|  | /* | 
|  | * Copyright (C) 2008-2018 Apple Inc. All rights reserved. | 
|  | * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1.  Redistributions of source code must retain the above copyright | 
|  | *     notice, this list of conditions and the following disclaimer. | 
|  | * 2.  Redistributions in binary form must reproduce the above copyright | 
|  | *     notice, this list of conditions and the following disclaimer in the | 
|  | *     documentation and/or other materials provided with the distribution. | 
|  | * 3.  Neither the name of Apple Inc. ("Apple") nor the names of | 
|  | *     its contributors may be used to endorse or promote products derived | 
|  | *     from this software without specific prior written permission. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY | 
|  | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
|  | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
|  | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY | 
|  | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
|  | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | 
|  | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | 
|  | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include "config.h" | 
|  | #include "CodeBlock.h" | 
|  |  | 
|  | #include "ArithProfile.h" | 
|  | #include "BasicBlockLocation.h" | 
|  | #include "BytecodeDumper.h" | 
|  | #include "BytecodeGenerator.h" | 
|  | #include "BytecodeLivenessAnalysis.h" | 
|  | #include "BytecodeUseDef.h" | 
|  | #include "CallLinkStatus.h" | 
|  | #include "CodeBlockSet.h" | 
|  | #include "DFGCapabilities.h" | 
|  | #include "DFGCommon.h" | 
|  | #include "DFGDriver.h" | 
|  | #include "DFGJITCode.h" | 
|  | #include "DFGWorklist.h" | 
|  | #include "Debugger.h" | 
|  | #include "EvalCodeBlock.h" | 
|  | #include "FullCodeOrigin.h" | 
|  | #include "FunctionCodeBlock.h" | 
|  | #include "FunctionExecutableDump.h" | 
|  | #include "GetPutInfo.h" | 
|  | #include "InlineCallFrame.h" | 
|  | #include "InterpreterInlines.h" | 
|  | #include "IsoCellSetInlines.h" | 
|  | #include "JIT.h" | 
|  | #include "JITMathIC.h" | 
|  | #include "JSBigInt.h" | 
|  | #include "JSCInlines.h" | 
|  | #include "JSCJSValue.h" | 
|  | #include "JSFunction.h" | 
|  | #include "JSLexicalEnvironment.h" | 
|  | #include "JSModuleEnvironment.h" | 
|  | #include "JSSet.h" | 
|  | #include "JSString.h" | 
|  | #include "JSTemplateObjectDescriptor.h" | 
|  | #include "LLIntData.h" | 
|  | #include "LLIntEntrypoint.h" | 
|  | #include "LLIntPrototypeLoadAdaptiveStructureWatchpoint.h" | 
|  | #include "LowLevelInterpreter.h" | 
|  | #include "ModuleProgramCodeBlock.h" | 
|  | #include "ObjectAllocationProfileInlines.h" | 
|  | #include "PCToCodeOriginMap.h" | 
|  | #include "PolymorphicAccess.h" | 
|  | #include "ProfilerDatabase.h" | 
|  | #include "ProgramCodeBlock.h" | 
|  | #include "ReduceWhitespace.h" | 
|  | #include "Repatch.h" | 
|  | #include "SlotVisitorInlines.h" | 
|  | #include "StackVisitor.h" | 
|  | #include "StructureStubInfo.h" | 
|  | #include "TypeLocationCache.h" | 
|  | #include "TypeProfiler.h" | 
|  | #include "UnlinkedInstructionStream.h" | 
|  | #include "VMInlines.h" | 
|  | #include <wtf/BagToHashMap.h> | 
|  | #include <wtf/CommaPrinter.h> | 
|  | #include <wtf/SimpleStats.h> | 
|  | #include <wtf/StringPrintStream.h> | 
|  | #include <wtf/text/UniquedStringImpl.h> | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | #include "RegisterAtOffsetList.h" | 
|  | #endif | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | #include "DFGOperations.h" | 
|  | #endif | 
|  |  | 
|  | #if ENABLE(FTL_JIT) | 
|  | #include "FTLJITCode.h" | 
|  | #endif | 
|  |  | 
|  | namespace JSC { | 
|  |  | 
|  | const ClassInfo CodeBlock::s_info = { | 
|  | "CodeBlock", nullptr, nullptr, nullptr, | 
|  | CREATE_METHOD_TABLE(CodeBlock) | 
|  | }; | 
|  |  | 
|  | CString CodeBlock::inferredName() const | 
|  | { | 
|  | switch (codeType()) { | 
|  | case GlobalCode: | 
|  | return "<global>"; | 
|  | case EvalCode: | 
|  | return "<eval>"; | 
|  | case FunctionCode: | 
|  | return jsCast<FunctionExecutable*>(ownerExecutable())->inferredName().utf8(); | 
|  | case ModuleCode: | 
|  | return "<module>"; | 
|  | default: | 
|  | CRASH(); | 
|  | return CString("", 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CodeBlock::hasHash() const | 
|  | { | 
|  | return !!m_hash; | 
|  | } | 
|  |  | 
|  | bool CodeBlock::isSafeToComputeHash() const | 
|  | { | 
|  | return !isCompilationThread(); | 
|  | } | 
|  |  | 
|  | CodeBlockHash CodeBlock::hash() const | 
|  | { | 
|  | if (!m_hash) { | 
|  | RELEASE_ASSERT(isSafeToComputeHash()); | 
|  | m_hash = CodeBlockHash(ownerScriptExecutable()->source(), specializationKind()); | 
|  | } | 
|  | return m_hash; | 
|  | } | 
|  |  | 
|  | CString CodeBlock::sourceCodeForTools() const | 
|  | { | 
|  | if (codeType() != FunctionCode) | 
|  | return ownerScriptExecutable()->source().toUTF8(); | 
|  |  | 
|  | SourceProvider* provider = source(); | 
|  | FunctionExecutable* executable = jsCast<FunctionExecutable*>(ownerExecutable()); | 
|  | UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable(); | 
|  | unsigned unlinkedStartOffset = unlinked->startOffset(); | 
|  | unsigned linkedStartOffset = executable->source().startOffset(); | 
|  | int delta = linkedStartOffset - unlinkedStartOffset; | 
|  | unsigned rangeStart = delta + unlinked->unlinkedFunctionNameStart(); | 
|  | unsigned rangeEnd = delta + unlinked->startOffset() + unlinked->sourceLength(); | 
|  | return toCString( | 
|  | "function ", | 
|  | provider->source().substring(rangeStart, rangeEnd - rangeStart).utf8()); | 
|  | } | 
|  |  | 
|  | CString CodeBlock::sourceCodeOnOneLine() const | 
|  | { | 
|  | return reduceWhitespace(sourceCodeForTools()); | 
|  | } | 
|  |  | 
|  | CString CodeBlock::hashAsStringIfPossible() const | 
|  | { | 
|  | if (hasHash() || isSafeToComputeHash()) | 
|  | return toCString(hash()); | 
|  | return "<no-hash>"; | 
|  | } | 
|  |  | 
|  | void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const | 
|  | { | 
|  | out.print(inferredName(), "#", hashAsStringIfPossible()); | 
|  | out.print(":[", RawPointer(this), "->"); | 
|  | if (!!m_alternative) | 
|  | out.print(RawPointer(alternative()), "->"); | 
|  | out.print(RawPointer(ownerExecutable()), ", ", jitType, codeType()); | 
|  |  | 
|  | if (codeType() == FunctionCode) | 
|  | out.print(specializationKind()); | 
|  | out.print(", ", instructionCount()); | 
|  | if (this->jitType() == JITCode::BaselineJIT && m_shouldAlwaysBeInlined) | 
|  | out.print(" (ShouldAlwaysBeInlined)"); | 
|  | if (ownerScriptExecutable()->neverInline()) | 
|  | out.print(" (NeverInline)"); | 
|  | if (ownerScriptExecutable()->neverOptimize()) | 
|  | out.print(" (NeverOptimize)"); | 
|  | else if (ownerScriptExecutable()->neverFTLOptimize()) | 
|  | out.print(" (NeverFTLOptimize)"); | 
|  | if (ownerScriptExecutable()->didTryToEnterInLoop()) | 
|  | out.print(" (DidTryToEnterInLoop)"); | 
|  | if (ownerScriptExecutable()->isStrictMode()) | 
|  | out.print(" (StrictMode)"); | 
|  | if (m_didFailJITCompilation) | 
|  | out.print(" (JITFail)"); | 
|  | if (this->jitType() == JITCode::BaselineJIT && m_didFailFTLCompilation) | 
|  | out.print(" (FTLFail)"); | 
|  | if (this->jitType() == JITCode::BaselineJIT && m_hasBeenCompiledWithFTL) | 
|  | out.print(" (HadFTLReplacement)"); | 
|  | out.print("]"); | 
|  | } | 
|  |  | 
|  | void CodeBlock::dump(PrintStream& out) const | 
|  | { | 
|  | dumpAssumingJITType(out, jitType()); | 
|  | } | 
|  |  | 
|  | void CodeBlock::dumpSource() | 
|  | { | 
|  | dumpSource(WTF::dataFile()); | 
|  | } | 
|  |  | 
|  | void CodeBlock::dumpSource(PrintStream& out) | 
|  | { | 
|  | ScriptExecutable* executable = ownerScriptExecutable(); | 
|  | if (executable->isFunctionExecutable()) { | 
|  | FunctionExecutable* functionExecutable = reinterpret_cast<FunctionExecutable*>(executable); | 
|  | StringView source = functionExecutable->source().provider()->getRange( | 
|  | functionExecutable->parametersStartOffset(), | 
|  | functionExecutable->typeProfilingEndOffset() + 1); // Type profiling end offset is the character before the '}'. | 
|  |  | 
|  | out.print("function ", inferredName(), source); | 
|  | return; | 
|  | } | 
|  | out.print(executable->source().view()); | 
|  | } | 
|  |  | 
|  | void CodeBlock::dumpBytecode() | 
|  | { | 
|  | dumpBytecode(WTF::dataFile()); | 
|  | } | 
|  |  | 
|  | void CodeBlock::dumpBytecode(PrintStream& out) | 
|  | { | 
|  | StubInfoMap stubInfos; | 
|  | CallLinkInfoMap callLinkInfos; | 
|  | getStubInfoMap(stubInfos); | 
|  | getCallLinkInfoMap(callLinkInfos); | 
|  | BytecodeDumper<CodeBlock>::dumpBlock(this, instructions(), out, stubInfos, callLinkInfos); | 
|  | } | 
|  |  | 
|  | void CodeBlock::dumpBytecode(PrintStream& out, const Instruction* begin, const Instruction*& it, const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) | 
|  | { | 
|  | BytecodeDumper<CodeBlock>::dumpBytecode(this, out, begin, it, stubInfos, callLinkInfos); | 
|  | } | 
|  |  | 
|  | void CodeBlock::dumpBytecode( | 
|  | PrintStream& out, unsigned bytecodeOffset, | 
|  | const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) | 
|  | { | 
|  | const Instruction* it = &instructions()[bytecodeOffset]; | 
|  | dumpBytecode(out, instructions().begin(), it, stubInfos, callLinkInfos); | 
|  | } | 
|  |  | 
|  | #define FOR_EACH_MEMBER_VECTOR(macro) \ | 
|  | macro(instructions) \ | 
|  | macro(callLinkInfos) \ | 
|  | macro(linkedCallerList) \ | 
|  | macro(identifiers) \ | 
|  | macro(functionExpressions) \ | 
|  | macro(constantRegisters) | 
|  |  | 
|  | template<typename T> | 
|  | static size_t sizeInBytes(const Vector<T>& vector) | 
|  | { | 
|  | return vector.capacity() * sizeof(T); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class PutToScopeFireDetail : public FireDetail { | 
|  | public: | 
|  | PutToScopeFireDetail(CodeBlock* codeBlock, const Identifier& ident) | 
|  | : m_codeBlock(codeBlock) | 
|  | , m_ident(ident) | 
|  | { | 
|  | } | 
|  |  | 
|  | void dump(PrintStream& out) const override | 
|  | { | 
|  | out.print("Linking put_to_scope in ", FunctionExecutableDump(jsCast<FunctionExecutable*>(m_codeBlock->ownerExecutable())), " for ", m_ident); | 
|  | } | 
|  |  | 
|  | private: | 
|  | CodeBlock* m_codeBlock; | 
|  | const Identifier& m_ident; | 
|  | }; | 
|  |  | 
|  | } // anonymous namespace | 
|  |  | 
|  | CodeBlock::CodeBlock(VM* vm, Structure* structure, CopyParsedBlockTag, CodeBlock& other) | 
|  | : JSCell(*vm, structure) | 
|  | , m_globalObject(other.m_globalObject) | 
|  | , m_numCalleeLocals(other.m_numCalleeLocals) | 
|  | , m_numVars(other.m_numVars) | 
|  | , m_shouldAlwaysBeInlined(true) | 
|  | #if ENABLE(JIT) | 
|  | , m_capabilityLevelState(DFG::CapabilityLevelNotSet) | 
|  | #endif | 
|  | , m_didFailJITCompilation(false) | 
|  | , m_didFailFTLCompilation(false) | 
|  | , m_hasBeenCompiledWithFTL(false) | 
|  | , m_isConstructor(other.m_isConstructor) | 
|  | , m_isStrictMode(other.m_isStrictMode) | 
|  | , m_codeType(other.m_codeType) | 
|  | , m_unlinkedCode(*other.vm(), this, other.m_unlinkedCode.get()) | 
|  | , m_numberOfArgumentsToSkip(other.m_numberOfArgumentsToSkip) | 
|  | , m_hasDebuggerStatement(false) | 
|  | , m_steppingMode(SteppingModeDisabled) | 
|  | , m_numBreakpoints(0) | 
|  | , m_ownerExecutable(*other.vm(), this, other.m_ownerExecutable.get()) | 
|  | , m_poisonedVM(other.m_poisonedVM) | 
|  | , m_instructions(other.m_instructions) | 
|  | , m_thisRegister(other.m_thisRegister) | 
|  | , m_scopeRegister(other.m_scopeRegister) | 
|  | , m_hash(other.m_hash) | 
|  | , m_source(other.m_source) | 
|  | , m_sourceOffset(other.m_sourceOffset) | 
|  | , m_firstLineColumnOffset(other.m_firstLineColumnOffset) | 
|  | , m_constantRegisters(other.m_constantRegisters) | 
|  | , m_constantsSourceCodeRepresentation(other.m_constantsSourceCodeRepresentation) | 
|  | , m_functionDecls(other.m_functionDecls) | 
|  | , m_functionExprs(other.m_functionExprs) | 
|  | , m_osrExitCounter(0) | 
|  | , m_optimizationDelayCounter(0) | 
|  | , m_reoptimizationRetryCounter(0) | 
|  | , m_creationTime(MonotonicTime::now()) | 
|  | { | 
|  | ASSERT(heap()->isDeferred()); | 
|  | ASSERT(m_scopeRegister.isLocal()); | 
|  |  | 
|  | setNumParameters(other.numParameters()); | 
|  |  | 
|  | vm->heap.codeBlockSet().add(this); | 
|  | } | 
|  |  | 
|  | void CodeBlock::finishCreation(VM& vm, CopyParsedBlockTag, CodeBlock& other) | 
|  | { | 
|  | Base::finishCreation(vm); | 
|  | finishCreationCommon(vm); | 
|  |  | 
|  | optimizeAfterWarmUp(); | 
|  | jitAfterWarmUp(); | 
|  |  | 
|  | if (other.m_rareData) { | 
|  | createRareDataIfNecessary(); | 
|  |  | 
|  | m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; | 
|  | m_rareData->m_switchJumpTables = other.m_rareData->m_switchJumpTables; | 
|  | m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; | 
|  | } | 
|  | } | 
|  |  | 
|  | CodeBlock::CodeBlock(VM* vm, Structure* structure, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, | 
|  | JSScope* scope, RefPtr<SourceProvider>&& sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset) | 
|  | : JSCell(*vm, structure) | 
|  | , m_globalObject(*vm, this, scope->globalObject()) | 
|  | , m_numCalleeLocals(unlinkedCodeBlock->m_numCalleeLocals) | 
|  | , m_numVars(unlinkedCodeBlock->m_numVars) | 
|  | , m_shouldAlwaysBeInlined(true) | 
|  | #if ENABLE(JIT) | 
|  | , m_capabilityLevelState(DFG::CapabilityLevelNotSet) | 
|  | #endif | 
|  | , m_didFailJITCompilation(false) | 
|  | , m_didFailFTLCompilation(false) | 
|  | , m_hasBeenCompiledWithFTL(false) | 
|  | , m_isConstructor(unlinkedCodeBlock->isConstructor()) | 
|  | , m_isStrictMode(unlinkedCodeBlock->isStrictMode()) | 
|  | , m_codeType(unlinkedCodeBlock->codeType()) | 
|  | , m_unlinkedCode(*vm, this, unlinkedCodeBlock) | 
|  | , m_hasDebuggerStatement(false) | 
|  | , m_steppingMode(SteppingModeDisabled) | 
|  | , m_numBreakpoints(0) | 
|  | , m_ownerExecutable(*vm, this, ownerExecutable) | 
|  | , m_poisonedVM(vm) | 
|  | , m_thisRegister(unlinkedCodeBlock->thisRegister()) | 
|  | , m_scopeRegister(unlinkedCodeBlock->scopeRegister()) | 
|  | , m_source(WTFMove(sourceProvider)) | 
|  | , m_sourceOffset(sourceOffset) | 
