| /* |
| * Copyright (C) 2011 Apple Inc. All rights reserved. |
| * Copyright (C) 2013, 2014 Igalia S.L. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "RenderGrid.h" |
| |
| #if ENABLE(CSS_GRID_LAYOUT) |
| |
| #include "GridCoordinate.h" |
| #include "GridResolvedPosition.h" |
| #include "LayoutRepainter.h" |
| #include "RenderLayer.h" |
| #include "RenderView.h" |
| #include <wtf/NeverDestroyed.h> |
| |
| namespace WebCore { |
| |
| static const int infinity = -1; |
| |
| class GridTrack { |
| public: |
| GridTrack() |
| : m_usedBreadth(0) |
| , m_maxBreadth(0) |
| { |
| } |
| |
| void growUsedBreadth(LayoutUnit growth) |
| { |
| ASSERT(growth >= 0); |
| m_usedBreadth += growth; |
| } |
| LayoutUnit usedBreadth() const { return m_usedBreadth; } |
| |
| void growMaxBreadth(LayoutUnit growth) |
| { |
| if (m_maxBreadth == infinity) |
| m_maxBreadth = m_usedBreadth + growth; |
| else |
| m_maxBreadth += growth; |
| } |
| LayoutUnit maxBreadthIfNotInfinite() const |
| { |
| return (m_maxBreadth == infinity) ? m_usedBreadth : m_maxBreadth; |
| } |
| |
| LayoutUnit m_usedBreadth; |
| LayoutUnit m_maxBreadth; |
| }; |
| |
| struct GridTrackForNormalization { |
| GridTrackForNormalization(const GridTrack& track, double flex) |
| : m_track(&track) |
| , m_flex(flex) |
| , m_normalizedFlexValue(track.m_usedBreadth / flex) |
| { |
| } |
| |
| const GridTrack* m_track; |
| double m_flex; |
| LayoutUnit m_normalizedFlexValue; |
| }; |
| |
| class RenderGrid::GridIterator { |
| WTF_MAKE_NONCOPYABLE(GridIterator); |
| public: |
| // |direction| is the direction that is fixed to |fixedTrackIndex| so e.g |
| // GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column. |
| GridIterator(const Vector<Vector<Vector<RenderBox*, 1>>>& grid, GridTrackSizingDirection direction, size_t fixedTrackIndex, size_t varyingTrackIndex = 0) |
| : m_grid(grid) |
| , m_direction(direction) |
| , m_rowIndex((direction == ForColumns) ? varyingTrackIndex : fixedTrackIndex) |
| , m_columnIndex((direction == ForColumns) ? fixedTrackIndex : varyingTrackIndex) |
| , m_childIndex(0) |
| { |
| ASSERT(m_rowIndex < m_grid.size()); |
| ASSERT(m_columnIndex < m_grid[0].size()); |
| } |
| |
| RenderBox* nextGridItem() |
| { |
| if (!m_grid.size()) |
| return 0; |
| |
| size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex; |
| const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size(); |
| for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) { |
| const Vector<RenderBox*>& children = m_grid[m_rowIndex][m_columnIndex]; |
| if (m_childIndex < children.size()) |
| return children[m_childIndex++]; |
| |
| m_childIndex = 0; |
| } |
| return 0; |
| } |
| |
| bool isEmptyAreaEnough(size_t rowSpan, size_t columnSpan) const |
| { |
| // Ignore cells outside current grid as we will grow it later if needed. |
| size_t maxRows = std::min(m_rowIndex + rowSpan, m_grid.size()); |
| size_t maxColumns = std::min(m_columnIndex + columnSpan, m_grid[0].size()); |
| |
| // This adds a O(N^2) behavior that shouldn't be a big deal as we expect spanning areas to be small. |
| for (size_t row = m_rowIndex; row < maxRows; ++row) { |
| for (size_t column = m_columnIndex; column < maxColumns; ++column) { |
| const Vector<RenderBox*>& children = m_grid[row][column]; |
| if (!children.isEmpty()) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| std::unique_ptr<GridCoordinate> nextEmptyGridArea(size_t fixedTrackSpan, size_t varyingTrackSpan) |
| { |
| ASSERT(fixedTrackSpan >= 1 && varyingTrackSpan >= 1); |
| |
| if (m_grid.isEmpty()) |
| return nullptr; |
| |
| size_t rowSpan = (m_direction == ForColumns) ? varyingTrackSpan : fixedTrackSpan; |
| size_t columnSpan = (m_direction == ForColumns) ? fixedTrackSpan : varyingTrackSpan; |
| |
| size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex; |
| const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size(); |
| for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) { |
| if (isEmptyAreaEnough(rowSpan, columnSpan)) { |
| std::unique_ptr<GridCoordinate> result = std::make_unique<GridCoordinate>(GridSpan(m_rowIndex, m_rowIndex + rowSpan - 1), GridSpan(m_columnIndex, m_columnIndex + columnSpan - 1)); |
| // Advance the iterator to avoid an infinite loop where we would return the same grid area over and over. |
| ++varyingTrackIndex; |
| return result; |
| } |
| } |
| return nullptr; |
| } |
| |
| private: |
| const Vector<Vector<Vector<RenderBox*, 1>>>& m_grid; |
| GridTrackSizingDirection m_direction; |
| size_t m_rowIndex; |
| size_t m_columnIndex; |
| size_t m_childIndex; |
| }; |
| |
| class RenderGrid::GridSizingData { |
| WTF_MAKE_NONCOPYABLE(GridSizingData); |
| public: |
| GridSizingData(size_t gridColumnCount, size_t gridRowCount) |
| : columnTracks(gridColumnCount) |
| , rowTracks(gridRowCount) |
| { |
| } |
| |
