|  | void cmovq_mr(Condition cond, int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(cmovcc(cond), dst, base, offset); | 
|  | } | 
|  |  | 
|  | void cmovq_mr(Condition cond, int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(cmovcc(cond), dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void cmoveq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(cmovcc(ConditionE), dst, src); | 
|  | } | 
|  |  | 
|  | void cmovneq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(cmovcc(ConditionNE), dst, src); | 
|  | } | 
|  |  | 
|  | void cmovpq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(cmovcc(ConditionP), dst, src); | 
|  | } | 
|  |  | 
|  | void cmovnpq_rr(RegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp64(cmovcc(ConditionNP), dst, src); | 
|  | } | 
|  | #else | 
|  | void cmovl_mr(Condition cond, const void* addr, RegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOpAddr(cmovcc(cond), dst, bitwise_cast<uint32_t>(addr)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void leal_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_LEA, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void leal_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_LEA, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void leaq_mr(int offset, RegisterID base, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_LEA, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void leaq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp64(OP_LEA, dst, base, index, scale, offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Flow control: | 
|  |  | 
|  | AssemblerLabel call() | 
|  | { | 
|  | m_formatter.oneByteOp(OP_CALL_rel32); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel call(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, dst); | 
|  | return m_formatter.label(); | 
|  | } | 
|  |  | 
|  | void call_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, base, offset); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jmp() | 
|  | { | 
|  | m_formatter.oneByteOp(OP_JMP_rel32); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | // Return a AssemblerLabel so we have a label to the jump, so we can use this | 
|  | // To make a tail recursive call on x86-64.  The MacroAssembler | 
|  | // really shouldn't wrap this as a Jump, since it can't be linked. :-/ | 
|  | AssemblerLabel jmp_r(RegisterID dst) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, dst); | 
|  | return m_formatter.label(); | 
|  | } | 
|  |  | 
|  | void jmp_m(int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, offset); | 
|  | } | 
|  |  | 
|  | void jmp_m(int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | #if !CPU(X86_64) | 
|  | void jmp_m(const void* address) | 
|  | { | 
|  | m_formatter.oneByteOpAddr(OP_GROUP5_Ev, GROUP5_OP_JMPN, bitwise_cast<uint32_t>(address)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | AssemblerLabel jne() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionNE)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jnz() | 
|  | { | 
|  | return jne(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel je() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionE)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jz() | 
|  | { | 
|  | return je(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jl() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionL)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jb() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionB)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jle() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionLE)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jbe() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionBE)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jge() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionGE)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jg() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionG)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel ja() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionA)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jae() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionAE)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jo() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionO)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jnp() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionNP)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jp() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionP)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel js() | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(ConditionS)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel jCC(Condition cond) | 
|  | { | 
|  | m_formatter.twoByteOp(jccRel32(cond)); | 
|  | return m_formatter.immediateRel32(); | 
|  | } | 
|  |  | 
|  | // SSE operations: | 
|  |  | 
|  | void addsd_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void vaddsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); | 
|  | } | 
|  |  | 
|  | void addsd_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void addsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void vaddsd_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); | 
|  | } | 
|  |  | 
|  | void vaddsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); | 
|  | } | 
|  |  | 
|  | void addss_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void vaddss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); | 
|  | } | 
|  |  | 
|  | void addss_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void addss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void vaddss_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); | 
|  | } | 
|  |  | 
|  | void vaddss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); | 
|  | } | 
|  |  | 
|  | #if !CPU(X86_64) | 
|  | void addsd_mr(const void* address, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOpAddr(OP2_ADDSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void cvtsi2sd_rr(RegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); | 
|  | } | 
|  |  | 
|  | void cvtsi2ss_rr(RegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void cvtsi2sdq_rr(RegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); | 
|  | } | 
|  |  | 
|  | void cvtsi2ssq_rr(RegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); | 
|  | } | 
|  |  | 
|  | void cvtsi2sdq_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void cvtsi2ssq_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void cvtsi2sd_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void cvtsi2ss_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | #if !CPU(X86_64) | 