|  | , m_firstLineColumnOffset(firstLineColumnOffset) | 
|  | , m_osrExitCounter(0) | 
|  | , m_optimizationDelayCounter(0) | 
|  | , m_reoptimizationRetryCounter(0) | 
|  | , m_creationTime(MonotonicTime::now()) | 
|  | { | 
|  | ASSERT(heap()->isDeferred()); | 
|  | ASSERT(m_scopeRegister.isLocal()); | 
|  |  | 
|  | ASSERT(m_source); | 
|  | setNumParameters(unlinkedCodeBlock->numParameters()); | 
|  |  | 
|  | vm->heap.codeBlockSet().add(this); | 
|  | } | 
|  |  | 
|  | // The main purpose of this function is to generate linked bytecode from unlinked bytecode. The process | 
|  | // of linking is taking an abstract representation of bytecode and tying it to a GlobalObject and scope | 
|  | // chain. For example, this process allows us to cache the depth of lexical environment reads that reach | 
|  | // outside of this CodeBlock's compilation unit. It also allows us to generate particular constants that | 
|  | // we can't generate during unlinked bytecode generation. This process is not allowed to generate control | 
|  | // flow or introduce new locals. The reason for this is we rely on liveness analysis to be the same for | 
|  | // all the CodeBlocks of an UnlinkedCodeBlock. We rely on this fact by caching the liveness analysis | 
|  | // inside UnlinkedCodeBlock. | 
|  | bool CodeBlock::finishCreation(VM& vm, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, | 
|  | JSScope* scope) | 
|  | { | 
|  | Base::finishCreation(vm); | 
|  | finishCreationCommon(vm); | 
|  |  | 
|  | auto throwScope = DECLARE_THROW_SCOPE(vm); | 
|  |  | 
|  | if (vm.typeProfiler() || vm.controlFlowProfiler()) | 
|  | vm.functionHasExecutedCache()->removeUnexecutedRange(ownerExecutable->sourceID(), ownerExecutable->typeProfilingStartOffset(), ownerExecutable->typeProfilingEndOffset()); | 
|  |  | 
|  | setConstantRegisters(unlinkedCodeBlock->constantRegisters(), unlinkedCodeBlock->constantsSourceCodeRepresentation()); | 
|  | RETURN_IF_EXCEPTION(throwScope, false); | 
|  |  | 
|  | setConstantIdentifierSetRegisters(vm, unlinkedCodeBlock->constantIdentifierSets()); | 
|  | RETURN_IF_EXCEPTION(throwScope, false); | 
|  |  | 
|  | if (unlinkedCodeBlock->usesGlobalObject()) | 
|  | m_constantRegisters[unlinkedCodeBlock->globalObjectRegister().toConstantIndex()].set(vm, this, m_globalObject.get()); | 
|  |  | 
|  | for (unsigned i = 0; i < LinkTimeConstantCount; i++) { | 
|  | LinkTimeConstant type = static_cast<LinkTimeConstant>(i); | 
|  | if (unsigned registerIndex = unlinkedCodeBlock->registerIndexForLinkTimeConstant(type)) | 
|  | m_constantRegisters[registerIndex].set(vm, this, m_globalObject->jsCellForLinkTimeConstant(type)); | 
|  | } | 
|  |  | 
|  | // We already have the cloned symbol table for the module environment since we need to instantiate | 
|  | // the module environments before linking the code block. We replace the stored symbol table with the already cloned one. | 
|  | if (UnlinkedModuleProgramCodeBlock* unlinkedModuleProgramCodeBlock = jsDynamicCast<UnlinkedModuleProgramCodeBlock*>(vm, unlinkedCodeBlock)) { | 
|  | SymbolTable* clonedSymbolTable = jsCast<ModuleProgramExecutable*>(ownerExecutable)->moduleEnvironmentSymbolTable(); | 
|  | if (vm.typeProfiler()) { | 
|  | ConcurrentJSLocker locker(clonedSymbolTable->m_lock); | 
|  | clonedSymbolTable->prepareForTypeProfiling(locker); | 
|  | } | 
|  | replaceConstant(unlinkedModuleProgramCodeBlock->moduleEnvironmentSymbolTableConstantRegisterOffset(), clonedSymbolTable); | 
|  | } | 
|  |  | 
|  | bool shouldUpdateFunctionHasExecutedCache = vm.typeProfiler() || vm.controlFlowProfiler(); | 
|  | m_functionDecls = RefCountedArray<WriteBarrier<FunctionExecutable>>(unlinkedCodeBlock->numberOfFunctionDecls()); | 
|  | for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) { | 
|  | UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i); | 
|  | if (shouldUpdateFunctionHasExecutedCache) | 
|  | vm.functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); | 
|  | m_functionDecls[i].set(vm, this, unlinkedExecutable->link(vm, ownerExecutable->source())); | 
|  | } | 
|  |  | 
|  | m_functionExprs = RefCountedArray<WriteBarrier<FunctionExecutable>>(unlinkedCodeBlock->numberOfFunctionExprs()); | 
|  | for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) { | 
|  | UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i); | 
|  | if (shouldUpdateFunctionHasExecutedCache) | 
|  | vm.functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); | 
|  | m_functionExprs[i].set(vm, this, unlinkedExecutable->link(vm, ownerExecutable->source())); | 
|  | } | 
|  |  | 
|  | if (unlinkedCodeBlock->hasRareData()) { | 
|  | createRareDataIfNecessary(); | 
|  | if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) { | 
|  | m_rareData->m_exceptionHandlers.resizeToFit(count); | 
|  | for (size_t i = 0; i < count; i++) { | 
|  | const UnlinkedHandlerInfo& unlinkedHandler = unlinkedCodeBlock->exceptionHandler(i); | 
|  | HandlerInfo& handler = m_rareData->m_exceptionHandlers[i]; | 
|  | #if ENABLE(JIT) | 
|  | handler.initialize(unlinkedHandler, CodeLocationLabel<ExceptionHandlerPtrTag>(LLInt::getCodePtr<BytecodePtrTag>(op_catch).retagged<ExceptionHandlerPtrTag>())); | 
|  | #else | 
|  | handler.initialize(unlinkedHandler); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) { | 
|  | m_rareData->m_stringSwitchJumpTables.grow(count); | 
|  | for (size_t i = 0; i < count; i++) { | 
|  | UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin(); | 
|  | UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end(); | 
|  | for (; ptr != end; ++ptr) { | 
|  | OffsetLocation offset; | 
|  | offset.branchOffset = ptr->value.branchOffset; | 
|  | m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (size_t count = unlinkedCodeBlock->numberOfSwitchJumpTables()) { | 
|  | m_rareData->m_switchJumpTables.grow(count); | 
|  | for (size_t i = 0; i < count; i++) { | 
|  | UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->switchJumpTable(i); | 
|  | SimpleJumpTable& destTable = m_rareData->m_switchJumpTables[i]; | 
|  | destTable.branchOffsets = sourceTable.branchOffsets; | 
|  | destTable.min = sourceTable.min; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate metadata buffers for the bytecode | 
|  | if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos()) | 
|  | m_llintCallLinkInfos = RefCountedArray<LLIntCallLinkInfo>(size); | 
|  | if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles()) | 
|  | m_arrayProfiles.grow(size); | 
|  | if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles()) | 
|  | m_arrayAllocationProfiles = RefCountedArray<ArrayAllocationProfile>(size); | 
|  | if (size_t size = unlinkedCodeBlock->numberOfValueProfiles()) | 
|  | m_valueProfiles = RefCountedArray<ValueProfile>(size); | 
|  | if (size_t size = unlinkedCodeBlock->numberOfObjectAllocationProfiles()) | 
|  | m_objectAllocationProfiles = RefCountedArray<ObjectAllocationProfile>(size); | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | setCalleeSaveRegisters(RegisterSet::llintBaselineCalleeSaveRegisters()); | 
|  | #endif | 
|  |  | 
|  | // Copy and translate the UnlinkedInstructions | 
|  | unsigned instructionCount = unlinkedCodeBlock->instructions().count(); | 
|  | UnlinkedInstructionStream::Reader instructionReader(unlinkedCodeBlock->instructions()); | 
|  |  | 
|  | // Bookkeep the strongly referenced module environments. | 
|  | HashSet<JSModuleEnvironment*> stronglyReferencedModuleEnvironments; | 
|  |  | 
|  | RefCountedArray<Instruction> instructions(instructionCount); | 
|  |  | 
|  | unsigned valueProfileCount = 0; | 
|  | auto linkValueProfile = [&](unsigned bytecodeOffset, unsigned opLength) { | 
|  | unsigned valueProfileIndex = valueProfileCount++; | 
|  | ValueProfile* profile = &m_valueProfiles[valueProfileIndex]; | 
|  | ASSERT(profile->m_bytecodeOffset == -1); | 
|  | profile->m_bytecodeOffset = bytecodeOffset; | 
|  | instructions[bytecodeOffset + opLength - 1] = profile; | 
|  | }; | 
|  |  | 
|  | for (unsigned i = 0; !instructionReader.atEnd(); ) { | 
|  | const UnlinkedInstruction* pc = instructionReader.next(); | 
|  |  | 
|  | unsigned opLength = opcodeLength(pc[0].u.opcode); | 
|  |  | 
|  | instructions[i] = Interpreter::getOpcode(pc[0].u.opcode); | 
|  | for (size_t j = 1; j < opLength; ++j) { | 
|  | if (sizeof(int32_t) != sizeof(intptr_t)) | 
|  | instructions[i + j].u.pointer = 0; | 
|  | instructions[i + j].u.operand = pc[j].u.operand; | 
|  | } | 
|  | switch (pc[0].u.opcode) { | 
|  | case op_has_indexed_property: { | 
|  | int arrayProfileIndex = pc[opLength - 1].u.operand; | 
|  | m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); | 
|  |  | 
|  | instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; | 
|  | break; | 
|  | } | 
|  | case op_call_varargs: | 
|  | case op_tail_call_varargs: | 
|  | case op_tail_call_forward_arguments: | 
|  | case op_construct_varargs: | 
|  | case op_get_by_val: { | 
|  | int arrayProfileIndex = pc[opLength - 2].u.operand; | 
|  | m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); | 
|  |  | 
|  | instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; | 
|  | FALLTHROUGH; | 
|  | } | 
|  | case op_get_direct_pname: | 
|  | case op_get_by_id: | 
|  | case op_get_by_id_with_this: | 
|  | case op_try_get_by_id: | 
|  | case op_get_by_id_direct: | 
|  | case op_get_by_val_with_this: | 
|  | case op_get_from_arguments: | 
|  | case op_to_number: | 
|  | case op_to_object: | 
|  | case op_get_argument: { | 
|  | linkValueProfile(i, opLength); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case op_to_this: { | 
|  | linkValueProfile(i, opLength); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case op_in: | 
|  | case op_put_by_val: | 
|  | case op_put_by_val_direct: { | 
|  | int arrayProfileIndex = pc[opLength - 1].u.operand; | 
|  | m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); | 
|  | instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case op_new_array: | 
|  | case op_new_array_buffer: | 
|  | case op_new_array_with_size: { | 
|  | int arrayAllocationProfileIndex = pc[opLength - 1].u.operand; | 
|  | instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex]; | 
|  | break; | 
|  | } | 
|  | case op_new_object: { | 
|  | int objectAllocationProfileIndex = pc[opLength - 1].u.operand; | 
|  | ObjectAllocationProfile* objectAllocationProfile = &m_objectAllocationProfiles[objectAllocationProfileIndex]; | 
|  | int inferredInlineCapacity = pc[opLength - 2].u.operand; | 
|  |  | 
|  | instructions[i + opLength - 1] = objectAllocationProfile; | 
|  | objectAllocationProfile->initializeProfile(vm, | 
|  | m_globalObject.get(), this, m_globalObject->objectPrototype(), inferredInlineCapacity); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case op_call: | 
|  | case op_tail_call: | 
|  | case op_call_eval: { | 
|  | linkValueProfile(i, opLength); | 
|  | int arrayProfileIndex = pc[opLength - 2].u.operand; | 
|  | m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); | 
|  | instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; | 
|  | instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; | 
|  | break; | 
|  | } | 
|  | case op_construct: { | 
|  | instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; | 
|  | linkValueProfile(i, opLength); | 
|  | break; | 
|  | } | 
|  | case op_get_array_length: | 
|  | CRASH(); | 
|  |  | 
|  | case op_resolve_scope: { | 
|  | const Identifier& ident = identifier(pc[3].u.operand); | 
|  | ResolveType type = static_cast<ResolveType>(pc[4].u.operand); | 
|  | RELEASE_ASSERT(type != LocalClosureVar); | 
|  | int localScopeDepth = pc[5].u.operand; | 
|  |  | 
|  | ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, type, InitializationMode::NotInitialization); | 
|  | RETURN_IF_EXCEPTION(throwScope, false); | 
|  |  | 
|  | instructions[i + 4].u.operand = op.type; | 
|  | instructions[i + 5].u.operand = op.depth; | 
|  | if (op.lexicalEnvironment) { | 
|  | if (op.type == ModuleVar) { | 
|  | // Keep the linked module environment strongly referenced. | 
|  | if (stronglyReferencedModuleEnvironments.add(jsCast<JSModuleEnvironment*>(op.lexicalEnvironment)).isNewEntry) | 
|  | addConstant(op.lexicalEnvironment); | 
|  | instructions[i + 6].u.jsCell.set(vm, this, op.lexicalEnvironment); | 
|  | } else | 
|  | instructions[i + 6].u.symbolTable.set(vm, this, op.lexicalEnvironment->symbolTable()); | 
|  | } else if (JSScope* constantScope = JSScope::constantScopeForCodeBlock(op.type, this)) | 
|  | instructions[i + 6].u.jsCell.set(vm, this, constantScope); | 
|  | else | 
|  | instructions[i + 6].u.pointer = nullptr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case op_get_from_scope: { | 
|  | linkValueProfile(i, opLength); | 
|  |  | 
|  | // get_from_scope dst, scope, id, GetPutInfo, Structure, Operand | 
|  |  | 
|  | int localScopeDepth = pc[5].u.operand; | 
|  | instructions[i + 5].u.pointer = nullptr; | 
|  |  | 
|  | GetPutInfo getPutInfo = GetPutInfo(pc[4].u.operand); | 
|  | ASSERT(!isInitialization(getPutInfo.initializationMode())); | 
|  | if (getPutInfo.resolveType() == LocalClosureVar) { | 
|  | instructions[i + 4] = GetPutInfo(getPutInfo.resolveMode(), ClosureVar, getPutInfo.initializationMode()).operand(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | const Identifier& ident = identifier(pc[3].u.operand); | 
|  | ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, getPutInfo.resolveType(), InitializationMode::NotInitialization); | 
|  | RETURN_IF_EXCEPTION(throwScope, false); | 
|  |  | 
|  | instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), op.type, getPutInfo.initializationMode()).operand(); | 
|  | if (op.type == ModuleVar) | 
|  | instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), ClosureVar, getPutInfo.initializationMode()).operand(); | 
|  | if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks) | 
|  | instructions[i + 5].u.watchpointSet = op.watchpointSet; | 
|  | else if (op.structure) | 
|  | instructions[i + 5].u.structure.set(vm, this, op.structure); | 
|  | instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case op_put_to_scope: { | 
|  | // put_to_scope scope, id, value, GetPutInfo, Structure, Operand | 
|  | GetPutInfo getPutInfo = GetPutInfo(pc[4].u.operand); | 
|  | if (getPutInfo.resolveType() == LocalClosureVar) { | 
|  | // Only do watching if the property we're putting to is not anonymous. | 
