blob: fdb5320dcc4b3801f712db71d07ee3b45150e8f3 [file] [log] [blame]
/*
* Copyright (C) 2008-2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(ASSEMBLER) && (CPU(X86) || CPU(X86_64))
#include "AssemblerBuffer.h"
#include "AssemblerCommon.h"
#include "JITCompilationEffort.h"
#include "RegisterInfo.h"
#include "SIMDInfo.h"
#include <limits.h>
#include <stdint.h>
#include <wtf/Assertions.h>
#include <wtf/Vector.h>
namespace JSC {
inline bool CAN_SIGN_EXTEND_8_32(int32_t value) { return value == (int32_t)(signed char)value; }
namespace RegisterNames {
#if COMPILER(MSVC)
#define JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE
#else
#define JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE : int8_t
#endif
#define REGISTER_ID(id, name, res, cs) id,
typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE {
FOR_EACH_GP_REGISTER(REGISTER_ID)
InvalidGPRReg = -1,
} RegisterID;
typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE {
FOR_EACH_SP_REGISTER(REGISTER_ID)
} SPRegisterID;
typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE {
FOR_EACH_FP_REGISTER(REGISTER_ID)
InvalidFPRReg = -1,
} XMMRegisterID;
#undef REGISTER_ID
} // namespace X86Registers
class X86Assembler {
public:
typedef X86Registers::RegisterID RegisterID;
static constexpr RegisterID firstRegister() { return X86Registers::eax; }
static constexpr RegisterID lastRegister()
{
#if CPU(X86_64)
return X86Registers::r15;
#else
return X86Registers::edi;
#endif
}
static constexpr unsigned numberOfRegisters() { return lastRegister() - firstRegister() + 1; }
typedef X86Registers::SPRegisterID SPRegisterID;
static constexpr SPRegisterID firstSPRegister() { return X86Registers::eip; }
static constexpr SPRegisterID lastSPRegister() { return X86Registers::eflags; }
static constexpr unsigned numberOfSPRegisters() { return lastSPRegister() - firstSPRegister() + 1; }
typedef X86Registers::XMMRegisterID XMMRegisterID;
typedef XMMRegisterID FPRegisterID;
static constexpr FPRegisterID firstFPRegister() { return X86Registers::xmm0; }
static constexpr FPRegisterID lastFPRegister()
{
#if CPU(X86_64)
return X86Registers::xmm15;
#else
return X86Registers::xmm7;
#endif
}
static constexpr unsigned numberOfFPRegisters() { return lastFPRegister() - firstFPRegister() + 1; }
static const char* gprName(RegisterID id)
{
ASSERT(id >= firstRegister() && id <= lastRegister());
static const char* const nameForRegister[numberOfRegisters()] = {
#define REGISTER_NAME(id, name, res, cs) name,
FOR_EACH_GP_REGISTER(REGISTER_NAME)
#undef REGISTER_NAME
};
return nameForRegister[id];
}
static const char* sprName(SPRegisterID id)
{
ASSERT(id >= firstSPRegister() && id <= lastSPRegister());
static const char* const nameForRegister[numberOfSPRegisters()] = {
#define REGISTER_NAME(id, name, res, cs) name,
FOR_EACH_SP_REGISTER(REGISTER_NAME)
#undef REGISTER_NAME
};
return nameForRegister[id];
}
static const char* fprName(FPRegisterID reg)
{
ASSERT(reg >= firstFPRegister() && reg <= lastFPRegister());
static const char* const nameForRegister[numberOfFPRegisters()] = {
#define REGISTER_NAME(id, name, res, cs) name,
FOR_EACH_FP_REGISTER(REGISTER_NAME)
#undef REGISTER_NAME
};
return nameForRegister[reg];
}
typedef enum {
ConditionO,
ConditionNO,
ConditionB,
ConditionAE,
ConditionE,
ConditionNE,
ConditionBE,
ConditionA,
ConditionS,
ConditionNS,
ConditionP,
ConditionNP,
ConditionL,
ConditionGE,
ConditionLE,
ConditionG,
ConditionC = ConditionB,
ConditionNC = ConditionAE,
} Condition;
private:
// OneByteOpcodeID defines the bytecode for 1 byte instruction. It also contains the prefixes
// for two bytes instructions.
// TwoByteOpcodeID, ThreeByteOpcodeID define the opcodes for the multibytes instructions.
//
// The encoding for each instruction can be found in the Intel Architecture Manual in the appendix
// "Opcode Map."
//
// Each opcode can have a suffix describing the type of argument. The full list of suffixes is
// in the "Key to Abbreviations" section of the "Opcode Map".
// The most common argument types are:
// -E: The argument is either a GPR or a memory address.
// -G: The argument is a GPR.
// -I: The argument is an immediate.
// The most common sizes are:
// -v: 32 or 64bit depending on the operand-size attribute.
// -z: 32bit in both 32bit and 64bit mode. Common for immediate values.
typedef enum {
OP_ADD_EbGb = 0x00,
PRE_SSE_00 = 0x00,
OP_ADD_EvGv = 0x01,
OP_ADD_GvEv = 0x03,
OP_ADD_EAXIv = 0x05,
OP_OR_EvGb = 0x08,
OP_OR_EvGv = 0x09,
OP_OR_GvEv = 0x0B,
OP_OR_EAXIv = 0x0D,
OP_2BYTE_ESCAPE = 0x0F,
OP_AND_EvGb = 0x20,
OP_AND_EvGv = 0x21,
OP_AND_GvEv = 0x23,
OP_SUB_EvGb = 0x28,
OP_SUB_EvGv = 0x29,
OP_SUB_GvEv = 0x2B,
OP_SUB_EAXIv = 0x2D,
PRE_PREDICT_BRANCH_NOT_TAKEN = 0x2E,
OP_XOR_EvGb = 0x30,
OP_XOR_EvGv = 0x31,
OP_XOR_GvEv = 0x33,
OP_XOR_EAXIv = 0x35,
OP_CMP_EvGv = 0x39,
OP_CMP_GvEv = 0x3B,
OP_CMP_EAXIv = 0x3D,
#if CPU(X86_64)
PRE_REX = 0x40,
#endif
OP_PUSH_EAX = 0x50,
OP_POP_EAX = 0x58,
#if CPU(X86_64)
OP_MOVSXD_GvEv = 0x63,
#endif
PRE_GS = 0x65,
PRE_OPERAND_SIZE = 0x66,
PRE_SSE_66 = 0x66,
OP_PUSH_Iz = 0x68,
OP_IMUL_GvEvIz = 0x69,
OP_GROUP1_EbIb = 0x80,
OP_GROUP1_EvIz = 0x81,
OP_GROUP1_EvIb = 0x83,
OP_TEST_EbGb = 0x84,
OP_TEST_EvGv = 0x85,
OP_XCHG_EvGb = 0x86,
OP_XCHG_EvGv = 0x87,
OP_MOV_EbGb = 0x88,
OP_MOV_EvGv = 0x89,
OP_MOV_GvEv = 0x8B,
OP_LEA = 0x8D,
OP_GROUP1A_Ev = 0x8F,
OP_NOP = 0x90,
OP_XCHG_EAX = 0x90,
OP_PAUSE = 0x90,
OP_CDQ = 0x99,
OP_MOV_EAXOv = 0xA1,
OP_MOV_OvEAX = 0xA3,
OP_TEST_ALIb = 0xA8,
OP_TEST_EAXIv = 0xA9,
OP_MOV_EAXIv = 0xB8,
OP_GROUP2_EvIb = 0xC1,
OP_RET = 0xC3,
OP_GROUP11_EvIb = 0xC6,
OP_GROUP11_EvIz = 0xC7,
OP_INT3 = 0xCC,
OP_GROUP2_Ev1 = 0xD1,
OP_GROUP2_EvCL = 0xD3,
OP_ESCAPE_D9 = 0xD9,
OP_ESCAPE_DD = 0xDD,
OP_CALL_rel32 = 0xE8,
OP_JMP_rel32 = 0xE9,
PRE_LOCK = 0xF0,
PRE_SSE_F2 = 0xF2,
PRE_SSE_F3 = 0xF3,
OP_HLT = 0xF4,
OP_GROUP3_Eb = 0xF6,
OP_GROUP3_EbIb = 0xF6,
OP_GROUP3_Ev = 0xF7,
OP_GROUP3_EvIz = 0xF7, // OP_GROUP3_Ev has an immediate, when instruction is a test.
OP_GROUP5_Ev = 0xFF,
} OneByteOpcodeID;
typedef enum {
OP2_UD2 = 0xB,
OP2_MOVSD_VsdWsd = 0x10,
OP2_MOVUPS_VsdWsd = 0x10,
OP2_MOVSS_VsdWsd = 0x10,
OP2_MOVSD_WsdVsd = 0x11,
OP2_MOVUPS_WsdVsd = 0x11,
OP2_MOVSS_WsdVsd = 0x11,
OP2_MOVDDUP_VqWq = 0x12,
OP2_MOVHLPS_VqUq = 0x12,
OP2_MOVSLDUP_VqWq = 0x12,
OP2_UNPCKLPD_VpdWpd = 0x14,
OP2_UNPCKHPD_VpdWpd = 0x15,
OP2_MOVSHDUP_VqWq = 0x16,
OP2_MOVAPD_VpdWpd = 0x28,
OP2_MOVAPS_VpsWps = 0x28,
OP2_MOVAPS_WpsVps = 0x29,
OP2_CVTSI2SS_VssEs = 0x2A,
OP2_CVTSI2SD_VsdEd = 0x2A,
OP2_CVTTSD2SI_GdWsd = 0x2C,
OP2_CVTTSS2SI_GdWsd = 0x2C,
OP2_UCOMISS_VssWss = 0x2E,
OP2_UCOMISD_VsdWsd = 0x2E,
OP2_RDTSC = 0x31,
OP2_3BYTE_ESCAPE_38 = 0x38,
OP2_3BYTE_ESCAPE_3A = 0x3A,
OP2_CMOVCC = 0x40,
OP2_MOVMSKPD_VdEd = 0x50,
OP2_SQRTSD_VsdWsd = 0x51,
OP2_SQRTSS_VssWss = 0x51,
OP2_ANDPS_VpsWps = 0x54,
OP2_ANDPD_VpdWpd = 0x54,
OP2_ANDNPS_VpsWps = 0x55,
OP2_ANDNPD_VpdWpd = 0x55,
OP2_ORPS_VpsWps = 0x56,
OP2_ORPD_VpdWpd = 0x56,
OP2_XORPS_VpsWps = 0x57,
OP2_XORPD_VpdWpd = 0x57,
OP2_ADDSD_VsdWsd = 0x58,
OP2_MULSD_VsdWsd = 0x59,
OP2_CVTSD2SS_VsdWsd = 0x5A,
OP2_CVTPS2PD_VsdWsd = 0x5A,
OP2_CVTSS2SD_VsdWsd = 0x5A,
OP2_CVTPD2PS_VsdWsd = 0x5A,
OP2_CVTDQ2PS_VsdWsd = 0x5B,
OP2_SUBSD_VsdWsd = 0x5C,
OP2_MINPS_VpsWps = 0x5D,
OP2_MINPD_VpdWpd = 0x5D,
OP2_DIVSD_VsdWsd = 0x5E,
OP2_MAXPS_VpsWps = 0x5F,
OP2_MAXPD_VpdWpd = 0x5F,
OP2_PUNPCKLBW_VdqWdq = 0x60,
OP2_PACKSSWB_VdqWdq = 0x63,
OP2_PACKUSWB_VdqWdq = 0x67,
OP2_PUNPCKHBW_VdqWdq = 0x68,
OP2_PACKSSDW_VdqWdq = 0x6B,
OP2_PUNPCKLQDQ_VdqWdq = 0x6C,
OP2_MOVD_VdEd = 0x6E,
OP2_MOVQ_PqQq = 0x6E,
OP2_MOVDQA_VdqWdq = 0x6F,
OP2_PSHUFD_VdqWdqIb = 0x70,
OP2_PSHUFLW_VdqWdqIb = 0x70,
OP2_PSHUFHW_VdqWdqIb = 0x70,
OP2_PSLLW_UdqIb = 0x71,
OP2_PSRLW_UdqIb = 0x71,
OP2_PSRAW_UdqIb = 0x71,
OP2_PSLLD_UdqIb = 0x72,
OP2_PSRLD_UdqIb = 0x72,
OP2_PSRAD_UdqIb = 0x72,
OP2_PSLLQ_UdqIb = 0x73,
OP2_PSRLQ_UdqIb = 0x73,
OP2_VZEROUPPER = 0x77,
OP2_MOVD_EdVd = 0x7E,
OP2_MOVQ_QqPq = 0x7E,
OP2_JCC_rel32 = 0x80,
OP_SETCC = 0x90,
OP2_CPUID = 0xA2,
OP2_BT_EvEv = 0xA3,
OP2_3BYTE_ESCAPE_AE = 0xAE,
OP2_IMUL_GvEv = 0xAF,
OP2_CMPXCHGb = 0xB0,
OP2_CMPXCHG = 0xB1,
OP2_BTR = 0xB3,
OP2_MOVZX_GvEb = 0xB6,
OP2_POPCNT = 0xB8,
OP2_GROUP_BT_EvIb = 0xBA,
OP2_BSF = 0xBC,
OP2_TZCNT = 0xBC,
OP2_BSR = 0xBD,
OP2_LZCNT = 0xBD,
OP2_MOVSX_GvEb = 0xBE,
OP2_MOVZX_GvEw = 0xB7,
OP2_MOVSX_GvEw = 0xBF,
OP2_XADDb = 0xC0,
OP2_XADD = 0xC1,
OP2_PINSRW_VdqRdqp = 0xC4,
OP2_PEXTRW_GdUdIb = 0xC5,
OP2_SHUFPD_VpdWpdIb = 0xC6,
OP2_SHUFPS_VpdWpdIb = 0xC6,
OP2_BSWAP = 0xC8,
OP2_PSUBUSB_VdqWdq = 0xD8,
OP2_PSUBUSW_VdqWdq = 0xD9,
OP2_VPAND_VxHxWx = 0xDB,
OP2_PADDUSB_VdqWdq = 0xDC,
OP2_PADDUSW_VdqWdq = 0xDD,
OP2_PAVGB_VdqWdq = 0xE0,
OP2_PAVGW_VdqWdq = 0xE3,
OP2_CVTDQ2PD_VdqWdq = 0xE6,
OP2_CVTDPD2DQ_VdqWdq = 0xE6,
OP2_PSUBSB_VdqWdq = 0xE8,
OP2_PSUBSW_VdqWdq = 0xE9,
OP2_POR_VdqWdq = 0XEB,
OP2_PADDSB_VdqWdq = 0xEC,
OP2_PADDSW_VdqWdq = 0xED,
OP2_PXOR_VdqWdq = 0xEF,
OP2_PADDB_VdqWdq = 0xFC,
OP2_PADDW_VdqWdq = 0xFD,
OP2_PADDD_VdqWdq = 0xFE,
OP2_PADDQ_VdqWdq = 0xD4,
OP2_PSUBB_VdqWdq = 0xF8,
OP2_PSUBW_VdqWdq = 0xF9,
OP2_PSUBD_VdqWdq = 0xFA,
OP2_PSUBQ_VdqWdq = 0xFB,
OP2_PMULLW_VdqWdq = 0xD5,
OP2_PMOVMSKB_GdqpUdq = 0xD7,
OP2_ADDPS_VpsWps = 0x58,
OP2_ADDPD_VpdWpd = 0x58,
OP2_SUBPS_VpsWps = 0x5C,
OP2_SUBPD_VpdWpd = 0x5C,
OP2_MULPS_VpsWps = 0x59,
OP2_MULPD_VpdWpd = 0x59,
OP2_DIVPS_VpsWps = 0x5E,
OP2_DIVPD_VpdWpd = 0x5E,
OP2_DIVSS_VpsWps = 0x5E,
OP2_SQRTPS_VpsWps = 0x51,
OP2_SQRTPD_VpdWpd = 0x51,
OP2_PMADDWD_VdqWdq = 0xF5,
OP2_VPSLLD_VxHxWx = 0x72,
OP2_PCMPEQB_VdqWdq = 0x74,
OP2_PCMPEQW_VdqWdq = 0x75,
OP2_PCMPEQD_VdqWdq = 0x76,
OP2_PCMPGTB_VdqWdq = 0x64,
OP2_PCMPGTW_VdqWdq = 0x65,
OP2_PCMPGTD_VdqWdq = 0x66,
OP2_CMPPS_VpsWpsIb = 0xC2,
OP2_CMPPD_VpdWpdIb = 0xC2,
OP2_PMAXSW_VdqWdq = 0xEE,
OP2_PMAXUB_VdqWdq = 0xDE,
OP2_PMINSW_VdqWdq = 0xEA,
OP2_PMINUB_VdqWdq = 0xDA,
OP2_PSRLW_VdqWdq = 0xD1,
OP2_PSRLD_VdqWdq = 0xD2,
OP2_PSRLQ_VdqWdq = 0xD3,
OP2_PSRAW_VdqWdq = 0xE1,
OP2_PSRAD_VdqWdq = 0xE2,
OP2_PSLLW_VdqWdq = 0xF1,
OP2_PSLLD_VdqWdq = 0xF2,
OP2_PSLLQ_VdqWdq = 0xF3,
OP2_PMOVMSKB_EqWdq = 0xD7,
OP2_MOVMSKPS_EqWps = 0x50,
OP2_MOVMSKPD_EqWpd = 0x50,
} TwoByteOpcodeID;
typedef enum {
OP3_PSHUFB_VdqWdq = 0x00,
OP3_PMADDUBSW_VpdWpd = 0x04,
OP3_ROUNDPD_MbVdqIb = 0x09,
OP3_ROUNDSS_VssWssIb = 0x0A,
OP3_ROUNDSD_VsdWsdIb = 0x0B,
OP3_VPBLENDW_VxHxWxIb = 0x0E,
OP3_PEXTRB_MbVdqIb = 0x14,
OP3_PEXTRW_MwVdqIb = 0x15,
OP3_PEXTRD_EyVdqIb = 0x16,
OP3_PEXTRQ_EyVdqIb = 0x16,
OP3_EXTRACTPS_EdVdqIb = 0x17,
OP3_VBROADCASTSS_VxWd = 0x18,
OP3_VPMOVSXBW_VxUx = 0x20,
OP3_PABSB_VdqWdq = 0x1C,
OP3_PABSW_VdqWdq = 0x1D,
OP3_PABSD_VdqWdq = 0x1E,
OP3_INSERTPS_VpsUpsIb = 0x21,
OP3_PINSRB_VdqRdqpIb = 0x20,
OP3_PINSRD_VdqEdIb = 0x22,
OP3_PINSRQ_VdqEqbIb = 0x22,
OP3_VPMOVSXWD_VxUx = 0x23,
OP3_VPMOVSXDQ_VxUx = 0x25,
OP3_VPACKUSDW_VxHxWx = 0x2B,
OP3_VPMOVZXBW_VxUx = 0x30,
OP3_VPMOVZXWD_VxUx = 0x33,
OP3_VPMOVZXDQ_VxUx = 0x35,
OP3_BLENDVPD_VpdWpdXMM0 = 0x4B,
OP3_LFENCE = 0xE8,
OP3_MFENCE = 0xF0,
OP3_SFENCE = 0xF8,
OP3_ROUNDPS_VpsWpsIb = 0x08,
OP3_ROUNDPD_VpdWpdIb = 0x09,
OP3_PMULLD_VdqWdq = 0x40,
OP3_PCMPEQQ_VdqWdq = 0x29,
OP3_PCMPGTQ_VdqWdq = 0x37,
OP3_PMINSB_VdqWdq = 0x38,
OP3_PMINSD_VdqWdq = 0x39,
OP3_PMINUW_VdqWdq = 0x3A,
OP3_PMINUD_VdqWdq = 0x3B,
OP3_PMAXSB_VdqWdq = 0x3C,
OP3_PMAXSD_VdqWdq = 0x3D,
OP3_PMAXUW_VdqWdq = 0x3E,
OP3_PMAXUD_VdqWdq = 0x3F,
OP3_PTEST_VdqWdq = 0x17,
} ThreeByteOpcodeID;
enum class VexPrefix : uint8_t {
TwoBytes = 0xC5,
ThreeBytes = 0xC4,
};
// Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (0F, 0F 38, or 0F 3A).