|  | void cvtsi2sd_mr(const void* address, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOpAddr(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void cvttsd2si_rr(XMMRegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void cvttss2si_rr(XMMRegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void cvttss2siq_rr(XMMRegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp64(OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)src); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void cvtsd2ss_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_CVTSD2SS_VsdWsd, dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void cvtsd2ss_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_CVTSD2SS_VsdWsd, dst, base, offset); | 
|  | } | 
|  |  | 
|  | void cvtss2sd_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_CVTSS2SD_VsdWsd, dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void cvtss2sd_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_CVTSS2SD_VsdWsd, dst, base, offset); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void cvttsd2siq_rr(XMMRegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp64(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void movd_rr(XMMRegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp(OP2_MOVD_EdVd, (RegisterID)src, dst); | 
|  | } | 
|  |  | 
|  | void movd_rr(RegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp(OP2_MOVD_VdEd, (RegisterID)dst, src); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void movmskpd_rr(XMMRegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp64(OP2_MOVMSKPD_VdEd, dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void movq_rr(XMMRegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp64(OP2_MOVD_EdVd, (RegisterID)src, dst); | 
|  | } | 
|  |  | 
|  | void movq_rr(RegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp64(OP2_MOVD_VdEd, (RegisterID)dst, src); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void movapd_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp(OP2_MOVAPD_VpdWpd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void movaps_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_MOVAPS_VpdWpd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void movsd_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void movsd_rm(XMMRegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset); | 
|  | } | 
|  |  | 
|  | void movsd_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movss_rm(XMMRegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset); | 
|  | } | 
|  |  | 
|  | void movss_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movsd_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void movss_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void movss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | #if !CPU(X86_64) | 
|  | void movsd_mr(const void* address, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOpAddr(OP2_MOVSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); | 
|  | } | 
|  | void movsd_rm(XMMRegisterID src, const void* address) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOpAddr(OP2_MOVSD_WsdVsd, (RegisterID)src, bitwise_cast<uint32_t>(address)); | 
|  | } | 
|  | void movss_mr(const void* address, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOpAddr(OP2_MOVSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); | 
|  | } | 
|  | void movss_rm(XMMRegisterID src, const void* address) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOpAddr(OP2_MOVSD_WsdVsd, (RegisterID)src, bitwise_cast<uint32_t>(address)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void mulsd_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void vmulsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); | 
|  | } | 
|  |  | 
|  | void mulsd_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void mulsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void vmulsd_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); | 
|  | } | 
|  |  | 
|  | void vmulsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); | 
|  | } | 
|  |  | 
|  | void mulss_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void vmulss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); | 
|  | } | 
|  |  | 
|  | void mulss_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void mulss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void vmulss_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); | 
|  | } | 
|  |  | 
|  | void vmulss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); | 
|  | } | 
|  |  | 
|  | void pextrw_irr(int whichWord, XMMRegisterID src, RegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp(OP2_PEXTRW_GdUdIb, (RegisterID)dst, (RegisterID)src); | 
|  | m_formatter.immediate8(whichWord); | 
|  | } | 
|  |  | 
|  | void psllq_i8r(int imm, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp8(OP2_PSLLQ_UdqIb, GROUP14_OP_PSLLQ, (RegisterID)dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void psrlq_i8r(int imm, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp8(OP2_PSRLQ_UdqIb, GROUP14_OP_PSRLQ, (RegisterID)dst); | 
|  | m_formatter.immediate8(imm); | 
|  | } | 
|  |  | 
|  | void por_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp(OP2_POR_VdqWdq, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void subsd_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void vsubsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); | 
|  | } | 
|  |  | 
|  | void subsd_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void subsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void vsubsd_mr(XMMRegisterID b, int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); | 
|  | } | 
|  |  | 
|  | void vsubsd_mr(XMMRegisterID b, int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); | 
|  | } | 
|  |  | 
|  | void subss_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void vsubss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); | 
|  | } | 
|  |  | 
|  | void subss_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void subss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, dst, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void vsubss_mr(XMMRegisterID b, int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); | 
|  | } | 
|  |  | 
|  | void vsubss_mr(XMMRegisterID b, int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); | 
|  | } | 
|  |  | 