|  | if (static_cast<unsigned>(pc[2].u.operand) != UINT_MAX) { | 
|  | int symbolTableIndex = pc[5].u.operand; | 
|  | SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(symbolTableIndex)); | 
|  | const Identifier& ident = identifier(pc[2].u.operand); | 
|  | ConcurrentJSLocker locker(symbolTable->m_lock); | 
|  | auto iter = symbolTable->find(locker, ident.impl()); | 
|  | ASSERT(iter != symbolTable->end(locker)); | 
|  | iter->value.prepareToWatch(); | 
|  | instructions[i + 5].u.watchpointSet = iter->value.watchpointSet(); | 
|  | } else | 
|  | instructions[i + 5].u.watchpointSet = nullptr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | const Identifier& ident = identifier(pc[2].u.operand); | 
|  | int localScopeDepth = pc[5].u.operand; | 
|  | instructions[i + 5].u.pointer = nullptr; | 
|  | ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Put, getPutInfo.resolveType(), getPutInfo.initializationMode()); | 
|  | RETURN_IF_EXCEPTION(throwScope, false); | 
|  |  | 
|  | instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), op.type, getPutInfo.initializationMode()).operand(); | 
|  | if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks) | 
|  | instructions[i + 5].u.watchpointSet = op.watchpointSet; | 
|  | else if (op.type == ClosureVar || op.type == ClosureVarWithVarInjectionChecks) { | 
|  | if (op.watchpointSet) | 
|  | op.watchpointSet->invalidate(vm, PutToScopeFireDetail(this, ident)); | 
|  | } else if (op.structure) | 
|  | instructions[i + 5].u.structure.set(vm, this, op.structure); | 
|  | instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case op_profile_type: { | 
|  | RELEASE_ASSERT(vm.typeProfiler()); | 
|  | // The format of this instruction is: op_profile_type regToProfile, TypeLocation*, flag, identifier?, resolveType? | 
|  | size_t instructionOffset = i + opLength - 1; | 
|  | unsigned divotStart, divotEnd; | 
|  | GlobalVariableID globalVariableID = 0; | 
|  | RefPtr<TypeSet> globalTypeSet; | 
|  | bool shouldAnalyze = m_unlinkedCode->typeProfilerExpressionInfoForBytecodeOffset(instructionOffset, divotStart, divotEnd); | 
|  | VirtualRegister profileRegister(pc[1].u.operand); | 
|  | ProfileTypeBytecodeFlag flag = static_cast<ProfileTypeBytecodeFlag>(pc[3].u.operand); | 
|  | SymbolTable* symbolTable = nullptr; | 
|  |  | 
|  | switch (flag) { | 
|  | case ProfileTypeBytecodeClosureVar: { | 
|  | const Identifier& ident = identifier(pc[4].u.operand); | 
|  | int localScopeDepth = pc[2].u.operand; | 
|  | ResolveType type = static_cast<ResolveType>(pc[5].u.operand); | 
|  | // Even though type profiling may be profiling either a Get or a Put, we can always claim a Get because | 
|  | // we're abstractly "read"ing from a JSScope. | 
|  | ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, type, InitializationMode::NotInitialization); | 
|  | RETURN_IF_EXCEPTION(throwScope, false); | 
|  |  | 
|  | if (op.type == ClosureVar || op.type == ModuleVar) | 
|  | symbolTable = op.lexicalEnvironment->symbolTable(); | 
|  | else if (op.type == GlobalVar) | 
|  | symbolTable = m_globalObject.get()->symbolTable(); | 
|  |  | 
|  | UniquedStringImpl* impl = (op.type == ModuleVar) ? op.importedName.get() : ident.impl(); | 
|  | if (symbolTable) { | 
|  | ConcurrentJSLocker locker(symbolTable->m_lock); | 
|  | // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. | 
|  | symbolTable->prepareForTypeProfiling(locker); | 
|  | globalVariableID = symbolTable->uniqueIDForVariable(locker, impl, vm); | 
|  | globalTypeSet = symbolTable->globalTypeSetForVariable(locker, impl, vm); | 
|  | } else | 
|  | globalVariableID = TypeProfilerNoGlobalIDExists; | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ProfileTypeBytecodeLocallyResolved: { | 
|  | int symbolTableIndex = pc[2].u.operand; | 
|  | SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(symbolTableIndex)); | 
|  | const Identifier& ident = identifier(pc[4].u.operand); | 
|  | ConcurrentJSLocker locker(symbolTable->m_lock); | 
|  | // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. | 
|  | globalVariableID = symbolTable->uniqueIDForVariable(locker, ident.impl(), vm); | 
|  | globalTypeSet = symbolTable->globalTypeSetForVariable(locker, ident.impl(), vm); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ProfileTypeBytecodeDoesNotHaveGlobalID: | 
|  | case ProfileTypeBytecodeFunctionArgument: { | 
|  | globalVariableID = TypeProfilerNoGlobalIDExists; | 
|  | break; | 
|  | } | 
|  | case ProfileTypeBytecodeFunctionReturnStatement: { | 
|  | RELEASE_ASSERT(ownerExecutable->isFunctionExecutable()); | 
|  | globalTypeSet = jsCast<FunctionExecutable*>(ownerExecutable)->returnStatementTypeSet(); | 
|  | globalVariableID = TypeProfilerReturnStatement; | 
|  | if (!shouldAnalyze) { | 
|  | // Because a return statement can be added implicitly to return undefined at the end of a function, | 
|  | // and these nodes don't emit expression ranges because they aren't in the actual source text of | 
|  | // the user's program, give the type profiler some range to identify these return statements. | 
|  | // Currently, the text offset that is used as identification is "f" in the function keyword | 
|  | // and is stored on TypeLocation's m_divotForFunctionOffsetIfReturnStatement member variable. | 
|  | divotStart = divotEnd = ownerExecutable->typeProfilingStartOffset(); | 
|  | shouldAnalyze = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<TypeLocation*, bool> locationPair = vm.typeProfiler()->typeLocationCache()->getTypeLocation(globalVariableID, | 
|  | ownerExecutable->sourceID(), divotStart, divotEnd, WTFMove(globalTypeSet), &vm); | 
|  | TypeLocation* location = locationPair.first; | 
|  | bool isNewLocation = locationPair.second; | 
|  |  | 
|  | if (flag == ProfileTypeBytecodeFunctionReturnStatement) | 
|  | location->m_divotForFunctionOffsetIfReturnStatement = ownerExecutable->typeProfilingStartOffset(); | 
|  |  | 
|  | if (shouldAnalyze && isNewLocation) | 
|  | vm.typeProfiler()->insertNewLocation(location); | 
|  |  | 
|  | instructions[i + 2].u.location = location; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case op_debug: { | 
|  | if (pc[1].u.unsignedValue == DidReachBreakpoint) | 
|  | m_hasDebuggerStatement = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case op_create_rest: { | 
|  | int numberOfArgumentsToSkip = instructions[i + 3].u.operand; | 
|  | ASSERT_UNUSED(numberOfArgumentsToSkip, numberOfArgumentsToSkip >= 0); | 
|  | // This is used when rematerializing the rest parameter during OSR exit in the FTL JIT."); | 
|  | m_numberOfArgumentsToSkip = numberOfArgumentsToSkip; | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | i += opLength; | 
|  | } | 
|  |  | 
|  | if (vm.controlFlowProfiler()) | 
|  | insertBasicBlockBoundariesForControlFlowProfiler(instructions); | 
|  |  | 
|  | m_instructions = WTFMove(instructions); | 
|  |  | 
|  | // Set optimization thresholds only after m_instructions is initialized, since these | 
|  | // rely on the instruction count (and are in theory permitted to also inspect the | 
|  | // instruction stream to more accurate assess the cost of tier-up). | 
|  | optimizeAfterWarmUp(); | 
|  | jitAfterWarmUp(); | 
|  |  | 
|  | // If the concurrent thread will want the code block's hash, then compute it here | 
|  | // synchronously. | 
|  | if (Options::alwaysComputeHash()) | 
|  | hash(); | 
|  |  | 
|  | if (Options::dumpGeneratedBytecodes()) | 
|  | dumpBytecode(); | 
|  |  | 
|  | heap()->reportExtraMemoryAllocated(m_instructions.size() * sizeof(Instruction)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void CodeBlock::finishCreationCommon(VM& vm) | 
|  | { | 
|  | m_ownerEdge.set(vm, this, ExecutableToCodeBlockEdge::create(vm, this)); | 
|  | } | 
|  |  | 
|  | CodeBlock::~CodeBlock() | 
|  | { | 
|  | VM& vm = *m_poisonedVM; | 
|  |  | 
|  | vm.heap.codeBlockSet().remove(this); | 
|  |  | 
|  | if (UNLIKELY(vm.m_perBytecodeProfiler)) | 
|  | vm.m_perBytecodeProfiler->notifyDestruction(this); | 
|  |  | 
|  | if (!vm.heap.isShuttingDown() && unlinkedCodeBlock()->didOptimize() == MixedTriState) | 
|  | unlinkedCodeBlock()->setDidOptimize(FalseTriState); | 
|  |  | 
|  | #if ENABLE(VERBOSE_VALUE_PROFILE) | 
|  | dumpValueProfiles(); | 
|  | #endif | 
|  |  | 
|  | // We may be destroyed before any CodeBlocks that refer to us are destroyed. | 
|  | // Consider that two CodeBlocks become unreachable at the same time. There | 
|  | // is no guarantee about the order in which the CodeBlocks are destroyed. | 
|  | // So, if we don't remove incoming calls, and get destroyed before the | 
|  | // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's | 
|  | // destructor will try to remove nodes from our (no longer valid) linked list. | 
|  | unlinkIncomingCalls(); | 
|  |  | 
|  | // Note that our outgoing calls will be removed from other CodeBlocks' | 
|  | // m_incomingCalls linked lists through the execution of the ~CallLinkInfo | 
|  | // destructors. | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | for (auto iter = m_stubInfos.begin(); !!iter; ++iter) { | 
|  | StructureStubInfo* stub = *iter; | 
|  | stub->aboutToDie(); | 
|  | stub->deref(); | 
|  | } | 
|  | #endif // ENABLE(JIT) | 
|  | } | 
|  |  | 
|  | void CodeBlock::setConstantIdentifierSetRegisters(VM& vm, const Vector<ConstantIndentifierSetEntry>& constants) | 
|  | { | 
|  | auto scope = DECLARE_THROW_SCOPE(vm); | 
|  | JSGlobalObject* globalObject = m_globalObject.get(); | 
|  | ExecState* exec = globalObject->globalExec(); | 
|  |  | 
|  | for (const auto& entry : constants) { | 
|  | const IdentifierSet& set = entry.first; | 
|  |  | 
|  | Structure* setStructure = globalObject->setStructure(); | 
|  | RETURN_IF_EXCEPTION(scope, void()); | 
|  | JSSet* jsSet = JSSet::create(exec, vm, setStructure, set.size()); | 
|  | RETURN_IF_EXCEPTION(scope, void()); | 
|  |  | 
|  | for (auto setEntry : set) { | 
|  | JSString* jsString = jsOwnedString(&vm, setEntry.get()); | 
|  | jsSet->add(exec, jsString); | 
|  | RETURN_IF_EXCEPTION(scope, void()); | 
|  | } | 
|  | m_constantRegisters[entry.second].set(vm, this, jsSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeBlock::setConstantRegisters(const Vector<WriteBarrier<Unknown>>& constants, const Vector<SourceCodeRepresentation>& constantsSourceCodeRepresentation) | 
|  | { | 
|  | VM& vm = *m_poisonedVM; | 
|  | auto scope = DECLARE_THROW_SCOPE(vm); | 
|  | JSGlobalObject* globalObject = m_globalObject.get(); | 
|  | ExecState* exec = globalObject->globalExec(); | 
|  |  | 
|  | ASSERT(constants.size() == constantsSourceCodeRepresentation.size()); | 
|  | size_t count = constants.size(); | 
|  | m_constantRegisters.resizeToFit(count); | 
|  | bool hasTypeProfiler = !!vm.typeProfiler(); | 
|  | for (size_t i = 0; i < count; i++) { | 
|  | JSValue constant = constants[i].get(); | 
|  |  | 
|  | if (!constant.isEmpty()) { | 
|  | if (constant.isCell()) { | 
|  | JSCell* cell = constant.asCell(); | 
|  | if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(vm, cell)) { | 
|  | if (hasTypeProfiler) { | 
|  | ConcurrentJSLocker locker(symbolTable->m_lock); | 
|  | symbolTable->prepareForTypeProfiling(locker); | 
|  | } | 
|  |  | 
|  | SymbolTable* clone = symbolTable->cloneScopePart(vm); | 
|  | if (wasCompiledWithDebuggingOpcodes()) | 
|  | clone->setRareDataCodeBlock(this); | 
|  |  | 
|  | constant = clone; | 
|  | } else if (auto* descriptor = jsDynamicCast<JSTemplateObjectDescriptor*>(vm, cell)) { | 
|  | auto* templateObject = descriptor->createTemplateObject(exec); | 
|  | RETURN_IF_EXCEPTION(scope, void()); | 
|  | constant = templateObject; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | m_constantRegisters[i].set(vm, this, constant); | 
|  | } | 
|  |  | 
|  | m_constantsSourceCodeRepresentation = constantsSourceCodeRepresentation; | 
|  | } | 
|  |  | 
|  | void CodeBlock::setAlternative(VM& vm, CodeBlock* alternative) | 
|  | { | 
|  | m_alternative.set(vm, this, alternative); | 
|  | } | 
|  |  | 
|  | void CodeBlock::setNumParameters(int newValue) | 
|  | { | 
|  | m_numParameters = newValue; | 
|  |  | 
|  | m_argumentValueProfiles = RefCountedArray<ValueProfile>(newValue); | 
|  | } | 
|  |  | 
|  | CodeBlock* CodeBlock::specialOSREntryBlockOrNull() | 
|  | { | 
|  | #if ENABLE(FTL_JIT) | 
|  | if (jitType() != JITCode::DFGJIT) | 
|  | return 0; | 
|  | DFG::JITCode* jitCode = m_jitCode->dfg(); | 
|  | return jitCode->osrEntryBlock(); | 
|  | #else // ENABLE(FTL_JIT) | 
|  | return 0; | 
|  | #endif // ENABLE(FTL_JIT) | 
|  | } | 
|  |  | 
|  | size_t CodeBlock::estimatedSize(JSCell* cell) | 
|  | { | 
|  | CodeBlock* thisObject = jsCast<CodeBlock*>(cell); | 
|  | size_t extraMemoryAllocated = thisObject->m_instructions.size() * sizeof(Instruction); | 
|  | if (thisObject->m_jitCode) | 
|  | extraMemoryAllocated += thisObject->m_jitCode->size(); | 
|  | return Base::estimatedSize(cell) + extraMemoryAllocated; | 
|  | } | 
|  |  | 
|  | void CodeBlock::visitChildren(JSCell* cell, SlotVisitor& visitor) | 
|  | { | 
|  | CodeBlock* thisObject = jsCast<CodeBlock*>(cell); | 
|  | ASSERT_GC_OBJECT_INHERITS(thisObject, info()); | 
|  | JSCell::visitChildren(thisObject, visitor); | 
|  | visitor.append(thisObject->m_ownerEdge); | 
|  | thisObject->visitChildren(visitor); | 
|  | } | 
|  |  | 
|  | void CodeBlock::visitChildren(SlotVisitor& visitor) | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  | if (CodeBlock* otherBlock = specialOSREntryBlockOrNull()) | 
|  | visitor.appendUnbarriered(otherBlock); | 
|  |  | 
|  | if (m_jitCode) | 
|  | visitor.reportExtraMemoryVisited(m_jitCode->size()); | 
|  | if (m_instructions.size()) { | 
|  | unsigned refCount = m_instructions.refCount(); | 
|  | if (!refCount) { | 
|  | dataLog("CodeBlock: ", RawPointer(this), "\n"); | 
|  | dataLog("m_instructions.data(): ", RawPointer(m_instructions.data()), "\n"); | 
|  | dataLog("refCount: ", refCount, "\n"); | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | } | 
|  | visitor.reportExtraMemoryVisited(m_instructions.size() * sizeof(Instruction) / refCount); | 
|  | } | 
|  |  | 
|  | stronglyVisitStrongReferences(locker, visitor); | 
|  | stronglyVisitWeakReferences(locker, visitor); | 
|  |  | 
|  | VM::SpaceAndFinalizerSet::finalizerSetFor(*subspace()).add(this); | 
|  | } | 
|  |  | 