// Several bits are reserved for future use and will #UD unless 0.
enum class VexImpliedBytes : uint8_t {
TwoBytesOp = 0b01, // 0F
ThreeBytesOp38 = 0b10, // 0F 38
ThreeBytesOp3A = 0b11, // 0F 3A
};
enum class VexW : uint8_t {
W0 = 0,
W1 = 1,
};
TwoByteOpcodeID cmovcc(Condition cond)
{
return (TwoByteOpcodeID)(OP2_CMOVCC + static_cast<TwoByteOpcodeID>(cond));
}
TwoByteOpcodeID jccRel32(Condition cond)
{
return (TwoByteOpcodeID)(OP2_JCC_rel32 + static_cast<TwoByteOpcodeID>(cond));
}
TwoByteOpcodeID setccOpcode(Condition cond)
{
return (TwoByteOpcodeID)(OP_SETCC + static_cast<TwoByteOpcodeID>(cond));
}
typedef enum {
GROUP1_OP_ADD = 0,
GROUP1_OP_OR = 1,
GROUP1_OP_ADC = 2,
GROUP1_OP_AND = 4,
GROUP1_OP_SUB = 5,
GROUP1_OP_XOR = 6,
GROUP1_OP_CMP = 7,
GROUP1A_OP_POP = 0,
GROUP2_OP_ROL = 0,
GROUP2_OP_ROR = 1,
GROUP2_OP_RCL = 2,
GROUP2_OP_RCR = 3,
GROUP2_OP_SHL = 4,
GROUP2_OP_SHR = 5,
GROUP2_OP_SAR = 7,
GROUP3_OP_TEST = 0,
GROUP3_OP_NOT = 2,
GROUP3_OP_NEG = 3,
GROUP3_OP_DIV = 6,
GROUP3_OP_IDIV = 7,
GROUP5_OP_CALLN = 2,
GROUP5_OP_JMPN = 4,
GROUP5_OP_PUSH = 6,
GROUP11_MOV = 0,
GROUP14_OP_PSLLD = 6,
GROUP14_OP_PSLLQ = 6,
GROUP14_OP_PSRAQ = 4,
GROUP14_OP_PSRLQ = 2,
ESCAPE_D9_FSTP_singleReal = 3,
ESCAPE_DD_FSTP_doubleReal = 3,
GROUP_BT_OP_BT = 4,
} GroupOpcodeID;
class X86InstructionFormatter;
public:
X86Assembler()
: m_indexOfLastWatchpoint(INT_MIN)
, m_indexOfTailOfLastWatchpoint(INT_MIN)
{
}
AssemblerBuffer& buffer() { return m_formatter.m_buffer; }
// Stack operations:
void push_r(RegisterID reg)
{
m_formatter.oneByteOp(OP_PUSH_EAX, reg);
}
void pop_r(RegisterID reg)
{
m_formatter.oneByteOp(OP_POP_EAX, reg);
}
void push_i32(int imm)
{
m_formatter.oneByteOp(OP_PUSH_Iz);
m_formatter.immediate32(imm);
}
void push_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_PUSH, base, offset);
}
void pop_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1A_Ev, GROUP1A_OP_POP, base, offset);
}
// Arithmetic operations:
#if !CPU(X86_64)
void adcl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_ADC, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_ADC, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
#endif
void addl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_ADD_EvGv, src, dst);
}
void addl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, offset);
}
void addl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, index, scale, offset);
}
#if !CPU(X86_64)
void addl_mr(const void* addr, RegisterID dst)
{
m_formatter.oneByteOpAddr(OP_ADD_GvEv, dst, bitwise_cast<uint32_t>(addr));
}
#endif
void addl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_ADD_EvGv, src, base, offset);
}
void addl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_ADD_EvGv, src, base, index, scale, offset);
}
void addb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp8(OP_ADD_EbGb, src, base, offset);
}
void addb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp8(OP_ADD_EbGb, src, base, index, scale, offset);
}
void addw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp8(OP_ADD_EvGv, src, base, offset);
}
void addw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp8(OP_ADD_EvGv, src, base, index, scale, offset);
}
void addl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_ADD_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst);
m_formatter.immediate32(imm);
}
}
void addl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset);
m_formatter.immediate32(imm);
}
}
void addl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void addb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp8(OP_GROUP1_EbIb, GROUP1_OP_ADD, base, offset);
m_formatter.immediate8(imm);
}
void addb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp8(OP_GROUP1_EbIb, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate8(imm);
}
void addw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp8(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp8(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset);
m_formatter.immediate16(imm);
}
}
void addw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp8(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp8(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
#if CPU(X86_64)
void addq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_ADD_EvGv, src, dst);
}
void addq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_ADD_GvEv, dst, base, offset);
}
void addq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_ADD_GvEv, dst, base, index, scale, offset);
}
void addq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_ADD_EvGv, src, base, offset);
}
void addq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_ADD_EvGv, src, base, index, scale, offset);
}
void addq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_ADD_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst);
m_formatter.immediate32(imm);
}
}
void addq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset);
m_formatter.immediate32(imm);
}
}
void addq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
#else
void addl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_ADD, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_ADD, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
#endif
void andl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_AND_EvGv, src, dst);
}
void andl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_AND_GvEv, dst, base, offset);
}
void andl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_AND_GvEv, dst, base, index, scale, offset);
}
void andw_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
andl_mr(offset, base, dst);
}
void andw_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
andl_mr(offset, base, index, scale, dst);
}
void andl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_AND_EvGv, src, base, offset);
}
void andl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_AND_EvGv, src, base, index, scale, offset);
}
void andw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
andl_rm(src, offset, base);
}
void andw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
andl_rm(src, offset, base, index, scale);
}
void andb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_AND_EvGb, src, base, offset);
}
void andb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_AND_EvGb, src, base, index, scale, offset);
}
void andl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, dst);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, dst);
m_formatter.immediate32(imm);
}
}
void andl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset);
m_formatter.immediate32(imm);
}
}
void andl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void andw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset);
m_formatter.immediate16(imm);
}
}
void andw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
void andb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_AND, base, offset);
m_formatter.immediate8(imm);
}
void andb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if CPU(X86_64)
void andq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_AND_EvGv, src, dst);
}
void andq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, dst);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, dst);
m_formatter.immediate32(imm);
}
}
void andq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_AND_GvEv, dst, base, offset);
}
void andq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_AND_GvEv, dst, base, index, scale, offset);
}
void andq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_AND_EvGv, src, base, offset);
}
void andq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_AND_EvGv, src, base, index, scale, offset);
}
void andq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset);
m_formatter.immediate32(imm);
}
}
void andq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
#else
void andl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_AND, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_AND, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
#endif
void dec_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP1_OP_OR, dst);
}
#if CPU(X86_64)
void decq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_OR, dst);
}
#endif // CPU(X86_64)
// Only used for testing purposes.
void illegalInstruction()
{
m_formatter.twoByteOp(OP2_UD2);
}
void inc_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP1_OP_ADD, dst);
}
#if CPU(X86_64)
void incq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, dst);
}
void incq_m(int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, base, offset);
}
void incq_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, base, index, scale, offset);
}
#endif // CPU(X86_64)
void negl_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, dst);
}
#if CPU(X86_64)
void negq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, dst);
}
void negq_m(int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset);
}
void negq_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, base, index, scale, offset);
}
#endif
void negl_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset);
}
void negl_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, index, scale, offset);
}
void negw_m(int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
negl_m(offset, base);
}
void negw_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
negl_m(offset, base, index, scale);
}
void negb_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NEG, base, offset);
}
void negb_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NEG, base, index, scale, offset);
}
void notl_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, dst);
}
void notl_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset);
}
void notl_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, index, scale, offset);
}
void notw_m(int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
notl_m(offset, base);
}
void notw_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
notl_m(offset, base, index, scale);
}
void notb_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NOT, base, offset);
}
void notb_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NOT, base, index, scale, offset);
}
#if CPU(X86_64)
void notq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, dst);
}
void notq_m(int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset);
}
void notq_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, base, index, scale, offset);
}
#endif
void orl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_OR_EvGv, src, dst);
}
void orl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_OR_GvEv, dst, base, offset);
}
void orl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_OR_GvEv, dst, base, index, scale, offset);
}
void orl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_OR_EvGv, src, base, offset);
}
void orl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_OR_EvGv, src, base, index, scale, offset);
}
void orw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
orl_rm(src, offset, base);
}
void orw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
orl_rm(src, offset, base, index, scale);
}
void orb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_OR_EvGb, src, base, offset);
}
void orb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_OR_EvGb, src, base, index, scale, offset);
}
void orl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_OR_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, dst);
m_formatter.immediate32(imm);
}
}
void orl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset);
m_formatter.immediate32(imm);
}
}
void orl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void orw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset);
m_formatter.immediate16(imm);
}
}
void orw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
void orb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_OR, base, offset);
m_formatter.immediate8(imm);
}
void orb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if CPU(X86_64)
void orq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_OR_EvGv, src, dst);
}
void orq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_OR_GvEv, dst, base, offset);
}
void orq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_OR_GvEv, dst, base, index, scale, offset);
}
void orq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_OR_EvGv, src, base, offset);
}
void orq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_OR_EvGv, src, base, index, scale, offset);
}
void orq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset);
m_formatter.immediate32(imm);
}
}
void orq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void orq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_OR_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, dst);
m_formatter.immediate32(imm);
}
}
#else
void orl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_OR, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_OR, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
void orl_rm(RegisterID src, const void* addr)
{
m_formatter.oneByteOpAddr(OP_OR_EvGv, src, bitwise_cast<uint32_t>(addr));
}
#endif
void subl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_SUB_EvGv, src, dst);
}
void subl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, offset);
}
void subl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, index, scale, offset);
}
void subl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset);
}
void subl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_SUB_EvGv, src, base, index, scale, offset);
}
void subw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset);
}
void subw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_SUB_EvGv, src, base, index, scale, offset);
}
void subb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_SUB_EvGb, src, base, offset);
}
void subb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_SUB_EvGb, src, base, index, scale, offset);
}
void subl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_SUB_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst);
m_formatter.immediate32(imm);
}
}
void subl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset);
m_formatter.immediate32(imm);
}
}
void subl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void subw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset);
m_formatter.immediate16(imm);
}
}
void subw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
void subb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_SUB, base, offset);
m_formatter.immediate8(imm);
}
void subb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if CPU(X86_64)
void subq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_SUB_EvGv, src, dst);
}
void subq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_SUB_GvEv, dst, base, offset);
}
void subq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_SUB_GvEv, dst, base, index, scale, offset);
}
void subq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_SUB_EvGv, src, base, offset);
}
void subq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_SUB_EvGv, src, base, index, scale, offset);
}
void subq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_SUB_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst);
m_formatter.immediate32(imm);
}
}
void subq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset);
m_formatter.immediate32(imm);
}
}
void subq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
#else
void subl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_SUB, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_SUB, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
#endif
void xorl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_XOR_EvGv, src, dst);
}
void xorl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, offset);
}
void xorl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, index, scale, offset);
}
void xorl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_XOR_EvGv, src, base, offset);
}
void xorl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_XOR_EvGv, src, base, index, scale, offset);
}
void xorl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset);
m_formatter.immediate32(imm);
}
}
void xorl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void xorw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
xorl_rm(src, offset, base);
}
void xorw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
xorl_rm(src, offset, base, index, scale);
}
void xorw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset);
m_formatter.immediate16(imm);
}
}
void xorw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
void xorb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_XOR_EvGb, src, base, offset);
}
void xorb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_XOR_EvGb, src, base, index, scale, offset);
}
void xorb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_XOR, base, offset);
m_formatter.immediate8(imm);
}
void xorb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate8(imm);
}
void xorl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_XOR_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst);
m_formatter.immediate32(imm);
}
}
#if CPU(X86_64)
void xorq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_XOR_EvGv, src, dst);
}
void xorq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_XOR_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst);
m_formatter.immediate32(imm);
}
}
void xorq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset);
m_formatter.immediate32(imm);
}
}
void xorq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void xorq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_XOR_EvGv, src, base, offset);
}
void xorq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_XOR_EvGv, src, base, index, scale, offset);
}
void xorq_mr(int offset, RegisterID base, RegisterID dest)
{
m_formatter.oneByteOp64(OP_XOR_GvEv, dest, base, offset);
}
void xorq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dest)
{
m_formatter.oneByteOp64(OP_XOR_GvEv, dest, base, index, scale, offset);
}
#endif
void lzcnt_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_LZCNT, dst, src);
}
void lzcnt_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_LZCNT, dst, base, offset);
}
#if CPU(X86_64)
void lzcntq_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_LZCNT, dst, src);
}
void lzcntq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_LZCNT, dst, base, offset);
}
#endif
void bsr_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(OP2_BSR, dst, src);
}
void bsr_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_BSR, dst, base, offset);
}
#if CPU(X86_64)
void bsrq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(OP2_BSR, dst, src);
}
void bsrq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp64(OP2_BSR, dst, base, offset);
}
#endif
void bswapl_r(RegisterID dst)
{
m_formatter.twoByteOp(OP2_BSWAP, dst);
}
#if CPU(X86_64)
void bswapq_r(RegisterID dst)
{
m_formatter.twoByteOp64(OP2_BSWAP, dst);
}
#endif
void tzcnt_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_TZCNT, dst, src);
}
#if CPU(X86_64)
void tzcntq_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_TZCNT, dst, src);
}
#endif
void bsf_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(OP2_BSF, dst, src);
}
#if CPU(X86_64)
void bsfq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(OP2_BSF, dst, src);
}
#endif
#if CPU(X86_64)
void btrq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(OP2_BTR, dst, src);
}
#endif
void popcnt_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_POPCNT, dst, src);
}
void popcnt_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_POPCNT, dst, base, offset);
}
#if CPU(X86_64)
void popcntq_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_POPCNT, dst, src);
}
void popcntq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_POPCNT, dst, base, offset);
}
#endif
private:
template<GroupOpcodeID op>
void shiftInstruction32(int imm, RegisterID dst)
{
if (imm == 1)
m_formatter.oneByteOp(OP_GROUP2_Ev1, op, dst);
else {
m_formatter.oneByteOp(OP_GROUP2_EvIb, op, dst);
m_formatter.immediate8(imm & 31);
}
}
template<GroupOpcodeID op>
void shiftInstruction16(int imm, RegisterID dst)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (imm == 1)
m_formatter.oneByteOp(OP_GROUP2_Ev1, op, dst);
else {
m_formatter.oneByteOp(OP_GROUP2_EvIb, op, dst);
m_formatter.immediate8(imm);
}
}
public:
void sarl_i8r(int imm, RegisterID dst)
{
shiftInstruction32<GROUP2_OP_SAR>(imm, dst);
}
void sarl_CLr(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst);
}
void shrl_i8r(int imm, RegisterID dst)
{
shiftInstruction32<GROUP2_OP_SHR>(imm, dst);
}
void shrl_CLr(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst);
}
void shll_i8r(int imm, RegisterID dst)
{
shiftInstruction32<GROUP2_OP_SHL>(imm, dst);
}
void shll_CLr(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst);
}
void rorl_i8r(int imm, RegisterID dst)
{
shiftInstruction32<GROUP2_OP_ROR>(imm, dst);
}
void rorl_CLr(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_ROR, dst);
}
void roll_i8r(int imm, RegisterID dst)
{
shiftInstruction32<GROUP2_OP_ROL>(imm, dst);
}
void roll_CLr(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_ROL, dst);
}
void rolw_i8r(int imm, RegisterID dst)
{
shiftInstruction16<GROUP2_OP_ROL>(imm, dst);
}
#if CPU(X86_64)
private:
template<GroupOpcodeID op>
void shiftInstruction64(int imm, RegisterID dst)
{
if (imm == 1)
m_formatter.oneByteOp64(OP_GROUP2_Ev1, op, dst);
else {
m_formatter.oneByteOp64(OP_GROUP2_EvIb, op, dst);
m_formatter.immediate8(imm & 63);
}
}
public:
void sarq_CLr(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst);
}
void sarq_i8r(int imm, RegisterID dst)
{
shiftInstruction64<GROUP2_OP_SAR>(imm, dst);
}
void shrq_i8r(int imm, RegisterID dst)
{
shiftInstruction64<GROUP2_OP_SHR>(imm, dst);
}
void shrq_CLr(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst);
}
void shlq_i8r(int imm, RegisterID dst)
{
shiftInstruction64<GROUP2_OP_SHL>(imm, dst);
}
void shlq_CLr(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst);
}
void rorq_i8r(int imm, RegisterID dst)
{
shiftInstruction64<GROUP2_OP_ROR>(imm, dst);
}
void rorq_CLr(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_ROR, dst);
}
void rolq_i8r(int imm, RegisterID dst)
{
shiftInstruction64<GROUP2_OP_ROL>(imm, dst);
}
void rolq_CLr(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_ROL, dst);
}
#endif // CPU(X86_64)
void imull_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, src);
}
#if CPU(X86_64)
void imulq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(OP2_IMUL_GvEv, dst, src);
}
#endif // CPU(X86_64)
void imull_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, base, offset);
}
void imull_i32r(RegisterID src, int32_t value, RegisterID dst)
{
m_formatter.oneByteOp(OP_IMUL_GvEvIz, dst, src);
m_formatter.immediate32(value);
}
void divl_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_DIV, dst);
}
void idivl_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst);
}
#if CPU(X86_64)
void divq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_DIV, dst);
}
void idivq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst);
}
#endif // CPU(X86_64)
// Comparisons:
void cmpl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_CMP_EvGv, src, dst);
}
void cmpl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_CMP_EvGv, src, base, offset);
}
void cmpl_mr(int offset, RegisterID base, RegisterID src)
{
m_formatter.oneByteOp(OP_CMP_GvEv, src, base, offset);
}
void cmpl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_CMP_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
m_formatter.immediate32(imm);
}
}
void cmpl_ir_force32(int imm, RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
m_formatter.immediate32(imm);
}
void cmpl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset);
m_formatter.immediate32(imm);
}
}
void cmpb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, offset);
m_formatter.immediate8(imm);
}
void cmpb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if CPU(X86)
void cmpb_im(int imm, const void* addr)
{
m_formatter.oneByteOpAddr(OP_GROUP1_EbIb, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
}
#endif
void cmpl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void cmpl_im_force32(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset);
m_formatter.immediate32(imm);
}
#if CPU(X86_64)
void cmpq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_CMP_EvGv, src, dst);
}
void cmpq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, offset);
}
void cmpq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, index, scale, offset);
}
void cmpq_mr(int offset, RegisterID base, RegisterID src)
{
m_formatter.oneByteOp64(OP_CMP_GvEv, src, base, offset);
}
void cmpq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_CMP_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
m_formatter.immediate32(imm);
}
}
void cmpq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset);
m_formatter.immediate32(imm);
}
}
void cmpq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
#else
void cmpl_rm(RegisterID reg, const void* addr)
{
m_formatter.oneByteOpAddr(OP_CMP_EvGv, reg, bitwise_cast<uint32_t>(addr));
}
void cmpl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
#endif
void cmpw_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst);
m_formatter.immediate8(imm);
} else {
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
m_formatter.immediate16(imm);
}
}
void cmpw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_CMP_EvGv, src, base, index, scale, offset);
}
void cmpw_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset);
m_formatter.immediate16(imm);
}
}
void cmpw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
void testl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_TEST_EvGv, src, dst);
}
void testl_i32r(int imm, RegisterID dst)
{
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_TEST_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst);
m_formatter.immediate32(imm);
}
void testl_i32m(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset);
m_formatter.immediate32(imm);
}
void testb_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp8(OP_TEST_EbGb, src, dst);
}
void testb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, offset);
m_formatter.immediate8(imm);
}
void testb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if CPU(X86)
void testb_im(int imm, const void* addr)
{
m_formatter.oneByteOpAddr(OP_GROUP3_EbIb, GROUP3_OP_TEST, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