|  | void ucomisd_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void ucomisd_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void ucomiss_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void ucomiss_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void divsd_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void divsd_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void divss_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void divss_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void andps_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_ANDPS_VpdWpd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void orps_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_ORPS_VpdWpd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void xorps_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void xorpd_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | if (src == dst) { | 
|  | xorps_rr(src, dst); | 
|  | return; | 
|  | } | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void andnpd_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.twoByteOp(OP2_ANDNPD_VpdWpd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void sqrtsd_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void sqrtsd_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F2); | 
|  | m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | void sqrtss_rr(XMMRegisterID src, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | 
|  | } | 
|  |  | 
|  | void sqrtss_mr(int offset, RegisterID base, XMMRegisterID dst) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, base, offset); | 
|  | } | 
|  |  | 
|  | enum class RoundingType : uint8_t { | 
|  | ToNearestWithTiesToEven = 0, | 
|  | TowardNegativeInfiniti = 1, | 
|  | TowardInfiniti = 2, | 
|  | TowardZero = 3 | 
|  | }; | 
|  |  | 
|  | void roundss_rr(XMMRegisterID src, XMMRegisterID dst, RoundingType rounding) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dst, (RegisterID)src); | 
|  | m_formatter.immediate8(static_cast<uint8_t>(rounding)); | 
|  | } | 
|  |  | 
|  | void roundss_mr(int offset, RegisterID base, XMMRegisterID dst, RoundingType rounding) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dst, base, offset); | 
|  | m_formatter.immediate8(static_cast<uint8_t>(rounding)); | 
|  | } | 
|  |  | 
|  | void roundsd_rr(XMMRegisterID src, XMMRegisterID dst, RoundingType rounding) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dst, (RegisterID)src); | 
|  | m_formatter.immediate8(static_cast<uint8_t>(rounding)); | 
|  | } | 
|  |  | 
|  | void roundsd_mr(int offset, RegisterID base, XMMRegisterID dst, RoundingType rounding) | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_66); | 
|  | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dst, base, offset); | 
|  | m_formatter.immediate8(static_cast<uint8_t>(rounding)); | 
|  | } | 
|  |  | 
|  | // Misc instructions: | 
|  |  | 
|  | void int3() | 
|  | { | 
|  | m_formatter.oneByteOp(OP_INT3); | 
|  | } | 
|  |  | 
|  | static bool isInt3(void* address) | 
|  | { | 
|  | uint8_t candidateInstruction = *reinterpret_cast<uint8_t*>(address); | 
|  | return candidateInstruction == OP_INT3; | 
|  | } | 
|  |  | 
|  | void ret() | 
|  | { | 
|  | m_formatter.oneByteOp(OP_RET); | 
|  | } | 
|  |  | 
|  | void predictNotTaken() | 
|  | { | 
|  | m_formatter.prefix(PRE_PREDICT_BRANCH_NOT_TAKEN); | 
|  | } | 
|  |  | 
|  | void lock() | 
|  | { | 
|  | m_formatter.prefix(PRE_LOCK); | 
|  | } | 
|  |  | 
|  | // Causes the memory access in the next instruction to be offset by %gs. Usually you use | 
|  | // this with a 32-bit absolute address load. That "address" ends up being the offset to | 
|  | // %gs. This prefix is ignored by lea. Getting the value of %gs is hard - you can pretty | 
|  | // much just use it as a secret offset. | 
|  | void gs() | 
|  | { | 
|  | m_formatter.prefix(PRE_GS); | 
|  | } | 
|  |  | 
|  | void cmpxchgb_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.twoByteOp8(OP2_CMPXCHGb, src, base, offset); | 
|  | } | 
|  |  | 
|  | void cmpxchgb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.twoByteOp8(OP2_CMPXCHGb, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void cmpxchgw_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.twoByteOp(OP2_CMPXCHG, src, base, offset); | 
|  | } | 
|  |  | 
|  | void cmpxchgw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.twoByteOp(OP2_CMPXCHG, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void cmpxchgl_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_CMPXCHG, src, base, offset); | 
|  | } | 
|  |  | 
|  | void cmpxchgl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_CMPXCHG, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void cmpxchgq_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_CMPXCHG, src, base, offset); | 
|  | } | 
|  |  | 
|  | void cmpxchgq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_CMPXCHG, src, base, index, scale, offset); | 
|  | } | 
|  | #endif // CPU(X86_64) | 
|  |  | 
|  | void xaddb_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.twoByteOp8(OP2_XADDb, src, base, offset); | 
|  | } | 
|  |  | 
|  | void xaddb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.twoByteOp8(OP2_XADDb, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void xaddw_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.twoByteOp(OP2_XADD, src, base, offset); | 
|  | } | 
|  |  | 
|  | void xaddw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.prefix(PRE_OPERAND_SIZE); | 
|  | m_formatter.twoByteOp(OP2_XADD, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void xaddl_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_XADD, src, base, offset); | 
|  | } | 
|  |  | 
|  | void xaddl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_XADD, src, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | void xaddq_rm(RegisterID src, int offset, RegisterID base) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_XADD, src, base, offset); | 
|  | } | 
|  |  | 
|  | void xaddq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | m_formatter.twoByteOp64(OP2_XADD, src, base, index, scale, offset); | 
|  | } | 
|  | #endif // CPU(X86_64) | 
|  |  | 
|  | void lfence() | 
|  | { | 
|  | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_LFENCE); | 
|  | } | 
|  |  | 
|  | void mfence() | 
|  | { | 
|  | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_MFENCE); | 
|  | } | 
|  |  | 
|  | void sfence() | 
|  | { | 
|  | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_SFENCE); | 
|  | } | 
|  |  | 
|  | void rdtsc() | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_RDTSC); | 
|  | } | 
|  |  | 
|  | void pause() | 
|  | { | 
|  | m_formatter.prefix(PRE_SSE_F3); | 
|  | m_formatter.oneByteOp(OP_PAUSE); | 
|  | } | 
|  |  | 
|  | void cpuid() | 
|  | { | 
|  | m_formatter.twoByteOp(OP2_CPUID); | 
|  | } | 
|  |  | 
|  | // Assembler admin methods: | 
|  |  | 
|  | size_t codeSize() const | 
|  | { | 
|  | return m_formatter.codeSize(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel labelForWatchpoint() | 
|  | { | 
|  | AssemblerLabel result = m_formatter.label(); | 