| Vector<GridTrack> columnTracks; |
| Vector<GridTrack> rowTracks; |
| Vector<size_t> contentSizedTracksIndex; |
| |
| // Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free. |
| Vector<LayoutUnit> distributeTrackVector; |
| Vector<GridTrack*> filteredTracks; |
| }; |
| |
| RenderGrid::RenderGrid(Element& element, PassRef<RenderStyle> style) |
| : RenderBlock(element, WTF::move(style), 0) |
| , m_orderIterator(*this) |
| { |
| // All of our children must be block level. |
| setChildrenInline(false); |
| } |
| |
| RenderGrid::~RenderGrid() |
| { |
| } |
| |
| void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit) |
| { |
| ASSERT(needsLayout()); |
| |
| if (!relayoutChildren && simplifiedLayout()) |
| return; |
| |
| // FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock. |
| // It would be nice to refactor some of the duplicate code. |
| LayoutRepainter repainter(*this, checkForRepaintDuringLayout()); |
| LayoutStateMaintainer statePusher(view(), *this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode()); |
| |
| preparePaginationBeforeBlockLayout(relayoutChildren); |
| |
| LayoutSize previousSize = size(); |
| |
| setLogicalHeight(0); |
| updateLogicalWidth(); |
| |
| layoutGridItems(); |
| |
| LayoutUnit oldClientAfterEdge = clientLogicalBottom(); |
| updateLogicalHeight(); |
| |
| if (size() != previousSize) |
| relayoutChildren = true; |
| |
| layoutPositionedObjects(relayoutChildren || isRoot()); |
| |
| computeOverflow(oldClientAfterEdge); |
| statePusher.pop(); |
| |
| updateLayerTransform(); |
| |
| // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if |
| // we overflow or not. |
| updateScrollInfoAfterLayout(); |
| |
| repainter.repaintAfterLayout(); |
| |
| clearNeedsLayout(); |
| } |
| |
| void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const |
| { |
| const_cast<RenderGrid*>(this)->placeItemsOnGrid(); |
| |
| GridSizingData sizingData(gridColumnCount(), gridRowCount()); |
| LayoutUnit availableLogicalSpace = 0; |
| const_cast<RenderGrid*>(this)->computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableLogicalSpace); |
| |
| for (size_t i = 0; i < sizingData.columnTracks.size(); ++i) { |
| LayoutUnit minTrackBreadth = sizingData.columnTracks[i].m_usedBreadth; |
| LayoutUnit maxTrackBreadth = sizingData.columnTracks[i].m_maxBreadth; |
| maxTrackBreadth = std::max(maxTrackBreadth, minTrackBreadth); |
| |
| minLogicalWidth += minTrackBreadth; |
| maxLogicalWidth += maxTrackBreadth; |
| |
| // FIXME: This should add in the scrollbarWidth (e.g. see RenderFlexibleBox). |
| } |
| |
| const_cast<RenderGrid*>(this)->clearGrid(); |
| } |
| |
| void RenderGrid::computePreferredLogicalWidths() |
| { |
| ASSERT(preferredLogicalWidthsDirty()); |
| |
| m_minPreferredLogicalWidth = 0; |
| m_maxPreferredLogicalWidth = 0; |
| |
| // FIXME: We don't take our own logical width into account. Once we do, we need to make sure |
| // we apply (and test the interaction with) min-width / max-width. |
| |
| computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth); |
| |
| LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth(); |
| m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection; |
| m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection; |
| |
| setPreferredLogicalWidthsDirty(false); |
| } |
| |
| void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData) |
| { |
| LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding); |
| computeUsedBreadthOfGridTracks(direction, sizingData, availableLogicalSpace); |
| } |
| |
| bool RenderGrid::gridElementIsShrinkToFit() |
| { |
| return isFloatingOrOutOfFlowPositioned(); |
| } |
| |
| void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace) |
| { |
| Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks; |
| Vector<size_t> flexibleSizedTracksIndex; |
| sizingData.contentSizedTracksIndex.shrink(0); |
| |
| // 1. Initialize per Grid track variables. |
| for (size_t i = 0; i < tracks.size(); ++i) { |
| GridTrack& track = tracks[i]; |
| const GridTrackSize& trackSize = gridTrackSize(direction, i); |
| const GridLength& minTrackBreadth = trackSize.minTrackBreadth(); |
| const GridLength& maxTrackBreadth = trackSize.maxTrackBreadth(); |
| |
| track.m_usedBreadth = computeUsedBreadthOfMinLength(direction, minTrackBreadth); |
| track.m_maxBreadth = computeUsedBreadthOfMaxLength(direction, maxTrackBreadth, track.m_usedBreadth); |
| |
| track.m_maxBreadth = std::max(track.m_maxBreadth, track.m_usedBreadth); |
| |
| if (trackSize.isContentSized()) |
| sizingData.contentSizedTracksIndex.append(i); |
| if (trackSize.maxTrackBreadth().isFlex()) |
| flexibleSizedTracksIndex.append(i); |
| } |
| |
| // 2. Resolve content-based TrackSizingFunctions. |
| if (!sizingData.contentSizedTracksIndex.isEmpty()) |
| resolveContentBasedTrackSizingFunctions(direction, sizingData); |