}
#endif
void testl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset);
m_formatter.immediate32(imm);
}
#if CPU(X86_64)
void testq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_TEST_EvGv, src, dst);
}
void testq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_TEST_EvGv, src, base, offset);
}
void testq_i32r(int imm, RegisterID dst)
{
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_TEST_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst);
m_formatter.immediate32(imm);
}
void testq_i32m(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset);
m_formatter.immediate32(imm);
}
void testq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset);
m_formatter.immediate32(imm);
}
#endif
void testw_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_TEST_EvGv, src, dst);
}
void testw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset);
m_formatter.immediate16(imm);
}
void testw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset);
m_formatter.immediate16(imm);
}
void testb_i8r(int imm, RegisterID dst)
{
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_TEST_ALIb);
else
m_formatter.oneByteOp8(OP_GROUP3_EbIb, GROUP3_OP_TEST, dst);
m_formatter.immediate8(imm);
}
void bt_ir(int bitOffset, RegisterID testValue)
{
ASSERT(-128 <= bitOffset && bitOffset < 128);
m_formatter.twoByteOp(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, testValue);
m_formatter.immediate8(bitOffset);
}
void bt_im(int bitOffset, int offset, RegisterID base)
{
ASSERT(-128 <= bitOffset && bitOffset < 128);
m_formatter.twoByteOp(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, base, offset);
m_formatter.immediate8(bitOffset);
}
void bt_ir(RegisterID bitOffset, RegisterID testValue)
{
m_formatter.twoByteOp(OP2_BT_EvEv, bitOffset, testValue);
}
void bt_im(RegisterID bitOffset, int offset, RegisterID base)
{
m_formatter.twoByteOp(OP2_BT_EvEv, bitOffset, base, offset);
}
#if CPU(X86_64)
void btw_ir(int bitOffset, RegisterID testValue)
{
ASSERT(-128 <= bitOffset && bitOffset < 128);
m_formatter.twoByteOp64(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, testValue);
m_formatter.immediate8(bitOffset);
}
void btw_im(int bitOffset, int offset, RegisterID base)
{
ASSERT(-128 <= bitOffset && bitOffset < 128);
m_formatter.twoByteOp64(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, base, offset);
m_formatter.immediate8(bitOffset);
}
void btw_ir(RegisterID bitOffset, RegisterID testValue)
{
m_formatter.twoByteOp64(OP2_BT_EvEv, bitOffset, testValue);
}
void btw_im(RegisterID bitOffset, int offset, RegisterID base)
{
m_formatter.twoByteOp64(OP2_BT_EvEv, bitOffset, base, offset);
}
#endif
void setCC_r(Condition cond, RegisterID dst)
{
m_formatter.twoByteOp8(setccOpcode(cond), (GroupOpcodeID)0, dst);
}
void sete_r(RegisterID dst)
{
m_formatter.twoByteOp8(setccOpcode(ConditionE), (GroupOpcodeID)0, dst);
}
void setz_r(RegisterID dst)
{
sete_r(dst);
}
void setne_r(RegisterID dst)
{
m_formatter.twoByteOp8(setccOpcode(ConditionNE), (GroupOpcodeID)0, dst);
}
void setnz_r(RegisterID dst)
{
setne_r(dst);
}
void setnp_r(RegisterID dst)
{
m_formatter.twoByteOp8(setccOpcode(ConditionNP), (GroupOpcodeID)0, dst);
}
void setp_r(RegisterID dst)
{
m_formatter.twoByteOp8(setccOpcode(ConditionP), (GroupOpcodeID)0, dst);
}
// Various move ops:
void cdq()
{
m_formatter.oneByteOp(OP_CDQ);
}
#if CPU(X86_64)
void cqo()
{
m_formatter.oneByteOp64(OP_CDQ);
}
#endif
void fstps(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_ESCAPE_D9, ESCAPE_D9_FSTP_singleReal, base, offset);
}
void fstpl(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_ESCAPE_DD, ESCAPE_DD_FSTP_doubleReal, base, offset);
}
void xchgl_rr(RegisterID src, RegisterID dst)
{
if (src == X86Registers::eax)
m_formatter.oneByteOp(OP_XCHG_EAX, dst);
else if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_XCHG_EAX, src);
else
m_formatter.oneByteOp(OP_XCHG_EvGv, src, dst);
}
void xchgb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp8(OP_XCHG_EvGb, src, base, offset);
}
void xchgb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp8(OP_XCHG_EvGb, src, base, index, scale, offset);
}
void xchgw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, offset);
}
void xchgw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, index, scale, offset);
}
void xchgl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, offset);
}
void xchgl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, index, scale, offset);
}
#if CPU(X86_64)
void xchgq_rr(RegisterID src, RegisterID dst)
{
if (src == X86Registers::eax)
m_formatter.oneByteOp64(OP_XCHG_EAX, dst);
else if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_XCHG_EAX, src);
else
m_formatter.oneByteOp64(OP_XCHG_EvGv, src, dst);
}
void xchgq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_XCHG_EvGv, src, base, offset);
}
void xchgq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_XCHG_EvGv, src, base, index, scale, offset);
}
#endif
void pinsrb_i8rr(uint8_t laneIndex, RegisterID rn, XMMRegisterID vd)
{
ASSERT(laneIndex < 16);
// https://www.felixcloutier.com/x86/pinsrb:pinsrd:pinsrq
// 66 0F 3A 20 /r ib PINSRB xmm1, r32/m8, imm8
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_PINSRB_VdqRdqpIb, (RegisterID)vd, rn);
m_formatter.immediate8((uint8_t)laneIndex);
}
void pinsrw_i8rr(uint8_t laneIndex, RegisterID rn, XMMRegisterID vd)
{
ASSERT(laneIndex < 8);
// https://www.felixcloutier.com/x86/pinsrw
// 66 0F C4 /r ib PINSRW xmm, r32/m16, imm8
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PINSRW_VdqRdqp, (RegisterID)vd, rn);
m_formatter.immediate8((uint8_t)laneIndex);
}
void pinsrd_i8rr(uint8_t laneIndex, RegisterID rn, XMMRegisterID vd)
{
ASSERT(laneIndex < 4);
// https://www.felixcloutier.com/x86/pinsrb:pinsrd:pinsrq
// 66 0F 3A 22 /r ib PINSRD xmm1, r/m32, imm8
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_PINSRD_VdqEdIb, (RegisterID)vd, rn);
m_formatter.immediate8((uint8_t)laneIndex);
}
void pinsrq_i8rr(uint8_t laneIndex, RegisterID rn, XMMRegisterID vd)
{
ASSERT(laneIndex < 2);
// https://www.felixcloutier.com/x86/pinsrb:pinsrd:pinsrq
// 66 REX.W 0F 3A 22 /r ib PINSRQ xmm1, r/m64, imm8
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp64(OP2_3BYTE_ESCAPE_3A, OP3_PINSRQ_VdqEqbIb, (RegisterID)vd, rn);
m_formatter.immediate8((uint8_t)laneIndex);
}
void insertps_i8rr(uint8_t laneIndex, XMMRegisterID rn, XMMRegisterID vd)
{
ASSERT(laneIndex < 4);
// https://www.felixcloutier.com/x86/insertps
// 66 0F 3A 21 /r ib INSERTPS xmm1, xmm2/m32, imm8 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_INSERTPS_VpsUpsIb, (RegisterID)vd, (RegisterID)rn);
m_formatter.immediate8(laneIndex << 4);
}
void unpcklpd_rr(XMMRegisterID rn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/unpcklpd
// 66 0F 14 /r UNPCKLPD xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_UNPCKLPD_VpdWpd, (RegisterID)vd, (RegisterID)rn);
}
void pextrb_i8rr(uint8_t laneIndex, XMMRegisterID vn, RegisterID rd)
{
ASSERT(laneIndex < 16);
// https://www.felixcloutier.com/x86/pextrb:pextrd:pextrq
// 66 0F 3A 14 /r ib PEXTRB reg/m8, xmm2, imm8 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_PEXTRB_MbVdqIb, (RegisterID)vn, rd);
m_formatter.immediate8(laneIndex);
}
void pextrw_i8rr(uint8_t laneIndex, XMMRegisterID vn, RegisterID rd)
{
ASSERT(laneIndex < 8);
// https://www.felixcloutier.com/x86/pextrw
// 66 0F 3A 15 /r ib PEXTRW reg/m16, xmm, imm8 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_PEXTRW_MwVdqIb, (RegisterID)vn, rd);
m_formatter.immediate8(laneIndex);
}
void pextrd_i8rr(uint8_t laneIndex, XMMRegisterID vn, RegisterID rd)
{
ASSERT(laneIndex < 4);
// https://www.felixcloutier.com/x86/pextrb:pextrd:pextrq
// 66 0F 3A 16 /r ib PEXTRD r/m32, xmm2, imm8 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_PEXTRD_EyVdqIb, (RegisterID)vn, rd);
m_formatter.immediate8(laneIndex);
}
void pextrq_i8rr(uint8_t laneIndex, XMMRegisterID vn, RegisterID rd)
{
ASSERT(laneIndex < 2);
// https://www.felixcloutier.com/x86/pextrb:pextrd:pextrq
// 66 REX.W 0F 3A 16 /r ib PEXTRQ r/m64, xmm2, imm8 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp64(OP2_3BYTE_ESCAPE_3A, OP3_PEXTRQ_EyVdqIb, (RegisterID)vn, rd);
m_formatter.immediate8(laneIndex);
}
void pshufd_i8rr(uint8_t controlBits, XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pshufd
// 66 0F 70 /r ib PSHUFD xmm1, xmm2/m128, imm8
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PSHUFD_VdqWdqIb, (RegisterID)vd, (RegisterID)vn);
m_formatter.immediate8((uint8_t)controlBits);
}
void pshufb_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pshufb
// 66 0F 38 00 /r PSHUFB xmm1, xmm2/m128 | SSSE3
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PSHUFB_VdqWdq, (RegisterID)vd, (RegisterID)vn);
}
void pshuflw_i8rr(uint8_t controlBits, XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pshuflw
// F2 0F 70 /r ib PSHUFLW xmm1, xmm2/m128, imm8
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_PSHUFLW_VdqWdqIb, (RegisterID)vd, (RegisterID)vn);
m_formatter.immediate8((uint8_t)controlBits);
}
void pshufhw_rr(uint8_t controlBits, XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pshufhw
// F3 0F 70 /r ib PSHUFHW xmm1, xmm2/m128, imm8
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_PSHUFHW_VdqWdqIb, (RegisterID)vd, (RegisterID)vn);
m_formatter.immediate8((uint8_t)controlBits);
}
void punpcklqdq_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/punpcklbw:punpcklwd:punpckldq:punpcklqdq
// 66 0F 6C /r PUNPCKLQDQ xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PUNPCKLQDQ_VdqWdq, (RegisterID)vd, (RegisterID)vn);
}
void shufps_i8rr(uint8_t controlBits, XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/shufps
// NP 0F C6 /r ib SHUFPS xmm1, xmm3/m128, imm8
m_formatter.twoByteOp(OP2_SHUFPS_VpdWpdIb, (RegisterID)vd, (RegisterID)vn);
m_formatter.immediate8((uint8_t)controlBits);
}
void shufpd_i8rr(uint8_t controlBits, XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/shufpd
// 66 0F C6 /r ib SHUFPD xmm1, xmm2/m128, imm8
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_SHUFPD_VpdWpdIb, (RegisterID)vd, (RegisterID)vn);
m_formatter.immediate8((uint8_t)controlBits);
}
void paddsb_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/paddsb:paddsw
// 66 0F EC /r PADDSB xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PADDSB_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void paddusb_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/paddusb:paddusw
// 66 0F DC /r PADDUSB xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PADDUSB_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void paddsw_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/paddsb:paddsw
// 66 0F ED /r PADDSW xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PADDSW_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void paddusw_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/paddusb:paddusw
// 66 0F DD /r PADDUSW xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PADDUSW_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void psubsb_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/psubsb:psubsw
// 66 0F E8 /r PSUBSB xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PSUBSB_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void psubusb_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/psubusb:psubusw
// 66 0F D8 /r PSUBUSB xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PSUBUSB_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void psubsw_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/psubsb:psubsw
// 66 0F E9 /r PSUBSW xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PSUBSW_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void psubusw_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/psubusb:psubusw
// 66 0F D9 /r PSUBUSW xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PSUBUSW_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pmaxsb_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxsb:pmaxsw:pmaxsd:pmaxsq
// 66 0F 38 3C /r PMAXSB xmm1, xmm2/m128 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PMAXSB_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pmaxsw_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxsb:pmaxsw:pmaxsd:pmaxsq
// 66 0F EE /r PMAXSW xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PMAXSW_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pmaxsd_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxsb:pmaxsw:pmaxsd:pmaxsq
// 66 0F 38 3D /r PMAXSD xmm1, xmm2/m128 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PMAXSD_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pmaxub_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxub:pmaxuw
// 66 0F DE /r PMAXUB xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PMAXUB_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pmaxuw_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxub:pmaxuw
// 66 0F 38 3E /r PMAXUW xmm1, xmm2/m128 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PMAXUW_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pmaxud_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxud:pmaxuq
// 66 0F 38 3F /r PMAXUD xmm1, xmm2/m128 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PMAXUD_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pminsb_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminsb:pminsw
// 66 0F 38 38 /r PMINSB xmm1, xmm2/m128 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PMINSB_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pminsw_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminsb:pminsw
// 66 0F EA /r PMINSW xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PMINSW_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pminsd_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminsd:pminsq
// 66 0F 38 39 /r PMINSD xmm1, xmm2/m128 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PMINSD_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pminub_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminub:pminuw
// 66 0F DA /r PMINUB xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PMINUB_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pminuw_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminub:pminuw
// 66 0F 38 3A /r PMINUW xmm1, xmm2/m128 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PMINUW_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pminud_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminud:pminuq
// 66 0F 38 3B /r PMINUD xmm1, xmm2/m128 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PMINUD_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pavgb_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pavgb:pavgw
// 66 0F E0, /r PAVGB xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PAVGB_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pavgw_rr(XMMRegisterID right, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pavgb:pavgw
// 66 0F E3 /r PAVGW xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PAVGW_VdqWdq, (RegisterID)vd, (RegisterID)right);
}
void pabsb_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pabsb:pabsw:pabsd:pabsq
// 66 0F 38 1C /r PABSB xmm1, xmm2/m128 | SSSE3
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PABSB_VdqWdq, (RegisterID)vd, (RegisterID)vn);
}
void pabsw_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pabsb:pabsw:pabsd:pabsq
// 66 0F 38 1D /r PABSW xmm1, xmm2/m128 | SSSE3
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PABSW_VdqWdq, (RegisterID)vd, (RegisterID)vn);
}
void pabsd_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pabsb:pabsw:pabsd:pabsq
// 66 0F 38 1E /r PABSD xmm1, xmm2/m128 | SSSE3
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_PABSD_VdqWdq, (RegisterID)vd, (RegisterID)vn);
}
void pxor_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pxor
// 66 0F EF /r PXOR xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PXOR_VdqWdq, (RegisterID)vd, (RegisterID)vn);
}
void pblendw_i8rr(uint8_t imm8, XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pblendw
// 66 0F 3A 0E /r ib PBLENDW xmm1, xmm2/m128, imm8 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_VPBLENDW_VxHxWxIb, (RegisterID)vd, (RegisterID)vn);
m_formatter.immediate8((uint8_t)imm8);
}
void addps_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/addps
// NP 0F 58 /r ADDPS xmm1, xmm2/m128
m_formatter.twoByteOp(OP2_ADDPS_VpsWps, (RegisterID)vd, (RegisterID)vn);
}
void psubd_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/psubb:psubw:psubd
// 66 0F FA /r PSUBD xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PSUBD_VdqWdq, (RegisterID)vd, (RegisterID)vn);
}
enum class RoundingType : uint8_t {
ToNearestWithTiesToEven = 0,
TowardNegativeInfiniti = 1,
TowardInfiniti = 2,
TowardZero = 3
};
enum class PackedCompareCondition : uint8_t {
EqualAndOrdered = 0,
LessThanAndOrdered = 1,
LessThanOrEqualAndOrdered = 2,
Unordered = 3,
NotEqualOrUnordered = 4,
NotLessThanOrUnordered = 5,
NotLessThanOrEqualOrUnordered = 6,
Ordered = 7,
EqualOrUnordered = 8,
NotGreaterThanOrEqualOrUnordered = 9,
NotGreaterThanOrUnordered = 10,
False = 11,
NotEqualAndOrdered = 12,
GreaterThanOrEqualAndOrdered = 13,
GreaterThanAndOrdered = 14,
True = 15
};
void cvtdq2ps_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/cvtdq2ps
// NP 0F 5B /r CVTDQ2PS xmm1, xmm2/m128
m_formatter.twoByteOp(OP2_CVTDQ2PS_VsdWsd, (RegisterID)vd, (RegisterID)vn);
}
void cvtdq2pd_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/cvtdq2pd
// F3 0F E6 /r CVTDQ2PD xmm1, xmm2/m64
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_CVTDQ2PD_VdqWdq, (RegisterID)vd, (RegisterID)vn);
}
void packsswb_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/packsswb:packssdw
// 66 0F 63 /r PACKSSWB xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PACKSSWB_VdqWdq, (RegisterID)xmm1, (RegisterID)xmm2);
}
void packuswb_rr(XMMRegisterID upper, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/packuswb
// 66 0F 67 /r PACKUSWB xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PACKUSWB_VdqWdq, (RegisterID)dest, (RegisterID)upper);
}
void packssdw_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/packsswb:packssdw
// 66 0F 6B /r PACKSSDW xmm1, xmm2/m128
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PACKSSDW_VdqWdq, (RegisterID)xmm1, (RegisterID)xmm2);
}
void packusdw_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/packusdw
// 66 0F 38 2B /r PACKUSDW xmm1, xmm2/m128 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_VPACKUSDW_VxHxWx, (RegisterID)xmm1, (RegisterID)xmm2);
}
void pmovsxbw(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovsx
// 66 0f 38 20 /r PMOVSXBW xmm1, xmm2/m64 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_VPMOVSXBW_VxUx, (RegisterID)xmm1, (RegisterID)xmm2);
}
void pmovzxbw(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovzx
// 66 0f 38 30 /r PMOVZXBW xmm1, xmm2/m64 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_VPMOVZXBW_VxUx, (RegisterID)xmm1, (RegisterID)xmm2);
}
void pmovsxwd(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovsx
// 66 0f 38 23 /r PMOVSXWD xmm1, xmm2/m64 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_VPMOVSXWD_VxUx, (RegisterID)xmm1, (RegisterID)xmm2);
}
void pmovzxwd(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovzx
// 66 0f 38 33 /r PMOVZXWD xmm1, xmm2/m64 | SSE4_1
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_VPMOVZXWD_VxUx, (RegisterID)xmm1, (RegisterID)xmm2);
}
void pmovsxdq(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovsx
// 66 0f 38 25 /r PMOVSXDQ xmm1, xmm2/m64
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_VPMOVSXDQ_VxUx, (RegisterID)xmm1, (RegisterID)xmm2);
}
void pmovzxdq(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovzx
// 66 0f 38 35 /r PMOVZXDQ xmm1, xmm2/m64
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_38, OP3_VPMOVZXDQ_VxUx, (RegisterID)xmm1, (RegisterID)xmm2);
}
void movl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_MOV_EvGv, src, dst);
}
void movl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_MOV_EvGv, src, base, offset);
}
void movl_rm_disp32(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp_disp32(OP_MOV_EvGv, src, base, offset);
}
void movl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_MOV_EvGv, src, base, index, scale, offset);
}
void movl_mEAX(const void* addr)
{
m_formatter.oneByteOp(OP_MOV_EAXOv);
#if CPU(X86_64)
m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
#else
m_formatter.immediate32(reinterpret_cast<int>(addr));
#endif
}
void movl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, offset);
}
void movl_mr_disp32(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp_disp32(OP_MOV_GvEv, dst, base, offset);
}
void movl_mr_disp8(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp_disp8(OP_MOV_GvEv, dst, base, offset);
}
void movl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, index, scale, offset);
}
void movl_i32r(int imm, RegisterID dst)
{
m_formatter.oneByteOp(OP_MOV_EAXIv, dst);
m_formatter.immediate32(imm);
}
void movl_i32m(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset);
m_formatter.immediate32(imm);
}
void movl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset);
m_formatter.immediate32(imm);
}
#if !CPU(X86_64)
void movb_i8m(int imm, const void* addr)
{
ASSERT(-128 <= imm && imm < 128);
m_formatter.oneByteOpAddr(OP_GROUP11_EvIb, GROUP11_MOV, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
}
#endif
void movb_i8m(int imm, int offset, RegisterID base)
{
ASSERT(-128 <= imm && imm < 128);
m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, offset);
m_formatter.immediate8(imm);
}
void movb_i8m(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
ASSERT(-128 <= imm && imm < 128);
m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if !CPU(X86_64)
void movb_rm(RegisterID src, const void* addr)
{
m_formatter.oneByteOpAddr(OP_MOV_EbGb, src, bitwise_cast<uint32_t>(addr));
}
#endif
void movb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp8(OP_MOV_EbGb, src, base, offset);
}
void movb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp8(OP_MOV_EbGb, src, base, index, scale, offset);
}
void movw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
// FIXME: We often use oneByteOp8 for 16-bit operations. It's not clear that this is
// necessary. https://bugs.webkit.org/show_bug.cgi?id=153433
m_formatter.oneByteOp8(OP_MOV_EvGv, src, base, offset);
}
void movw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp8(OP_MOV_EvGv, src, base, index, scale, offset);
}
void movw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset);
m_formatter.immediate16(imm);
}
void movw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset);
m_formatter.immediate16(imm);
}
void movl_EAXm(const void* addr)
{
m_formatter.oneByteOp(OP_MOV_OvEAX);
#if CPU(X86_64)
m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
#else
m_formatter.immediate32(reinterpret_cast<int>(addr));
#endif
}
void movl_mr(uint32_t addr, RegisterID dst)
{
m_formatter.oneByteOpAddr(OP_MOV_GvEv, dst, addr);
}
void movl_rm(RegisterID src, uint32_t addr)
{
m_formatter.oneByteOpAddr(OP_MOV_EvGv, src, addr);
}
#if CPU(X86_64)
void movq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_MOV_EvGv, src, dst);
}
void movq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, offset);
}
void movq_rm_disp32(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64_disp32(OP_MOV_EvGv, src, base, offset);
}
void movq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, index, scale, offset);
}
void movq_rm(RegisterID src, int offset)
{
m_formatter.oneByteOp64Addr(OP_MOV_EvGv, src, offset);
}
void movq_mEAX(const void* addr)
{
m_formatter.oneByteOp64(OP_MOV_EAXOv);
m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
}
void movq_EAXm(const void* addr)
{
m_formatter.oneByteOp64(OP_MOV_OvEAX);
m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
}
void movq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, offset);
}
void movq_mr_disp32(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64_disp32(OP_MOV_GvEv, dst, base, offset);
}
void movq_mr_disp8(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64_disp8(OP_MOV_GvEv, dst, base, offset);
}
void movq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, index, scale, offset);
}
void movq_mr(uint32_t addr, RegisterID dst)
{
m_formatter.oneByteOp64Addr(OP_MOV_GvEv, dst, addr);
}
void movq_i32m(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, offset);
m_formatter.immediate32(imm);
}
void movq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset);
m_formatter.immediate32(imm);
}
void movq_i64r(int64_t imm, RegisterID dst)
{
m_formatter.oneByteOp64(OP_MOV_EAXIv, dst);
m_formatter.immediate64(imm);
}
void mov_i32r(int32_t imm, RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, dst);
m_formatter.immediate32(imm);
}
void movsxd_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_MOVSXD_GvEv, dst, src);
}
#else
void movl_mr(const void* addr, RegisterID dst)
{
if (dst == X86Registers::eax)
movl_mEAX(addr);
else
m_formatter.oneByteOpAddr(OP_MOV_GvEv, dst, bitwise_cast<uint32_t>(addr));
}
void movl_rm(RegisterID src, const void* addr)
{
if (src == X86Registers::eax)
movl_EAXm(addr);
else
m_formatter.oneByteOpAddr(OP_MOV_EvGv, src, bitwise_cast<uint32_t>(addr));
}
void movl_i32m(int imm, const void* addr)
{
m_formatter.oneByteOpAddr(OP_GROUP11_EvIz, GROUP11_MOV, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
#endif
void movzwl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, offset);
}
void movzwl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, index, scale, offset);
}
void movswl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, offset);
}
void movswl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, index, scale, offset);
}
void movzbl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, offset);
}
void movzbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, index, scale, offset);
}
#if !CPU(X86_64)
void movzbl_mr(const void* address, RegisterID dst)
{
m_formatter.twoByteOpAddr(OP2_MOVZX_GvEb, dst, bitwise_cast<uint32_t>(address));
}
#endif
void movsbl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, offset);
}
void movsbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, index, scale, offset);
}
void movzbl_rr(RegisterID src, RegisterID dst)
{
// In 64-bit, this may cause an unnecessary REX to be planted (if the dst register
// is in the range ESP-EDI, and the src would not have required a REX). Unneeded
// REX prefixes are defined to be silently ignored by the processor.