|  | bool CodeBlock::shouldVisitStrongly(const ConcurrentJSLocker& locker) | 
|  | { | 
|  | if (Options::forceCodeBlockLiveness()) | 
|  | return true; | 
|  |  | 
|  | if (shouldJettisonDueToOldAge(locker)) | 
|  | return false; | 
|  |  | 
|  | // Interpreter and Baseline JIT CodeBlocks don't need to be jettisoned when | 
|  | // their weak references go stale. So if a basline JIT CodeBlock gets | 
|  | // scanned, we can assume that this means that it's live. | 
|  | if (!JITCode::isOptimizingJIT(jitType())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CodeBlock::shouldJettisonDueToWeakReference() | 
|  | { | 
|  | if (!JITCode::isOptimizingJIT(jitType())) | 
|  | return false; | 
|  | return !Heap::isMarked(this); | 
|  | } | 
|  |  | 
|  | static Seconds timeToLive(JITCode::JITType jitType) | 
|  | { | 
|  | if (UNLIKELY(Options::useEagerCodeBlockJettisonTiming())) { | 
|  | switch (jitType) { | 
|  | case JITCode::InterpreterThunk: | 
|  | return 10_ms; | 
|  | case JITCode::BaselineJIT: | 
|  | return 30_ms; | 
|  | case JITCode::DFGJIT: | 
|  | return 40_ms; | 
|  | case JITCode::FTLJIT: | 
|  | return 120_ms; | 
|  | default: | 
|  | return Seconds::infinity(); | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (jitType) { | 
|  | case JITCode::InterpreterThunk: | 
|  | return 5_s; | 
|  | case JITCode::BaselineJIT: | 
|  | // Effectively 10 additional seconds, since BaselineJIT and | 
|  | // InterpreterThunk share a CodeBlock. | 
|  | return 15_s; | 
|  | case JITCode::DFGJIT: | 
|  | return 20_s; | 
|  | case JITCode::FTLJIT: | 
|  | return 60_s; | 
|  | default: | 
|  | return Seconds::infinity(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CodeBlock::shouldJettisonDueToOldAge(const ConcurrentJSLocker&) | 
|  | { | 
|  | if (Heap::isMarked(this)) | 
|  | return false; | 
|  |  | 
|  | if (UNLIKELY(Options::forceCodeBlockToJettisonDueToOldAge())) | 
|  | return true; | 
|  |  | 
|  | if (timeSinceCreation() < timeToLive(jitType())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | static bool shouldMarkTransition(DFG::WeakReferenceTransition& transition) | 
|  | { | 
|  | if (transition.m_codeOrigin && !Heap::isMarked(transition.m_codeOrigin.get())) | 
|  | return false; | 
|  |  | 
|  | if (!Heap::isMarked(transition.m_from.get())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #endif // ENABLE(DFG_JIT) | 
|  |  | 
|  | void CodeBlock::propagateTransitions(const ConcurrentJSLocker&, SlotVisitor& visitor) | 
|  | { | 
|  | UNUSED_PARAM(visitor); | 
|  |  | 
|  | VM& vm = *m_poisonedVM; | 
|  |  | 
|  | if (jitType() == JITCode::InterpreterThunk) { | 
|  | const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); | 
|  | for (size_t i = 0; i < propertyAccessInstructions.size(); ++i) { | 
|  | Instruction* instruction = &instructions()[propertyAccessInstructions[i]]; | 
|  | switch (Interpreter::getOpcodeID(instruction[0])) { | 
|  | case op_put_by_id: { | 
|  | StructureID oldStructureID = instruction[4].u.structureID; | 
|  | StructureID newStructureID = instruction[6].u.structureID; | 
|  | if (!oldStructureID || !newStructureID) | 
|  | break; | 
|  | Structure* oldStructure = | 
|  | vm.heap.structureIDTable().get(oldStructureID); | 
|  | Structure* newStructure = | 
|  | vm.heap.structureIDTable().get(newStructureID); | 
|  | if (Heap::isMarked(oldStructure)) | 
|  | visitor.appendUnbarriered(newStructure); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | if (JITCode::isJIT(jitType())) { | 
|  | for (auto iter = m_stubInfos.begin(); !!iter; ++iter) | 
|  | (*iter)->propagateTransitions(visitor); | 
|  | } | 
|  | #endif // ENABLE(JIT) | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | if (JITCode::isOptimizingJIT(jitType())) { | 
|  | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); | 
|  | for (auto& weakReference : dfgCommon->weakStructureReferences) | 
|  | weakReference->markIfCheap(visitor); | 
|  |  | 
|  | for (auto& transition : dfgCommon->transitions) { | 
|  | if (shouldMarkTransition(transition)) { | 
|  | // If the following three things are live, then the target of the | 
|  | // transition is also live: | 
|  | // | 
|  | // - This code block. We know it's live already because otherwise | 
|  | //   we wouldn't be scanning ourselves. | 
|  | // | 
|  | // - The code origin of the transition. Transitions may arise from | 
|  | //   code that was inlined. They are not relevant if the user's | 
|  | //   object that is required for the inlinee to run is no longer | 
|  | //   live. | 
|  | // | 
|  | // - The source of the transition. The transition checks if some | 
|  | //   heap location holds the source, and if so, stores the target. | 
|  | //   Hence the source must be live for the transition to be live. | 
|  | // | 
|  | // We also short-circuit the liveness if the structure is harmless | 
|  | // to mark (i.e. its global object and prototype are both already | 
|  | // live). | 
|  |  | 
|  | visitor.append(transition.m_to); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif // ENABLE(DFG_JIT) | 
|  | } | 
|  |  | 
|  | void CodeBlock::determineLiveness(const ConcurrentJSLocker&, SlotVisitor& visitor) | 
|  | { | 
|  | UNUSED_PARAM(visitor); | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | if (Heap::isMarked(this)) | 
|  | return; | 
|  |  | 
|  | // In rare and weird cases, this could be called on a baseline CodeBlock. One that I found was | 
|  | // that we might decide that the CodeBlock should be jettisoned due to old age, so the | 
|  | // isMarked check doesn't protect us. | 
|  | if (!JITCode::isOptimizingJIT(jitType())) | 
|  | return; | 
|  |  | 
|  | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); | 
|  | // Now check all of our weak references. If all of them are live, then we | 
|  | // have proved liveness and so we scan our strong references. If at end of | 
|  | // GC we still have not proved liveness, then this code block is toast. | 
|  | bool allAreLiveSoFar = true; | 
|  | for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { | 
|  | JSCell* reference = dfgCommon->weakReferences[i].get(); | 
|  | ASSERT(!jsDynamicCast<CodeBlock*>(*reference->vm(), reference)); | 
|  | if (!Heap::isMarked(reference)) { | 
|  | allAreLiveSoFar = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (allAreLiveSoFar) { | 
|  | for (unsigned i = 0; i < dfgCommon->weakStructureReferences.size(); ++i) { | 
|  | if (!Heap::isMarked(dfgCommon->weakStructureReferences[i].get())) { | 
|  | allAreLiveSoFar = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If some weak references are dead, then this fixpoint iteration was | 
|  | // unsuccessful. | 
|  | if (!allAreLiveSoFar) | 
|  | return; | 
|  |  | 
|  | // All weak references are live. Record this information so we don't | 
|  | // come back here again, and scan the strong references. | 
|  | visitor.appendUnbarriered(this); | 
|  | #endif // ENABLE(DFG_JIT) | 
|  | } | 
|  |  | 
|  | void CodeBlock::clearLLIntGetByIdCache(Instruction* instruction) | 
|  | { | 
|  | instruction[0].u.opcode = LLInt::getOpcode(op_get_by_id); | 
|  | instruction[4].u.pointer = nullptr; | 
|  | instruction[5].u.pointer = nullptr; | 
|  | instruction[6].u.pointer = nullptr; | 
|  | } | 
|  |  | 
|  | void CodeBlock::finalizeLLIntInlineCaches() | 
|  | { | 
|  | VM& vm = *m_poisonedVM; | 
|  | const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); | 
|  | for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) { | 
|  | Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]]; | 
|  | switch (Interpreter::getOpcodeID(curInstruction[0])) { | 
|  | case op_get_by_id: | 
|  | case op_get_by_id_proto_load: | 
|  | case op_get_by_id_unset: { | 
|  | StructureID oldStructureID = curInstruction[4].u.structureID; | 
|  | if (!oldStructureID || Heap::isMarked(vm.heap.structureIDTable().get(oldStructureID))) | 
|  | break; | 
|  | if (Options::verboseOSR()) | 
|  | dataLogF("Clearing LLInt property access.\n"); | 
|  | clearLLIntGetByIdCache(curInstruction); | 
|  | break; | 
|  | } | 
|  | case op_get_by_id_direct: { | 
|  | StructureID oldStructureID = curInstruction[4].u.structureID; | 
|  | if (!oldStructureID || Heap::isMarked(vm.heap.structureIDTable().get(oldStructureID))) | 
|  | break; | 
|  | if (Options::verboseOSR()) | 
|  | dataLogF("Clearing LLInt property access.\n"); | 
|  | curInstruction[4].u.pointer = nullptr; | 
|  | curInstruction[5].u.pointer = nullptr; | 
|  | break; | 
|  | } | 
|  | case op_put_by_id: { | 
|  | StructureID oldStructureID = curInstruction[4].u.structureID; | 
|  | StructureID newStructureID = curInstruction[6].u.structureID; | 
|  | StructureChain* chain = curInstruction[7].u.structureChain.get(); | 
|  | if ((!oldStructureID || Heap::isMarked(vm.heap.structureIDTable().get(oldStructureID))) | 
|  | && (!newStructureID || Heap::isMarked(vm.heap.structureIDTable().get(newStructureID))) | 
|  | && (!chain || Heap::isMarked(chain))) | 
|  | break; | 
|  | if (Options::verboseOSR()) | 
|  | dataLogF("Clearing LLInt put transition.\n"); | 
|  | curInstruction[4].u.structureID = 0; | 
|  | curInstruction[5].u.operand = 0; | 
|  | curInstruction[6].u.structureID = 0; | 
|  | curInstruction[7].u.structureChain.clear(); | 
|  | break; | 
|  | } | 
|  | // FIXME: https://bugs.webkit.org/show_bug.cgi?id=166418 | 
|  | // We need to add optimizations for op_resolve_scope_for_hoisting_func_decl_in_eval to do link time scope resolution. | 
|  | case op_resolve_scope_for_hoisting_func_decl_in_eval: | 
|  | break; | 
|  | case op_get_array_length: | 
|  | break; | 
|  | case op_to_this: | 
|  | if (!curInstruction[2].u.structure || Heap::isMarked(curInstruction[2].u.structure.get())) | 
|  | break; | 
|  | if (Options::verboseOSR()) | 
|  | dataLogF("Clearing LLInt to_this with structure %p.\n", curInstruction[2].u.structure.get()); | 
|  | curInstruction[2].u.structure.clear(); | 
|  | curInstruction[3].u.toThisStatus = merge( | 
|  | curInstruction[3].u.toThisStatus, ToThisClearedByGC); | 
|  | break; | 
|  | case op_create_this: { | 
|  | auto& cacheWriteBarrier = curInstruction[4].u.jsCell; | 
|  | if (!cacheWriteBarrier || cacheWriteBarrier.unvalidatedGet() == JSCell::seenMultipleCalleeObjects()) | 
|  | break; | 
|  | JSCell* cachedFunction = cacheWriteBarrier.get(); | 
|  | if (Heap::isMarked(cachedFunction)) | 
|  | break; | 
|  | if (Options::verboseOSR()) | 
|  | dataLogF("Clearing LLInt create_this with cached callee %p.\n", cachedFunction); | 
|  | cacheWriteBarrier.clear(); | 
|  | break; | 
|  | } | 
|  | case op_resolve_scope: { | 
|  | // Right now this isn't strictly necessary. Any symbol tables that this will refer to | 
|  | // are for outer functions, and we refer to those functions strongly, and they refer | 
|  | // to the symbol table strongly. But it's nice to be on the safe side. | 
|  | WriteBarrierBase<SymbolTable>& symbolTable = curInstruction[6].u.symbolTable; | 
|  | if (!symbolTable || Heap::isMarked(symbolTable.get())) | 
|  | break; | 
|  | if (Options::verboseOSR()) | 
|  | dataLogF("Clearing dead symbolTable %p.\n", symbolTable.get()); | 
|  | symbolTable.clear(); | 
|  | break; | 
|  | } | 
|  | case op_get_from_scope: | 
|  | case op_put_to_scope: { | 
|  | GetPutInfo getPutInfo = GetPutInfo(curInstruction[4].u.operand); | 
|  | if (getPutInfo.resolveType() == GlobalVar || getPutInfo.resolveType() == GlobalVarWithVarInjectionChecks | 
|  | || getPutInfo.resolveType() == LocalClosureVar || getPutInfo.resolveType() == GlobalLexicalVar || getPutInfo.resolveType() == GlobalLexicalVarWithVarInjectionChecks) | 
|  | continue; | 
|  | WriteBarrierBase<Structure>& structure = curInstruction[5].u.structure; | 
|  | if (!structure || Heap::isMarked(structure.get())) | 
|  | break; | 
|  | if (Options::verboseOSR()) | 
|  | dataLogF("Clearing scope access with structure %p.\n", structure.get()); | 
|  | structure.clear(); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | OpcodeID opcodeID = Interpreter::getOpcodeID(curInstruction[0]); | 
|  | ASSERT_WITH_MESSAGE_UNUSED(opcodeID, false, "Unhandled opcode in CodeBlock::finalizeUnconditionally, %s(%d) at bc %u", opcodeNames[opcodeID], opcodeID, propertyAccessInstructions[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can't just remove all the sets when we clear the caches since we might have created a watchpoint set | 
|  | // then cleared the cache without GCing in between. | 
|  | m_llintGetByIdWatchpointMap.removeIf([](const StructureWatchpointMap::KeyValuePairType& pair) -> bool { | 
|  | return !Heap::isMarked(pair.key); | 
|  | }); | 
|  |  | 
|  | for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) { | 
|  | if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) { | 
|  | if (Options::verboseOSR()) | 
|  | dataLog("Clearing LLInt call from ", *this, "\n"); | 
|  | m_llintCallLinkInfos[i].unlink(); | 
|  | } | 
|  | if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get())) | 
|  | m_llintCallLinkInfos[i].lastSeenCallee.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeBlock::finalizeBaselineJITInlineCaches() | 
|  | { | 
|  | #if ENABLE(JIT) | 
|  | for (auto iter = callLinkInfosBegin(); !!iter; ++iter) | 
|  | (*iter)->visitWeak(*vm()); | 
|  |  | 
|  | for (auto iter = m_stubInfos.begin(); !!iter; ++iter) { | 
|  | StructureStubInfo& stubInfo = **iter; | 
|  | stubInfo.visitWeakReferences(this); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::finalizeUnconditionally(VM&) | 
|  | { | 
|  | updateAllPredictions(); | 
|  |  | 
|  | if (JITCode::couldBeInterpreted(jitType())) | 
|  | finalizeLLIntInlineCaches(); | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | if (!!jitCode()) | 
|  | finalizeBaselineJITInlineCaches(); | 
|  | #endif | 
|  |  | 
|  | VM::SpaceAndFinalizerSet::finalizerSetFor(*subspace()).remove(this); | 
|  | } | 
|  |  | 
|  | void CodeBlock::getStubInfoMap(const ConcurrentJSLocker&, StubInfoMap& result) | 
|  | { | 
|  | #if ENABLE(JIT) | 
|  | if (JITCode::isJIT(jitType())) | 
|  | toHashMap(m_stubInfos, getStructureStubInfoCodeOrigin, result); | 
|  | #else | 
|  | UNUSED_PARAM(result); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::getStubInfoMap(StubInfoMap& result) | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  | getStubInfoMap(locker, result); | 
|  | } | 
|  |  | 
|  | void CodeBlock::getCallLinkInfoMap(const ConcurrentJSLocker&, CallLinkInfoMap& result) | 