| |
| for (size_t i = 0; i < tracks.size(); ++i) { |
| ASSERT(tracks[i].m_maxBreadth != infinity); |
| availableLogicalSpace -= tracks[i].m_usedBreadth; |
| } |
| |
| const bool hasUndefinedRemainingSpace = (direction == ForRows) ? style().logicalHeight().isAuto() : gridElementIsShrinkToFit(); |
| |
| if (!hasUndefinedRemainingSpace && availableLogicalSpace <= 0) |
| return; |
| |
| // 3. Grow all Grid tracks in GridTracks from their UsedBreadth up to their MaxBreadth value until |
| // availableLogicalSpace (RemainingSpace in the specs) is exhausted. |
| const size_t tracksSize = tracks.size(); |
| if (!hasUndefinedRemainingSpace) { |
| Vector<GridTrack*> tracksForDistribution(tracksSize); |
| for (size_t i = 0; i < tracksSize; ++i) |
| tracksForDistribution[i] = tracks.data() + i; |
| |
| distributeSpaceToTracks(tracksForDistribution, 0, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth, sizingData, availableLogicalSpace); |
| } else { |
| for (size_t i = 0; i < tracksSize; ++i) |
| tracks[i].m_usedBreadth = tracks[i].m_maxBreadth; |
| } |
| |
| if (flexibleSizedTracksIndex.isEmpty()) |
| return; |
| |
| // 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction. |
| double normalizedFractionBreadth = 0; |
| if (!hasUndefinedRemainingSpace) |
| normalizedFractionBreadth = computeNormalizedFractionBreadth(tracks, GridSpan(0, tracks.size() - 1), direction, availableLogicalSpace); |
| else { |
| for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) { |
| const size_t trackIndex = flexibleSizedTracksIndex[i]; |
| const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex); |
| normalizedFractionBreadth = std::max(normalizedFractionBreadth, tracks[trackIndex].m_usedBreadth / trackSize.maxTrackBreadth().flex()); |
| } |
| |
| for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) { |
| GridIterator iterator(m_grid, direction, flexibleSizedTracksIndex[i]); |
| while (RenderBox* gridItem = iterator.nextGridItem()) { |
| const GridCoordinate coordinate = cachedGridCoordinate(gridItem); |
| const GridSpan span = (direction == ForColumns) ? coordinate.columns : coordinate.rows; |
| |
| // Do not include already processed items. |
| if (i > 0 && span.resolvedInitialPosition.toInt() <= flexibleSizedTracksIndex[i - 1]) |
| continue; |
| |
| double itemNormalizedFlexBreadth = computeNormalizedFractionBreadth(tracks, span, direction, maxContentForChild(gridItem, direction, sizingData.columnTracks)); |
| normalizedFractionBreadth = std::max(normalizedFractionBreadth, itemNormalizedFlexBreadth); |
| } |
| } |
| } |
| |
| for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) { |
| const size_t trackIndex = flexibleSizedTracksIndex[i]; |
| const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex); |
| |
| tracks[trackIndex].m_usedBreadth = std::max<LayoutUnit>(tracks[trackIndex].m_usedBreadth, normalizedFractionBreadth * trackSize.maxTrackBreadth().flex()); |
| } |
| } |
| |
| LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(GridTrackSizingDirection direction, const GridLength& gridLength) const |
| { |
| if (gridLength.isFlex()) |
| return 0; |
| |
| const Length& trackLength = gridLength.length(); |
| ASSERT(!trackLength.isAuto()); |
| if (trackLength.isSpecified()) |
| return computeUsedBreadthOfSpecifiedLength(direction, trackLength); |
| |
| ASSERT(trackLength.isMinContent() || trackLength.isMaxContent()); |
| return 0; |
| } |
| |
| LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(GridTrackSizingDirection direction, const GridLength& gridLength, LayoutUnit usedBreadth) const |
| { |
| if (gridLength.isFlex()) |
| return usedBreadth; |
| |
| const Length& trackLength = gridLength.length(); |
| ASSERT(!trackLength.isAuto()); |
| if (trackLength.isSpecified()) { |
| LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength); |
| ASSERT(computedBreadth != infinity); |
| return computedBreadth; |
| } |
| |
| ASSERT(trackLength.isMinContent() || trackLength.isMaxContent()); |
| return infinity; |
| } |
| |
| LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(GridTrackSizingDirection direction, const Length& trackLength) const |
| { |
| ASSERT(trackLength.isSpecified()); |
| return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style().logicalHeight())); |
| } |
| |
| double RenderGrid::computeNormalizedFractionBreadth(Vector<GridTrack>& tracks, const GridSpan& tracksSpan, GridTrackSizingDirection direction, LayoutUnit availableLogicalSpace) const |
| { |
| // |availableLogicalSpace| already accounts for the used breadths so no need to remove it here. |
| |
| Vector<GridTrackForNormalization> tracksForNormalization; |
| for (auto position : tracksSpan) { |
| const GridTrackSize& trackSize = gridTrackSize(direction, position.toInt()); |
| if (!trackSize.maxTrackBreadth().isFlex()) |
| continue; |
| |