m_formatter.twoByteOp8(OP2_MOVZX_GvEb, dst, src);
}
void movsbl_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp8(OP2_MOVSX_GvEb, dst, src);
}
void movsbq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(OP2_MOVSX_GvEb, dst, src);
}
void movzwl_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp8(OP2_MOVZX_GvEw, dst, src);
}
void movswl_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp8(OP2_MOVSX_GvEw, dst, src);
}
void movswq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(OP2_MOVSX_GvEw, dst, src);
}
void cmovl_rr(Condition cond, RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(cond), dst, src);
}
void cmovl_mr(Condition cond, int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(cond), dst, base, offset);
}
void cmovl_mr(Condition cond, int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(cond), dst, base, index, scale, offset);
}
void cmovel_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(ConditionE), dst, src);
}
void cmovnel_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(ConditionNE), dst, src);
}
void cmovpl_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(ConditionP), dst, src);
}
void cmovnpl_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(ConditionNP), dst, src);
}
#if CPU(X86_64)
void cmovq_rr(Condition cond, RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(cond), dst, src);
}
void cmovq_mr(Condition cond, int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(cond), dst, base, offset);
}
void cmovq_mr(Condition cond, int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(cond), dst, base, index, scale, offset);
}
void cmoveq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(ConditionE), dst, src);
}
void cmovneq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(ConditionNE), dst, src);
}
void cmovpq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(ConditionP), dst, src);
}
void cmovnpq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(ConditionNP), dst, src);
}
#else
void cmovl_mr(Condition cond, const void* addr, RegisterID dst)
{
m_formatter.twoByteOpAddr(cmovcc(cond), dst, bitwise_cast<uint32_t>(addr));
}
#endif
void leal_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_LEA, dst, base, offset);
}
void leal_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_LEA, dst, base, index, scale, offset);
}
#if CPU(X86_64)
void leaq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_LEA, dst, base, offset);
}
void leaq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_LEA, dst, base, index, scale, offset);
}
#endif
// Flow control:
AssemblerLabel call()
{
m_formatter.oneByteOp(OP_CALL_rel32);
return m_formatter.immediateRel32();
}
AssemblerLabel call(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, dst);
return m_formatter.label();
}
void call_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, base, offset);
}
AssemblerLabel jmp()
{
m_formatter.oneByteOp(OP_JMP_rel32);
return m_formatter.immediateRel32();
}
// Return a AssemblerLabel so we have a label to the jump, so we can use this
// To make a tail recursive call on x86-64. The MacroAssembler
// really shouldn't wrap this as a Jump, since it can't be linked. :-/
AssemblerLabel jmp_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, dst);
return m_formatter.label();
}
void jmp_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, offset);
}
void jmp_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, index, scale, offset);
}
#if !CPU(X86_64)
void jmp_m(const void* address)
{
m_formatter.oneByteOpAddr(OP_GROUP5_Ev, GROUP5_OP_JMPN, bitwise_cast<uint32_t>(address));
}
#endif
AssemblerLabel jne()
{
m_formatter.twoByteOp(jccRel32(ConditionNE));
return m_formatter.immediateRel32();
}
AssemblerLabel jnz()
{
return jne();
}
AssemblerLabel je()
{
m_formatter.twoByteOp(jccRel32(ConditionE));
return m_formatter.immediateRel32();
}
AssemblerLabel jz()
{
return je();
}
AssemblerLabel jl()
{
m_formatter.twoByteOp(jccRel32(ConditionL));
return m_formatter.immediateRel32();
}
AssemblerLabel jb()
{
m_formatter.twoByteOp(jccRel32(ConditionB));
return m_formatter.immediateRel32();
}
AssemblerLabel jle()
{
m_formatter.twoByteOp(jccRel32(ConditionLE));
return m_formatter.immediateRel32();
}
AssemblerLabel jbe()
{
m_formatter.twoByteOp(jccRel32(ConditionBE));
return m_formatter.immediateRel32();
}
AssemblerLabel jge()
{
m_formatter.twoByteOp(jccRel32(ConditionGE));
return m_formatter.immediateRel32();
}
AssemblerLabel jg()
{
m_formatter.twoByteOp(jccRel32(ConditionG));
return m_formatter.immediateRel32();
}
AssemblerLabel ja()
{
m_formatter.twoByteOp(jccRel32(ConditionA));
return m_formatter.immediateRel32();
}
AssemblerLabel jae()
{
m_formatter.twoByteOp(jccRel32(ConditionAE));
return m_formatter.immediateRel32();
}
AssemblerLabel jo()
{
m_formatter.twoByteOp(jccRel32(ConditionO));
return m_formatter.immediateRel32();
}
AssemblerLabel jnp()
{
m_formatter.twoByteOp(jccRel32(ConditionNP));
return m_formatter.immediateRel32();
}
AssemblerLabel jp()
{
m_formatter.twoByteOp(jccRel32(ConditionP));
return m_formatter.immediateRel32();
}
AssemblerLabel js()
{
m_formatter.twoByteOp(jccRel32(ConditionS));
return m_formatter.immediateRel32();
}
AssemblerLabel jCC(Condition cond)
{
m_formatter.twoByteOp(jccRel32(cond));
return m_formatter.immediateRel32();
}
// SSE operations:
void addsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void addsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset);
}
void addsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, dst, base, index, scale, offset);
}
void addss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void addss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset);
}
void addss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, dst, base, index, scale, offset);
}
#if !CPU(X86_64)
void addsd_mr(const void* address, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOpAddr(OP2_ADDSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address));
}
#endif
void cvtsi2sd_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src);
}
void cvtsi2ss_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src);
}
#if CPU(X86_64)
void cvtsi2sdq_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src);
}
void cvtsi2ssq_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src);
}
void cvtsi2sdq_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset);
}
void cvtsi2ssq_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset);
}
#endif
void cvtsi2sd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset);
}
void cvtsi2ss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset);
}
#if !CPU(X86_64)
void cvtsi2sd_mr(const void* address, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOpAddr(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, bitwise_cast<uint32_t>(address));
}
#endif
void cvttsd2si_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src);
}
void cvttss2si_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)src);
}
#if CPU(X86_64)
void cvttss2siq_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)src);
}
#endif
void cvtsd2ss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_CVTSD2SS_VsdWsd, dst, (RegisterID)src);
}
void cvtsd2ss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_CVTSD2SS_VsdWsd, dst, base, offset);
}
void cvtss2sd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_CVTSS2SD_VsdWsd, dst, (RegisterID)src);
}
void cvtss2sd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_CVTSS2SD_VsdWsd, dst, base, offset);
}
#if CPU(X86_64)
void cvttsd2siq_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp64(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src);
}
#endif
void movd_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_MOVD_EdVd, (RegisterID)src, dst);
}
void movd_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_MOVD_VdEd, (RegisterID)dst, src);
}
void movddup_rr(XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movddup
// F2 0F 12 /r MOVDDUP xmm1, xmm2/m64
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MOVDDUP_VqWq, (RegisterID)dst, (RegisterID)src);
}
#if CPU(X86_64)
void movmskpd_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp64(OP2_MOVMSKPD_VdEd, dst, (RegisterID)src);
}
void movq_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp64(OP2_MOVD_EdVd, (RegisterID)src, dst);
}
void movq_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp64(OP2_MOVD_VdEd, (RegisterID)dst, src);
}
#endif
void movapd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_MOVAPD_VpdWpd, (RegisterID)dst, (RegisterID)src);
}
void movaps_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVAPS_VpsWps, (RegisterID)dst, (RegisterID)src);
}
void movhlps_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVHLPS_VqUq, (RegisterID)dst, (RegisterID)src);
}
void movsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void movsd_rm(XMMRegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset);
}
void movsd_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset);
}
void movss_rm(XMMRegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset);
}
void movss_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset);
}
void movsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset);
}
void movsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, dst, base, index, scale, offset);
}
void movss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MOVSS_VsdWsd, (RegisterID)dst, base, offset);
}
void movss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MOVSS_VsdWsd, dst, base, index, scale, offset);
}
void movshdup_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MOVSHDUP_VqWq, (RegisterID)dst, (RegisterID)src);
}
void movsldup_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MOVSLDUP_VqWq, (RegisterID)dst, (RegisterID)src);
}
#if !CPU(X86_64)
void movsd_mr(const void* address, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOpAddr(OP2_MOVSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address));
}
void movsd_rm(XMMRegisterID src, const void* address)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOpAddr(OP2_MOVSD_WsdVsd, (RegisterID)src, bitwise_cast<uint32_t>(address));
}
void movss_mr(const void* address, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOpAddr(OP2_MOVSS_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address));
}
void movss_rm(XMMRegisterID src, const void* address)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOpAddr(OP2_MOVSS_WsdVsd, (RegisterID)src, bitwise_cast<uint32_t>(address));
}
#endif
void mulsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void mulsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset);
}
void mulsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, dst, base, index, scale, offset);
}
void mulss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void mulss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset);
}
void mulss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, dst, base, index, scale, offset);
}
void pextrw_irr(int whichWord, XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PEXTRW_GdUdIb, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(whichWord);
}
void psllq_i8r(int imm, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp8(OP2_PSLLQ_UdqIb, GROUP14_OP_PSLLQ, (RegisterID)dst);
m_formatter.immediate8(imm);
}
void psrld_i8r(uint8_t imm8, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/psrlw:psrld:psrlq
// // 66 0F 72 /2 ib PSRLD xmm1, imm8
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp8(OP2_PSRLD_UdqIb, GROUP14_OP_PSRLQ, (RegisterID)dst);
m_formatter.immediate8(imm8);
}
void psrlq_i8r(int imm, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp8(OP2_PSRLQ_UdqIb, GROUP14_OP_PSRLQ, (RegisterID)dst);
m_formatter.immediate8(imm);
}
void por_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_POR_VdqWdq, (RegisterID)dst, (RegisterID)src);
}
void subsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void subsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset);
}
void subsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, dst, base, index, scale, offset);
}
void subss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void subss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset);
}
void subss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, dst, base, index, scale, offset);
}
void ucomisd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void ucomisd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset);
}
void ucomiss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void ucomiss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset);
}
void divsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void divsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset);
}
void divss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void divss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset);
}
void andps_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_ANDPS_VpsWps, (RegisterID)dst, (RegisterID)src);
}
void orps_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_ORPS_VpsWps, (RegisterID)dst, (RegisterID)src);
}
void xorps_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src);
}
void xorpd_rr(XMMRegisterID src, XMMRegisterID dst)
{
if (src == dst) {
xorps_rr(src, dst);
return;
}
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src);
}
void andnpd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_ANDNPD_VpdWpd, (RegisterID)dst, (RegisterID)src);
}
void sqrtsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void sqrtsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, base, offset);
}
void sqrtss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_SQRTSS_VssWss, (RegisterID)dst, (RegisterID)src);
}
void sqrtss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_SQRTSS_VssWss, (RegisterID)dst, base, offset);
}
void roundss_rr(XMMRegisterID src, XMMRegisterID dst, RoundingType rounding)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void roundss_mr(int offset, RegisterID base, XMMRegisterID dst, RoundingType rounding)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dst, base, offset);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void roundsd_rr(XMMRegisterID src, XMMRegisterID dst, RoundingType rounding)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void roundsd_mr(int offset, RegisterID base, XMMRegisterID dst, RoundingType rounding)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dst, base, offset);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
// Misc instructions:
void int3()
{
m_formatter.oneByteOp(OP_INT3);
}
static bool isInt3(void* address)
{
uint8_t candidateInstruction = *reinterpret_cast<uint8_t*>(address);
return candidateInstruction == OP_INT3;
}
void ret()
{
m_formatter.oneByteOp(OP_RET);
}
void predictNotTaken()
{
m_formatter.prefix(PRE_PREDICT_BRANCH_NOT_TAKEN);
}
void lock()
{
m_formatter.prefix(PRE_LOCK);
}
// Causes the memory access in the next instruction to be offset by %gs. Usually you use
// this with a 32-bit absolute address load. That "address" ends up being the offset to
// %gs. This prefix is ignored by lea. Getting the value of %gs is hard - you can pretty
// much just use it as a secret offset.
void gs()
{
m_formatter.prefix(PRE_GS);
}
void cmpxchgb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp8(OP2_CMPXCHGb, src, base, offset);
}
void cmpxchgb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp8(OP2_CMPXCHGb, src, base, index, scale, offset);
}
void cmpxchgw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.twoByteOp(OP2_CMPXCHG, src, base, offset);
}
void cmpxchgw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.twoByteOp(OP2_CMPXCHG, src, base, index, scale, offset);
}
void cmpxchgl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp(OP2_CMPXCHG, src, base, offset);
}
void cmpxchgl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp(OP2_CMPXCHG, src, base, index, scale, offset);
}
#if CPU(X86_64)
void cmpxchgq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp64(OP2_CMPXCHG, src, base, offset);
}
void cmpxchgq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp64(OP2_CMPXCHG, src, base, index, scale, offset);
}
#endif // CPU(X86_64)
void xaddb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp8(OP2_XADDb, src, base, offset);
}
void xaddb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp8(OP2_XADDb, src, base, index, scale, offset);
}
void xaddw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.twoByteOp(OP2_XADD, src, base, offset);
}
void xaddw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.twoByteOp(OP2_XADD, src, base, index, scale, offset);
}
void xaddl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp(OP2_XADD, src, base, offset);
}
void xaddl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp(OP2_XADD, src, base, index, scale, offset);
}
#if CPU(X86_64)
void xaddq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp64(OP2_XADD, src, base, offset);
}
void xaddq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp64(OP2_XADD, src, base, index, scale, offset);
}
#endif // CPU(X86_64)
void lfence()
{
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_LFENCE);
}
void mfence()
{
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_MFENCE);
}
void sfence()
{
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_SFENCE);
}
void rdtsc()
{
m_formatter.twoByteOp(OP2_RDTSC);
}
void pause()
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.oneByteOp(OP_PAUSE);
}
void cpuid()
{
m_formatter.twoByteOp(OP2_CPUID);
}
// AVX methods.
//
// Our AVX methods follow our rule of using AT&T syntax, i.e. reverse order of Intel syntax.
// So, for example,
//
// VEX.128.0F.WIG 14 /r VUNPCKLPS xmm1,xmm2, xmm3/m128
//
// will have following three methods potentially.
// - vunpcklps_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
// - vunpcklps_mrr(int offset, RegisterID base, XMMRegisterID xmm2, XMMRegisterID xmm1)
// - vunpcklps_mrr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID xmm2, XMMRegisterID xmm1)
//
// For detailed Instruction encoding, read Intel SDM 2.3, "INTEL ADVANCED VECTOR EXTENSIONS (INTEL AVX)".
// And 3.1.1.2 Opcode Column in the Instruction Summary Table (Instructions with VEX prefix)
//
// And the way to read the instruction is
//
// VEX.128.0F.WIG 14 /r VUNPCKLPS xmm1,xmm2, xmm3/m128
// - 128 bit AVX
// - only 0F, so PRE_SSE_00 prefix
// - only 0F, so two byte opcode
// - WIG => W is ignored, this is necessary to use two-byte VEX prefix. If W needs to have 0 or 1, then we need to use three byte VEX prefix.
// - 14 => opcode second byte (0F 14 is opcode)
// - /r => ModR/M contains register
// - VUNPCKLPS is instruction name
// - xmm1 is destination
// - xmm2 and xmm3 are operands
// - /r says that vvvv in VEX prefix is representing a register operand and an r/m operand.
//
// VEX.128.66.0F3A.W0 14 /r ib VPEXTRB reg/m8, xmm2, imm8
// - 128 bit AVX
// - 66, so PRE_SSE_66 prefix
// - 0F3A, so three byte opcode
// - W0 => W is 0
// - 14 => opcode third byte (0F 3A 14 is opcode)
// - /r => ModR/M contains register
// - ib => one byte imm before opcode.
// - VPEXTRB is instruction name
// - xmm1 is destination
// - xmm2 and xmm3 are operands
//
// See also https://stackoverflow.com/questions/15017659/how-to-read-the-intel-opcode-notation
//
// AVX instruction format is the following
//
// [Prefixes] [VEX] OPCODE ModR/M [SIB] [DISP]
//
// Prefixes are typically empty (LOCK etc. and they are invalid).
// How operand is mapped to these fields are defined per instruction.