|  | { | 
|  | #if ENABLE(JIT) | 
|  | if (JITCode::isJIT(jitType())) | 
|  | toHashMap(m_callLinkInfos, getCallLinkInfoCodeOrigin, result); | 
|  | #else | 
|  | UNUSED_PARAM(result); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::getCallLinkInfoMap(CallLinkInfoMap& result) | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  | getCallLinkInfoMap(locker, result); | 
|  | } | 
|  |  | 
|  | void CodeBlock::getByValInfoMap(const ConcurrentJSLocker&, ByValInfoMap& result) | 
|  | { | 
|  | #if ENABLE(JIT) | 
|  | if (JITCode::isJIT(jitType())) { | 
|  | for (auto* byValInfo : m_byValInfos) | 
|  | result.add(CodeOrigin(byValInfo->bytecodeIndex), byValInfo); | 
|  | } | 
|  | #else | 
|  | UNUSED_PARAM(result); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::getByValInfoMap(ByValInfoMap& result) | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  | getByValInfoMap(locker, result); | 
|  | } | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | StructureStubInfo* CodeBlock::addStubInfo(AccessType accessType) | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  | return m_stubInfos.add(accessType); | 
|  | } | 
|  |  | 
|  | JITAddIC* CodeBlock::addJITAddIC(ArithProfile* arithProfile, Instruction* instruction) | 
|  | { | 
|  | return m_addICs.add(arithProfile, instruction); | 
|  | } | 
|  |  | 
|  | JITMulIC* CodeBlock::addJITMulIC(ArithProfile* arithProfile, Instruction* instruction) | 
|  | { | 
|  | return m_mulICs.add(arithProfile, instruction); | 
|  | } | 
|  |  | 
|  | JITSubIC* CodeBlock::addJITSubIC(ArithProfile* arithProfile, Instruction* instruction) | 
|  | { | 
|  | return m_subICs.add(arithProfile, instruction); | 
|  | } | 
|  |  | 
|  | JITNegIC* CodeBlock::addJITNegIC(ArithProfile* arithProfile, Instruction* instruction) | 
|  | { | 
|  | return m_negICs.add(arithProfile, instruction); | 
|  | } | 
|  |  | 
|  | StructureStubInfo* CodeBlock::findStubInfo(CodeOrigin codeOrigin) | 
|  | { | 
|  | for (StructureStubInfo* stubInfo : m_stubInfos) { | 
|  | if (stubInfo->codeOrigin == codeOrigin) | 
|  | return stubInfo; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ByValInfo* CodeBlock::addByValInfo() | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  | return m_byValInfos.add(); | 
|  | } | 
|  |  | 
|  | CallLinkInfo* CodeBlock::addCallLinkInfo() | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  | return m_callLinkInfos.add(); | 
|  | } | 
|  |  | 
|  | CallLinkInfo* CodeBlock::getCallLinkInfoForBytecodeIndex(unsigned index) | 
|  | { | 
|  | for (auto iter = m_callLinkInfos.begin(); !!iter; ++iter) { | 
|  | if ((*iter)->codeOrigin() == CodeOrigin(index)) | 
|  | return *iter; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void CodeBlock::resetJITData() | 
|  | { | 
|  | RELEASE_ASSERT(!JITCode::isJIT(jitType())); | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  |  | 
|  | // We can clear these because no other thread will have references to any stub infos, call | 
|  | // link infos, or by val infos if we don't have JIT code. Attempts to query these data | 
|  | // structures using the concurrent API (getStubInfoMap and friends) will return nothing if we | 
|  | // don't have JIT code. | 
|  | m_stubInfos.clear(); | 
|  | m_callLinkInfos.clear(); | 
|  | m_byValInfos.clear(); | 
|  |  | 
|  | // We can clear this because the DFG's queries to these data structures are guarded by whether | 
|  | // there is JIT code. | 
|  | m_rareCaseProfiles.clear(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void CodeBlock::visitOSRExitTargets(const ConcurrentJSLocker&, SlotVisitor& visitor) | 
|  | { | 
|  | // We strongly visit OSR exits targets because we don't want to deal with | 
|  | // the complexity of generating an exit target CodeBlock on demand and | 
|  | // guaranteeing that it matches the details of the CodeBlock we compiled | 
|  | // the OSR exit against. | 
|  |  | 
|  | visitor.append(m_alternative); | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); | 
|  | if (dfgCommon->inlineCallFrames) { | 
|  | for (auto* inlineCallFrame : *dfgCommon->inlineCallFrames) { | 
|  | ASSERT(inlineCallFrame->baselineCodeBlock); | 
|  | visitor.append(inlineCallFrame->baselineCodeBlock); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::stronglyVisitStrongReferences(const ConcurrentJSLocker& locker, SlotVisitor& visitor) | 
|  | { | 
|  | UNUSED_PARAM(locker); | 
|  |  | 
|  | visitor.append(m_globalObject); | 
|  | visitor.append(m_ownerExecutable); // This is extra important since it causes the ExecutableToCodeBlockEdge to be marked. | 
|  | visitor.append(m_unlinkedCode); | 
|  | if (m_rareData) | 
|  | m_rareData->m_directEvalCodeCache.visitAggregate(visitor); | 
|  | visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); | 
|  | for (auto& functionExpr : m_functionExprs) | 
|  | visitor.append(functionExpr); | 
|  | for (auto& functionDecl : m_functionDecls) | 
|  | visitor.append(functionDecl); | 
|  | for (auto& objectAllocationProfile : m_objectAllocationProfiles) | 
|  | objectAllocationProfile.visitAggregate(visitor); | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | for (ByValInfo* byValInfo : m_byValInfos) | 
|  | visitor.append(byValInfo->cachedSymbol); | 
|  | #endif | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | if (JITCode::isOptimizingJIT(jitType())) | 
|  | visitOSRExitTargets(locker, visitor); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::stronglyVisitWeakReferences(const ConcurrentJSLocker&, SlotVisitor& visitor) | 
|  | { | 
|  | UNUSED_PARAM(visitor); | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | if (!JITCode::isOptimizingJIT(jitType())) | 
|  | return; | 
|  |  | 
|  | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); | 
|  |  | 
|  | for (auto& transition : dfgCommon->transitions) { | 
|  | if (!!transition.m_codeOrigin) | 
|  | visitor.append(transition.m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. | 
|  | visitor.append(transition.m_from); | 
|  | visitor.append(transition.m_to); | 
|  | } | 
|  |  | 
|  | for (auto& weakReference : dfgCommon->weakReferences) | 
|  | visitor.append(weakReference); | 
|  |  | 
|  | for (auto& weakStructureReference : dfgCommon->weakStructureReferences) | 
|  | visitor.append(weakStructureReference); | 
|  |  | 
|  | dfgCommon->livenessHasBeenProved = true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | CodeBlock* CodeBlock::baselineAlternative() | 
|  | { | 
|  | #if ENABLE(JIT) | 
|  | CodeBlock* result = this; | 
|  | while (result->alternative()) | 
|  | result = result->alternative(); | 
|  | RELEASE_ASSERT(result); | 
|  | RELEASE_ASSERT(JITCode::isBaselineCode(result->jitType()) || result->jitType() == JITCode::None); | 
|  | return result; | 
|  | #else | 
|  | return this; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | CodeBlock* CodeBlock::baselineVersion() | 
|  | { | 
|  | #if ENABLE(JIT) | 
|  | if (JITCode::isBaselineCode(jitType())) | 
|  | return this; | 
|  | CodeBlock* result = replacement(); | 
|  | if (!result) { | 
|  | // This can happen if we're creating the original CodeBlock for an executable. | 
|  | // Assume that we're the baseline CodeBlock. | 
|  | RELEASE_ASSERT(jitType() == JITCode::None); | 
|  | return this; | 
|  | } | 
|  | result = result->baselineAlternative(); | 
|  | return result; | 
|  | #else | 
|  | return this; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | bool CodeBlock::hasOptimizedReplacement(JITCode::JITType typeToReplace) | 
|  | { | 
|  | return JITCode::isHigherTier(replacement()->jitType(), typeToReplace); | 
|  | } | 
|  |  | 
|  | bool CodeBlock::hasOptimizedReplacement() | 
|  | { | 
|  | return hasOptimizedReplacement(jitType()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset, RequiredHandler requiredHandler) | 
|  | { | 
|  | RELEASE_ASSERT(bytecodeOffset < instructions().size()); | 
|  | return handlerForIndex(bytecodeOffset, requiredHandler); | 
|  | } | 
|  |  | 
|  | HandlerInfo* CodeBlock::handlerForIndex(unsigned index, RequiredHandler requiredHandler) | 
|  | { | 
|  | if (!m_rareData) | 
|  | return 0; | 
|  | return HandlerInfo::handlerForIndex(m_rareData->m_exceptionHandlers, index, requiredHandler); | 
|  | } | 
|  |  | 
|  | CallSiteIndex CodeBlock::newExceptionHandlingCallSiteIndex(CallSiteIndex originalCallSite) | 
|  | { | 
|  | #if ENABLE(DFG_JIT) | 
|  | RELEASE_ASSERT(JITCode::isOptimizingJIT(jitType())); | 
|  | RELEASE_ASSERT(canGetCodeOrigin(originalCallSite)); | 
|  | ASSERT(!!handlerForIndex(originalCallSite.bits())); | 
|  | CodeOrigin originalOrigin = codeOrigin(originalCallSite); | 
|  | return m_jitCode->dfgCommon()->addUniqueCallSiteIndex(originalOrigin); | 
|  | #else | 
|  | // We never create new on-the-fly exception handling | 
|  | // call sites outside the DFG/FTL inline caches. | 
|  | UNUSED_PARAM(originalCallSite); | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | return CallSiteIndex(0u); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::ensureCatchLivenessIsComputedForBytecodeOffsetSlow(unsigned bytecodeOffset) | 
|  | { | 
|  | ASSERT(Interpreter::getOpcodeID(m_instructions[bytecodeOffset]) == op_catch); | 
|  | BytecodeLivenessAnalysis& bytecodeLiveness = livenessAnalysis(); | 
|  |  | 
|  | // We get the live-out set of variables at op_catch, not the live-in. This | 
|  | // is because the variables that the op_catch defines might be dead, and | 
|  | // we can avoid profiling them and extracting them when doing OSR entry | 
|  | // into the DFG. | 
|  | FastBitVector liveLocals = bytecodeLiveness.getLivenessInfoAtBytecodeOffset(this, bytecodeOffset + OPCODE_LENGTH(op_catch)); | 
|  | Vector<VirtualRegister> liveOperands; | 
|  | liveOperands.reserveInitialCapacity(liveLocals.bitCount()); | 
|  | liveLocals.forEachSetBit([&] (unsigned liveLocal) { | 
|  | liveOperands.append(virtualRegisterForLocal(liveLocal)); | 
|  | }); | 
|  |  | 
|  | for (int i = 0; i < numParameters(); ++i) | 
|  | liveOperands.append(virtualRegisterForArgument(i)); | 
|  |  | 
|  | auto profiles = std::make_unique<ValueProfileAndOperandBuffer>(liveOperands.size()); | 
|  | RELEASE_ASSERT(profiles->m_size == liveOperands.size()); | 
|  | for (unsigned i = 0; i < profiles->m_size; ++i) | 
|  | profiles->m_buffer.get()[i].m_operand = liveOperands[i].offset(); | 
|  |  | 
|  | // The compiler thread will read this pointer value and then proceed to dereference it | 
|  | // if it is not null. We need to make sure all above stores happen before this store so | 
|  | // the compiler thread reads fully initialized data. | 
|  | WTF::storeStoreFence(); | 
|  |  | 
|  | m_instructions[bytecodeOffset + 3].u.pointer = profiles.get(); | 
|  |  | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  | m_catchProfiles.append(WTFMove(profiles)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeBlock::removeExceptionHandlerForCallSite(CallSiteIndex callSiteIndex) | 
|  | { | 
|  | RELEASE_ASSERT(m_rareData); | 
|  | Vector<HandlerInfo>& exceptionHandlers = m_rareData->m_exceptionHandlers; | 
|  | unsigned index = callSiteIndex.bits(); | 
|  | for (size_t i = 0; i < exceptionHandlers.size(); ++i) { | 
|  | HandlerInfo& handler = exceptionHandlers[i]; | 
|  | if (handler.start <= index && handler.end > index) { | 
|  | exceptionHandlers.remove(i); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | } | 
|  |  | 
|  | unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) | 
|  | { | 
|  | RELEASE_ASSERT(bytecodeOffset < instructions().size()); | 
|  | return ownerScriptExecutable()->firstLine() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset); | 
|  | } | 
|  |  | 
|  | unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset) | 
|  | { | 
|  | int divot; | 
|  | int startOffset; | 
|  | int endOffset; | 
|  | unsigned line; | 
|  | unsigned column; | 
|  | expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); | 
|  | return column; | 
|  | } | 
|  |  | 
|  | void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column) const | 
|  | { | 
|  | m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); | 
|  | divot += m_sourceOffset; | 
|  | column += line ? 1 : firstLineColumnOffset(); | 
|  | line += ownerScriptExecutable()->firstLine(); | 
|  | } | 
|  |  | 
|  | bool CodeBlock::hasOpDebugForLineAndColumn(unsigned line, unsigned column) | 
|  | { | 
|  | const Instruction* begin = instructions().begin(); | 
|  | const Instruction* end = instructions().end(); | 
|  | for (const Instruction* it = begin; it != end;) { | 
|  | OpcodeID opcodeID = Interpreter::getOpcodeID(*it); | 
|  | if (opcodeID == op_debug) { | 
|  | unsigned bytecodeOffset = it - begin; | 
|  | int unused; | 
|  | unsigned opDebugLine; | 
|  | unsigned opDebugColumn; | 
|  | expressionRangeForBytecodeOffset(bytecodeOffset, unused, unused, unused, opDebugLine, opDebugColumn); | 
|  | if (line == opDebugLine && (column == Breakpoint::unspecifiedColumn || column == opDebugColumn)) | 
|  | return true; | 
|  | } | 
|  | it += opcodeLengths[opcodeID]; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void CodeBlock::shrinkToFit(ShrinkMode shrinkMode) | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  |  | 
|  | m_rareCaseProfiles.shrinkToFit(); | 
|  |  | 
|  | if (shrinkMode == EarlyShrink) { | 
|  | m_constantRegisters.shrinkToFit(); | 
|  | m_constantsSourceCodeRepresentation.shrinkToFit(); | 
|  |  | 
|  | if (m_rareData) { | 
|  | m_rareData->m_switchJumpTables.shrinkToFit(); | 
|  | m_rareData->m_stringSwitchJumpTables.shrinkToFit(); | 
|  | } | 
|  | } // else don't shrink these, because we would have already pointed pointers into these tables. | 
|  | } | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | void CodeBlock::linkIncomingCall(ExecState* callerFrame, CallLinkInfo* incoming) | 
|  | { | 
|  | noticeIncomingCall(callerFrame); | 
|  | m_incomingCalls.push(incoming); | 
|  | } | 
|  |  | 
|  | void CodeBlock::linkIncomingPolymorphicCall(ExecState* callerFrame, PolymorphicCallNode* incoming) | 
|  | { | 
|  | noticeIncomingCall(callerFrame); | 
|  | m_incomingPolymorphicCalls.push(incoming); | 
|  | } | 
|  | #endif // ENABLE(JIT) | 
|  |  | 
|  | void CodeBlock::unlinkIncomingCalls() | 
|  | { | 
|  | while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) | 
|  | m_incomingLLIntCalls.begin()->unlink(); | 
|  | #if ENABLE(JIT) | 