|  | if (static_cast<int>(result.offset()) != m_indexOfLastWatchpoint) | 
|  | result = label(); | 
|  | m_indexOfLastWatchpoint = result.offset(); | 
|  | m_indexOfTailOfLastWatchpoint = result.offset() + maxJumpReplacementSize(); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | AssemblerLabel labelIgnoringWatchpoints() | 
|  | { | 
|  | return m_formatter.label(); | 
|  | } | 
|  |  | 
|  | AssemblerLabel label() | 
|  | { | 
|  | AssemblerLabel result = m_formatter.label(); | 
|  | while (UNLIKELY(static_cast<int>(result.offset()) < m_indexOfTailOfLastWatchpoint)) { | 
|  | nop(); | 
|  | result = m_formatter.label(); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | AssemblerLabel align(int alignment) | 
|  | { | 
|  | while (!m_formatter.isAligned(alignment)) | 
|  | m_formatter.oneByteOp(OP_HLT); | 
|  |  | 
|  | return label(); | 
|  | } | 
|  |  | 
|  | // Linking & patching: | 
|  | // | 
|  | // 'link' and 'patch' methods are for use on unprotected code - such as the code | 
|  | // within the AssemblerBuffer, and code being patched by the patch buffer.  Once | 
|  | // code has been finalized it is (platform support permitting) within a non- | 
|  | // writable region of memory; to modify the code in an execute-only execuable | 
|  | // pool the 'repatch' and 'relink' methods should be used. | 
|  |  | 
|  | void linkJump(AssemblerLabel from, AssemblerLabel to) | 
|  | { | 
|  | ASSERT(from.isSet()); | 
|  | ASSERT(to.isSet()); | 
|  |  | 
|  | char* code = reinterpret_cast<char*>(m_formatter.data()); | 
|  | ASSERT(!WTF::unalignedLoad<int32_t>(bitwise_cast<int32_t*>(code + from.offset()) - 1)); | 
|  | setRel32(code + from.offset(), code + to.offset()); | 
|  | } | 
|  |  | 
|  | static void linkJump(void* code, AssemblerLabel from, void* to) | 
|  | { | 
|  | ASSERT(from.isSet()); | 
|  |  | 
|  | setRel32(reinterpret_cast<char*>(code) + from.offset(), to); | 
|  | } | 
|  |  | 
|  | static void linkCall(void* code, AssemblerLabel from, void* to) | 
|  | { | 
|  | ASSERT(from.isSet()); | 
|  |  | 
|  | setRel32(reinterpret_cast<char*>(code) + from.offset(), to); | 
|  | } | 
|  |  | 
|  | static void linkPointer(void* code, AssemblerLabel where, void* value) | 
|  | { | 
|  | ASSERT(where.isSet()); | 
|  |  | 
|  | setPointer(reinterpret_cast<char*>(code) + where.offset(), value); | 
|  | } | 
|  |  | 
|  | static void relinkJump(void* from, void* to) | 
|  | { | 
|  | setRel32(from, to); | 
|  | } | 
|  |  | 
|  | static void relinkCall(void* from, void* to) | 
|  | { | 
|  | setRel32(from, to); | 
|  | } | 
|  |  | 
|  | static void relinkTailCall(void* from, void* to) | 
|  | { | 
|  | relinkJump(from, to); | 
|  | } | 
|  |  | 
|  | static void repatchInt32(void* where, int32_t value) | 
|  | { | 
|  | setInt32(where, value); | 
|  | } | 
|  |  | 
|  | static void repatchPointer(void* where, void* value) | 
|  | { | 
|  | setPointer(where, value); | 
|  | } | 
|  |  | 
|  | static void* readPointer(void* where) | 
|  | { | 
|  | return WTF::unalignedLoad<void*>(bitwise_cast<void**>(where) - 1); | 
|  | } | 
|  |  | 
|  | static void replaceWithHlt(void* instructionStart) | 
|  | { | 
|  | WTF::unalignedStore<uint8_t>(instructionStart, static_cast<uint8_t>(OP_HLT)); | 
|  | } | 
|  |  | 
|  | static void replaceWithJump(void* instructionStart, void* to) | 
|  | { | 
|  | uint8_t* ptr = bitwise_cast<uint8_t*>(instructionStart); | 
|  | uint8_t* dstPtr = bitwise_cast<uint8_t*>(to); | 
|  | intptr_t distance = (intptr_t)(dstPtr - (ptr + 5)); | 
|  | WTF::unalignedStore<uint8_t>(ptr, static_cast<uint8_t>(OP_JMP_rel32)); | 
|  | WTF::unalignedStore<int32_t>(ptr + 1, static_cast<int32_t>(distance)); | 
|  | } | 
|  |  | 
|  | static ptrdiff_t maxJumpReplacementSize() | 
|  | { | 
|  | return 5; | 
|  | } | 
|  |  | 
|  | static constexpr ptrdiff_t patchableJumpSize() | 
|  | { | 
|  | return 5; | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | static void revertJumpTo_movq_i64r(void* instructionStart, int64_t imm, RegisterID dst) | 
|  | { | 
|  | const unsigned instructionSize = 10; // REX.W MOV IMM64 | 
|  | const int rexBytes = 1; | 
|  | const int opcodeBytes = 1; | 
|  | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); | 
|  | ptr[0] = PRE_REX | (1 << 3) | (dst >> 3); | 
|  | ptr[1] = OP_MOV_EAXIv | (dst & 7); | 
|  |  | 
|  | union { | 
|  | uint64_t asWord; | 
|  | uint8_t asBytes[8]; | 
|  | } u; | 
|  | u.asWord = imm; | 
|  | for (unsigned i = rexBytes + opcodeBytes; i < instructionSize; ++i) | 
|  | ptr[i] = u.asBytes[i - rexBytes - opcodeBytes]; | 
|  | } | 
|  |  | 
|  | static void revertJumpTo_movl_i32r(void* instructionStart, int32_t imm, RegisterID dst) | 
|  | { | 
|  | // We only revert jumps on inline caches, and inline caches always use the scratch register (r11). | 
|  | // FIXME: If the above is ever false then we need to make this smarter with respect to emitting | 
|  | // the REX byte. | 
|  | ASSERT(dst == X86Registers::r11); | 
|  | const unsigned instructionSize = 6; // REX MOV IMM32 | 
|  | const int rexBytes = 1; | 
|  | const int opcodeBytes = 1; | 
|  | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); | 
|  | ptr[0] = PRE_REX | (dst >> 3); | 
|  | ptr[1] = OP_MOV_EAXIv | (dst & 7); | 
|  |  | 
|  | union { | 
|  | uint32_t asWord; | 
|  | uint8_t asBytes[4]; | 
|  | } u; | 
|  | u.asWord = imm; | 
|  | for (unsigned i = rexBytes + opcodeBytes; i < instructionSize; ++i) | 
|  | ptr[i] = u.asBytes[i - rexBytes - opcodeBytes]; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void revertJumpTo_cmpl_ir_force32(void* instructionStart, int32_t imm, RegisterID dst) | 
|  | { | 
|  | const int opcodeBytes = 1; | 
|  | const int modRMBytes = 1; | 
|  | ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize()); | 
|  | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); | 
|  | ptr[0] = OP_GROUP1_EvIz; | 
|  | ptr[1] = (X86InstructionFormatter::ModRmRegister << 6) | (GROUP1_OP_CMP << 3) | dst; | 
|  | union { | 
|  | uint32_t asWord; | 
|  | uint8_t asBytes[4]; | 
|  | } u; | 
|  | u.asWord = imm; | 
|  | for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i) | 
|  | ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes]; | 
|  | } | 
|  |  | 
|  | static void revertJumpTo_cmpl_im_force32(void* instructionStart, int32_t imm, int offset, RegisterID dst) | 
|  | { | 
|  | ASSERT_UNUSED(offset, !offset); | 
|  | const int opcodeBytes = 1; | 
|  | const int modRMBytes = 1; | 
|  | ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize()); | 
|  | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); | 
|  | ptr[0] = OP_GROUP1_EvIz; | 
|  | ptr[1] = (X86InstructionFormatter::ModRmMemoryNoDisp << 6) | (GROUP1_OP_CMP << 3) | dst; | 
|  | union { | 
|  | uint32_t asWord; | 