| tracksForNormalization.append(GridTrackForNormalization(tracks[position.toInt()], trackSize.maxTrackBreadth().flex())); |
| } |
| |
| // The function is not called if we don't have <flex> grid tracks |
| ASSERT(!tracksForNormalization.isEmpty()); |
| |
| std::sort(tracksForNormalization.begin(), tracksForNormalization.end(), |
| [](const GridTrackForNormalization& track1, const GridTrackForNormalization& track2) { |
| return track1.m_normalizedFlexValue < track2.m_normalizedFlexValue; |
| }); |
| |
| // These values work together: as we walk over our grid tracks, we increase fractionValueBasedOnGridItemsRatio |
| // to match a grid track's usedBreadth to <flex> ratio until the total fractions sized grid tracks wouldn't |
| // fit into availableLogicalSpaceIgnoringFractionTracks. |
| double accumulatedFractions = 0; |
| LayoutUnit fractionValueBasedOnGridItemsRatio = 0; |
| LayoutUnit availableLogicalSpaceIgnoringFractionTracks = availableLogicalSpace; |
| |
| for (size_t i = 0; i < tracksForNormalization.size(); ++i) { |
| const GridTrackForNormalization& track = tracksForNormalization[i]; |
| if (track.m_normalizedFlexValue > fractionValueBasedOnGridItemsRatio) { |
| // If the normalized flex value (we ordered |tracksForNormalization| by increasing normalized flex value) |
| // will make us overflow our container, then stop. We have the previous step's ratio is the best fit. |
| if (track.m_normalizedFlexValue * accumulatedFractions > availableLogicalSpaceIgnoringFractionTracks) |
| break; |
| |
| fractionValueBasedOnGridItemsRatio = track.m_normalizedFlexValue; |
| } |
| |
| accumulatedFractions += track.m_flex; |
| // This item was processed so we re-add its used breadth to the available space to accurately count the remaining space. |
| availableLogicalSpaceIgnoringFractionTracks += track.m_track->m_usedBreadth; |
| } |
| |
| return availableLogicalSpaceIgnoringFractionTracks / accumulatedFractions; |
| } |
| |
| const GridTrackSize& RenderGrid::gridTrackSize(GridTrackSizingDirection direction, size_t i) const |
| { |
| const Vector<GridTrackSize>& trackStyles = (direction == ForColumns) ? style().gridColumns() : style().gridRows(); |
| if (i >= trackStyles.size()) |
| return (direction == ForColumns) ? style().gridAutoColumns() : style().gridAutoRows(); |
| |
| const GridTrackSize& trackSize = trackStyles[i]; |
| // If the logical width/height of the grid container is indefinite, percentage values are treated as <auto>. |
| if (trackSize.isPercentage()) { |
| Length logicalSize = direction == ForColumns ? style().logicalWidth() : style().logicalHeight(); |
| if (logicalSize.isIntrinsicOrAuto()) { |
| static NeverDestroyed<GridTrackSize> autoTrackSize(Auto); |
| return autoTrackSize.get(); |
| } |
| } |
| |
| return trackSize; |
| } |
| |
| LayoutUnit RenderGrid::logicalContentHeightForChild(RenderBox* child, Vector<GridTrack>& columnTracks) |
| { |
| LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit(); |
| LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks); |
| if (child->style().logicalHeight().isPercent() || oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth) |
| child->setNeedsLayout(MarkOnlyThis); |
| |
| child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth); |
| // If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is |
| // what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution). |
| child->setOverrideContainingBlockContentLogicalHeight(-1); |
| child->layoutIfNeeded(); |
| return child->logicalHeight() + child->marginLogicalHeight(); |
| } |
| |
| LayoutUnit RenderGrid::minContentForChild(RenderBox* child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks) |
| { |
| bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode(); |
| // FIXME: Properly support orthogonal writing mode. |
| if (hasOrthogonalWritingMode) |
| return 0; |
| |
| if (direction == ForColumns) { |
| // FIXME: It's unclear if we should return the intrinsic width or the preferred width. |
| // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html |
| return child->minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(*child); |
| } |
| |
| return logicalContentHeightForChild(child, columnTracks); |
| } |
| |
| LayoutUnit RenderGrid::maxContentForChild(RenderBox* child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks) |
| { |
| bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode(); |
| // FIXME: Properly support orthogonal writing mode. |
| if (hasOrthogonalWritingMode) |
| return LayoutUnit(); |
| |
| if (direction == ForColumns) { |
| // FIXME: It's unclear if we should return the intrinsic width or the preferred width. |
| // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html |
| return child->maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(*child); |
| } |
| |