|  | while (m_incomingCalls.begin() != m_incomingCalls.end()) | 
|  | m_incomingCalls.begin()->unlink(*vm()); | 
|  | while (m_incomingPolymorphicCalls.begin() != m_incomingPolymorphicCalls.end()) | 
|  | m_incomingPolymorphicCalls.begin()->unlink(*vm()); | 
|  | #endif // ENABLE(JIT) | 
|  | } | 
|  |  | 
|  | void CodeBlock::linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo* incoming) | 
|  | { | 
|  | noticeIncomingCall(callerFrame); | 
|  | m_incomingLLIntCalls.push(incoming); | 
|  | } | 
|  |  | 
|  | CodeBlock* CodeBlock::newReplacement() | 
|  | { | 
|  | return ownerScriptExecutable()->newReplacementCodeBlockFor(specializationKind()); | 
|  | } | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | CodeBlock* CodeBlock::replacement() | 
|  | { | 
|  | const ClassInfo* classInfo = this->classInfo(*vm()); | 
|  |  | 
|  | if (classInfo == FunctionCodeBlock::info()) | 
|  | return jsCast<FunctionExecutable*>(ownerExecutable())->codeBlockFor(m_isConstructor ? CodeForConstruct : CodeForCall); | 
|  |  | 
|  | if (classInfo == EvalCodeBlock::info()) | 
|  | return jsCast<EvalExecutable*>(ownerExecutable())->codeBlock(); | 
|  |  | 
|  | if (classInfo == ProgramCodeBlock::info()) | 
|  | return jsCast<ProgramExecutable*>(ownerExecutable())->codeBlock(); | 
|  |  | 
|  | if (classInfo == ModuleProgramCodeBlock::info()) | 
|  | return jsCast<ModuleProgramExecutable*>(ownerExecutable())->codeBlock(); | 
|  |  | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | DFG::CapabilityLevel CodeBlock::computeCapabilityLevel() | 
|  | { | 
|  | const ClassInfo* classInfo = this->classInfo(*vm()); | 
|  |  | 
|  | if (classInfo == FunctionCodeBlock::info()) { | 
|  | if (m_isConstructor) | 
|  | return DFG::functionForConstructCapabilityLevel(this); | 
|  | return DFG::functionForCallCapabilityLevel(this); | 
|  | } | 
|  |  | 
|  | if (classInfo == EvalCodeBlock::info()) | 
|  | return DFG::evalCapabilityLevel(this); | 
|  |  | 
|  | if (classInfo == ProgramCodeBlock::info()) | 
|  | return DFG::programCapabilityLevel(this); | 
|  |  | 
|  | if (classInfo == ModuleProgramCodeBlock::info()) | 
|  | return DFG::programCapabilityLevel(this); | 
|  |  | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | return DFG::CannotCompile; | 
|  | } | 
|  |  | 
|  | #endif // ENABLE(JIT) | 
|  |  | 
|  | void CodeBlock::jettison(Profiler::JettisonReason reason, ReoptimizationMode mode, const FireDetail* detail) | 
|  | { | 
|  | #if !ENABLE(DFG_JIT) | 
|  | UNUSED_PARAM(mode); | 
|  | UNUSED_PARAM(detail); | 
|  | #endif | 
|  |  | 
|  | CODEBLOCK_LOG_EVENT(this, "jettison", ("due to ", reason, ", counting = ", mode == CountReoptimization, ", detail = ", pointerDump(detail))); | 
|  |  | 
|  | RELEASE_ASSERT(reason != Profiler::NotJettisoned); | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | if (DFG::shouldDumpDisassembly()) { | 
|  | dataLog("Jettisoning ", *this); | 
|  | if (mode == CountReoptimization) | 
|  | dataLog(" and counting reoptimization"); | 
|  | dataLog(" due to ", reason); | 
|  | if (detail) | 
|  | dataLog(", ", *detail); | 
|  | dataLog(".\n"); | 
|  | } | 
|  |  | 
|  | if (reason == Profiler::JettisonDueToWeakReference) { | 
|  | if (DFG::shouldDumpDisassembly()) { | 
|  | dataLog(*this, " will be jettisoned because of the following dead references:\n"); | 
|  | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); | 
|  | for (auto& transition : dfgCommon->transitions) { | 
|  | JSCell* origin = transition.m_codeOrigin.get(); | 
|  | JSCell* from = transition.m_from.get(); | 
|  | JSCell* to = transition.m_to.get(); | 
|  | if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from)) | 
|  | continue; | 
|  | dataLog("    Transition under ", RawPointer(origin), ", ", RawPointer(from), " -> ", RawPointer(to), ".\n"); | 
|  | } | 
|  | for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { | 
|  | JSCell* weak = dfgCommon->weakReferences[i].get(); | 
|  | if (Heap::isMarked(weak)) | 
|  | continue; | 
|  | dataLog("    Weak reference ", RawPointer(weak), ".\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif // ENABLE(DFG_JIT) | 
|  |  | 
|  | VM& vm = *m_poisonedVM; | 
|  | DeferGCForAWhile deferGC(*heap()); | 
|  |  | 
|  | // We want to accomplish two things here: | 
|  | // 1) Make sure that if this CodeBlock is on the stack right now, then if we return to it | 
|  | //    we should OSR exit at the top of the next bytecode instruction after the return. | 
|  | // 2) Make sure that if we call the owner executable, then we shouldn't call this CodeBlock. | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | if (reason != Profiler::JettisonDueToOldAge) { | 
|  | Profiler::Compilation* compilation = jitCode()->dfgCommon()->compilation.get(); | 
|  | if (UNLIKELY(compilation)) | 
|  | compilation->setJettisonReason(reason, detail); | 
|  |  | 
|  | // This accomplishes (1), and does its own book-keeping about whether it has already happened. | 
|  | if (!jitCode()->dfgCommon()->invalidate()) { | 
|  | // We've already been invalidated. | 
|  | RELEASE_ASSERT(this != replacement() || (vm.heap.isCurrentThreadBusy() && !Heap::isMarked(ownerScriptExecutable()))); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DFG::shouldDumpDisassembly()) | 
|  | dataLog("    Did invalidate ", *this, "\n"); | 
|  |  | 
|  | // Count the reoptimization if that's what the user wanted. | 
|  | if (mode == CountReoptimization) { | 
|  | // FIXME: Maybe this should call alternative(). | 
|  | // https://bugs.webkit.org/show_bug.cgi?id=123677 | 
|  | baselineAlternative()->countReoptimization(); | 
|  | if (DFG::shouldDumpDisassembly()) | 
|  | dataLog("    Did count reoptimization for ", *this, "\n"); | 
|  | } | 
|  |  | 
|  | if (this != replacement()) { | 
|  | // This means that we were never the entrypoint. This can happen for OSR entry code | 
|  | // blocks. | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (alternative()) | 
|  | alternative()->optimizeAfterWarmUp(); | 
|  |  | 
|  | if (reason != Profiler::JettisonDueToOldAge && reason != Profiler::JettisonDueToVMTraps) | 
|  | tallyFrequentExitSites(); | 
|  | #endif // ENABLE(DFG_JIT) | 
|  |  | 
|  | // Jettison can happen during GC. We don't want to install code to a dead executable | 
|  | // because that would add a dead object to the remembered set. | 
|  | if (vm.heap.isCurrentThreadBusy() && !Heap::isMarked(ownerScriptExecutable())) | 
|  | return; | 
|  |  | 
|  | // This accomplishes (2). | 
|  | ownerScriptExecutable()->installCode(vm, alternative(), codeType(), specializationKind()); | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | if (DFG::shouldDumpDisassembly()) | 
|  | dataLog("    Did install baseline version of ", *this, "\n"); | 
|  | #endif // ENABLE(DFG_JIT) | 
|  | } | 
|  |  | 
|  | JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin) | 
|  | { | 
|  | if (!codeOrigin.inlineCallFrame) | 
|  | return globalObject(); | 
|  | return codeOrigin.inlineCallFrame->baselineCodeBlock->globalObject(); | 
|  | } | 
|  |  | 
|  | class RecursionCheckFunctor { | 
|  | public: | 
|  | RecursionCheckFunctor(CallFrame* startCallFrame, CodeBlock* codeBlock, unsigned depthToCheck) | 
|  | : m_startCallFrame(startCallFrame) | 
|  | , m_codeBlock(codeBlock) | 
|  | , m_depthToCheck(depthToCheck) | 
|  | , m_foundStartCallFrame(false) | 
|  | , m_didRecurse(false) | 
|  | { } | 
|  |  | 
|  | StackVisitor::Status operator()(StackVisitor& visitor) const | 
|  | { | 
|  | CallFrame* currentCallFrame = visitor->callFrame(); | 
|  |  | 
|  | if (currentCallFrame == m_startCallFrame) | 
|  | m_foundStartCallFrame = true; | 
|  |  | 
|  | if (m_foundStartCallFrame) { | 
|  | if (visitor->callFrame()->codeBlock() == m_codeBlock) { | 
|  | m_didRecurse = true; | 
|  | return StackVisitor::Done; | 
|  | } | 
|  |  | 
|  | if (!m_depthToCheck--) | 
|  | return StackVisitor::Done; | 
|  | } | 
|  |  | 
|  | return StackVisitor::Continue; | 
|  | } | 
|  |  | 
|  | bool didRecurse() const { return m_didRecurse; } | 
|  |  | 
|  | private: | 
|  | CallFrame* m_startCallFrame; | 
|  | CodeBlock* m_codeBlock; | 
|  | mutable unsigned m_depthToCheck; | 
|  | mutable bool m_foundStartCallFrame; | 
|  | mutable bool m_didRecurse; | 
|  | }; | 
|  |  | 
|  | void CodeBlock::noticeIncomingCall(ExecState* callerFrame) | 
|  | { | 
|  | CodeBlock* callerCodeBlock = callerFrame->codeBlock(); | 
|  |  | 
|  | if (Options::verboseCallLink()) | 
|  | dataLog("Noticing call link from ", pointerDump(callerCodeBlock), " to ", *this, "\n"); | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | if (!m_shouldAlwaysBeInlined) | 
|  | return; | 
|  |  | 
|  | if (!callerCodeBlock) { | 
|  | m_shouldAlwaysBeInlined = false; | 
|  | if (Options::verboseCallLink()) | 
|  | dataLog("    Clearing SABI because caller is native.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!hasBaselineJITProfiling()) | 
|  | return; | 
|  |  | 
|  | if (!DFG::mightInlineFunction(this)) | 
|  | return; | 
|  |  | 
|  | if (!canInline(capabilityLevelState())) | 
|  | return; | 
|  |  | 
|  | if (!DFG::isSmallEnoughToInlineCodeInto(callerCodeBlock)) { | 
|  | m_shouldAlwaysBeInlined = false; | 
|  | if (Options::verboseCallLink()) | 
|  | dataLog("    Clearing SABI because caller is too large.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (callerCodeBlock->jitType() == JITCode::InterpreterThunk) { | 
|  | // If the caller is still in the interpreter, then we can't expect inlining to | 
|  | // happen anytime soon. Assume it's profitable to optimize it separately. This | 
|  | // ensures that a function is SABI only if it is called no more frequently than | 
|  | // any of its callers. | 
|  | m_shouldAlwaysBeInlined = false; | 
|  | if (Options::verboseCallLink()) | 
|  | dataLog("    Clearing SABI because caller is in LLInt.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (JITCode::isOptimizingJIT(callerCodeBlock->jitType())) { | 
|  | m_shouldAlwaysBeInlined = false; | 
|  | if (Options::verboseCallLink()) | 
|  | dataLog("    Clearing SABI bcause caller was already optimized.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (callerCodeBlock->codeType() != FunctionCode) { | 
|  | // If the caller is either eval or global code, assume that that won't be | 
|  | // optimized anytime soon. For eval code this is particularly true since we | 
|  | // delay eval optimization by a *lot*. | 
|  | m_shouldAlwaysBeInlined = false; | 
|  | if (Options::verboseCallLink()) | 
|  | dataLog("    Clearing SABI because caller is not a function.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Recursive calls won't be inlined. | 
|  | RecursionCheckFunctor functor(callerFrame, this, Options::maximumInliningDepth()); | 
|  | vm()->topCallFrame->iterate(functor); | 
|  |  | 
|  | if (functor.didRecurse()) { | 
|  | if (Options::verboseCallLink()) | 
|  | dataLog("    Clearing SABI because recursion was detected.\n"); | 
|  | m_shouldAlwaysBeInlined = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (callerCodeBlock->capabilityLevelState() == DFG::CapabilityLevelNotSet) { | 
|  | dataLog("In call from ", FullCodeOrigin(callerCodeBlock, callerFrame->codeOrigin()), " to ", *this, ": caller's DFG capability level is not set.\n"); | 
|  | CRASH(); | 
|  | } | 
|  |  | 
|  | if (canCompile(callerCodeBlock->capabilityLevelState())) | 
|  | return; | 
|  |  | 
|  | if (Options::verboseCallLink()) | 
|  | dataLog("    Clearing SABI because the caller is not a DFG candidate.\n"); | 
|  |  | 
|  | m_shouldAlwaysBeInlined = false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | unsigned CodeBlock::reoptimizationRetryCounter() const | 
|  | { | 
|  | #if ENABLE(JIT) | 
|  | ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax()); | 
|  | return m_reoptimizationRetryCounter; | 
|  | #else | 
|  | return 0; | 
|  | #endif // ENABLE(JIT) | 
|  | } | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | void CodeBlock::setCalleeSaveRegisters(RegisterSet calleeSaveRegisters) | 
|  | { | 
|  | m_calleeSaveRegisters = std::make_unique<RegisterAtOffsetList>(calleeSaveRegisters); | 
|  | } | 
|  |  | 
|  | void CodeBlock::setCalleeSaveRegisters(std::unique_ptr<RegisterAtOffsetList> registerAtOffsetList) | 
|  | { | 
|  | m_calleeSaveRegisters = WTFMove(registerAtOffsetList); | 
|  | } | 
|  |  | 
|  | static size_t roundCalleeSaveSpaceAsVirtualRegisters(size_t calleeSaveRegisters) | 
|  | { | 
|  | static const unsigned cpuRegisterSize = sizeof(void*); | 
|  | return (WTF::roundUpToMultipleOf(sizeof(Register), calleeSaveRegisters * cpuRegisterSize) / sizeof(Register)); | 
|  |  | 
|  | } | 
|  |  | 
|  | size_t CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters() | 
|  | { | 
|  | return roundCalleeSaveSpaceAsVirtualRegisters(numberOfLLIntBaselineCalleeSaveRegisters()); | 
|  | } | 
|  |  | 
|  | size_t CodeBlock::calleeSaveSpaceAsVirtualRegisters() | 
|  | { | 
|  | return roundCalleeSaveSpaceAsVirtualRegisters(m_calleeSaveRegisters->size()); | 
|  | } | 
|  |  | 
|  | void CodeBlock::countReoptimization() | 
|  | { | 
|  | m_reoptimizationRetryCounter++; | 
|  | if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax()) | 
|  | m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax(); | 
|  | } | 
|  |  | 
|  | unsigned CodeBlock::numberOfDFGCompiles() | 
|  | { | 
|  | ASSERT(JITCode::isBaselineCode(jitType())); | 
|  | if (Options::testTheFTL()) { | 
|  | if (m_didFailFTLCompilation) | 
|  | return 1000000; | 
|  | return (m_hasBeenCompiledWithFTL ? 1 : 0) + m_reoptimizationRetryCounter; | 
|  | } | 
|  | return (JITCode::isOptimizingJIT(replacement()->jitType()) ? 1 : 0) + m_reoptimizationRetryCounter; | 
|  | } | 
|  |  | 
|  | int32_t CodeBlock::codeTypeThresholdMultiplier() const | 
|  | { | 
|  | if (codeType() == EvalCode) | 
|  | return Options::evalThresholdMultiplier(); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | double CodeBlock::optimizationThresholdScalingFactor() | 
|  | { | 
|  | // This expression arises from doing a least-squares fit of | 
|  | // | 
|  | // F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d | 
|  | // | 
|  | // against the data points: | 
|  | // | 
|  | //    x       F[x_] | 
|  | //    10       0.9          (smallest reasonable code block) | 
|  | //   200       1.0          (typical small-ish code block) | 