|  | uint8_t asBytes[4]; | 
|  | } u; | 
|  | u.asWord = imm; | 
|  | for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i) | 
|  | ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes]; | 
|  | } | 
|  |  | 
|  | static void replaceWithLoad(void* instructionStart) | 
|  | { | 
|  | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); | 
|  | #if CPU(X86_64) | 
|  | if ((*ptr & ~15) == PRE_REX) | 
|  | ptr++; | 
|  | #endif | 
|  | switch (*ptr) { | 
|  | case OP_MOV_GvEv: | 
|  | break; | 
|  | case OP_LEA: | 
|  | *ptr = OP_MOV_GvEv; | 
|  | break; | 
|  | default: | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void replaceWithAddressComputation(void* instructionStart) | 
|  | { | 
|  | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); | 
|  | #if CPU(X86_64) | 
|  | if ((*ptr & ~15) == PRE_REX) | 
|  | ptr++; | 
|  | #endif | 
|  | switch (*ptr) { | 
|  | case OP_MOV_GvEv: | 
|  | *ptr = OP_LEA; | 
|  | break; | 
|  | case OP_LEA: | 
|  | break; | 
|  | default: | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getCallReturnOffset(AssemblerLabel call) | 
|  | { | 
|  | ASSERT(call.isSet()); | 
|  | return call.offset(); | 
|  | } | 
|  |  | 
|  | static void* getRelocatedAddress(void* code, AssemblerLabel label) | 
|  | { | 
|  | ASSERT(label.isSet()); | 
|  | return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + label.offset()); | 
|  | } | 
|  |  | 
|  | static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b) | 
|  | { | 
|  | return b.offset() - a.offset(); | 
|  | } | 
|  |  | 
|  | unsigned debugOffset() { return m_formatter.debugOffset(); } | 
|  |  | 
|  | void nop() | 
|  | { | 
|  | m_formatter.oneByteOp(OP_NOP); | 
|  | } | 
|  |  | 
|  | using CopyFunction = void*(&)(void*, const void*, size_t); | 
|  |  | 
|  | template <CopyFunction copy> | 
|  | static void fillNops(void* base, size_t size) | 
|  | { | 
|  | UNUSED_PARAM(copy); | 
|  | #if CPU(X86_64) | 
|  | static const uint8_t nops[10][10] = { | 
|  | // nop | 
|  | {0x90}, | 
|  | // xchg %ax,%ax | 
|  | {0x66, 0x90}, | 
|  | // nopl (%[re]ax) | 
|  | {0x0f, 0x1f, 0x00}, | 
|  | // nopl 8(%[re]ax) | 
|  | {0x0f, 0x1f, 0x40, 0x08}, | 
|  | // nopl 8(%[re]ax,%[re]ax,1) | 
|  | {0x0f, 0x1f, 0x44, 0x00, 0x08}, | 
|  | // nopw 8(%[re]ax,%[re]ax,1) | 
|  | {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x08}, | 
|  | // nopl 512(%[re]ax) | 
|  | {0x0f, 0x1f, 0x80, 0x00, 0x02, 0x00, 0x00}, | 
|  | // nopl 512(%[re]ax,%[re]ax,1) | 
|  | {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00}, | 
|  | // nopw 512(%[re]ax,%[re]ax,1) | 
|  | {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00}, | 
|  | // nopw %cs:512(%[re]ax,%[re]ax,1) | 
|  | {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00} | 
|  | }; | 
|  |  | 
|  | uint8_t* where = reinterpret_cast<uint8_t*>(base); | 
|  | while (size) { | 
|  | unsigned nopSize = static_cast<unsigned>(std::min<size_t>(size, 15)); | 
|  | unsigned numPrefixes = nopSize <= 10 ? 0 : nopSize - 10; | 
|  | for (unsigned i = 0; i != numPrefixes; ++i) | 
|  | *where++ = 0x66; | 
|  |  | 
|  | unsigned nopRest = nopSize - numPrefixes; | 
|  | for (unsigned i = 0; i != nopRest; ++i) | 
|  | *where++ = nops[nopRest-1][i]; | 
|  |  | 
|  | size -= nopSize; | 
|  | } | 
|  | #else | 
|  | memset(base, OP_NOP, size); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // This is a no-op on x86 | 
|  | ALWAYS_INLINE static void cacheFlush(void*, size_t) { } | 
|  |  | 
|  | private: | 
|  |  | 
|  | static void setPointer(void* where, void* value) | 
|  | { | 
|  | WTF::unalignedStore<void*>(bitwise_cast<void**>(where) - 1, value); | 
|  | } | 
|  |  | 
|  | static void setInt32(void* where, int32_t value) | 
|  | { | 
|  | WTF::unalignedStore<int32_t>(bitwise_cast<int32_t*>(where) - 1, value); | 
|  | } | 
|  |  | 
|  | static void setInt8(void* where, int8_t value) | 
|  | { | 
|  | WTF::unalignedStore<int8_t>(bitwise_cast<int8_t*>(where) - 1, value); | 
|  | } | 
|  |  | 
|  | static void setRel32(void* from, void* to) | 
|  | { | 
|  | intptr_t offset = reinterpret_cast<intptr_t>(to) - reinterpret_cast<intptr_t>(from); | 
|  | ASSERT(offset == static_cast<int32_t>(offset)); | 
|  |  | 
|  | setInt32(from, offset); | 
|  | } | 
|  |  | 
|  | class X86InstructionFormatter { | 
|  | static constexpr int maxInstructionSize = 16; | 
|  |  | 
|  | public: | 
|  | enum ModRmMode { | 
|  | ModRmMemoryNoDisp = 0, | 
|  | ModRmMemoryDisp8 = 1 << 6, | 
|  | ModRmMemoryDisp32 = 2 << 6, | 
|  | ModRmRegister = 3 << 6, | 
|  | }; | 
|  |  | 
|  | // Legacy prefix bytes: | 
|  | // | 
|  | // These are emmitted prior to the instruction. | 
|  |  | 
|  | void prefix(OneByteOpcodeID pre) | 
|  | { | 
|  | m_buffer.putByte(pre); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | // Byte operand register spl & above require a REX prefix (to prevent the 'H' registers be accessed). | 
|  | static bool byteRegRequiresRex(int reg) | 
|  | { | 
|  | static_assert(X86Registers::esp == 4, "Necessary condition for OR-masking"); | 
|  | return (reg >= X86Registers::esp); | 
|  | } | 
|  | static bool byteRegRequiresRex(int a, int b) | 
|  | { | 
|  | return byteRegRequiresRex(a | b); | 
|  | } | 
|  |  | 
|  | // Registers r8 & above require a REX prefixe. | 
|  | static bool regRequiresRex(int reg) | 
|  | { | 
|  | static_assert(X86Registers::r8 == 8, "Necessary condition for OR-masking"); | 
|  | return (reg >= X86Registers::r8); | 
|  | } | 
|  | static bool regRequiresRex(int a, int b) | 
|  | { | 
|  | return regRequiresRex(a | b); | 
|  | } | 
|  | static bool regRequiresRex(int a, int b, int c) | 
|  | { | 
|  | return regRequiresRex(a | b | c); | 
|  | } | 
|  | #else | 
|  | static bool byteRegRequiresRex(int) { return false; } | 
|  | static bool byteRegRequiresRex(int, int) { return false; } | 
|  | static bool regRequiresRex(int) { return false; } | 
|  | static bool regRequiresRex(int, int) { return false; } | 
|  | static bool regRequiresRex(int, int, int) { return false; } | 
|  | #endif | 
|  |  | 
|  | class SingleInstructionBufferWriter : public AssemblerBuffer::LocalWriter { | 
|  | public: | 
|  | SingleInstructionBufferWriter(AssemblerBuffer& buffer) | 
|  | : AssemblerBuffer::LocalWriter(buffer, maxInstructionSize) | 
|  | { | 
|  | } | 
|  |  | 
|  | // Internals; ModRm and REX formatters. | 
|  |  | 
|  | static constexpr RegisterID noBase = X86Registers::ebp; | 
|  | static constexpr RegisterID hasSib = X86Registers::esp; | 
|  | static constexpr RegisterID noIndex = X86Registers::esp; | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | static constexpr RegisterID noBase2 = X86Registers::r13; | 
|  | static constexpr RegisterID hasSib2 = X86Registers::r12; | 
|  |  | 
|  | // Format a REX prefix byte. | 