void vzeroupper()
{
// https://www.felixcloutier.com/x86/vzeroupper
// VEX.128.0F.WIG 77 VZEROUPPER
// ZO NA NA NA NA
m_formatter.vexNdsLigTwoByteOp(PRE_SSE_00, VexW::W0, OP2_VZEROUPPER);
}
void vpinsrb_i8mrr(uint8_t laneIndex, int offset, RegisterID base, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
ASSERT(laneIndex < 16);
// https://www.felixcloutier.com/x86/pinsrb:pinsrd:pinsrq
// VEX.128.66.0F3A.W0 20 /r ib VPINSRB xmm1, xmm2, r32/m8, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_PINSRB_VdqRdqpIb, (RegisterID)xmm1, (RegisterID)xmm2, base, offset);
m_formatter.immediate8(laneIndex);
}
void vpinsrb_i8rrr(uint8_t laneIndex, RegisterID rm, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
ASSERT(laneIndex < 16);
// https://www.felixcloutier.com/x86/pinsrb:pinsrd:pinsrq
// VEX.128.66.0F3A.W0 20 /r ib VPINSRB xmm1, xmm2, r32/m8, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_PINSRB_VdqRdqpIb, (RegisterID)xmm1, (RegisterID)xmm2, rm);
m_formatter.immediate8(laneIndex);
}
void vpinsrw_i8mrr(uint8_t laneIndex, int offset, RegisterID base, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
ASSERT(laneIndex < 8);
// https://www.felixcloutier.com/x86/pinsrw
// VEX.128.66.0F.W0 C4 /r ib VPINSRW xmm1, xmm2, r32/m16, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PINSRW_VdqRdqp, (RegisterID)xmm1, (RegisterID)xmm2, base, offset);
m_formatter.immediate8(laneIndex);
}
void vpinsrw_i8rrr(uint8_t laneIndex, RegisterID rm, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
ASSERT(laneIndex < 8);
// https://www.felixcloutier.com/x86/pinsrw
// VEX.128.66.0F.W0 C4 /r ib VPINSRW xmm1, xmm2, r32/m16, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PINSRW_VdqRdqp, (RegisterID)xmm1, (RegisterID)xmm2, rm);
m_formatter.immediate8(laneIndex);
}
void vpinsrd_i8mrr(uint8_t laneIndex, int offset, RegisterID base, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
ASSERT(laneIndex < 4);
// https://www.felixcloutier.com/x86/pinsrb:pinsrd:pinsrq
// VEX.128.66.0F3A.W0 22 /r ib VPINSRD xmm1, xmm2, r/m32, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_PINSRD_VdqEdIb, (RegisterID)xmm1, (RegisterID)xmm2, base, offset);
m_formatter.immediate8(laneIndex);
}
void vpinsrd_i8rrr(uint8_t laneIndex, RegisterID rm, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
ASSERT(laneIndex < 4);
// https://www.felixcloutier.com/x86/pinsrb:pinsrd:pinsrq
// VEX.128.66.0F3A.W0 22 /r ib VPINSRD xmm1, xmm2, r/m32, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_PINSRD_VdqEdIb, (RegisterID)xmm1, (RegisterID)xmm2, rm);
m_formatter.immediate8(laneIndex);
}
void vpinsrq_i8mrr(uint8_t laneIndex, int offset, RegisterID base, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
ASSERT(laneIndex < 2);
// https://www.felixcloutier.com/x86/pinsrb:pinsrd:pinsrq
// VEX.128.66.0F3A.W1 22 /r ib VPINSRQ xmm1, xmm2, r/m64, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, VexW::W1, OP3_PINSRQ_VdqEqbIb, (RegisterID)xmm1, (RegisterID)xmm2, base, offset);
m_formatter.immediate8(laneIndex);
}
void vpinsrq_i8rrr(uint8_t laneIndex, RegisterID rm, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
ASSERT(laneIndex < 2);
// https://www.felixcloutier.com/x86/pinsrb:pinsrd:pinsrq
// VEX.128.66.0F3A.W1 22 /r ib VPINSRQ xmm1, xmm2, r/m64, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, VexW::W1, OP3_PINSRQ_VdqEqbIb, (RegisterID)xmm1, (RegisterID)xmm2, rm);
m_formatter.immediate8(laneIndex);
}
void vinsertps_i8rrr(uint8_t laneIndex, XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
ASSERT(laneIndex < 4);
// https://www.felixcloutier.com/x86/insertps
// VEX.128.66.0F3A.WIG 21 /r ib VINSERTPS xmm1, xmm2, xmm3/m32, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) Imm8
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_INSERTPS_VpsUpsIb, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
m_formatter.immediate8(laneIndex << 4);
}
void vmovddup_rr(XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movddup
// VEX.128.F2.0F.WIG 12 /r VMOVDDUP xmm1, xmm2/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MOVDDUP_VqWq, (RegisterID)dst, (RegisterID)0, (RegisterID)src);
}
void vmovddup_mr(int offset, RegisterID base, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movddup
// VEX.128.F2.0F.WIG 12 /r VMOVDDUP xmm1, xmm2/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MOVDDUP_VqWq, (RegisterID)dst, (RegisterID)0, base, offset);
}
void vmovapd_rr(XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movapd
// VEX.128.66.0F.WIG 28 /r VMOVAPD xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_MOVAPD_VpdWpd, (RegisterID)dst, (RegisterID)0, (RegisterID)src);
}
void vbroadcastss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/vbroadcast
// VEX.128.66.0F38.W0 18 /r VBROADCASTSS xmm1, m32
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_VBROADCASTSS_VxWd, (RegisterID)dst, (RegisterID)0, base, offset);
}
void vpunpcklbw_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/punpcklbw:punpcklwd:punpckldq:punpcklqdq
// VEX.128.66.0F.WIG 60/r VPUNPCKLBW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PUNPCKLBW_VdqWdq, (RegisterID)xmm1, (RegisterID)xmm3, (RegisterID)xmm2);
}
void vpunpckhbw_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/punpckhbw:punpckhwd:punpckhdq:punpckhqdq
// VEX.128.66.0F.WIG 68/r VPUNPCKHBW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PUNPCKHBW_VdqWdq, (RegisterID)xmm1, (RegisterID)xmm3, (RegisterID)xmm2);
}
void vpunpcklqdq_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/punpcklbw:punpcklwd:punpckldq:punpcklqdq
// VEX.128.66.0F.WIG 6C /r VPUNPCKLQDQ xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PUNPCKLQDQ_VdqWdq, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vunpcklps_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/unpcklps
// VEX.128.0F.WIG 14 /r VUNPCKLPS xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_UNPCKLPD_VpdWpd, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vunpcklpd_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/unpcklpd
// VEX.128.66.0F.WIG 14 /r VUNPCKLPD xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_UNPCKLPD_VpdWpd, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vpextrb_i8rr(uint8_t laneIndex, XMMRegisterID vn, RegisterID rd)
{
// https://www.felixcloutier.com/x86/pextrb:pextrd:pextrq
// VEX.128.66.0F3A.W0 14 /r ib VPEXTRB reg/m8, xmm2, imm8
// A NA ModRM:r/m (w) ModRM:reg (r) imm8 NA
ASSERT(laneIndex < 16);
m_formatter.vexNdsLigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, VexW::W0, OP3_PEXTRB_MbVdqIb, (RegisterID)vn, (RegisterID)0, rd);
m_formatter.immediate8(laneIndex);
}
void vpextrb_i8rm(uint8_t laneIndex, XMMRegisterID src, RegisterID base, int offset)
{
// https://www.felixcloutier.com/x86/pextrb:pextrd:pextrq
// VEX.128.66.0F3A.W0 14 /r ib VPEXTRB reg/m8, xmm2, imm8
// A NA ModRM:r/m (w) ModRM:reg (r) imm8 NA
ASSERT(laneIndex < 16);
m_formatter.vexNdsLigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, VexW::W0, OP3_PEXTRB_MbVdqIb, (RegisterID)src, (RegisterID)0, base, offset);
m_formatter.immediate8(laneIndex);
}
void vpextrw_i8rr(uint8_t laneIndex, XMMRegisterID vn, RegisterID rd)
{
// https://www.felixcloutier.com/x86/pextrw
// VEX.128.66.0F3A.W0 15 /r ib VPEXTRW reg/m16, xmm2, imm8
// B NA ModRM:r/m (w) ModRM:reg (r) imm8 NA
ASSERT(laneIndex < 8);
m_formatter.vexNdsLigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, VexW::W0, OP3_PEXTRW_MwVdqIb, (RegisterID)vn, (RegisterID)0, rd);
m_formatter.immediate8(laneIndex);
}
void vpextrw_i8rm(uint8_t laneIndex, XMMRegisterID src, RegisterID base, int offset)
{
// https://www.felixcloutier.com/x86/pextrw
// VEX.128.66.0F3A.W0 15 /r ib VPEXTRW reg/m16, xmm2, imm8
// B NA ModRM:r/m (w) ModRM:reg (r) imm8 NA
ASSERT(laneIndex < 8);
m_formatter.vexNdsLigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, VexW::W0, OP3_PEXTRW_MwVdqIb, (RegisterID)src, (RegisterID)0, base, offset);
m_formatter.immediate8(laneIndex);
}
void vpextrd_i8rr(uint8_t laneIndex, XMMRegisterID vn, RegisterID rd)
{
// https://www.felixcloutier.com/x86/pextrb:pextrd:pextrq
// VEX.128.66.0F3A.W0 16 /r ib VPEXTRD r32/m32, xmm2, imm8
// A NA ModRM:r/m (w) ModRM:reg (r) imm8 NA
ASSERT(laneIndex < 4);
m_formatter.vexNdsLigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, VexW::W0, OP3_PEXTRD_EyVdqIb, (RegisterID)vn, (RegisterID)0, rd);
m_formatter.immediate8(laneIndex);
}
void vpextrd_i8rm(uint8_t laneIndex, XMMRegisterID src, RegisterID base, int offset)
{
// https://www.felixcloutier.com/x86/pextrb:pextrd:pextrq
// VEX.128.66.0F3A.W0 16 /r ib VPEXTRD r32/m32, xmm2, imm8
// A NA ModRM:r/m (w) ModRM:reg (r) imm8 NA
ASSERT(laneIndex < 4);
m_formatter.vexNdsLigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, VexW::W0, OP3_PEXTRD_EyVdqIb, (RegisterID)src, (RegisterID)0, base, offset);
m_formatter.immediate8(laneIndex);
}
void vpextrq_i8rr(uint8_t laneIndex, XMMRegisterID vn, RegisterID rd)
{
// https://www.felixcloutier.com/x86/pextrb:pextrd:pextrq
// VEX.128.66.0F3A.W1 16 /r ib VPEXTRQ r64/m64, xmm2, imm8
// A NA ModRM:r/m (w) ModRM:reg (r) imm8 NA
ASSERT(laneIndex < 2);
m_formatter.vexNdsLigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, VexW::W1, OP3_PEXTRQ_EyVdqIb, (RegisterID)vn, (RegisterID)0, rd);
m_formatter.immediate8(laneIndex);
}
void vpextrq_i8rm(uint8_t laneIndex, XMMRegisterID src, RegisterID base, int offset)
{
// https://www.felixcloutier.com/x86/pextrb:pextrd:pextrq
// VEX.128.66.0F3A.W1 16 /r ib VPEXTRQ r64/m64, xmm2, imm8
// A NA ModRM:r/m (w) ModRM:reg (r) imm8 NA
ASSERT(laneIndex < 2);
m_formatter.vexNdsLigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, VexW::W1, OP3_PEXTRQ_EyVdqIb, (RegisterID)src, (RegisterID)0, base, offset);
m_formatter.immediate8(laneIndex);
}
void vpshufb_rrr(XMMRegisterID vm, XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pshufb
// VEX.128.66.0F38.WIG 00 /r VPSHUFB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PSHUFB_VdqWdq, (RegisterID)vd, (RegisterID)vn, (RegisterID)vm);
}
void vshufps_i8rrr(uint8_t controlBits, XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/shufps
// VEX.128.0F.WIG C6 /r ib VSHUFPS xmm1, xmm2, xmm3/m128, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) Imm8
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_SHUFPS_VpdWpdIb, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
m_formatter.immediate8(controlBits);
}
void vshufpd_i8rrr(uint8_t controlBits, XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/shufpd
// VEX.128.66.0F.WIG C6 /r ib VSHUFPD xmm1, xmm2, xmm3/m128, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) Imm8
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_SHUFPD_VpdWpdIb, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
m_formatter.immediate8(controlBits);
}
void vpshuflw_i8rr(uint8_t controlBits, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pshuflw
// VEX.128.F2.0F.WIG 70 /r ib VPSHUFLW xmm1, xmm2/m128, imm8
// A NA ModRM:reg (w) ModRM:r/m (r) imm8 NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_PSHUFLW_VdqWdqIb, (RegisterID)xmm1, (RegisterID)0, (RegisterID)xmm2);
m_formatter.immediate8(controlBits);
}
void vpshufd_i8rr(uint8_t controlBits, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pshufd
// VEX.128.66.0F.WIG 70 /r ib VPSHUFD xmm1, xmm2/m128, imm8
// A NA ModRM:reg (w) ModRM:r/m (r) imm8 NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSHUFD_VdqWdqIb, (RegisterID)xmm1, (RegisterID)0, (RegisterID)xmm2);
m_formatter.immediate8(controlBits);
}
void vpaddsb_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/paddsb:paddsw
// VEX.128.66.0F.WIG EC /r VPADDSB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PADDSB_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpaddusb_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/paddusb:paddusw
// VEX.128.66.0F.WIG DC /r VPADDUSB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PADDUSB_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpaddsw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/paddsb:paddsw
// VEX.128.66.0F.WIG ED /r VPADDSW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PADDSW_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpaddusw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/paddusb:paddusw
// VEX.128.66.0F.WIG DD /r VPADDUSW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PADDUSW_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpsubsb_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/psubsb:psubsw
// VEX.128.66.0F.WIG E8 /r VPSUBSB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSUBSB_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpsubusb_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/psubusb:psubusw
// VEX.128.66.0F.WIG D8 /r VPSUBUSB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSUBUSB_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpsubsw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/psubsb:psubsw
// VEX.128.66.0F.WIG E9 /r VPSUBSW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSUBSW_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpsubusw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/psubusb:psubusw
// VEX.128.66.0F.WIG D9 /r VPSUBUSW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSUBUSW_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpmaxsb_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxsb:pmaxsw:pmaxsd:pmaxsq
// VEX.128.66.0F38.WIG 3C /r VPMAXSB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PMAXSB_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpmaxsw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxsb:pmaxsw:pmaxsd:pmaxsq
// VEX.128.66.0F.WIG EE /r VPMAXSW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PMAXSW_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpmaxsd_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxsb:pmaxsw:pmaxsd:pmaxsq
// VEX.128.66.0F38.WIG 3D /r VPMAXSD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PMAXSD_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpmaxub_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxub:pmaxuw
// VEX.128.66.0F DE /r VPMAXUB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PMAXUB_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpmaxuw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxub:pmaxuw
// VEX.128.66.0F38 3E /r VPMAXUW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PMAXUW_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpmaxud_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pmaxud:pmaxuq
// VEX.128.66.0F38.WIG 3F /r VPMAXUD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PMAXUD_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpminsb_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminsb:pminsw
// VEX.128.66.0F38 38 /r VPMINSB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PMINSB_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpminsw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminsb:pminsw
// VEX.128.66.0F EA /r VPMINSW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PMINSW_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpminsd_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminsd:pminsq
// VEX.128.66.0F38.WIG 39 /r VPMINSD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PMINSD_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpminub_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminub:pminuw
// VEX.128.66.0F DA /r VPMINUB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PMINUB_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpminuw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminub:pminuw
// VEX.128.66.0F38 3A /r VPMINUW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PMINUW_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpminud_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pminud:pminuq
// VEX.128.66.0F38.WIG 3B /r VPMINUD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PMINUD_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vmaxps_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/maxps
// VEX.128.NP.0F.WIG 5F /r VMAXPS xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MAXPS_VpsWps, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vmaxpd_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/maxpd
// VEX.128.66.0F.WIG 5F /r VMAXPD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_MAXPD_VpdWpd, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vminps_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/minps
// VEX.128.NP.0F.WIG 5D /r VMINPS xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MINPS_VpsWps, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vminpd_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/minpd
// VEX.128.66.0F.WIG 5D /r VMINPD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_MINPD_VpdWpd, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vpavgb_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pavgb:pavgw
// VEX.128.66.0F.WIG E0 /r VPAVGB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PAVGB_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpavgw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pavgb:pavgw
// VEX.128.66.0F.WIG E3 /r VPAVGW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PAVGW_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpabsb_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pabsb:pabsw:pabsd:pabsq
// VEX.128.66.0F38.WIG 1C /r VPABSB xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PABSB_VdqWdq, (RegisterID)vd, (RegisterID)0, (RegisterID)vn);
}
void vpabsw_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pabsb:pabsw:pabsd:pabsq
// VEX.128.66.0F38.WIG 1D /r VPABSW xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PABSW_VdqWdq, (RegisterID)vd, (RegisterID)0, (RegisterID)vn);
}
void vpabsd_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pabsb:pabsw:pabsd:pabsq
// VEX.128.66.0F38.WIG 1E /r VPABSD xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PABSD_VdqWdq, (RegisterID)vd, (RegisterID)0, (RegisterID)vn);
}
void vpxor_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/pxor
// VEX.128.66.0F.WIG EF /r VPXOR xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PXOR_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vpsubq_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/psubq
// VEX.128.66.0F.WIG FB /r VPSUBQ xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSUBQ_VdqWdq, (RegisterID)vd, (RegisterID)left, (RegisterID)right);
}
void vblendvpd_rrrr(XMMRegisterID xmm4, XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/blendvpd
// VEX.128.66.0F3A.W0 4B /r /is4 VBLENDVPD xmm1, xmm2, xmm3/m128, xmm4
// RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_BLENDVPD_VpdWpdXMM0, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
m_formatter.immediate8(static_cast<uint8_t>(xmm4) << 4); // imm8[7:4]
}
void vpmulhrsw_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmulhrsw
// VEX.128.66.0F38.WIG 0B /r VPMULHRSW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_ROUNDSD_VsdWsdIb, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vaddps_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/addps
// VEX.128.0F.WIG 58 /r VADDPS xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_00, OP2_ADDPS_VpsWps, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vaddpd_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/addpd
// VEX.128.66.0F.WIG 58 /r VADDPD xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_ADDPD_VpdWpd, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vaddpd_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/addpd
// VEX.128.66.0F.WIG 58 /r VADDPD xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_ADDPD_VpdWpd, (RegisterID)dest, (RegisterID)src2, base, offset);
}
void vpaddb_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/paddb:paddw:paddd:paddq
// VEX.128.66.0F.WIG FC /r VPADDB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PADDB_VdqWdq, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vpaddw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/paddb:paddw:paddd:paddq
// VEX.128.66.0F.WIG FD /r VPADDW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PADDW_VdqWdq, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vpaddd_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/paddb:paddw:paddd:paddq
// VEX.128.66.0F.WIG FE /r VPADDD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PADDD_VdqWdq, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vpaddq_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/paddb:paddw:paddd:paddq
// VEX.128.66.0F.WIG D4 /r VPADDQ xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PADDQ_VdqWdq, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vsubps_mrr(int offset, RegisterID base, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/subps
// VEX.128.0F.WIG 5C /r VSUBPS xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_SUBPS_VpsWps, (RegisterID)dest, (RegisterID)left, base, offset);
}
void vsubps_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/subps
// VEX.128.0F.WIG 5C /r VSUBPS xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_SUBPS_VpsWps, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vsubpd_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/subpd
// VEX.128.66.0F.WIG 5C /r VSUBPD xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
// Sub is xmm1 = xmm2 - xmm3
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_SUBPD_VpdWpd, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vpsubb_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/psubb:psubw:psubd
// VEX.128.66.0F.WIG F8 /r VPSUBB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSUBB_VdqWdq, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vpsubw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/psubb:psubw:psubd
// VEX.128.66.0F.WIG F9 /r VPSUBW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSUBW_VdqWdq, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vpsubd_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/psubb:psubw:psubd
// VEX.128.66.0F.WIG FA /r VPSUBD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSUBD_VdqWdq, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vmulps_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/mulps
// VEX.128.0F.WIG 59 /r VMULPS xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_00, OP2_MULPS_VpsWps, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vmulpd_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/mulpd
// VEX.128.66.0F.WIG 59 /r VMULPD xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_MULPD_VpdWpd, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vpmullw_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/pmullw
// VEX.128.66.0F.WIG D5 /r VPMULLW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PMULLW_VdqWdq, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vpmulld_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/pmulld:pmullq
// VEX.128.66.0F38.WIG 40 /r VPMULLD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PMULLD_VdqWdq, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vdivps_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/divps
// VEX.128.0F.WIG 5E /r VDIVPS xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_DIVPS_VpsWps, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vdivpd_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/divpd
// VEX.128.66.0F.WIG 5E /r VDIVPD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_DIVPD_VpdWpd, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vdivsd_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/divsd
// VEX.LIG.F2.0F.WIG 5E /r VDIVSD xmm1, xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_DIVSD_VsdWsd, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vdivsd_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/divsd
// VEX.LIG.F2.0F.WIG 5E /r VDIVSD xmm1, xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_DIVSD_VsdWsd, (RegisterID)dest, (RegisterID)src2, base, offset);
}
void vdivss_rrr(XMMRegisterID right, XMMRegisterID left, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/divss