|  | //   320       1.2          (something I saw in 3d-cube that I wanted to optimize) | 
|  | //  1268       5.0          (something I saw in 3d-cube that I didn't want to optimize) | 
|  | //  4000       5.5          (random large size, used to cause the function to converge to a shallow curve of some sort) | 
|  | // 10000       6.0          (similar to above) | 
|  | // | 
|  | // I achieve the minimization using the following Mathematica code: | 
|  | // | 
|  | // MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d | 
|  | // | 
|  | // samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}} | 
|  | // | 
|  | // solution = | 
|  | //     Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples), | 
|  | //         {a, b, c, d}][[2]] | 
|  | // | 
|  | // And the code below (to initialize a, b, c, d) is generated by: | 
|  | // | 
|  | // Print["const double " <> ToString[#[[1]]] <> " = " <> | 
|  | //     If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution | 
|  | // | 
|  | // We've long known the following to be true: | 
|  | // - Small code blocks are cheap to optimize and so we should do it sooner rather | 
|  | //   than later. | 
|  | // - Large code blocks are expensive to optimize and so we should postpone doing so, | 
|  | //   and sometimes have a large enough threshold that we never optimize them. | 
|  | // - The difference in cost is not totally linear because (a) just invoking the | 
|  | //   DFG incurs some base cost and (b) for large code blocks there is enough slop | 
|  | //   in the correlation between instruction count and the actual compilation cost | 
|  | //   that for those large blocks, the instruction count should not have a strong | 
|  | //   influence on our threshold. | 
|  | // | 
|  | // I knew the goals but I didn't know how to achieve them; so I picked an interesting | 
|  | // example where the heuristics were right (code block in 3d-cube with instruction | 
|  | // count 320, which got compiled early as it should have been) and one where they were | 
|  | // totally wrong (code block in 3d-cube with instruction count 1268, which was expensive | 
|  | // to compile and didn't run often enough to warrant compilation in my opinion), and | 
|  | // then threw in additional data points that represented my own guess of what our | 
|  | // heuristics should do for some round-numbered examples. | 
|  | // | 
|  | // The expression to which I decided to fit the data arose because I started with an | 
|  | // affine function, and then did two things: put the linear part in an Abs to ensure | 
|  | // that the fit didn't end up choosing a negative value of c (which would result in | 
|  | // the function turning over and going negative for large x) and I threw in a Sqrt | 
|  | // term because Sqrt represents my intution that the function should be more sensitive | 
|  | // to small changes in small values of x, but less sensitive when x gets large. | 
|  |  | 
|  | // Note that the current fit essentially eliminates the linear portion of the | 
|  | // expression (c == 0.0). | 
|  | const double a = 0.061504; | 
|  | const double b = 1.02406; | 
|  | const double c = 0.0; | 
|  | const double d = 0.825914; | 
|  |  | 
|  | double instructionCount = this->instructionCount(); | 
|  |  | 
|  | ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense. | 
|  |  | 
|  | double result = d + a * sqrt(instructionCount + b) + c * instructionCount; | 
|  |  | 
|  | result *= codeTypeThresholdMultiplier(); | 
|  |  | 
|  | if (Options::verboseOSR()) { | 
|  | dataLog( | 
|  | *this, ": instruction count is ", instructionCount, | 
|  | ", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier(), | 
|  | "\n"); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int32_t clipThreshold(double threshold) | 
|  | { | 
|  | if (threshold < 1.0) | 
|  | return 1; | 
|  |  | 
|  | if (threshold > static_cast<double>(std::numeric_limits<int32_t>::max())) | 
|  | return std::numeric_limits<int32_t>::max(); | 
|  |  | 
|  | return static_cast<int32_t>(threshold); | 
|  | } | 
|  |  | 
|  | int32_t CodeBlock::adjustedCounterValue(int32_t desiredThreshold) | 
|  | { | 
|  | return clipThreshold( | 
|  | static_cast<double>(desiredThreshold) * | 
|  | optimizationThresholdScalingFactor() * | 
|  | (1 << reoptimizationRetryCounter())); | 
|  | } | 
|  |  | 
|  | bool CodeBlock::checkIfOptimizationThresholdReached() | 
|  | { | 
|  | #if ENABLE(DFG_JIT) | 
|  | if (DFG::Worklist* worklist = DFG::existingGlobalDFGWorklistOrNull()) { | 
|  | if (worklist->compilationState(DFG::CompilationKey(this, DFG::DFGMode)) | 
|  | == DFG::Worklist::Compiled) { | 
|  | optimizeNextInvocation(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this); | 
|  | } | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | auto CodeBlock::updateOSRExitCounterAndCheckIfNeedToReoptimize(DFG::OSRExitState& exitState) -> OptimizeAction | 
|  | { | 
|  | DFG::OSRExitBase& exit = exitState.exit; | 
|  | if (!exitKindMayJettison(exit.m_kind)) { | 
|  | // FIXME: We may want to notice that we're frequently exiting | 
|  | // at an op_catch that we didn't compile an entrypoint for, and | 
|  | // then trigger a reoptimization of this CodeBlock: | 
|  | // https://bugs.webkit.org/show_bug.cgi?id=175842 | 
|  | return OptimizeAction::None; | 
|  | } | 
|  |  | 
|  | exit.m_count++; | 
|  | m_osrExitCounter++; | 
|  |  | 
|  | CodeBlock* baselineCodeBlock = exitState.baselineCodeBlock; | 
|  | ASSERT(baselineCodeBlock == baselineAlternative()); | 
|  | if (UNLIKELY(baselineCodeBlock->jitExecuteCounter().hasCrossedThreshold())) | 
|  | return OptimizeAction::ReoptimizeNow; | 
|  |  | 
|  | // We want to figure out if there's a possibility that we're in a loop. For the outermost | 
|  | // code block in the inline stack, we handle this appropriately by having the loop OSR trigger | 
|  | // check the exit count of the replacement of the CodeBlock from which we are OSRing. The | 
|  | // problem is the inlined functions, which might also have loops, but whose baseline versions | 
|  | // don't know where to look for the exit count. Figure out if those loops are severe enough | 
|  | // that we had tried to OSR enter. If so, then we should use the loop reoptimization trigger. | 
|  | // Otherwise, we should use the normal reoptimization trigger. | 
|  |  | 
|  | bool didTryToEnterInLoop = false; | 
|  | for (InlineCallFrame* inlineCallFrame = exit.m_codeOrigin.inlineCallFrame; inlineCallFrame; inlineCallFrame = inlineCallFrame->directCaller.inlineCallFrame) { | 
|  | if (inlineCallFrame->baselineCodeBlock->ownerScriptExecutable()->didTryToEnterInLoop()) { | 
|  | didTryToEnterInLoop = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t exitCountThreshold = didTryToEnterInLoop | 
|  | ? exitCountThresholdForReoptimizationFromLoop() | 
|  | : exitCountThresholdForReoptimization(); | 
|  |  | 
|  | if (m_osrExitCounter > exitCountThreshold) | 
|  | return OptimizeAction::ReoptimizeNow; | 
|  |  | 
|  | // Too few fails. Adjust the execution counter such that the target is to only optimize after a while. | 
|  | baselineCodeBlock->m_jitExecuteCounter.setNewThresholdForOSRExit(exitState.activeThreshold, exitState.memoryUsageAdjustedThreshold); | 
|  | return OptimizeAction::None; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void CodeBlock::optimizeNextInvocation() | 
|  | { | 
|  | if (Options::verboseOSR()) | 
|  | dataLog(*this, ": Optimizing next invocation.\n"); | 
|  | m_jitExecuteCounter.setNewThreshold(0, this); | 
|  | } | 
|  |  | 
|  | void CodeBlock::dontOptimizeAnytimeSoon() | 
|  | { | 
|  | if (Options::verboseOSR()) | 
|  | dataLog(*this, ": Not optimizing anytime soon.\n"); | 
|  | m_jitExecuteCounter.deferIndefinitely(); | 
|  | } | 
|  |  | 
|  | void CodeBlock::optimizeAfterWarmUp() | 
|  | { | 
|  | if (Options::verboseOSR()) | 
|  | dataLog(*this, ": Optimizing after warm-up.\n"); | 
|  | #if ENABLE(DFG_JIT) | 
|  | m_jitExecuteCounter.setNewThreshold( | 
|  | adjustedCounterValue(Options::thresholdForOptimizeAfterWarmUp()), this); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::optimizeAfterLongWarmUp() | 
|  | { | 
|  | if (Options::verboseOSR()) | 
|  | dataLog(*this, ": Optimizing after long warm-up.\n"); | 
|  | #if ENABLE(DFG_JIT) | 
|  | m_jitExecuteCounter.setNewThreshold( | 
|  | adjustedCounterValue(Options::thresholdForOptimizeAfterLongWarmUp()), this); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::optimizeSoon() | 
|  | { | 
|  | if (Options::verboseOSR()) | 
|  | dataLog(*this, ": Optimizing soon.\n"); | 
|  | #if ENABLE(DFG_JIT) | 
|  | m_jitExecuteCounter.setNewThreshold( | 
|  | adjustedCounterValue(Options::thresholdForOptimizeSoon()), this); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::forceOptimizationSlowPathConcurrently() | 
|  | { | 
|  | if (Options::verboseOSR()) | 
|  | dataLog(*this, ": Forcing slow path concurrently.\n"); | 
|  | m_jitExecuteCounter.forceSlowPathConcurrently(); | 
|  | } | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | void CodeBlock::setOptimizationThresholdBasedOnCompilationResult(CompilationResult result) | 
|  | { | 
|  | JITCode::JITType type = jitType(); | 
|  | if (type != JITCode::BaselineJIT) { | 
|  | dataLog(*this, ": expected to have baseline code but have ", type, "\n"); | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | } | 
|  |  | 
|  | CodeBlock* theReplacement = replacement(); | 
|  | if ((result == CompilationSuccessful) != (theReplacement != this)) { | 
|  | dataLog(*this, ": we have result = ", result, " but "); | 
|  | if (theReplacement == this) | 
|  | dataLog("we are our own replacement.\n"); | 
|  | else | 
|  | dataLog("our replacement is ", pointerDump(theReplacement), "\n"); | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | } | 
|  |  | 
|  | switch (result) { | 
|  | case CompilationSuccessful: | 
|  | RELEASE_ASSERT(JITCode::isOptimizingJIT(replacement()->jitType())); | 
|  | optimizeNextInvocation(); | 
|  | return; | 
|  | case CompilationFailed: | 
|  | dontOptimizeAnytimeSoon(); | 
|  | return; | 
|  | case CompilationDeferred: | 
|  | // We'd like to do dontOptimizeAnytimeSoon() but we cannot because | 
|  | // forceOptimizationSlowPathConcurrently() is inherently racy. It won't | 
|  | // necessarily guarantee anything. So, we make sure that even if that | 
|  | // function ends up being a no-op, we still eventually retry and realize | 
|  | // that we have optimized code ready. | 
|  | optimizeAfterWarmUp(); | 
|  | return; | 
|  | case CompilationInvalidated: | 
|  | // Retry with exponential backoff. | 
|  | countReoptimization(); | 
|  | optimizeAfterWarmUp(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dataLog("Unrecognized result: ", static_cast<int>(result), "\n"); | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold) | 
|  | { | 
|  | ASSERT(JITCode::isOptimizingJIT(jitType())); | 
|  | // Compute this the lame way so we don't saturate. This is called infrequently | 
|  | // enough that this loop won't hurt us. | 
|  | unsigned result = desiredThreshold; | 
|  | for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) { | 
|  | unsigned newResult = result << 1; | 
|  | if (newResult < result) | 
|  | return std::numeric_limits<uint32_t>::max(); | 
|  | result = newResult; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint32_t CodeBlock::exitCountThresholdForReoptimization() | 
|  | { | 
|  | return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier()); | 
|  | } | 
|  |  | 
|  | uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop() | 
|  | { | 
|  | return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier()); | 
|  | } | 
|  |  | 
|  | bool CodeBlock::shouldReoptimizeNow() | 
|  | { | 
|  | return osrExitCounter() >= exitCountThresholdForReoptimization(); | 
|  | } | 
|  |  | 
|  | bool CodeBlock::shouldReoptimizeFromLoopNow() | 
|  | { | 
|  | return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | ArrayProfile* CodeBlock::getArrayProfile(const ConcurrentJSLocker&, unsigned bytecodeOffset) | 
|  | { | 
|  | for (auto& m_arrayProfile : m_arrayProfiles) { | 
|  | if (m_arrayProfile.bytecodeOffset() == bytecodeOffset) | 
|  | return &m_arrayProfile; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset) | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  | return getArrayProfile(locker, bytecodeOffset); | 
|  | } | 
|  |  | 
|  | ArrayProfile* CodeBlock::addArrayProfile(const ConcurrentJSLocker&, unsigned bytecodeOffset) | 
|  | { | 
|  | m_arrayProfiles.append(ArrayProfile(bytecodeOffset)); | 
|  | return &m_arrayProfiles.last(); | 
|  | } | 
|  |  | 
|  | ArrayProfile* CodeBlock::addArrayProfile(unsigned bytecodeOffset) | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  | return addArrayProfile(locker, bytecodeOffset); | 
|  | } | 
|  |  | 
|  | ArrayProfile* CodeBlock::getOrAddArrayProfile(const ConcurrentJSLocker& locker, unsigned bytecodeOffset) | 
|  | { | 
|  | ArrayProfile* result = getArrayProfile(locker, bytecodeOffset); | 
|  | if (result) | 
|  | return result; | 
|  | return addArrayProfile(locker, bytecodeOffset); | 
|  | } | 
|  |  | 
|  | ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset) | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  | return getOrAddArrayProfile(locker, bytecodeOffset); | 
|  | } | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | Vector<CodeOrigin, 0, UnsafeVectorOverflow>& CodeBlock::codeOrigins() | 
|  | { | 
|  | return m_jitCode->dfgCommon()->codeOrigins; | 
|  | } | 
|  |  | 
|  | size_t CodeBlock::numberOfDFGIdentifiers() const | 
|  | { | 
|  | if (!JITCode::isOptimizingJIT(jitType())) | 
|  | return 0; | 
|  |  | 
|  | return m_jitCode->dfgCommon()->dfgIdentifiers.size(); | 
|  | } | 
|  |  | 
|  | const Identifier& CodeBlock::identifier(int index) const | 
|  | { | 
|  | size_t unlinkedIdentifiers = m_unlinkedCode->numberOfIdentifiers(); | 
|  | if (static_cast<unsigned>(index) < unlinkedIdentifiers) | 
|  | return m_unlinkedCode->identifier(index); | 
|  | ASSERT(JITCode::isOptimizingJIT(jitType())); | 
|  | return m_jitCode->dfgCommon()->dfgIdentifiers[index - unlinkedIdentifiers]; | 
|  | } | 
|  | #endif // ENABLE(DFG_JIT) | 
|  |  | 
|  | void CodeBlock::updateAllPredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles) | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  |  | 
|  | numberOfLiveNonArgumentValueProfiles = 0; | 