|  | ALWAYS_INLINE void emitRex(bool w, int r, int x, int b) | 
|  | { | 
|  | ASSERT(r >= 0); | 
|  | ASSERT(x >= 0); | 
|  | ASSERT(b >= 0); | 
|  | putByteUnchecked(PRE_REX | ((int)w << 3) | ((r>>3)<<2) | ((x>>3)<<1) | (b>>3)); | 
|  | } | 
|  |  | 
|  | // Used to plant a REX byte with REX.w set (for 64-bit operations). | 
|  | ALWAYS_INLINE void emitRexW(int r, int x, int b) | 
|  | { | 
|  | emitRex(true, r, x, b); | 
|  | } | 
|  |  | 
|  | // Used for operations with byte operands - use byteRegRequiresRex() to check register operands, | 
|  | // regRequiresRex() to check other registers (i.e. address base & index). | 
|  | ALWAYS_INLINE void emitRexIf(bool condition, int r, int x, int b) | 
|  | { | 
|  | if (condition) | 
|  | emitRex(false, r, x, b); | 
|  | } | 
|  |  | 
|  | // Used for word sized operations, will plant a REX prefix if necessary (if any register is r8 or above). | 
|  | ALWAYS_INLINE void emitRexIfNeeded(int r, int x, int b) | 
|  | { | 
|  | emitRexIf(regRequiresRex(r, x, b), r, x, b); | 
|  | } | 
|  | #else | 
|  | // No REX prefix bytes on 32-bit x86. | 
|  | ALWAYS_INLINE void emitRexIf(bool, int, int, int) { } | 
|  | ALWAYS_INLINE void emitRexIfNeeded(int, int, int) { } | 
|  | #endif | 
|  |  | 
|  | ALWAYS_INLINE void putModRm(ModRmMode mode, int reg, RegisterID rm) | 
|  | { | 
|  | putByteUnchecked(mode | ((reg & 7) << 3) | (rm & 7)); | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE void putModRmSib(ModRmMode mode, int reg, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | ASSERT(mode != ModRmRegister); | 
|  |  | 
|  | putModRm(mode, reg, hasSib); | 
|  | putByteUnchecked((scale << 6) | ((index & 7) << 3) | (base & 7)); | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE void registerModRM(int reg, RegisterID rm) | 
|  | { | 
|  | putModRm(ModRmRegister, reg, rm); | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE void memoryModRM(int reg, RegisterID base, int offset) | 
|  | { | 
|  | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. | 
|  | #if CPU(X86_64) | 
|  | if ((base == hasSib) || (base == hasSib2)) { | 
|  | #else | 
|  | if (base == hasSib) { | 
|  | #endif | 
|  | if (!offset) // No need to check if the base is noBase, since we know it is hasSib! | 
|  | putModRmSib(ModRmMemoryNoDisp, reg, base, noIndex, 0); | 
|  | else if (CAN_SIGN_EXTEND_8_32(offset)) { | 
|  | putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0); | 
|  | putByteUnchecked(offset); | 
|  | } else { | 
|  | putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0); | 
|  | putIntUnchecked(offset); | 
|  | } | 
|  | } else { | 
|  | #if CPU(X86_64) | 
|  | if (!offset && (base != noBase) && (base != noBase2)) | 
|  | #else | 
|  | if (!offset && (base != noBase)) | 
|  | #endif | 
|  | putModRm(ModRmMemoryNoDisp, reg, base); | 
|  | else if (CAN_SIGN_EXTEND_8_32(offset)) { | 
|  | putModRm(ModRmMemoryDisp8, reg, base); | 
|  | putByteUnchecked(offset); | 
|  | } else { | 
|  | putModRm(ModRmMemoryDisp32, reg, base); | 
|  | putIntUnchecked(offset); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE void memoryModRM_disp8(int reg, RegisterID base, int offset) | 
|  | { | 
|  | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. | 
|  | ASSERT(CAN_SIGN_EXTEND_8_32(offset)); | 
|  | #if CPU(X86_64) | 
|  | if ((base == hasSib) || (base == hasSib2)) { | 
|  | #else | 
|  | if (base == hasSib) { | 
|  | #endif | 
|  | putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0); | 
|  | putByteUnchecked(offset); | 
|  | } else { | 
|  | putModRm(ModRmMemoryDisp8, reg, base); | 
|  | putByteUnchecked(offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE void memoryModRM_disp32(int reg, RegisterID base, int offset) | 
|  | { | 
|  | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. | 
|  | #if CPU(X86_64) | 
|  | if ((base == hasSib) || (base == hasSib2)) { | 
|  | #else | 
|  | if (base == hasSib) { | 
|  | #endif | 
|  | putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0); | 
|  | putIntUnchecked(offset); | 
|  | } else { | 
|  | putModRm(ModRmMemoryDisp32, reg, base); | 
|  | putIntUnchecked(offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE void memoryModRM(int reg, RegisterID base, RegisterID index, int scale, int offset) | 
|  | { | 
|  | ASSERT(index != noIndex); | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | if (!offset && (base != noBase) && (base != noBase2)) | 
|  | #else | 
|  | if (!offset && (base != noBase)) | 
|  | #endif | 
|  | putModRmSib(ModRmMemoryNoDisp, reg, base, index, scale); | 
|  | else if (CAN_SIGN_EXTEND_8_32(offset)) { | 
|  | putModRmSib(ModRmMemoryDisp8, reg, base, index, scale); | 
|  | putByteUnchecked(offset); | 
|  | } else { | 
|  | putModRmSib(ModRmMemoryDisp32, reg, base, index, scale); | 
|  | putIntUnchecked(offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE void memoryModRMAddr(int reg, uint32_t address) | 
|  | { | 
|  | #if CPU(X86_64) | 
|  | putModRmSib(ModRmMemoryNoDisp, reg, noBase, noIndex, 0); | 
|  | #else | 
|  | // noBase + ModRmMemoryNoDisp means noBase + ModRmMemoryDisp32! | 
|  | putModRm(ModRmMemoryNoDisp, reg, noBase); | 
|  | #endif | 
|  | putIntUnchecked(address); | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE void twoBytesVex(OneByteOpcodeID simdPrefix, RegisterID inOpReg, RegisterID r) | 
|  | { | 
|  | putByteUnchecked(VexPrefix::TwoBytes); | 
|  |  | 
|  | uint8_t secondByte = vexEncodeSimdPrefix(simdPrefix); | 
|  | secondByte |= (~inOpReg & 0xf) << 3; | 
|  | secondByte |= !regRequiresRex(r) << 7; | 
|  | putByteUnchecked(secondByte); | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE void threeBytesVexNds(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, RegisterID r, RegisterID inOpReg, RegisterID x, RegisterID b) | 
|  | { | 
|  | putByteUnchecked(VexPrefix::ThreeBytes); | 
|  |  | 
|  | uint8_t secondByte = static_cast<uint8_t>(impliedBytes); | 
|  | secondByte |= !regRequiresRex(r) << 7; | 
|  | secondByte |= !regRequiresRex(x) << 6; | 
|  | secondByte |= !regRequiresRex(b) << 5; | 
|  | putByteUnchecked(secondByte); | 
|  |  | 
|  | uint8_t thirdByte = vexEncodeSimdPrefix(simdPrefix); | 
|  | thirdByte |= (~inOpReg & 0xf) << 3; | 
|  | putByteUnchecked(thirdByte); | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE void threeBytesVexNds(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, RegisterID r, RegisterID inOpReg, RegisterID b) | 
|  | { | 
|  | putByteUnchecked(VexPrefix::ThreeBytes); | 
|  |  | 
|  | uint8_t secondByte = static_cast<uint8_t>(impliedBytes); | 
|  | secondByte |= !regRequiresRex(r) << 7; | 
|  | secondByte |= 1 << 6; // REX.X | 
|  | secondByte |= !regRequiresRex(b) << 5; | 
|  | putByteUnchecked(secondByte); | 
|  |  | 