| return logicalContentHeightForChild(child, columnTracks); |
| } |
| |
| void RenderGrid::resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction, GridSizingData& sizingData) |
| { |
| // FIXME: Split the grid tracks into groups that doesn't overlap a <flex> grid track. |
| |
| for (size_t i = 0; i < sizingData.contentSizedTracksIndex.size(); ++i) { |
| GridIterator iterator(m_grid, direction, sizingData.contentSizedTracksIndex[i]); |
| while (RenderBox* gridItem = iterator.nextGridItem()) { |
| resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth); |
| resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth); |
| resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth); |
| resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth); |
| } |
| |
| GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[i] : sizingData.rowTracks[i]; |
| if (track.m_maxBreadth == infinity) |
| track.m_maxBreadth = track.m_usedBreadth; |
| } |
| } |
| |
| void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction, GridSizingData& sizingData, RenderBox* gridItem, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction) |
| { |
| const GridCoordinate coordinate = cachedGridCoordinate(gridItem); |
| const GridResolvedPosition initialTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition; |
| const GridResolvedPosition finalTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedFinalPosition : coordinate.rows.resolvedFinalPosition; |
| |
| sizingData.filteredTracks.shrink(0); |
| for (GridResolvedPosition trackIndex = initialTrackPosition; trackIndex <= finalTrackPosition; ++trackIndex) { |
| const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex.toInt()); |
| if (!(trackSize.*filterFunction)()) |
| continue; |
| |
| GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex.toInt()] : sizingData.rowTracks[trackIndex.toInt()]; |
| sizingData.filteredTracks.append(&track); |
| } |
| |
| if (sizingData.filteredTracks.isEmpty()) |
| return; |
| |
| LayoutUnit additionalBreadthSpace = (this->*sizingFunction)(gridItem, direction, sizingData.columnTracks); |
| for (GridResolvedPosition trackPositionForSpace = initialTrackPosition; trackPositionForSpace <= finalTrackPosition; ++trackPositionForSpace) { |
| GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackPositionForSpace.toInt()] : sizingData.rowTracks[trackPositionForSpace.toInt()]; |
| additionalBreadthSpace -= (track.*trackGetter)(); |
| } |
| |
| // FIXME: We should pass different values for |tracksForGrowthAboveMaxBreadth|. |
| distributeSpaceToTracks(sizingData.filteredTracks, &sizingData.filteredTracks, trackGetter, trackGrowthFunction, sizingData, additionalBreadthSpace); |
| } |
| |
| static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2) |
| { |
| return (track1->m_maxBreadth - track1->m_usedBreadth) < (track2->m_maxBreadth - track2->m_usedBreadth); |
| } |
| |
| void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* tracksForGrowthAboveMaxBreadth, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace) |
| { |
| std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential); |
| |
| size_t tracksSize = tracks.size(); |
| sizingData.distributeTrackVector.resize(tracksSize); |
| |
| for (size_t i = 0; i < tracksSize; ++i) { |
| GridTrack& track = *tracks[i]; |
| LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i); |
| LayoutUnit trackBreadth = (tracks[i]->*trackGetter)(); |
| LayoutUnit growthShare = std::max(LayoutUnit(), std::min(availableLogicalSpaceShare, track.m_maxBreadth - trackBreadth)); |
| // We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function. |
| sizingData.distributeTrackVector[i] = trackBreadth + growthShare; |
| availableLogicalSpace -= growthShare; |
| } |
| |
| if (availableLogicalSpace > 0 && tracksForGrowthAboveMaxBreadth) { |
| tracksSize = tracksForGrowthAboveMaxBreadth->size(); |
| for (size_t i = 0; i < tracksSize; ++i) { |
| LayoutUnit growthShare = availableLogicalSpace / (tracksSize - i); |
| sizingData.distributeTrackVector[i] += growthShare; |
| availableLogicalSpace -= growthShare; |
| } |
| } |
| |
| for (size_t i = 0; i < tracksSize; ++i) { |
| LayoutUnit growth = sizingData.distributeTrackVector[i] - (tracks[i]->*trackGetter)(); |
| if (growth >= 0) |
| (tracks[i]->*trackGrowthFunction)(growth); |
| } |
| } |
| |
| #ifndef NDEBUG |
| bool RenderGrid::tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction, const Vector<GridTrack>& tracks) |
| { |
| for (size_t i = 0; i < tracks.size(); ++i) { |
| const GridTrackSize& trackSize = gridTrackSize(direction, i); |
| const GridLength& minTrackBreadth = trackSize.minTrackBreadth(); |
| if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].m_usedBreadth) |
| return false; |
| } |
| return true; |
| } |
| #endif |
| |
| void RenderGrid::ensureGridSize(size_t maximumRowIndex, size_t maximumColumnIndex) |