// VEX.LIG.F3.0F.WIG 5E /r VDIVSS xmm1, xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_DIVSS_VpsWps, (RegisterID)dest, (RegisterID)left, (RegisterID)right);
}
void vdivss_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/divss
// VEX.LIG.F3.0F.WIG 5E /r VDIVSS xmm1, xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_DIVSS_VpsWps, (RegisterID)dest, (RegisterID)src2, base, offset);
}
void vroundsd_i8rrr(RoundingType rounding, FPRegisterID src1, FPRegisterID src2, FPRegisterID dest)
{
// https://www.felixcloutier.com/x86/roundsd
// VEX.LIG.66.0F3A.WIG 0B /r ib VROUNDSD xmm1, xmm2, xmm3/m64, imm8
// RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dest, (RegisterID)src2, (RegisterID)src1);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void vroundsd_i8mrr(RoundingType rounding, int offset, RegisterID base, FPRegisterID src2, FPRegisterID dest)
{
// https://www.felixcloutier.com/x86/roundsd
// VEX.LIG.66.0F3A.WIG 0B /r ib VROUNDSD xmm1, xmm2, xmm3/m64, imm8
// RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dest, (RegisterID)src2, base, offset);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void vroundss_i8rrr(RoundingType rounding, FPRegisterID src1, FPRegisterID src2, FPRegisterID dest)
{
// https://www.felixcloutier.com/x86/roundss
// VEX.LIG.66.0F3A.WIG 0A /r ib VROUNDSS xmm1, xmm2, xmm3/m32, imm8
// RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dest, (RegisterID)src2, (RegisterID)src1);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void vroundss_i8mrr(RoundingType rounding, int offset, RegisterID base, FPRegisterID src2, FPRegisterID dest)
{
// https://www.felixcloutier.com/x86/roundss
// VEX.LIG.66.0F3A.WIG 0A /r ib VROUNDSS xmm1, xmm2, xmm3/m32, imm8
// RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dest, (RegisterID)src2, base, offset);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void vroundps_rr(FPRegisterID src, FPRegisterID dest, RoundingType rounding)
{
// https://www.felixcloutier.com/x86/roundps
// VEX.128.66.0F3A.WIG 08 /r ib VROUNDPS xmm1, xmm2/m128, imm8
// RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_ROUNDPS_VpsWpsIb, (RegisterID)dest, (RegisterID)0, (RegisterID)src);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void vroundpd_rr(FPRegisterID src, FPRegisterID dest, RoundingType rounding)
{
// https://www.felixcloutier.com/x86/roundpd
// VEX.128.66.0F3A.WIG 09 /r ib VROUNDPD xmm1, xmm2/m128, imm8
// RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_ROUNDPD_VpdWpdIb, (RegisterID)dest, (RegisterID)0, (RegisterID)src);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void vsqrtps_rr(XMMRegisterID src, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/sqrtps
// VEX.128.0F.WIG 51 /r VSQRTPS xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_SQRTPS_VpsWps, (RegisterID)dest, (RegisterID)0, (RegisterID)src);
}
void vsqrtpd_rr(XMMRegisterID src, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/sqrtpd
// VEX.128.66.0F.WIG 51 /r VSQRTPD xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_SQRTPD_VpdWpd, (RegisterID)dest, (RegisterID)0, (RegisterID)src);
}
void vpmaddwd_rrr(FPRegisterID a, FPRegisterID b, FPRegisterID dest)
{
// https://www.felixcloutier.com/x86/pmaddwd
// VEX.128.66.0F.WIG F5 /r VPMADDWD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PMADDWD_VdqWdq, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vpcmpeqb_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/pcmpeqb:pcmpeqw:pcmpeqd
// VEX.128.66.0F.WIG 74 /r VPCMPEQB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PCMPEQB_VdqWdq, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vpcmpeqw_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/pcmpeqb:pcmpeqw:pcmpeqd
// VEX.128.66.0F.WIG 75 /r VPCMPEQW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PCMPEQW_VdqWdq, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vpcmpeqd_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/pcmpeqb:pcmpeqw:pcmpeqd
// VEX.128.66.0F.WIG 76 /r VPCMPEQD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_PCMPEQD_VdqWdq, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vpcmpeqq_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/pcmpeqq
// VEX.128.66.0F38.WIG 29 /r VPCMPEQQ xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PCMPEQQ_VdqWdq, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vpcmpgtb_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/pcmpgtb:pcmpgtw:pcmpgtd
// VEX.128.66.0F.WIG 64 /r VPCMPGTB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PCMPGTB_VdqWdq, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vpcmpgtw_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/pcmpgtb:pcmpgtw:pcmpgtd
// VEX.128.66.0F.WIG 65 /r VPCMPGTW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PCMPGTW_VdqWdq, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vpcmpgtd_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/pcmpgtb:pcmpgtw:pcmpgtd
// VEX.128.66.0F.WIG 66 /r VPCMPGTD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PCMPGTD_VdqWdq, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vpcmpgtq_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/pcmpgtq
// VEX.128.66.0F38.WIG 37 /r VPCMPGTQ xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PCMPGTQ_VdqWdq, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vcmpunordps_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
vcmpps_rrr(PackedCompareCondition::Unordered, a, b, dest);
}
void vcmpleps_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
vcmpps_rrr(PackedCompareCondition::LessThanOrEqualAndOrdered, a, b, dest);
}
void vcmpnltps_mrr(int offset, RegisterID base, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
vcmpps_mrr(PackedCompareCondition::GreaterThanOrEqualAndOrdered, offset, base, xmm2, xmm1);
}
void vcmpltps_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
vcmpps_rrr(PackedCompareCondition::LessThanAndOrdered, a, b, dest);
}
void vcmpps_rrr(PackedCompareCondition condition, XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/cmpps
// VEX.128.0F.WIG C2 /r ib VCMPPS xmm1, xmm2, xmm3/m128, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) Imm8
switch (condition) {
case PackedCompareCondition::EqualAndOrdered:
case PackedCompareCondition::NotEqualOrUnordered:
case PackedCompareCondition::Unordered:
case PackedCompareCondition::Ordered:
case PackedCompareCondition::EqualOrUnordered:
case PackedCompareCondition::NotEqualAndOrdered:
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_00, OP2_CMPPS_VpsWpsIb, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
break;
default:
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_CMPPS_VpsWpsIb, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
m_formatter.immediate8(static_cast<uint8_t>(condition));
}
void vcmpps_mrr(PackedCompareCondition condition, int offset, RegisterID base, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/cmpps
// VEX.128.0F.WIG C2 /r ib VCMPPS xmm1, xmm2, xmm3/m128, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) Imm8
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_CMPPS_VpsWpsIb, (RegisterID)xmm1, (RegisterID)xmm2, base, offset);
m_formatter.immediate8(static_cast<uint8_t>(condition));
}
void vcmppd_rrr(PackedCompareCondition condition, XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/cmppd
// VEX.128.66.0F.WIG C2 /r ib VCMPPD xmm1, xmm2, xmm3/m128, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) Imm8
switch (condition) {
case PackedCompareCondition::EqualAndOrdered:
case PackedCompareCondition::NotEqualOrUnordered:
case PackedCompareCondition::Unordered:
case PackedCompareCondition::Ordered:
case PackedCompareCondition::EqualOrUnordered:
case PackedCompareCondition::NotEqualAndOrdered:
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_CMPPD_VpdWpdIb, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
break;
default:
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_CMPPD_VpdWpdIb, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
m_formatter.immediate8(static_cast<uint8_t>(condition));
}
void vcvttps2dq_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/cvttps2dq
// VEX.128.F3.0F.WIG 5B /r VCVTTPS2DQ xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_CVTDQ2PS_VsdWsd, (RegisterID)vd, (RegisterID)0, (RegisterID)vn);
}
void vcvtdq2ps_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/cvtdq2ps
// VEX.128.0F.WIG 5B /r VCVTDQ2PS xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_CVTDQ2PS_VsdWsd, (RegisterID)vd, (RegisterID)0, (RegisterID)vn);
}
void vcvtdq2pd_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/cvtdq2pd
// VEX.128.F3.0F.WIG E6 /r VCVTDQ2PD xmm1, xmm2/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_CVTDQ2PD_VdqWdq, (RegisterID)vd, (RegisterID)0, (RegisterID)vn);
}
void vminpd_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/minpd
// VEX.128.66.0F.WIG 5D /r VMINPD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_MINPD_VpdWpd, (RegisterID)dest, (RegisterID)src2, base, offset);
}
void vcmppd_rrr(uint8_t imm8, XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/cmppd
// VEX.128.66.0F.WIG C2 /r ib VCMPPD xmm1, xmm2, xmm3/m128, imm8
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) Imm8
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_CMPPD_VpdWpdIb, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
m_formatter.immediate8(imm8);
}
void vpsllw_i8rr(uint8_t shift, XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/psrlw:psrld:psrlq
// VEX.128.66.0F.WIG 71 /6 ib VPSLLW xmm1, xmm2, imm8
// D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSLLW_UdqIb, (RegisterID)GROUP14_OP_PSLLQ, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(shift);
}
void vpslld_i8rr(uint8_t shift, XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/psrlw:psrld:psrlq
// VEX.128.66.0F.WIG 72 /6 ib VPSLLD xmm1, xmm2, imm8
// D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSLLD_UdqIb, (RegisterID)GROUP14_OP_PSLLQ, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(shift);
}
void vpsrlw_i8rr(uint8_t shift, XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/psrlw:psrld:psrlq
// VEX.128.66.0F.WIG 71 /2 ib VPSRLW xmm1, xmm2, imm8
// D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSRLW_UdqIb, (RegisterID)GROUP14_OP_PSRLQ, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(shift);
}
void vpsrld_i8rr(uint8_t shift, XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/psrlw:psrld:psrlq
// VEX.128.66.0F.WIG 72 /2 ib VPSRLD xmm1, xmm2, imm8
// D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSRLD_UdqIb, (RegisterID)GROUP14_OP_PSRLQ, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(shift);
}
void vpsrlq_i8rr(uint8_t shift, XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/psrlw:psrld:psrlq
// VEX.128.66.0F.WIG 73 /2 ib VPSRLQ xmm1, xmm2, imm8
// D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSRLQ_UdqIb, (RegisterID)GROUP14_OP_PSRLQ, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(shift);
}
void vpsraw_i8rr(uint8_t shift, XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/psraw:psrad:psraq
// VEX.128.66.0F.WIG 71 /4 ib VPSRAW xmm1, xmm2, imm8
// D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSRAW_UdqIb, (RegisterID)GROUP14_OP_PSRAQ, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(shift);
}
void vpsrad_i8rr(uint8_t shift, XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/psraw:psrad:psraq
// VEX.128.66.0F.WIG 72 /4 ib VPSRAD xmm1, xmm2, imm8
// D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSRAD_UdqIb, (RegisterID)GROUP14_OP_PSRAQ, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(shift);
}
void vcvttpd2dq_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/cvttpd2dq
// VEX.128.66.0F.WIG E6 /r VCVTTPD2DQ xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_CVTDPD2DQ_VdqWdq, (RegisterID)xmm1, (RegisterID)0, (RegisterID)xmm2);
}
void vcvtpd2ps_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/cvtpd2ps
// VEX.128.66.0F.WIG 5A /r VCVTPD2PS xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_CVTPD2PS_VsdWsd, (RegisterID)xmm1, (RegisterID)0, (RegisterID)xmm2);
}
void vcvtps2pd_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/cvtps2pd
// VEX.128.0F.WIG 5A /r VCVTPS2PD xmm1, xmm2/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_CVTPS2PD_VsdWsd, (RegisterID)xmm1, (RegisterID)0, (RegisterID)xmm2);
}
void vpacksswb_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/packsswb:packssdw
// VEX.128.66.0F.WIG 63 /r VPACKSSWB xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PACKSSWB_VdqWdq, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vpackuswb_rrr(XMMRegisterID upper, XMMRegisterID lower, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/packuswb
// VEX.128.66.0F.WIG 67 /r VPACKUSWB xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PACKUSWB_VdqWdq, (RegisterID)dest, (RegisterID)lower, (RegisterID)upper);
}
void vpackssdw_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/packsswb:packssdw
// VEX.128.66.0F.WIG 6B /r VPACKSSDW xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PACKSSDW_VdqWdq, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vpackusdw_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/packusdw
// VEX.128.66.0F38 2B /r VPACKUSDW xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_VPACKUSDW_VxHxWx, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vpmovsxbw_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovsx
// VEX.128.66.0F38.WIG 20 /r VPMOVSXBW xmm1, xmm2/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_VPMOVSXBW_VxUx, (RegisterID)xmm1, (RegisterID)0, (RegisterID)xmm2);
}
void vpmovzxbw_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovzx
// VEX.128.66.0F38.WIG 30 /r VPMOVZXBW xmm1, xmm2/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_VPMOVZXBW_VxUx, (RegisterID)xmm1, (RegisterID)0, (RegisterID)xmm2);
}
void vpmovsxwd_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovsx
// VEX.128.66.0F38.WIG 23 /r VPMOVSXWD xmm1, xmm2/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_VPMOVSXWD_VxUx, (RegisterID)xmm1, (RegisterID)0, (RegisterID)xmm2);
}
void vpmovzxwd_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovzx
// VEX.128.66.0F38.WIG 33 /r VPMOVZXWD xmm1, xmm2/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_VPMOVZXWD_VxUx, (RegisterID)xmm1, (RegisterID)0, (RegisterID)xmm2);
}
void vpmovsxdq_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovsx
// VEX.128.66.0F38.WIG 25 /r VPMOVSXDQ xmm1, xmm2/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_VPMOVSXDQ_VxUx, (RegisterID)xmm1, (RegisterID)0, (RegisterID)xmm2);
}
void vpmovzxdq_rr(XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmovzx
// VEX.128.66.0F38.WIG 35 /r VPMOVZXDQ xmm1, xmm2/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_VPMOVZXDQ_VxUx, (RegisterID)xmm1, (RegisterID)0, (RegisterID)xmm2);
}
void vunpckhpd_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/unpckhpd
// VEX.128.66.0F.WIG 15 /r VUNPCKHPD xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_UNPCKHPD_VpdWpd, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vpand_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pand
// VEX.128.66.0F.WIG DB /r VPAND xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_VPAND_VxHxWx, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vandps_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/andps
// VEX.128.0F 54 /r VANDPS xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_00, OP2_ANDPS_VpsWps, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vandpd_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/andpd
// VEX.128.66.0F 54 /r VANDPD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_ANDPD_VpdWpd, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vandpd_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/andpd
// VEX.128.66.0F 54 /r VANDPD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_ANDPD_VpdWpd, (RegisterID)dest, (RegisterID)src2, base, offset);
}
void vorps_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/orps
// VEX.128.0F 56 /r VORPS xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_00, OP2_ORPS_VpsWps, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vorpd_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/orpd
// VEX.128.66.0F 56 /r VORPD xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_ORPD_VpdWpd, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vxorps_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/xorps
// VEX.128.0F.WIG 57 /r VXORPS xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_00, OP2_XORPS_VpsWps, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vxorpd_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/xorpd
// VEX.128.66.0F.WIG 57 /r VXORPD xmm1,xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_66, OP2_XORPD_VpdWpd, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vandnps_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/andnps
// VEX.128.0F 55 /r VANDNPS xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_ANDNPS_VpsWps, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vandnpd_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/andnpd
// VEX.128.66.0F 55 /r VANDNPD xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_ANDNPD_VpdWpd, (RegisterID)dest, (RegisterID)b, (RegisterID)a);
}
void vpmovmskb_rr(XMMRegisterID input, RegisterID dest)
{
// https://www.felixcloutier.com/x86/pmovmskb
// VEX.128.66.0F.WIG D7 /r VPMOVMSKB reg, xmm1
// RM ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PMOVMSKB_EqWdq, (RegisterID)dest, (RegisterID)0, (RegisterID)input);
}
void vmovshdup_rr(XMMRegisterID input, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/movshdup
// VEX.128.F3.0F.WIG 16 /r VMOVSHDUP xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MOVSHDUP_VqWq, (RegisterID)dest, (RegisterID)0, (RegisterID)input);
}
void vmovhlps_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/movhlps
// VEX.128.0F.WIG 12 /r VMOVHLPS xmm1, xmm2, xmm3
// RVM ModRM:reg (w) vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MOVHLPS_VqUq, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vmovsd_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/movsd
// VEX.LIG.F2.0F.WIG 10 /r VMOVSD xmm1, xmm2, xmm3
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r)
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MOVSD_VsdWsd, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vmovmskps_rr(XMMRegisterID input, RegisterID dest)
{
// https://www.felixcloutier.com/x86/movmskps
// VEX.128.0F.WIG 50 /r VMOVMSKPS reg, xmm2
// RM ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MOVMSKPS_EqWps, (RegisterID)dest, (RegisterID)0, (RegisterID)input);
}
void vmovmskpd_rr(XMMRegisterID input, RegisterID dest)
{
// https://www.felixcloutier.com/x86/movmskpd
// VEX.128.66.0F.WIG 50 /r VMOVMSKPD reg, xmm2
// RM ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_MOVMSKPD_EqWpd, (RegisterID)dest, (RegisterID)0, (RegisterID)input);
}
void vptest_rr(XMMRegisterID a, XMMRegisterID b)
{
// https://www.felixcloutier.com/x86/ptest
// VEX.128.66.0F38.WIG 17 /r VPTEST xmm1, xmm2/m128
// RM ModRM:reg (r) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PTEST_VdqWdq, (RegisterID)b, (RegisterID)0, (RegisterID)a);
}
void vpsllw_rrr(XMMRegisterID shift, XMMRegisterID input, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/psllw:pslld:psllq
// VEX.128.66.0F.WIG F1 /r VPSLLW xmm1, xmm2, xmm3/m128
// C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSLLW_VdqWdq, (RegisterID)dest, (RegisterID)input, (RegisterID)shift);
}
void vpslld_rrr(XMMRegisterID shift, XMMRegisterID input, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/psllw:pslld:psllq
// VEX.128.66.0F.WIG F2 /r VPSLLD xmm1, xmm2, xmm3/m128
// C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSLLD_VdqWdq, (RegisterID)dest, (RegisterID)input, (RegisterID)shift);
}
void vpsllq_rrr(XMMRegisterID shift, XMMRegisterID input, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/psllw:pslld:psllq
// VEX.128.66.0F.WIG F3 /r VPSLLQ xmm1, xmm2, xmm3/m128
// C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSLLQ_VdqWdq, (RegisterID)dest, (RegisterID)input, (RegisterID)shift);
}
void vpsrlw_rrr(XMMRegisterID shift, XMMRegisterID input, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/psrlw:psrld:psrlq
// VEX.128.66.0F.WIG D1 /r VPSRLW xmm1, xmm2, xmm3/m128
// C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSRLW_VdqWdq, (RegisterID)dest, (RegisterID)input, (RegisterID)shift);
}
void vpsrld_rrr(XMMRegisterID shift, XMMRegisterID input, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/psrlw:psrld:psrlq
// VEX.128.66.0F.WIG D2 /r VPSRLD xmm1, xmm2, xmm3/m128
// C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSRLD_VdqWdq, (RegisterID)dest, (RegisterID)input, (RegisterID)shift);
}
void vpsrlq_rrr(XMMRegisterID shift, XMMRegisterID input, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/psrlw:psrld:psrlq
// VEX.128.66.0F.WIG D3 /r VPSRLQ xmm1, xmm2, xmm3/m128
// C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSRLQ_VdqWdq, (RegisterID)dest, (RegisterID)input, (RegisterID)shift);
}
void vpsraw_rrr(XMMRegisterID shift, XMMRegisterID input, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/psraw:psrad:psraq
// VEX.128.66.0F.WIG E1 /r VPSRAW xmm1, xmm2, xmm3/m128
// C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSRAW_VdqWdq, (RegisterID)dest, (RegisterID)input, (RegisterID)shift);
}
void vpsrad_rrr(XMMRegisterID shift, XMMRegisterID input, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/psraw:psrad:psraq
// VEX.128.66.0F.WIG E2 /r VPSRAD xmm1, xmm2, xmm3/m128
// C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_PSRAD_VdqWdq, (RegisterID)dest, (RegisterID)input, (RegisterID)shift);
}
void vmovd_rr(RegisterID src, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/movd:movq
// VEX.128.66.0F.W0 6E / VMOVD xmm1, r32/m32
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_MOVD_VdEd, (RegisterID)dest, (RegisterID)0, src);
}
void vmovd_rr(XMMRegisterID src, RegisterID dest)
{
// https://www.felixcloutier.com/x86/movd:movq
// VEX.128.66.0F.W0 7E /r VMOVD r32/m32, xmm1
// B NA ModRM:r/m (w) ModRM:reg (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_MOVD_EdVd, (RegisterID)src, (RegisterID)0, dest);
}
void vmovq_rr(RegisterID src, XMMRegisterID dest)
{
// https://www.felixcloutier.com/x86/movd:movq
// VEX.128.66.0F.W1 6E /r VMOVQ xmm1, r64/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigTwoByteOp(PRE_SSE_66, VexW::W1, OP2_MOVQ_PqQq, (RegisterID)dest, (RegisterID)0, src);
}
void vmovq_rr(XMMRegisterID src, RegisterID dest)
{
// https://www.felixcloutier.com/x86/movd:movq
// VEX.128.66.0F.W1 7E /r VMOVQ r64/m64, xmm1
// B NA ModRM:r/m (w) ModRM:reg (r) NA NA
m_formatter.vexNdsLigTwoByteOp(PRE_SSE_66, VexW::W1, OP2_MOVQ_QqPq, (RegisterID)src, (RegisterID)0, dest);
}
void vmovdqa_rr(XMMRegisterID vn, XMMRegisterID vd)
{
// https://www.felixcloutier.com/x86/movdqa:vmovdqa32:vmovdqa64
// VEX.128.66.0F.WIG 6F /r VMOVDQA xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_MOVDQA_VdqWdq, (RegisterID)vd, (RegisterID)0, (RegisterID)vn);
}
void vpmaddubsw_rrr(XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pmaddubsw
// VEX.128.66.0F38.WIG 04 /r VPMADDUBSW xmm1, xmm2, xmm3/m128
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp38, OP3_PMADDUBSW_VpdWpd, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
}
void vpblendw_i8rrr(uint8_t imm8, XMMRegisterID xmm3, XMMRegisterID xmm2, XMMRegisterID xmm1)
{
// https://www.felixcloutier.com/x86/pblendw
// VEX.128.66.0F3A.WIG 0E /r ib VPBLENDW xmm1, xmm2, xmm3/m128, imm8
// RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
m_formatter.vexNdsLigWigThreeByteOp(PRE_SSE_66, VexImpliedBytes::ThreeBytesOp3A, OP3_VPBLENDW_VxHxWxIb, (RegisterID)xmm1, (RegisterID)xmm2, (RegisterID)xmm3);
m_formatter.immediate8(imm8);
}
void vaddsd_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/addsd