|  | uint8_t thirdByte = vexEncodeSimdPrefix(simdPrefix); | 
|  | thirdByte |= (~inOpReg & 0xf) << 3; | 
|  | putByteUnchecked(thirdByte); | 
|  | } | 
|  | private: | 
|  | uint8_t vexEncodeSimdPrefix(OneByteOpcodeID simdPrefix) | 
|  | { | 
|  | switch (simdPrefix) { | 
|  | case 0x66: | 
|  | return 1; | 
|  | case 0xF3: | 
|  | return 2; | 
|  | case 0xF2: | 
|  | return 3; | 
|  | default: | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | }; | 
|  |  | 
|  | // Word-sized operands / no operand instruction formatters. | 
|  | // | 
|  | // In addition to the opcode, the following operand permutations are supported: | 
|  | //   * None - instruction takes no operands. | 
|  | //   * One register - the low three bits of the RegisterID are added into the opcode. | 
|  | //   * Two registers - encode a register form ModRm (for all ModRm formats, the reg field is passed first, and a GroupOpcodeID may be passed in its place). | 
|  | //   * Three argument ModRM - a register, and a register and an offset describing a memory operand. | 
|  | //   * Five argument ModRM - a register, and a base register, an index, scale, and offset describing a memory operand. | 
|  | // | 
|  | // For 32-bit x86 targets, the address operand may also be provided as a void*. | 
|  | // On 64-bit targets REX prefixes will be planted as necessary, where high numbered registers are used. | 
|  | // | 
|  | // The twoByteOp methods plant two-byte Intel instructions sequences (first opcode byte 0x0F). | 
|  |  | 
|  | void oneByteOp(OneByteOpcodeID opcode) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.putByteUnchecked(opcode); | 
|  | } | 
|  |  | 
|  | void oneByteOp(OneByteOpcodeID opcode, RegisterID reg) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(0, 0, reg); | 
|  | writer.putByteUnchecked(opcode + (reg & 7)); | 
|  | } | 
|  |  | 
|  | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID rm) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(reg, 0, rm); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.registerModRM(reg, rm); | 
|  | } | 
|  |  | 
|  | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(reg, 0, base); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, offset); | 
|  | } | 
|  |  | 
|  | void oneByteOp_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(reg, 0, base); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM_disp32(reg, base, offset); | 
|  | } | 
|  |  | 
|  | void oneByteOp_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(reg, 0, base); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM_disp8(reg, base, offset); | 
|  | } | 
|  |  | 
|  | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(reg, index, base); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void oneByteOpAddr(OneByteOpcodeID opcode, int reg, uint32_t address) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRMAddr(reg, address); | 
|  | } | 
|  |  | 
|  | void twoByteOp(TwoByteOpcodeID opcode) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | } | 
|  |  | 
|  | void twoByteOp(TwoByteOpcodeID opcode, int reg) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(0, 0, reg); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode + (reg & 7)); | 
|  | } | 
|  |  | 
|  | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID rm) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(reg, 0, rm); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.registerModRM(reg, rm); | 
|  | } | 
|  |  | 
|  | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(reg, 0, base); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, offset); | 
|  | } | 
|  |  | 
|  | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(reg, index, base); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void twoByteOpAddr(TwoByteOpcodeID opcode, int reg, uint32_t address) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRMAddr(reg, address); | 
|  | } | 
|  |  | 
|  | void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | if (regRequiresRex(b)) | 
|  | writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, b); | 
|  | else | 
|  | writer.twoBytesVex(simdPrefix, a, dest); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.registerModRM(dest, b); | 
|  | } | 
|  |  | 
|  | void vexNdsLigWigCommutativeTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b) | 
|  | { | 
|  | // Since this is a commutative operation, we can try switching the arguments. | 
|  | if (regRequiresRex(b)) | 
|  | std::swap(a, b); | 
|  | vexNdsLigWigTwoByteOp(simdPrefix, opcode, dest, a, b); | 
|  | } | 
|  |  | 
|  | void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID base, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | if (regRequiresRex(base)) | 
|  | writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, base); | 
|  | else | 
|  | writer.twoBytesVex(simdPrefix, a, dest); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(dest, base, offset); | 
|  | } | 
|  |  | 
|  | void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, int offset, RegisterID base, RegisterID index, int scale) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | if (regRequiresRex(base, index)) | 
|  | writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, index, base); | 
|  | else | 
|  | writer.twoBytesVex(simdPrefix, a, dest); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(dest, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(twoBytePrefix); | 
|  | writer.putByteUnchecked(opcode); | 
|  | } | 
|  |  | 
|  | void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode, int reg, RegisterID rm) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(reg, 0, rm); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(twoBytePrefix); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.registerModRM(reg, rm); | 
|  | } | 
|  |  | 
|  | void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode, int reg, RegisterID base, int displacement) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIfNeeded(reg, 0, base); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(twoBytePrefix); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, displacement); | 
|  | } | 
|  |  | 
|  | #if CPU(X86_64) | 
|  | // Quad-word-sized operands: | 
|  | // | 
|  | // Used to format 64-bit operantions, planting a REX.w prefix. | 
|  | // When planting d64 or f64 instructions, not requiring a REX.w prefix, | 
|  | // the normal (non-'64'-postfixed) formatters should be used. | 
|  |  | 
|  | void oneByteOp64(OneByteOpcodeID opcode) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(0, 0, 0); | 
|  | writer.putByteUnchecked(opcode); | 
|  | } | 
|  |  | 
|  | void oneByteOp64(OneByteOpcodeID opcode, RegisterID reg) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(0, 0, reg); | 