| { |
| const size_t oldRowCount = gridRowCount(); |
| if (maximumRowIndex >= oldRowCount) { |
| m_grid.grow(maximumRowIndex + 1); |
| for (size_t row = oldRowCount; row < gridRowCount(); ++row) |
| m_grid[row].grow(gridColumnCount()); |
| } |
| |
| if (maximumColumnIndex >= gridColumnCount()) { |
| for (size_t row = 0; row < gridRowCount(); ++row) |
| m_grid[row].grow(maximumColumnIndex + 1); |
| } |
| } |
| |
| void RenderGrid::insertItemIntoGrid(RenderBox* child, const GridCoordinate& coordinate) |
| { |
| ensureGridSize(coordinate.rows.resolvedFinalPosition.toInt(), coordinate.columns.resolvedFinalPosition.toInt()); |
| |
| for (auto row : coordinate.rows) { |
| for (auto column : coordinate.columns) |
| m_grid[row.toInt()][column.toInt()].append(child); |
| } |
| m_gridItemCoordinate.set(child, coordinate); |
| } |
| |
| void RenderGrid::placeItemsOnGrid() |
| { |
| ASSERT(!gridWasPopulated()); |
| ASSERT(m_gridItemCoordinate.isEmpty()); |
| |
| populateExplicitGridAndOrderIterator(); |
| |
| Vector<RenderBox*> autoMajorAxisAutoGridItems; |
| Vector<RenderBox*> specifiedMajorAxisAutoGridItems; |
| for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) { |
| // FIXME: We never re-resolve positions if the grid is grown during auto-placement which may lead auto / <integer> |
| // positions to not match the author's intent. The specification is unclear on what should be done in this case. |
| std::unique_ptr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), *child, ForRows); |
| std::unique_ptr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), *child, ForColumns); |
| if (!rowPositions || !columnPositions) { |
| GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get(); |
| if (!majorAxisPositions) |
| autoMajorAxisAutoGridItems.append(child); |
| else |
| specifiedMajorAxisAutoGridItems.append(child); |
| continue; |
| } |
| insertItemIntoGrid(child, GridCoordinate(*rowPositions, *columnPositions)); |
| } |
| |
| ASSERT(gridRowCount() >= style().gridRows().size()); |
| ASSERT(gridColumnCount() >= style().gridColumns().size()); |
| |
| // FIXME: Implement properly "stack" value in auto-placement algorithm. |
| if (style().isGridAutoFlowAlgorithmStack()) { |
| // If we did collect some grid items, they won't be placed thus never laid out. |
| ASSERT(!autoMajorAxisAutoGridItems.size()); |
| ASSERT(!specifiedMajorAxisAutoGridItems.size()); |
| return; |
| } |
| |
| placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems); |
| placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems); |
| } |
| |
| void RenderGrid::populateExplicitGridAndOrderIterator() |
| { |
| OrderIteratorPopulator populator(m_orderIterator); |
| size_t maximumRowIndex = std::max<size_t>(1, style().gridRows().size()); |
| size_t maximumColumnIndex = std::max<size_t>(1, style().gridColumns().size()); |
| |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| populator.collectChild(*child); |
| |
| // This function bypasses the cache (cachedGridCoordinate()) as it is used to build it. |
| std::unique_ptr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), *child, ForRows); |
| std::unique_ptr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), *child, ForColumns); |
| |
| // |positions| is 0 if we need to run the auto-placement algorithm. |
| if (rowPositions) |
| maximumRowIndex = std::max(maximumRowIndex, rowPositions->resolvedFinalPosition.next().toInt()); |
| else { |
| // Grow the grid for items with a definite row span, getting the largest such span. |
| GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *child, ForRows, GridResolvedPosition(0)); |
| maximumRowIndex = std::max<size_t>(maximumRowIndex, positions.resolvedFinalPosition.next().toInt()); |
| } |
| |
| if (columnPositions) |
| maximumColumnIndex = std::max(maximumColumnIndex, columnPositions->resolvedFinalPosition.next().toInt()); |
| else { |
| // Grow the grid for items with a definite column span, getting the largest such span. |
| GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *child, ForColumns, GridResolvedPosition(0)); |
| maximumColumnIndex = std::max<size_t>(maximumColumnIndex, positions.resolvedFinalPosition.next().toInt()); |
| } |
| } |
| |
| m_grid.grow(maximumRowIndex); |
| for (size_t i = 0; i < m_grid.size(); ++i) |
| m_grid[i].grow(maximumColumnIndex); |
| } |
| |
| std::unique_ptr<GridCoordinate> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const RenderBox* gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const |
| { |
| GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns; |
| const size_t endOfCrossDirection = crossDirection == ForColumns ? gridColumnCount() : gridRowCount(); |
| GridSpan crossDirectionPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *gridItem, crossDirection, GridResolvedPosition(endOfCrossDirection)); |