// VEX.LIG.F2.0F.WIG 58 /r VADDSD xmm1, xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, (RegisterID)a);
}
void vaddsd_mrr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/addsd
// VEX.LIG.F2.0F.WIG 58 /r VADDSD xmm1, xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vaddsd_mrr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/addsd
// VEX.LIG.F2.0F.WIG 58 /r VADDSD xmm1, xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
void vaddss_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/addss
// VEX.LIG.F3.0F.WIG 58 /r VADDSS xmm1,xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, (RegisterID)a);
}
void vaddss_mrr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/addss
// VEX.LIG.F3.0F.WIG 58 /r VADDSS xmm1,xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vaddss_mrr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/addss
// VEX.LIG.F3.0F.WIG 58 /r VADDSS xmm1,xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
void vmovups_mr(int offset, RegisterID base, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movups
// VEX.128.0F.WIG 10 /r VMOVUPS xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MOVUPS_VsdWsd, (RegisterID)dst, (RegisterID)0, base, offset);
}
void vmovups_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movups
// VEX.128.0F.WIG 10 /r VMOVUPS xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MOVUPS_VsdWsd, (RegisterID)dst, (RegisterID)0, offset, base, index, scale);
}
void vmovups_rm(XMMRegisterID src, int offset, RegisterID base)
{
// https://www.felixcloutier.com/x86/movups
// VEX.128.0F.WIG 11 /r VMOVUPS xmm2/m128, xmm1
// B NA ModRM:r/m (w) ModRM:reg (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MOVUPS_WsdVsd, (RegisterID)src, (RegisterID)0, base, offset);
}
void vmovups_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
// https://www.felixcloutier.com/x86/movups
// VEX.128.0F.WIG 11 /r VMOVUPS xmm2/m128, xmm1
// B NA ModRM:r/m (w) ModRM:reg (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MOVUPS_WsdVsd, (RegisterID)src, (RegisterID)0, offset, base, index, scale);
}
void vmovaps_rr(XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movaps
// VEX.128.0F.WIG 28 /r VMOVAPS xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MOVAPS_VpsWps, (RegisterID)dst, (RegisterID)0, (RegisterID)src);
}
void vmovaps_mr(int offset, RegisterID base, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movaps
// VEX.128.0F.WIG 28 /r VMOVAPS xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MOVAPS_VpsWps, (RegisterID)dst, (RegisterID)0, base, offset);
}
void vmovaps_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movaps
// VEX.128.0F.WIG 28 /r VMOVAPS xmm1, xmm2/m128
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MOVAPS_VpsWps, (RegisterID)dst, (RegisterID)0, offset, base, index, scale);
}
void vmovaps_rm(XMMRegisterID src, int offset, RegisterID base)
{
// https://www.felixcloutier.com/x86/movaps
// VEX.128.0F.WIG 29 /r VMOVAPS xmm2/m128, xmm1
// B NA ModRM:r/m (w) ModRM:reg (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MOVAPS_WpsVps, (RegisterID)src, (RegisterID)0, base, offset);
}
void vmovaps_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
// https://www.felixcloutier.com/x86/movaps
// VEX.128.0F.WIG 29 /r VMOVAPS xmm2/m128, xmm1
// B NA ModRM:r/m (w) ModRM:reg (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_MOVAPS_WpsVps, (RegisterID)src, (RegisterID)0, offset, base, index, scale);
}
void vmovsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movsd
// VEX.LIG.F2.0F.WIG 10 /r VMOVSD xmm1, m64
// D NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MOVSD_VsdWsd, (RegisterID)dst, (RegisterID)0, base, offset);
}
void vmovsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movsd
// VEX.LIG.F2.0F.WIG 10 /r VMOVSD xmm1, m64
// D NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MOVSD_VsdWsd, (RegisterID)dst, (RegisterID)0, offset, base, index, scale);
}
void vmovsd_rm(XMMRegisterID src, int offset, RegisterID base)
{
// https://www.felixcloutier.com/x86/movsd
// VEX.LIG.F2.0F.WIG 11 /r VMOVSD m64, xmm1
// C NA ModRM:r/m (w) ModRM:reg (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MOVSD_WsdVsd, (RegisterID)src, (RegisterID)0, base, offset);
}
void vmovsd_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
// https://www.felixcloutier.com/x86/movsd
// VEX.LIG.F2.0F.WIG 11 /r VMOVSD m64, xmm1
// C NA ModRM:r/m (w) ModRM:reg (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MOVSD_WsdVsd, (RegisterID)src, (RegisterID)0, offset, base, index, scale);
}
void vmovss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movss
// VEX.LIG.F3.0F.WIG 10 /r VMOVSS xmm1, m32
// D NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MOVSS_VsdWsd, (RegisterID)dst, (RegisterID)0, base, offset);
}
void vmovss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/movss
// VEX.LIG.F3.0F.WIG 10 /r VMOVSS xmm1, m32
// D NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MOVSS_VsdWsd, (RegisterID)dst, (RegisterID)0, offset, base, index, scale);
}
void vmovss_rm(XMMRegisterID src, int offset, RegisterID base)
{
// https://www.felixcloutier.com/x86/movss
// VEX.LIG.F3.0F.WIG 11 /r VMOVSS m32, xmm1
// C NA ModRM:r/m (w) ModRM:reg (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MOVSS_WsdVsd, (RegisterID)src, (RegisterID)0, base, offset);
}
void vmovss_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
// https://www.felixcloutier.com/x86/movss
// VEX.LIG.F3.0F.WIG 11 /r VMOVSS m32, xmm1
// C NA ModRM:r/m (w) ModRM:reg (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MOVSS_WsdVsd, (RegisterID)src, (RegisterID)0, offset, base, index, scale);
}
void vmulsd_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/mulsd
// VEX.LIG.F2.0F.WIG 59 /r VMULSD xmm1,xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, (RegisterID)a);
}
void vmulsd_mrr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/mulsd
// VEX.LIG.F2.0F.WIG 59 /r VMULSD xmm1,xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vmulsd_mrr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/mulsd
// VEX.LIG.F2.0F.WIG 59 /r VMULSD xmm1,xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
void vmulss_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/mulss
// VEX.LIG.F3.0F.WIG 59 /r VMULSS xmm1,xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, (RegisterID)a);
}
void vmulss_mrr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/mulss
// VEX.LIG.F3.0F.WIG 59 /r VMULSS xmm1,xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vmulss_mrr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/mulss
// VEX.LIG.F3.0F.WIG 59 /r VMULSS xmm1,xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
void vsubsd_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/subsd
// VEX.LIG.F2.0F.WIG 5C /r VSUBSD xmm1,xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, (RegisterID)a);
}
void vsubsd_mrr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/subsd
// VEX.LIG.F2.0F.WIG 5C /r VSUBSD xmm1,xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vsubsd_mrr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/subsd
// VEX.LIG.F2.0F.WIG 5C /r VSUBSD xmm1,xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
void vsubss_rrr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/subss
// VEX.LIG.F3.0F.WIG 5C /r VSUBSS xmm1,xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, (RegisterID)a);
}
void vsubss_mrr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/subss
// VEX.LIG.F3.0F.WIG 5C /r VSUBSS xmm1,xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vsubss_mrr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/subss
// VEX.LIG.F3.0F.WIG 5C /r VSUBSS xmm1,xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
void vsqrtsd_rrr(XMMRegisterID src1, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/sqrtsd
// VEX.LIG.F2.0F.WIG 51/r VSQRTSD xmm1,xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src2, (RegisterID)src1);
}
void vsqrtsd_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/sqrtsd
// VEX.LIG.F2.0F.WIG 51/r VSQRTSD xmm1,xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src2, base, offset);
}
void vsqrtss_rrr(XMMRegisterID src1, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/sqrtss
// VEX.LIG.F3.0F.WIG 51 /r VSQRTSS xmm1, xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SQRTSS_VssWss, (RegisterID)dst, (RegisterID)src2, (RegisterID)src1);
}
void vsqrtss_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/sqrtss
// VEX.LIG.F3.0F.WIG 51 /r VSQRTSS xmm1, xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SQRTSS_VssWss, (RegisterID)dst, (RegisterID)src2, base, offset);
}
void vcvtsd2ss_rrr(XMMRegisterID src1, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtsd2ss
// VEX.LIG.F2.0F.WIG 5A /r VCVTSD2SS xmm1,xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_CVTSD2SS_VsdWsd, (RegisterID)dst, (RegisterID)src2, (RegisterID)src1);
}
void vcvtsd2ss_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtsd2ss
// VEX.LIG.F2.0F.WIG 5A /r VCVTSD2SS xmm1,xmm2, xmm3/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_CVTSD2SS_VsdWsd, (RegisterID)dst, (RegisterID)src2, base, offset);
}
void vcvtss2sd_rrr(XMMRegisterID src1, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtss2sd
// VEX.LIG.F3.0F.WIG 5A /r VCVTSS2SD xmm1, xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_CVTSS2SD_VsdWsd, (RegisterID)dst, (RegisterID)src2, (RegisterID)src1);
}
void vcvtss2sd_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtss2sd
// VEX.LIG.F3.0F.WIG 5A /r VCVTSS2SD xmm1, xmm2, xmm3/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_CVTSS2SD_VsdWsd, (RegisterID)dst, (RegisterID)src2, base, offset);
}
void vcvtsi2sd_rrr(RegisterID src1, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtsi2sd
// VEX.LIG.F2.0F.W0 2A /r VCVTSI2SD xmm1, xmm2, r/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_CVTSI2SD_VsdEd, (RegisterID)dst, (RegisterID)src2, (RegisterID)src1);
}
void vcvtsi2sd_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtsi2sd
// VEX.LIG.F2.0F.W0 2A /r VCVTSI2SD xmm1, xmm2, r/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_CVTSI2SD_VsdEd, (RegisterID)dst, (RegisterID)src2, base, offset);
}
void vcvtsi2ss_rrr(RegisterID src1, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtsi2ss
// VEX.LIG.F3.0F.W0 2A /r VCVTSI2SS xmm1, xmm2, r/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_CVTSI2SS_VssEs, (RegisterID)dst, (RegisterID)src2, (RegisterID)src1);
}
void vcvtsi2ss_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtsi2ss
// VEX.LIG.F3.0F.W0 2A /r VCVTSI2SS xmm1, xmm2, r/m32
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_CVTSI2SS_VssEs, (RegisterID)dst, (RegisterID)src2, base, offset);
}
void vcvttsd2si_rr(XMMRegisterID src, RegisterID dst)
{
// https://www.felixcloutier.com/x86/cvttsd2si
// VEX.LIG.F2.0F.W0 2C /r VCVTTSD2SI r32, xmm1/m64
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)0, (RegisterID)src);
}
void vcvttss2si_rr(XMMRegisterID src, RegisterID dst)
{
// https://www.felixcloutier.com/x86/cvttss2si
// VEX.LIG.F3.0F.W0 2C /r VCVTTSS2SI r32, xmm1/m32
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)0, (RegisterID)src);
}
void vcvttsd2siq_rr(XMMRegisterID src, RegisterID dst)
{
// https://www.felixcloutier.com/x86/cvttsd2si
// VEX.LIG.F2.0F.W1 2C /r VCVTTSD2SI r64, xmm1/m64
// B Tuple1 Fixed ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigTwoByteOp(PRE_SSE_F2, VexW::W1, OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)0, (RegisterID)src);
}
void vcvttss2siq_rr(XMMRegisterID src, RegisterID dst)
{
// https://www.felixcloutier.com/x86/cvttss2si
// VEX.LIG.F3.0F.W1 2C /r VCVTTSS2SI r64, xmm1/m32
// A NA ModRM:reg (w) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigTwoByteOp(PRE_SSE_F3, VexW::W1, OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)0, (RegisterID)src);
}
void vcvtsi2sdq_rrr(RegisterID src1, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtsi2sd
// VEX.LIG.F2.0F.W1 2A /r VCVTSI2SD xmm1, xmm2, r/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigTwoByteOp(PRE_SSE_F2, VexW::W1, OP2_CVTSI2SD_VsdEd, (RegisterID)dst, (RegisterID)src2, src1);
}
void vcvtsi2sdq_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtsi2sd
// VEX.LIG.F2.0F.W1 2A /r VCVTSI2SD xmm1, xmm2, r/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigTwoByteOp(PRE_SSE_F2, VexW::W1, OP2_CVTSI2SD_VsdEd, (RegisterID)dst, (RegisterID)src2, base, offset);
}
void vcvtsi2ssq_rrr(RegisterID src1, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtsi2ss.html
// VEX.LIG.F3.0F.W1 2A /r VCVTSI2SS xmm1, xmm2, r/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigTwoByteOp(PRE_SSE_F3, VexW::W1, OP2_CVTSI2SS_VssEs, (RegisterID)dst, (RegisterID)src2, src1);
}
void vcvtsi2ssq_mrr(int offset, RegisterID base, XMMRegisterID src2, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/cvtsi2ss.html
// VEX.LIG.F3.0F.W1 2A /r VCVTSI2SS xmm1, xmm2, r/m64
// B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
m_formatter.vexNdsLigTwoByteOp(PRE_SSE_F3, VexW::W1, OP2_CVTSI2SS_VssEs, (RegisterID)dst, (RegisterID)src2, base, offset);
}
void vucomisd_rr(XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/ucomisd
// VEX.LIG.66.0F.WIG 2E /r VUCOMISD xmm1, xmm2/m64
// A NA ModRM:reg (r) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)0, (RegisterID)src);
}
void vucomisd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/ucomisd
// VEX.LIG.66.0F.WIG 2E /r VUCOMISD xmm1, xmm2/m64
// A NA ModRM:reg (r) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_66, OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)0, base, offset);
}
void vucomiss_rr(XMMRegisterID src, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/ucomiss
// VEX.LIG.0F.WIG 2E /r VUCOMISS xmm1, xmm2/m32
// A NA ModRM:reg (r) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_UCOMISS_VssWss, (RegisterID)dst, (RegisterID)0, (RegisterID)src);
}
void vucomiss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
// https://www.felixcloutier.com/x86/ucomiss
// VEX.LIG.0F.WIG 2E /r VUCOMISS xmm1, xmm2/m32
// A NA ModRM:reg (r) ModRM:r/m (r) NA NA
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_00, OP2_UCOMISS_VssWss, (RegisterID)dst, (RegisterID)0, base, offset);
}
// Assembler admin methods:
size_t codeSize() const
{
return m_formatter.codeSize();
}
AssemblerLabel labelForWatchpoint()
{
AssemblerLabel result = m_formatter.label();
if (static_cast<int>(result.offset()) != m_indexOfLastWatchpoint)
result = label();
m_indexOfLastWatchpoint = result.offset();
m_indexOfTailOfLastWatchpoint = result.offset() + maxJumpReplacementSize();
return result;
}
AssemblerLabel labelIgnoringWatchpoints()
{
return m_formatter.label();
}
AssemblerLabel label()
{
AssemblerLabel result = m_formatter.label();
while (UNLIKELY(static_cast<int>(result.offset()) < m_indexOfTailOfLastWatchpoint)) {
nop();
result = m_formatter.label();
}
return result;
}
AssemblerLabel align(int alignment)
{
while (!m_formatter.isAligned(alignment))
m_formatter.oneByteOp(OP_HLT);
return label();
}
// Linking & patching:
//
// 'link' and 'patch' methods are for use on unprotected code - such as the code
// within the AssemblerBuffer, and code being patched by the patch buffer. Once
// code has been finalized it is (platform support permitting) within a non-
// writable region of memory; to modify the code in an execute-only execuable
// pool the 'repatch' and 'relink' methods should be used.
void linkJump(AssemblerLabel from, AssemblerLabel to)
{
ASSERT(from.isSet());
ASSERT(to.isSet());
char* code = reinterpret_cast<char*>(m_formatter.data());
ASSERT(!WTF::unalignedLoad<int32_t>(bitwise_cast<int32_t*>(code + from.offset()) - 1));
setRel32(code + from.offset(), code + to.offset());
}
static void linkJump(void* code, AssemblerLabel from, void* to)
{
ASSERT(from.isSet());
setRel32(reinterpret_cast<char*>(code) + from.offset(), to);
}
static void linkCall(void* code, AssemblerLabel from, void* to)
{
ASSERT(from.isSet());
setRel32(reinterpret_cast<char*>(code) + from.offset(), to);
}
static void linkPointer(void* code, AssemblerLabel where, void* value)
{
ASSERT(where.isSet());
setPointer(reinterpret_cast<char*>(code) + where.offset(), value);
}
static void relinkJump(void* from, void* to)
{
setRel32(from, to);
}
static void relinkCall(void* from, void* to)
{
setRel32(from, to);
}
static void relinkTailCall(void* from, void* to)
{
relinkJump(from, to);
}
static void repatchPointer(void* where, void* value)
{
setPointer(where, value);
}
static void* readPointer(void* where)
{
return WTF::unalignedLoad<void*>(bitwise_cast<void**>(where) - 1);
}
static void replaceWithHlt(void* instructionStart)
{
WTF::unalignedStore<uint8_t>(instructionStart, static_cast<uint8_t>(OP_HLT));
}
static void replaceWithJump(void* instructionStart, void* to)
{
uint8_t* ptr = bitwise_cast<uint8_t*>(instructionStart);
uint8_t* dstPtr = bitwise_cast<uint8_t*>(to);
intptr_t distance = (intptr_t)(dstPtr - (ptr + 5));
WTF::unalignedStore<uint8_t>(ptr, static_cast<uint8_t>(OP_JMP_rel32));
WTF::unalignedStore<int32_t>(ptr + 1, static_cast<int32_t>(distance));
}
static ptrdiff_t maxJumpReplacementSize()
{
return 5;
}
static constexpr ptrdiff_t patchableJumpSize()
{
return 5;
}
#if CPU(X86_64)
static void revertJumpTo_movq_i64r(void* instructionStart, int64_t imm, RegisterID dst)
{
const unsigned instructionSize = 10; // REX.W MOV IMM64
const int rexBytes = 1;
const int opcodeBytes = 1;
uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
ptr[0] = PRE_REX | (1 << 3) | (dst >> 3);
ptr[1] = OP_MOV_EAXIv | (dst & 7);
union {
uint64_t asWord;
uint8_t asBytes[8];
} u;
u.asWord = imm;
for (unsigned i = rexBytes + opcodeBytes; i < instructionSize; ++i)
ptr[i] = u.asBytes[i - rexBytes - opcodeBytes];
}
static void revertJumpTo_movl_i32r(void* instructionStart, int32_t imm, RegisterID dst)
{
// We only revert jumps on inline caches, and inline caches always use the scratch register (r11).
// FIXME: If the above is ever false then we need to make this smarter with respect to emitting
// the REX byte.
ASSERT(dst == X86Registers::r11);
const unsigned instructionSize = 6; // REX MOV IMM32
const int rexBytes = 1;
const int opcodeBytes = 1;
uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
ptr[0] = PRE_REX | (dst >> 3);
ptr[1] = OP_MOV_EAXIv | (dst & 7);
union {
uint32_t asWord;
uint8_t asBytes[4];
} u;
u.asWord = imm;
for (unsigned i = rexBytes + opcodeBytes; i < instructionSize; ++i)
ptr[i] = u.asBytes[i - rexBytes - opcodeBytes];
}
#endif
static void revertJumpTo_cmpl_ir_force32(void* instructionStart, int32_t imm, RegisterID dst)
{
const int opcodeBytes = 1;
const int modRMBytes = 1;
ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize());
uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
ptr[0] = OP_GROUP1_EvIz;
ptr[1] = (X86InstructionFormatter::ModRmRegister << 6) | (GROUP1_OP_CMP << 3) | dst;
union {
uint32_t asWord;
uint8_t asBytes[4];
} u;
u.asWord = imm;
for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i)
ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes];
}
static void revertJumpTo_cmpl_im_force32(void* instructionStart, int32_t imm, int offset, RegisterID dst)
{
ASSERT_UNUSED(offset, !offset);
const int opcodeBytes = 1;
const int modRMBytes = 1;
ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize());
uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
ptr[0] = OP_GROUP1_EvIz;
ptr[1] = (X86InstructionFormatter::ModRmMemoryNoDisp << 6) | (GROUP1_OP_CMP << 3) | dst;
union {
uint32_t asWord;
uint8_t asBytes[4];
} u;
u.asWord = imm;
for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i)
ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes];
}
static unsigned getCallReturnOffset(AssemblerLabel call)
{
ASSERT(call.isSet());
return call.offset();
}
static void* getRelocatedAddress(void* code, AssemblerLabel label)
{
ASSERT(label.isSet());
return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + label.offset());
}
static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b)
{
return b.offset() - a.offset();
}
unsigned debugOffset() { return m_formatter.debugOffset(); }
void nop()
{
m_formatter.oneByteOp(OP_NOP);
}
using CopyFunction = void*(&)(void*, const void*, size_t);
template <CopyFunction copy>
static void fillNops(void* base, size_t size)
{
UNUSED_PARAM(copy);
#if CPU(X86_64)
static const uint8_t nops[10][10] = {
// nop
{0x90},
// xchg %ax,%ax
{0x66, 0x90},
// nopl (%[re]ax)
{0x0f, 0x1f, 0x00},
// nopl 8(%[re]ax)
{0x0f, 0x1f, 0x40, 0x08},
// nopl 8(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x44, 0x00, 0x08},
// nopw 8(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x44, 0x00, 0x08},
// nopl 512(%[re]ax)
{0x0f, 0x1f, 0x80, 0x00, 0x02, 0x00, 0x00},
// nopl 512(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00},
// nopw 512(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00},
// nopw %cs:512(%[re]ax,%[re]ax,1)
{0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00}
};
uint8_t* where = reinterpret_cast<uint8_t*>(base);
while (size) {
unsigned nopSize = static_cast<unsigned>(std::min<size_t>(size, 15));
unsigned numPrefixes = nopSize <= 10 ? 0 : nopSize - 10;
for (unsigned i = 0; i != numPrefixes; ++i)
*where++ = 0x66;
unsigned nopRest = nopSize - numPrefixes;
for (unsigned i = 0; i != nopRest; ++i)
*where++ = nops[nopRest-1][i];
size -= nopSize;
}
#else
memset(base, OP_NOP, size);
#endif
}
// This is a no-op on x86
ALWAYS_INLINE static void cacheFlush(void*, size_t) { }
private:
static void setPointer(void* where, void* value)
{
WTF::unalignedStore<void*>(bitwise_cast<void**>(where) - 1, value);
}
static void setInt32(void* where, int32_t value)
{
WTF::unalignedStore<int32_t>(bitwise_cast<int32_t*>(where) - 1, value);
}
static void setInt8(void* where, int8_t value)
{
WTF::unalignedStore<int8_t>(bitwise_cast<int8_t*>(where) - 1, value);
}
static void setRel32(void* from, void* to)
{
intptr_t offset = reinterpret_cast<intptr_t>(to) - reinterpret_cast<intptr_t>(from);
ASSERT(offset == static_cast<int32_t>(offset));
setInt32(from, offset);
}
class X86InstructionFormatter {
static constexpr int maxInstructionSize = 16;
public:
enum ModRmMode {
ModRmMemoryNoDisp = 0,
ModRmMemoryDisp8 = 1 << 6,
ModRmMemoryDisp32 = 2 << 6,
ModRmRegister = 3 << 6,
};
// Legacy prefix bytes:
//
// These are emmitted prior to the instruction.
void prefix(OneByteOpcodeID pre)
{
m_buffer.putByte(pre);
}
#if CPU(X86_64)
// Byte operand register spl & above require a REX prefix (to prevent the 'H' registers be accessed).
static bool byteRegRequiresRex(int reg)
{
static_assert(X86Registers::esp == 4, "Necessary condition for OR-masking");
return (reg >= X86Registers::esp);
}
static bool byteRegRequiresRex(int a, int b)
{
return byteRegRequiresRex(a | b);
}
// Registers r8 & above require a REX prefixe.
static bool regRequiresRex(int reg)
{
static_assert(X86Registers::r8 == 8, "Necessary condition for OR-masking");
return (reg >= X86Registers::r8);
}
static bool regRequiresRex(int a, int b)
{
return regRequiresRex(a | b);
}
static bool regRequiresRex(int a, int b, int c)
{
return regRequiresRex(a | b | c);
}
#else
static bool byteRegRequiresRex(int) { return false; }
static bool byteRegRequiresRex(int, int) { return false; }
static bool regRequiresRex(int) { return false; }
static bool regRequiresRex(int, int) { return false; }
static bool regRequiresRex(int, int, int) { return false; }
#endif
class SingleInstructionBufferWriter : public AssemblerBuffer::LocalWriter {
public:
SingleInstructionBufferWriter(AssemblerBuffer& buffer)
: AssemblerBuffer::LocalWriter(buffer, maxInstructionSize)
{
}
// Internals; ModRm and REX formatters.
static constexpr RegisterID noBase = X86Registers::ebp;
static constexpr RegisterID hasSib = X86Registers::esp;
static constexpr RegisterID noIndex = X86Registers::esp;
#if CPU(X86_64)
static constexpr RegisterID noBase2 = X86Registers::r13;
static constexpr RegisterID hasSib2 = X86Registers::r12;
// Format a REX prefix byte.