|  | writer.putByteUnchecked(opcode + (reg & 7)); | 
|  | } | 
|  |  | 
|  | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID rm) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(reg, 0, rm); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.registerModRM(reg, rm); | 
|  | } | 
|  |  | 
|  | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(reg, 0, base); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, offset); | 
|  | } | 
|  |  | 
|  | void oneByteOp64_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(reg, 0, base); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM_disp32(reg, base, offset); | 
|  | } | 
|  |  | 
|  | void oneByteOp64_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(reg, 0, base); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM_disp8(reg, base, offset); | 
|  | } | 
|  |  | 
|  | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(reg, index, base); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void oneByteOp64Addr(OneByteOpcodeID opcode, int reg, uint32_t address) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(reg, 0, 0); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRMAddr(reg, address); | 
|  | } | 
|  |  | 
|  | void twoByteOp64(TwoByteOpcodeID opcode, int reg) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(0, 0, reg); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode + (reg & 7)); | 
|  | } | 
|  |  | 
|  | void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID rm) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(reg, 0, rm); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.registerModRM(reg, rm); | 
|  | } | 
|  |  | 
|  | void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(reg, 0, base); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, offset); | 
|  | } | 
|  |  | 
|  | void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexW(reg, index, base); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, index, scale, offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Byte-operands: | 
|  | // | 
|  | // These methods format byte operations.  Byte operations differ from the normal | 
|  | // formatters in the circumstances under which they will decide to emit REX prefixes. | 
|  | // These should be used where any register operand signifies a byte register. | 
|  | // | 
|  | // The disctinction is due to the handling of register numbers in the range 4..7 on | 
|  | // x86-64.  These register numbers may either represent the second byte of the first | 
|  | // four registers (ah..bh) or the first byte of the second four registers (spl..dil). | 
|  | // | 
|  | // Since ah..bh cannot be used in all permutations of operands (specifically cannot | 
|  | // be accessed where a REX prefix is present), these are likely best treated as | 
|  | // deprecated.  In order to ensure the correct registers spl..dil are selected a | 
|  | // REX prefix will be emitted for any byte register operand in the range 4..15. | 
|  | // | 
|  | // These formatters may be used in instructions where a mix of operand sizes, in which | 
|  | // case an unnecessary REX will be emitted, for example: | 
|  | //     movzbl %al, %edi | 
|  | // In this case a REX will be planted since edi is 7 (and were this a byte operand | 
|  | // a REX would be required to specify dil instead of bh).  Unneeded REX prefixes will | 
|  | // be silently ignored by the processor. | 
|  | // | 
|  | // Address operands should still be checked using regRequiresRex(), while byteRegRequiresRex() | 
|  | // is provided to check byte register operands. | 
|  |  | 
|  | void oneByteOp8(OneByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.registerModRM(groupOp, rm); | 
|  | } | 
|  |  | 
|  | void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID rm) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIf(byteRegRequiresRex(reg, rm), reg, 0, rm); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.registerModRM(reg, rm); | 
|  | } | 
|  |  | 
|  | void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIf(byteRegRequiresRex(reg, base), reg, 0, base); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, offset); | 
|  | } | 
|  |  | 
|  | void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(index, base), reg, index, base); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | void twoByteOp8(TwoByteOpcodeID opcode, RegisterID reg, RegisterID rm) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIf(byteRegRequiresRex(reg, rm), reg, 0, rm); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.registerModRM(reg, rm); | 
|  | } | 
|  |  | 
|  | void twoByteOp8(TwoByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.registerModRM(groupOp, rm); | 
|  | } | 
|  |  | 
|  | void twoByteOp8(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIf(byteRegRequiresRex(reg, base), reg, 0, base); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, offset); | 
|  | } | 
|  |  | 
|  | void twoByteOp8(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) | 
|  | { | 
|  | SingleInstructionBufferWriter writer(m_buffer); | 
|  | writer.emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(index, base), reg, index, base); | 
|  | writer.putByteUnchecked(OP_2BYTE_ESCAPE); | 
|  | writer.putByteUnchecked(opcode); | 
|  | writer.memoryModRM(reg, base, index, scale, offset); | 
|  | } | 
|  |  | 
|  | // Immediates: | 
|  | // | 
|  | // An immediate should be appended where appropriate after an op has been emitted. | 
|  | // The writes are unchecked since the opcode formatters above will have ensured space. | 
|  |  | 
|  | void immediate8(int imm) | 
|  | { | 
|  | m_buffer.putByteUnchecked(imm); | 
|  | } | 
|  |  | 
|  | void immediate16(int imm) | 
|  | { | 
|  | m_buffer.putShortUnchecked(imm); | 
|  | } | 
|  |  | 
|  | void immediate32(int imm) | 
|  | { | 
|  | m_buffer.putIntUnchecked(imm); | 
|  | } | 
|  |  | 
|  | void immediate64(int64_t imm) | 
|  | { | 
|  | m_buffer.putInt64Unchecked(imm); | 
|  | } | 
|  |  | 
|  | AssemblerLabel immediateRel32() | 
|  | { | 
|  | m_buffer.putIntUnchecked(0); | 
|  | return label(); | 
|  | } | 
|  |  | 
|  | // Administrative methods: | 
|  |  | 
|  | size_t codeSize() const { return m_buffer.codeSize(); } | 
|  | AssemblerLabel label() const { return m_buffer.label(); } | 
|  | bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); } | 
|  | void* data() const { return m_buffer.data(); } | 
|  |  | 
|  | unsigned debugOffset() { return m_buffer.debugOffset(); } | 
|  |  | 
|  | public: | 
|  | AssemblerBuffer m_buffer; | 
|  | } m_formatter; | 
|  | int m_indexOfLastWatchpoint; | 
|  | int m_indexOfTailOfLastWatchpoint; | 
|  | }; | 
|  |  | 
|  | } // namespace JSC | 
|  |  | 
|  | #endif // ENABLE(ASSEMBLER) && CPU(X86) |