| return std::make_unique<GridCoordinate>(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions); |
| } |
| |
| void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems) |
| { |
| for (auto& autoGridItem : autoGridItems) { |
| std::unique_ptr<GridSpan> majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), *autoGridItem, autoPlacementMajorAxisDirection()); |
| GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *autoGridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0)); |
| |
| GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->resolvedInitialPosition.toInt()); |
| std::unique_ptr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions->integerSpan(), minorAxisPositions.integerSpan()); |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(autoGridItem, autoPlacementMajorAxisDirection(), *majorAxisPositions); |
| insertItemIntoGrid(autoGridItem, *emptyGridArea); |
| } |
| } |
| |
| void RenderGrid::placeAutoMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems) |
| { |
| AutoPlacementCursor autoPlacementCursor = {0, 0}; |
| bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); |
| |
| for (auto& autoGridItem : autoGridItems) { |
| placeAutoMajorAxisItemOnGrid(autoGridItem, autoPlacementCursor); |
| |
| if (isGridAutoFlowDense) { |
| autoPlacementCursor.first = 0; |
| autoPlacementCursor.second = 0; |
| } |
| } |
| } |
| |
| void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox* gridItem, AutoPlacementCursor& autoPlacementCursor) |
| { |
| std::unique_ptr<GridSpan> minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), *gridItem, autoPlacementMinorAxisDirection()); |
| ASSERT(!GridResolvedPosition::resolveGridPositionsFromStyle(style(), *gridItem, autoPlacementMajorAxisDirection())); |
| GridSpan majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *gridItem, autoPlacementMajorAxisDirection(), GridResolvedPosition(0)); |
| |
| const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount(); |
| size_t majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first; |
| size_t minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second; |
| |
| std::unique_ptr<GridCoordinate> emptyGridArea; |
| if (minorAxisPositions) { |
| // Move to the next track in major axis if initial position in minor axis is before auto-placement cursor. |
| if (minorAxisPositions->resolvedInitialPosition.toInt() < minorAxisAutoPlacementCursor) |
| majorAxisAutoPlacementCursor++; |
| |
| if (majorAxisAutoPlacementCursor < endOfMajorAxis) { |
| GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisPositions->resolvedInitialPosition.toInt(), majorAxisAutoPlacementCursor); |
| emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions->integerSpan(), majorAxisPositions.integerSpan()); |
| } |
| |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), *minorAxisPositions); |
| } else { |
| GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *gridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0)); |
| |
| for (size_t majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) { |
| GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor); |
| emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisPositions.integerSpan()); |
| |
| if (emptyGridArea) { |
| // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()). |
| GridResolvedPosition minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.resolvedFinalPosition : emptyGridArea->rows.resolvedFinalPosition; |
| const size_t endOfMinorAxis = autoPlacementMinorAxisDirection() == ForColumns ? gridColumnCount() : gridRowCount(); |
| if (minorAxisFinalPositionIndex.toInt() < endOfMinorAxis) |
| break; |
| |
| // Discard empty grid area as it does not fit in the minor axis direction. |
| // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration. |
| emptyGridArea = nullptr; |
| } |
| |
| // As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis. |
| minorAxisAutoPlacementCursor = 0; |
| } |
| |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions); |
| } |
| |
| insertItemIntoGrid(gridItem, *emptyGridArea); |
| autoPlacementCursor.first = emptyGridArea->rows.resolvedInitialPosition.toInt(); |
| autoPlacementCursor.second = emptyGridArea->columns.resolvedInitialPosition.toInt(); |
| } |
| |
| GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const |
| { |
| return style().isGridAutoFlowDirectionColumn() ? ForColumns : ForRows; |
| } |
| |
| GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const |
| { |
| return style().isGridAutoFlowDirectionColumn() ? ForRows : ForColumns; |
| } |
| |
| void RenderGrid::clearGrid() |
| { |
| m_grid.clear(); |
| m_gridItemCoordinate.clear(); |
| } |
| |
| void RenderGrid::layoutGridItems() |
| { |
| placeItemsOnGrid(); |
| |
| GridSizingData sizingData(gridColumnCount(), gridRowCount()); |