ALWAYS_INLINE void emitRex(bool w, int r, int x, int b)
{
ASSERT(r >= 0);
ASSERT(x >= 0);
ASSERT(b >= 0);
putByteUnchecked(PRE_REX | ((int)w << 3) | ((r>>3)<<2) | ((x>>3)<<1) | (b>>3));
}
// Used to plant a REX byte with REX.w set (for 64-bit operations).
ALWAYS_INLINE void emitRexW(int r, int x, int b)
{
emitRex(true, r, x, b);
}
// Used for operations with byte operands - use byteRegRequiresRex() to check register operands,
// regRequiresRex() to check other registers (i.e. address base & index).
ALWAYS_INLINE void emitRexIf(bool condition, int r, int x, int b)
{
if (condition)
emitRex(false, r, x, b);
}
// Used for word sized operations, will plant a REX prefix if necessary (if any register is r8 or above).
ALWAYS_INLINE void emitRexIfNeeded(int r, int x, int b)
{
emitRexIf(regRequiresRex(r, x, b), r, x, b);
}
#else
// No REX prefix bytes on 32-bit x86.
ALWAYS_INLINE void emitRexIf(bool, int, int, int) { }
ALWAYS_INLINE void emitRexIfNeeded(int, int, int) { }
#endif
ALWAYS_INLINE void putModRm(ModRmMode mode, int reg, RegisterID rm)
{
putByteUnchecked(mode | ((reg & 7) << 3) | (rm & 7));
}
ALWAYS_INLINE void putModRmSib(ModRmMode mode, int reg, RegisterID base, RegisterID index, int scale)
{
ASSERT(mode != ModRmRegister);
putModRm(mode, reg, hasSib);
putByteUnchecked((scale << 6) | ((index & 7) << 3) | (base & 7));
}
ALWAYS_INLINE void registerModRM(int reg, RegisterID rm)
{
putModRm(ModRmRegister, reg, rm);
}
ALWAYS_INLINE void memoryModRM(int reg, RegisterID base, int offset)
{
// A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there.
#if CPU(X86_64)
if ((base == hasSib) || (base == hasSib2)) {
#else
if (base == hasSib) {
#endif
if (!offset) // No need to check if the base is noBase, since we know it is hasSib!
putModRmSib(ModRmMemoryNoDisp, reg, base, noIndex, 0);
else if (CAN_SIGN_EXTEND_8_32(offset)) {
putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0);
putByteUnchecked(offset);
} else {
putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0);
putIntUnchecked(offset);
}
} else {
#if CPU(X86_64)
if (!offset && (base != noBase) && (base != noBase2))
#else
if (!offset && (base != noBase))
#endif
putModRm(ModRmMemoryNoDisp, reg, base);
else if (CAN_SIGN_EXTEND_8_32(offset)) {
putModRm(ModRmMemoryDisp8, reg, base);
putByteUnchecked(offset);
} else {
putModRm(ModRmMemoryDisp32, reg, base);
putIntUnchecked(offset);
}
}
}
ALWAYS_INLINE void memoryModRM_disp8(int reg, RegisterID base, int offset)
{
// A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there.
ASSERT(CAN_SIGN_EXTEND_8_32(offset));
#if CPU(X86_64)
if ((base == hasSib) || (base == hasSib2)) {
#else
if (base == hasSib) {
#endif
putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0);
putByteUnchecked(offset);
} else {
putModRm(ModRmMemoryDisp8, reg, base);
putByteUnchecked(offset);
}
}
ALWAYS_INLINE void memoryModRM_disp32(int reg, RegisterID base, int offset)
{
// A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there.
#if CPU(X86_64)
if ((base == hasSib) || (base == hasSib2)) {
#else
if (base == hasSib) {
#endif
putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0);
putIntUnchecked(offset);
} else {
putModRm(ModRmMemoryDisp32, reg, base);
putIntUnchecked(offset);
}
}
ALWAYS_INLINE void memoryModRM(int reg, RegisterID base, RegisterID index, int scale, int offset)
{
ASSERT(index != noIndex);
#if CPU(X86_64)
if (!offset && (base != noBase) && (base != noBase2))
#else
if (!offset && (base != noBase))
#endif
putModRmSib(ModRmMemoryNoDisp, reg, base, index, scale);
else if (CAN_SIGN_EXTEND_8_32(offset)) {
putModRmSib(ModRmMemoryDisp8, reg, base, index, scale);
putByteUnchecked(offset);
} else {
putModRmSib(ModRmMemoryDisp32, reg, base, index, scale);
putIntUnchecked(offset);
}
}
ALWAYS_INLINE void memoryModRMAddr(int reg, uint32_t address)
{
#if CPU(X86_64)
putModRmSib(ModRmMemoryNoDisp, reg, noBase, noIndex, 0);
#else
// noBase + ModRmMemoryNoDisp means noBase + ModRmMemoryDisp32!
putModRm(ModRmMemoryNoDisp, reg, noBase);
#endif
putIntUnchecked(address);
}
ALWAYS_INLINE void twoBytesVex(bool isVEX256, OneByteOpcodeID simdPrefix, RegisterID r, RegisterID vvvv)
{
// https://en.wikipedia.org/wiki/VEX_prefix
// https://wiki.osdev.org/X86-64_Instruction_Encoding#REX_prefix
// From Intel SDM volume 2
uint8_t firstByte = static_cast<uint8_t>(VexPrefix::TwoBytes); // 0xC5
// R: REX.R in 1’s complement (inverted) form 1: Same as REX.R=0 (must be 1 in 32-bit mode) 0: Same as REX.R=1 (64-bit mode only)
// vvvv: a register specifier (in 1’s complement form) or 1111 if unused.
// L: Vector Length, 0: scalar or 128-bit vector, 1: 256-bit vector
// pp: opcode extension providing equivalent functionality of a SIMD prefix 00: None, 01: 66, 10: F3, 11: F2
uint8_t secondByte = 0;
secondByte |= !regRequiresRex(r) << 7; // R
secondByte |= (~vvvv & 0xf) << 3; // vvvv
secondByte |= isVEX256 << 2; // L
secondByte |= vexEncodeSIMDPrefix(simdPrefix); // pp
putByteUnchecked(firstByte);
putByteUnchecked(secondByte);
}
ALWAYS_INLINE void twoBytesVex(OneByteOpcodeID simdPrefix, RegisterID inOpReg, RegisterID r)
{
constexpr bool isVEX256 = false;
twoBytesVex(isVEX256, simdPrefix, r, inOpReg);
}
ALWAYS_INLINE void threeBytesVex(bool isVEX256, OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, bool isW1, RegisterID r, RegisterID x, RegisterID b, RegisterID vvvv)
{
// https://en.wikipedia.org/wiki/VEX_prefix
// https://wiki.osdev.org/X86-64_Instruction_Encoding#REX_prefix
// From Intel SDM volume 2
uint8_t firstByte = static_cast<uint8_t>(VexPrefix::ThreeBytes); // 0xC4
// R: REX.R in 1’s complement (inverted) form 1: Same as REX.R=0 (must be 1 in 32-bit mode) 0: Same as REX.R=1 (64-bit mode only)
// X: REX.X in 1’s complement (inverted) form 1: Same as REX.X=0 (must be 1 in 32-bit mode) 0: Same as REX.X=1 (64-bit mode only)
// B: REX.B in 1’s complement (inverted) form 1: Same as REX.B=0 (Ignored in 32-bit mode). 0: Same as REX.B=1 (64-bit mode only)
// m-mmmm:
// 00000: Reserved for future use (will #UD)
// 00001: implied 0F leading opcode byte
// 00010: implied 0F 38 leading opcode bytes
// 00011: implied 0F 3A leading opcode bytes
// 00100-11111: Reserved for future use (will #UD)
uint8_t secondByte = 0;
secondByte |= !regRequiresRex(r) << 7; // R
secondByte |= !regRequiresRex(x) << 6; // X
secondByte |= !regRequiresRex(b) << 5; // B
secondByte |= static_cast<uint8_t>(impliedBytes); // m-mmmm
// W: opcode specific (use like REX.W, or used for opcode extension, or ignored, depending on the opcode byte)
// vvvv: a register specifier (in 1’s complement form) or 1111 if unused.
// L: Vector Length, 0: scalar or 128-bit vector, 1: 256-bit vector
// pp: opcode extension providing equivalent functionality of a SIMD prefix 00: None, 01: 66, 10: F3, 11: F2
uint8_t thirdByte = 0;
thirdByte |= isW1 << 7; // W
thirdByte |= (~vvvv & 0xf) << 3; // vvvv
thirdByte |= isVEX256 << 2; // L
thirdByte |= vexEncodeSIMDPrefix(simdPrefix); // pp
putByteUnchecked(firstByte);
putByteUnchecked(secondByte);
putByteUnchecked(thirdByte);
}
ALWAYS_INLINE void threeBytesVexNds(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, VexW vexW, RegisterID r, RegisterID inOpReg, RegisterID x, RegisterID b)
{
constexpr bool isVEX256 = false;
threeBytesVex(isVEX256, simdPrefix, impliedBytes, vexW == VexW::W1, r, x, b, inOpReg);
}
ALWAYS_INLINE void threeBytesVexNds(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, VexW vexW, RegisterID r, RegisterID inOpReg, RegisterID b)
{
constexpr bool isVEX256 = false;
threeBytesVex(isVEX256, simdPrefix, impliedBytes, vexW == VexW::W1, r, (RegisterID)0, b, inOpReg);
}
private:
uint8_t vexEncodeSIMDPrefix(OneByteOpcodeID simdPrefix)
{
// pp: opcode extension providing equivalent functionality of a SIMD prefix
//
// 00: None
// 01: 66
// 10: F3
// 11: F2
//
switch (simdPrefix) {
case PRE_SSE_66:
return 0b01;
case PRE_SSE_F3:
return 0b10;
case PRE_SSE_F2:
return 0b11;
default:
return 0b00;
}
}
};
// Word-sized operands / no operand instruction formatters.
//
// In addition to the opcode, the following operand permutations are supported:
// * None - instruction takes no operands.
// * One register - the low three bits of the RegisterID are added into the opcode.
// * Two registers - encode a register form ModRm (for all ModRm formats, the reg field is passed first, and a GroupOpcodeID may be passed in its place).
// * Three argument ModRM - a register, and a register and an offset describing a memory operand.
// * Five argument ModRM - a register, and a base register, an index, scale, and offset describing a memory operand.
//
// For 32-bit x86 targets, the address operand may also be provided as a void*.
// On 64-bit targets REX prefixes will be planted as necessary, where high numbered registers are used.
//
// The twoByteOp methods plant two-byte Intel instructions sequences (first opcode byte 0x0F).
void oneByteOp(OneByteOpcodeID opcode)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.putByteUnchecked(opcode);
}
void oneByteOp(OneByteOpcodeID opcode, RegisterID reg)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(0, 0, reg);
writer.putByteUnchecked(opcode + (reg & 7));
}
void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, rm);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void oneByteOp_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM_disp32(reg, base, offset);
}
void oneByteOp_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM_disp8(reg, base, offset);
}
void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, index, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
void oneByteOpAddr(OneByteOpcodeID opcode, int reg, uint32_t address)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.putByteUnchecked(opcode);
writer.memoryModRMAddr(reg, address);
}
void twoByteOp(TwoByteOpcodeID opcode)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
}
void twoByteOp(TwoByteOpcodeID opcode, int reg)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(0, 0, reg);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode + (reg & 7));
}
void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, rm);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, index, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
void twoByteOpAddr(TwoByteOpcodeID opcode, int reg, uint32_t address)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRMAddr(reg, address);
}
void vexNdsLigTwoByteOp(OneByteOpcodeID simdPrefix, VexW vexW, TwoByteOpcodeID opcode)
{
SingleInstructionBufferWriter writer(m_buffer);
if (vexW == VexW::W1)
writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, vexW, (RegisterID)0, (RegisterID)0, (RegisterID)0);
else
writer.twoBytesVex(simdPrefix, (RegisterID)0, (RegisterID)0);
writer.putByteUnchecked(opcode);
}
// Typically,
// xmm1 = ModRM:reg (w)
// xmm2 = VEX.vvvv (r)
// xmm3 = ModRM:r/m (r)
// And xmm1 = dest, xmm2 = a, xmm3 = b
void vexNdsLigTwoByteOp(OneByteOpcodeID simdPrefix, VexW vexW, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b)
{
SingleInstructionBufferWriter writer(m_buffer);
// Section 3.1.1.2 from Intel SDM volume 2:
// The presence of W1 in the opcode column implies the opcode must be encoded using the 3-byte form of the VEX prefix.
if (regRequiresRex(b) || vexW == VexW::W1)
writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, vexW, dest, a, b);
else
writer.twoBytesVex(simdPrefix, a, dest);
writer.putByteUnchecked(opcode);
writer.registerModRM(dest, b);
}
void vexNdsLigTwoByteOp(OneByteOpcodeID simdPrefix, VexW vexW, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
if (regRequiresRex(base) || vexW == VexW::W1)
writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, vexW, dest, a, base);
else
writer.twoBytesVex(simdPrefix, a, dest);
writer.putByteUnchecked(opcode);
writer.memoryModRM(dest, base, offset);
}
void vexNdsLigTwoByteOp(OneByteOpcodeID simdPrefix, VexW vexW, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, int offset, RegisterID base, RegisterID index, int scale)
{
SingleInstructionBufferWriter writer(m_buffer);
if (regRequiresRex(base, index) || vexW == VexW::W1)
writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, vexW, dest, a, index, base);
else
writer.twoBytesVex(simdPrefix, a, dest);
writer.putByteUnchecked(opcode);
writer.memoryModRM(dest, base, index, scale, offset);
}
void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b)
{
vexNdsLigTwoByteOp(simdPrefix, VexW::W0, opcode, dest, a, b);
}
void vexNdsLigWigCommutativeTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b)
{
// Since this is a commutative operation, we can try switching the arguments.
if (regRequiresRex(b))
std::swap(a, b);
vexNdsLigWigTwoByteOp(simdPrefix, opcode, dest, a, b);
}
void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID base, int offset)
{
vexNdsLigTwoByteOp(simdPrefix, VexW::W0, opcode, dest, a, base, offset);
}
void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, int offset, RegisterID base, RegisterID index, int scale)
{
vexNdsLigTwoByteOp(simdPrefix, VexW::W0, opcode, dest, a, offset, base, index, scale);
}
// Typically, xmm1 = dest, xmm2 = a, xmm3 = b
// dest = reg, a = vvvv, b = r/m
void vexNdsLigWigThreeByteOp(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, ThreeByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b)
{
vexNdsLigThreeByteOp(simdPrefix, impliedBytes, VexW::W0, opcode, dest, a, b);
}
void vexNdsLigWigThreeByteOp(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, ThreeByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID base, int offset)
{
vexNdsLigThreeByteOp(simdPrefix, impliedBytes, VexW::W0, opcode, dest, a, base, offset);
}
// Typically, xmm1 = dest, xmm2 = a, xmm3 = b, but it depends.
// dest = reg, a = vvvv, b = r/m
void vexNdsLigThreeByteOp(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, VexW vexW, ThreeByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b)
{
SingleInstructionBufferWriter writer(m_buffer);
ASSERT(impliedBytes != VexImpliedBytes::TwoBytesOp);
writer.threeBytesVex(/* isVEX256 */ false, simdPrefix, impliedBytes, vexW == VexW::W1, dest, (RegisterID)0, b, a);
writer.putByteUnchecked(opcode);
writer.registerModRM(dest, b);
}
void vexNdsLigThreeByteOp(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, VexW vexW, ThreeByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
ASSERT(impliedBytes != VexImpliedBytes::TwoBytesOp);
writer.threeBytesVex(/* isVEX256 */ false, simdPrefix, impliedBytes, vexW == VexW::W1, dest, (RegisterID)0, base, a);
writer.putByteUnchecked(opcode);
writer.memoryModRM(dest, base, offset);
}
void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(twoBytePrefix);
writer.putByteUnchecked(opcode);
}
void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, rm);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(twoBytePrefix);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode, int reg, RegisterID base, int displacement)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(twoBytePrefix);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, displacement);
}
#if CPU(X86_64)
// Quad-word-sized operands:
//
// Used to format 64-bit operantions, planting a REX.w prefix.
// When planting d64 or f64 instructions, not requiring a REX.w prefix,
// the normal (non-'64'-postfixed) formatters should be used.
void oneByteOp64(OneByteOpcodeID opcode)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(0, 0, 0);
writer.putByteUnchecked(opcode);
}
void oneByteOp64(OneByteOpcodeID opcode, RegisterID reg)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(0, 0, reg);
writer.putByteUnchecked(opcode + (reg & 7));
}
void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, rm);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void oneByteOp64_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM_disp32(reg, base, offset);
}
void oneByteOp64_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM_disp8(reg, base, offset);
}
void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, index, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
void oneByteOp64Addr(OneByteOpcodeID opcode, int reg, uint32_t address)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, 0);
writer.putByteUnchecked(opcode);
writer.memoryModRMAddr(reg, address);
}
void twoByteOp64(TwoByteOpcodeID opcode, int reg)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(0, 0, reg);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode + (reg & 7));
}
void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, rm);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, index, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
void threeByteOp64(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, rm);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(twoBytePrefix);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
#endif
// Byte-operands:
//
// These methods format byte operations. Byte operations differ from the normal
// formatters in the circumstances under which they will decide to emit REX prefixes.
// These should be used where any register operand signifies a byte register.
//
// The disctinction is due to the handling of register numbers in the range 4..7 on
// x86-64. These register numbers may either represent the second byte of the first
// four registers (ah..bh) or the first byte of the second four registers (spl..dil).
//
// Since ah..bh cannot be used in all permutations of operands (specifically cannot
// be accessed where a REX prefix is present), these are likely best treated as
// deprecated. In order to ensure the correct registers spl..dil are selected a
// REX prefix will be emitted for any byte register operand in the range 4..15.
//
// These formatters may be used in instructions where a mix of operand sizes, in which
// case an unnecessary REX will be emitted, for example:
// movzbl %al, %edi
// In this case a REX will be planted since edi is 7 (and were this a byte operand
// a REX would be required to specify dil instead of bh). Unneeded REX prefixes will
// be silently ignored by the processor.
//
// Address operands should still be checked using regRequiresRex(), while byteRegRequiresRex()
// is provided to check byte register operands.
void oneByteOp8(OneByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(rm), 0, 0, rm);
writer.putByteUnchecked(opcode);
writer.registerModRM(groupOp, rm);
}
void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg, rm), reg, 0, rm);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg, base), reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(index, base), reg, index, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
void twoByteOp8(TwoByteOpcodeID opcode, RegisterID reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg, rm), reg, 0, rm);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void twoByteOp8(TwoByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(rm), 0, 0, rm);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.registerModRM(groupOp, rm);
}
void twoByteOp8(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg, base), reg, 0, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void twoByteOp8(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(index, base), reg, index, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
// Immediates:
//
// An immediate should be appended where appropriate after an op has been emitted.
// The writes are unchecked since the opcode formatters above will have ensured space.
void immediate8(int imm)
{
m_buffer.putByteUnchecked(imm);
}
void immediate16(int imm)
{
m_buffer.putShortUnchecked(imm);
}
void immediate32(int imm)
{
m_buffer.putIntUnchecked(imm);
}
void immediate64(int64_t imm)
{
m_buffer.putInt64Unchecked(imm);
}
AssemblerLabel immediateRel32()
{
m_buffer.putIntUnchecked(0);
return label();
}
// Administrative methods:
size_t codeSize() const { return m_buffer.codeSize(); }
AssemblerLabel label() const { return m_buffer.label(); }
bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); }
void* data() const { return m_buffer.data(); }
unsigned debugOffset() { return m_buffer.debugOffset(); }
public:
AssemblerBuffer m_buffer;
} m_formatter;
int m_indexOfLastWatchpoint;
int m_indexOfTailOfLastWatchpoint;
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER) && CPU(X86)