| computeUsedBreadthOfGridTracks(ForColumns, sizingData); |
| ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, sizingData.columnTracks)); |
| computeUsedBreadthOfGridTracks(ForRows, sizingData); |
| ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData.rowTracks)); |
| |
| populateGridPositions(sizingData); |
| |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| // Because the grid area cannot be styled, we don't need to adjust |
| // the grid breadth to account for 'box-sizing'. |
| LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit(); |
| LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit(); |
| |
| LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, sizingData.columnTracks); |
| LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(child, ForRows, sizingData.rowTracks); |
| if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || (oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight && child->hasRelativeLogicalHeight())) |
| child->setNeedsLayout(MarkOnlyThis); |
| |
| child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth); |
| child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight); |
| |
| LayoutRect oldChildRect = child->frameRect(); |
| |
| // FIXME: Grid items should stretch to fill their cells. Once we |
| // implement grid-{column,row}-align, we can also shrink to fit. For |
| // now, just size as if we were a regular child. |
| child->layoutIfNeeded(); |
| |
| child->setLogicalLocation(findChildLogicalPosition(child, sizingData)); |
| |
| // If the child moved, we have to repaint it as well as any floating/positioned |
| // descendants. An exception is if we need a layout. In this case, we know we're going to |
| // repaint ourselves (and the child) anyway. |
| if (!selfNeedsLayout() && child->checkForRepaintDuringLayout()) |
| child->repaintDuringLayoutIfMoved(oldChildRect); |
| } |
| |
| for (size_t i = 0; i < sizingData.rowTracks.size(); ++i) |
| setLogicalHeight(logicalHeight() + sizingData.rowTracks[i].m_usedBreadth); |
| |
| // min / max logical height is handled in updateLogicalHeight(). |
| setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight()); |
| clearGrid(); |
| } |
| |
| GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox* gridItem) const |
| { |
| ASSERT(m_gridItemCoordinate.contains(gridItem)); |
| return m_gridItemCoordinate.get(gridItem); |
| } |
| |
| LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox* child, GridTrackSizingDirection direction, const Vector<GridTrack>& tracks) const |
| { |
| const GridCoordinate& coordinate = cachedGridCoordinate(child); |
| const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows; |
| LayoutUnit gridAreaBreadth = 0; |
| for (auto trackPosition : span) |
| gridAreaBreadth += tracks[trackPosition.toInt()].m_usedBreadth; |
| return gridAreaBreadth; |
| } |
| |
| void RenderGrid::populateGridPositions(const GridSizingData& sizingData) |
| { |
| m_columnPositions.resizeToFit(sizingData.columnTracks.size() + 1); |
| m_columnPositions[0] = borderAndPaddingStart(); |
| for (size_t i = 0; i < m_columnPositions.size() - 1; ++i) |
| m_columnPositions[i + 1] = m_columnPositions[i] + sizingData.columnTracks[i].m_usedBreadth; |
| |
| m_rowPositions.resizeToFit(sizingData.rowTracks.size() + 1); |
| m_rowPositions[0] = borderAndPaddingBefore(); |
| for (size_t i = 0; i < m_rowPositions.size() - 1; ++i) |
| m_rowPositions[i + 1] = m_rowPositions[i] + sizingData.rowTracks[i].m_usedBreadth; |
| } |
| |
| LayoutPoint RenderGrid::findChildLogicalPosition(RenderBox* child, const GridSizingData& sizingData) |
| { |
| const GridCoordinate& coordinate = cachedGridCoordinate(child); |
| ASSERT_UNUSED(sizingData, coordinate.columns.resolvedInitialPosition.toInt() < sizingData.columnTracks.size()); |
| ASSERT_UNUSED(sizingData, coordinate.rows.resolvedInitialPosition.toInt() < sizingData.rowTracks.size()); |
| |
| // The grid items should be inside the grid container's border box, that's why they need to be shifted. |
| return LayoutPoint(m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()] + marginStartForChild(*child), m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()] + marginBeforeForChild(*child)); |
| } |
| |
| void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect) |
| { |
| for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) |
| paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect); |
| } |
| |
| const char* RenderGrid::renderName() const |
| { |
| if (isFloating()) |
| return "RenderGrid (floating)"; |
| if (isOutOfFlowPositioned()) |
| return "RenderGrid (positioned)"; |
| if (isAnonymous()) |
| return "RenderGrid (generated)"; |
| if (isRelPositioned()) |
| return "RenderGrid (relative positioned)"; |
| return "RenderGrid"; |
| } |
| |
| } // namespace WebCore |
| |
| #endif /* ENABLE(CSS_GRID_LAYOUT) */ |