|  | numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. | 
|  |  | 
|  | for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { | 
|  | ValueProfile& profile = getFromAllValueProfiles(i); | 
|  | unsigned numSamples = profile.totalNumberOfSamples(); | 
|  | if (numSamples > ValueProfile::numberOfBuckets) | 
|  | numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. | 
|  | numberOfSamplesInProfiles += numSamples; | 
|  | if (profile.m_bytecodeOffset < 0) { | 
|  | profile.computeUpdatedPrediction(locker); | 
|  | continue; | 
|  | } | 
|  | if (profile.numberOfSamples() || profile.m_prediction != SpecNone) | 
|  | numberOfLiveNonArgumentValueProfiles++; | 
|  | profile.computeUpdatedPrediction(locker); | 
|  | } | 
|  |  | 
|  | for (auto& profileBucket : m_catchProfiles) { | 
|  | profileBucket->forEach([&] (ValueProfileAndOperand& profile) { | 
|  | profile.m_profile.computeUpdatedPrediction(locker); | 
|  | }); | 
|  | } | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | m_lazyOperandValueProfiles.computeUpdatedPredictions(locker); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::updateAllValueProfilePredictions() | 
|  | { | 
|  | unsigned ignoredValue1, ignoredValue2; | 
|  | updateAllPredictionsAndCountLiveness(ignoredValue1, ignoredValue2); | 
|  | } | 
|  |  | 
|  | void CodeBlock::updateAllArrayPredictions() | 
|  | { | 
|  | ConcurrentJSLocker locker(m_lock); | 
|  |  | 
|  | for (unsigned i = m_arrayProfiles.size(); i--;) | 
|  | m_arrayProfiles[i].computeUpdatedPrediction(locker, this); | 
|  |  | 
|  | // Don't count these either, for similar reasons. | 
|  | for (unsigned i = m_arrayAllocationProfiles.size(); i--;) | 
|  | m_arrayAllocationProfiles[i].updateProfile(); | 
|  | } | 
|  |  | 
|  | void CodeBlock::updateAllPredictions() | 
|  | { | 
|  | updateAllValueProfilePredictions(); | 
|  | updateAllArrayPredictions(); | 
|  | } | 
|  |  | 
|  | bool CodeBlock::shouldOptimizeNow() | 
|  | { | 
|  | if (Options::verboseOSR()) | 
|  | dataLog("Considering optimizing ", *this, "...\n"); | 
|  |  | 
|  | if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay()) | 
|  | return true; | 
|  |  | 
|  | updateAllArrayPredictions(); | 
|  |  | 
|  | unsigned numberOfLiveNonArgumentValueProfiles; | 
|  | unsigned numberOfSamplesInProfiles; | 
|  | updateAllPredictionsAndCountLiveness(numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles); | 
|  |  | 
|  | if (Options::verboseOSR()) { | 
|  | dataLogF( | 
|  | "Profile hotness: %lf (%u / %u), %lf (%u / %u)\n", | 
|  | (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), | 
|  | numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(), | 
|  | (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(), | 
|  | numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles()); | 
|  | } | 
|  |  | 
|  | if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate()) | 
|  | && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate()) | 
|  | && static_cast<unsigned>(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay()) | 
|  | return true; | 
|  |  | 
|  | ASSERT(m_optimizationDelayCounter < std::numeric_limits<uint8_t>::max()); | 
|  | m_optimizationDelayCounter++; | 
|  | optimizeAfterWarmUp(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | void CodeBlock::tallyFrequentExitSites() | 
|  | { | 
|  | ASSERT(JITCode::isOptimizingJIT(jitType())); | 
|  | ASSERT(alternative()->jitType() == JITCode::BaselineJIT); | 
|  |  | 
|  | CodeBlock* profiledBlock = alternative(); | 
|  |  | 
|  | switch (jitType()) { | 
|  | case JITCode::DFGJIT: { | 
|  | DFG::JITCode* jitCode = m_jitCode->dfg(); | 
|  | for (auto& exit : jitCode->osrExit) | 
|  | exit.considerAddingAsFrequentExitSite(profiledBlock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | #if ENABLE(FTL_JIT) | 
|  | case JITCode::FTLJIT: { | 
|  | // There is no easy way to avoid duplicating this code since the FTL::JITCode::osrExit | 
|  | // vector contains a totally different type, that just so happens to behave like | 
|  | // DFG::JITCode::osrExit. | 
|  | FTL::JITCode* jitCode = m_jitCode->ftl(); | 
|  | for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { | 
|  | FTL::OSRExit& exit = jitCode->osrExit[i]; | 
|  | exit.considerAddingAsFrequentExitSite(profiledBlock); | 
|  | } | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif // ENABLE(DFG_JIT) | 
|  |  | 
|  | #if ENABLE(VERBOSE_VALUE_PROFILE) | 
|  | void CodeBlock::dumpValueProfiles() | 
|  | { | 
|  | dataLog("ValueProfile for ", *this, ":\n"); | 
|  | for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { | 
|  | ValueProfile& profile = getFromAllValueProfiles(i); | 
|  | if (profile.m_bytecodeOffset < 0) { | 
|  | ASSERT(profile.m_bytecodeOffset == -1); | 
|  | dataLogF("   arg = %u: ", i); | 
|  | } else | 
|  | dataLogF("   bc = %d: ", profile.m_bytecodeOffset); | 
|  | if (!profile.numberOfSamples() && profile.m_prediction == SpecNone) { | 
|  | dataLogF("<empty>\n"); | 
|  | continue; | 
|  | } | 
|  | profile.dump(WTF::dataFile()); | 
|  | dataLogF("\n"); | 
|  | } | 
|  | dataLog("RareCaseProfile for ", *this, ":\n"); | 
|  | for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) { | 
|  | RareCaseProfile* profile = rareCaseProfile(i); | 
|  | dataLogF("   bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); | 
|  | } | 
|  | } | 
|  | #endif // ENABLE(VERBOSE_VALUE_PROFILE) | 
|  |  | 
|  | unsigned CodeBlock::frameRegisterCount() | 
|  | { | 
|  | switch (jitType()) { | 
|  | case JITCode::InterpreterThunk: | 
|  | return LLInt::frameRegisterCountFor(this); | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | case JITCode::BaselineJIT: | 
|  | return JIT::frameRegisterCountFor(this); | 
|  | #endif // ENABLE(JIT) | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  | case JITCode::DFGJIT: | 
|  | case JITCode::FTLJIT: | 
|  | return jitCode()->dfgCommon()->frameRegisterCount; | 
|  | #endif // ENABLE(DFG_JIT) | 
|  |  | 
|  | default: | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int CodeBlock::stackPointerOffset() | 
|  | { | 
|  | return virtualRegisterForLocal(frameRegisterCount() - 1).offset(); | 
|  | } | 
|  |  | 
|  | size_t CodeBlock::predictedMachineCodeSize() | 
|  | { | 
|  | VM* vm = m_poisonedVM.unpoisoned(); | 
|  | // This will be called from CodeBlock::CodeBlock before either m_poisonedVM or the | 
|  | // instructions have been initialized. It's OK to return 0 because what will really | 
|  | // matter is the recomputation of this value when the slow path is triggered. | 
|  | if (!vm) | 
|  | return 0; | 
|  |  | 
|  | if (!*vm->machineCodeBytesPerBytecodeWordForBaselineJIT) | 
|  | return 0; // It's as good of a prediction as we'll get. | 
|  |  | 
|  | // Be conservative: return a size that will be an overestimation 84% of the time. | 
|  | double multiplier = vm->machineCodeBytesPerBytecodeWordForBaselineJIT->mean() + | 
|  | vm->machineCodeBytesPerBytecodeWordForBaselineJIT->standardDeviation(); | 
|  |  | 
|  | // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing | 
|  | // here is OK, since this whole method is just a heuristic. | 
|  | if (multiplier < 0 || multiplier > 1000) | 
|  | return 0; | 
|  |  | 
|  | double doubleResult = multiplier * m_instructions.size(); | 
|  |  | 
|  | // Be even more paranoid: silently reject values that won't fit into a size_t. If | 
|  | // the function is so huge that we can't even fit it into virtual memory then we | 
|  | // should probably have some other guards in place to prevent us from even getting | 
|  | // to this point. | 
|  | if (doubleResult > std::numeric_limits<size_t>::max()) | 
|  | return 0; | 
|  |  | 
|  | return static_cast<size_t>(doubleResult); | 
|  | } | 
|  |  | 
|  | String CodeBlock::nameForRegister(VirtualRegister virtualRegister) | 
|  | { | 
|  | for (auto& constantRegister : m_constantRegisters) { | 
|  | if (constantRegister.get().isEmpty()) | 
|  | continue; | 
|  | if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(*vm(), constantRegister.get())) { | 
|  | ConcurrentJSLocker locker(symbolTable->m_lock); | 
|  | auto end = symbolTable->end(locker); | 
|  | for (auto ptr = symbolTable->begin(locker); ptr != end; ++ptr) { | 
|  | if (ptr->value.varOffset() == VarOffset(virtualRegister)) { | 
|  | // FIXME: This won't work from the compilation thread. | 
|  | // https://bugs.webkit.org/show_bug.cgi?id=115300 | 
|  | return ptr->key.get(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (virtualRegister == thisRegister()) | 
|  | return ASCIILiteral("this"); | 
|  | if (virtualRegister.isArgument()) | 
|  | return String::format("arguments[%3d]", virtualRegister.toArgument()); | 
|  |  | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | ValueProfile* CodeBlock::tryGetValueProfileForBytecodeOffset(int bytecodeOffset) | 
|  | { | 
|  | return tryBinarySearch<ValueProfile, int>( | 
|  | m_valueProfiles, m_valueProfiles.size(), bytecodeOffset, | 
|  | getValueProfileBytecodeOffset<ValueProfile>); | 
|  | } | 
|  |  | 
|  | ValueProfile& CodeBlock::valueProfileForBytecodeOffset(int bytecodeOffset) | 
|  | { | 
|  | OpcodeID opcodeID = Interpreter::getOpcodeID(instructions()[bytecodeOffset]); | 
|  | unsigned length = opcodeLength(opcodeID); | 
|  | ASSERT(!!tryGetValueProfileForBytecodeOffset(bytecodeOffset)); | 
|  | return *instructions()[bytecodeOffset + length - 1].u.profile; | 
|  | } | 
|  |  | 
|  | void CodeBlock::validate() | 
|  | { | 
|  | BytecodeLivenessAnalysis liveness(this); // Compute directly from scratch so it doesn't effect CodeBlock footprint. | 
|  |  | 
|  | FastBitVector liveAtHead = liveness.getLivenessInfoAtBytecodeOffset(this, 0); | 
|  |  | 
|  | if (liveAtHead.numBits() != static_cast<size_t>(m_numCalleeLocals)) { | 
|  | beginValidationDidFail(); | 
|  | dataLog("    Wrong number of bits in result!\n"); | 
|  | dataLog("    Result: ", liveAtHead, "\n"); | 
|  | dataLog("    Bit count: ", liveAtHead.numBits(), "\n"); | 
|  | endValidationDidFail(); | 
|  | } | 
|  |  | 
|  | for (unsigned i = m_numCalleeLocals; i--;) { | 
|  | VirtualRegister reg = virtualRegisterForLocal(i); | 
|  |  | 
|  | if (liveAtHead[i]) { | 
|  | beginValidationDidFail(); | 
|  | dataLog("    Variable ", reg, " is expected to be dead.\n"); | 
|  | dataLog("    Result: ", liveAtHead, "\n"); | 
|  | endValidationDidFail(); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i + 1 < numberOfValueProfiles(); ++i) { | 
|  | if (valueProfile(i).m_bytecodeOffset > valueProfile(i + 1).m_bytecodeOffset) { | 
|  | beginValidationDidFail(); | 
|  | dataLog("    Value profiles are not sorted.\n"); | 
|  | endValidationDidFail(); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned bytecodeOffset = 0; bytecodeOffset < m_instructions.size(); ) { | 
|  | OpcodeID opcode = Interpreter::getOpcodeID(m_instructions[bytecodeOffset]); | 
|  | if (!!baselineAlternative()->handlerForBytecodeOffset(bytecodeOffset)) { | 
|  | if (opcode == op_catch || opcode == op_enter) { | 
|  | // op_catch/op_enter logically represent an entrypoint. Entrypoints are not allowed to be | 
|  | // inside of a try block because they are responsible for bootstrapping state. And they | 
|  | // are never allowed throw an exception because of this. We rely on this when compiling | 
|  | // in the DFG. Because an entrypoint never throws, the bytecode generator will never | 
|  | // allow once inside a try block. | 
|  | beginValidationDidFail(); | 
|  | dataLog("    entrypoint not allowed inside a try block."); | 
|  | endValidationDidFail(); | 
|  | } | 
|  | } | 
|  | bytecodeOffset += opcodeLength(opcode); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeBlock::beginValidationDidFail() | 
|  | { | 
|  | dataLog("Validation failure in ", *this, ":\n"); | 
|  | dataLog("\n"); | 
|  | } | 
|  |  | 
|  | void CodeBlock::endValidationDidFail() | 
|  | { | 
|  | dataLog("\n"); | 
|  | dumpBytecode(); | 
|  | dataLog("\n"); | 
|  | dataLog("Validation failure.\n"); | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | } | 
|  |  | 
|  | void CodeBlock::addBreakpoint(unsigned numBreakpoints) | 
|  | { | 
|  | m_numBreakpoints += numBreakpoints; | 
|  | ASSERT(m_numBreakpoints); | 
|  | if (JITCode::isOptimizingJIT(jitType())) | 
|  | jettison(Profiler::JettisonDueToDebuggerBreakpoint); | 
|  | } | 
|  |  | 
|  | void CodeBlock::setSteppingMode(CodeBlock::SteppingMode mode) | 
|  | { | 
|  | m_steppingMode = mode; | 
|  | if (mode == SteppingModeEnabled && JITCode::isOptimizingJIT(jitType())) | 
|  | jettison(Profiler::JettisonDueToDebuggerStepping); | 
|  | } | 
|  |  | 
|  | RareCaseProfile* CodeBlock::addRareCaseProfile(int bytecodeOffset) | 
|  | { | 
|  | m_rareCaseProfiles.append(RareCaseProfile(bytecodeOffset)); | 
|  | return &m_rareCaseProfiles.last(); | 
|  | } | 
|  |  | 
|  | RareCaseProfile* CodeBlock::rareCaseProfileForBytecodeOffset(int bytecodeOffset) | 
|  | { | 
|  | return tryBinarySearch<RareCaseProfile, int>( | 
|  | m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset, | 
|  | getRareCaseProfileBytecodeOffset); | 
|  | } | 
|  |  | 
|  | unsigned CodeBlock::rareCaseProfileCountForBytecodeOffset(int bytecodeOffset) | 
|  | { | 
|  | RareCaseProfile* profile = rareCaseProfileForBytecodeOffset(bytecodeOffset); | 
|  | if (profile) | 
|  | return profile->m_counter; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ArithProfile* CodeBlock::arithProfileForBytecodeOffset(int bytecodeOffset) | 
|  | { | 
|  | return arithProfileForPC(&instructions()[bytecodeOffset]); | 
|  | } | 
|  |  | 
|  | ArithProfile* CodeBlock::arithProfileForPC(Instruction* pc) | 
|  | { | 
|  | auto opcodeID = Interpreter::getOpcodeID(pc[0]); | 
|  | switch (opcodeID) { | 
|  | case op_negate: | 
|  | return bitwise_cast<ArithProfile*>(&pc[3].u.operand); | 
|  | case op_bitor: | 
|  | case op_bitand: | 
|  | case op_bitxor: | 
|  | case op_add: | 
|  | case op_mul: | 
|  | case op_sub: | 
|  | case op_div: | 
|  | return bitwise_cast<ArithProfile*>(&pc[4].u.operand); | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool CodeBlock::couldTakeSpecialFastCase(int bytecodeOffset) | 
|  | { | 
|  | if (!hasBaselineJITProfiling()) | 
|  | return false; | 
|  | ArithProfile* profile = arithProfileForBytecodeOffset(bytecodeOffset); | 
|  | if (!profile) | 
|  | return false; | 
|  | return profile->tookSpecialFastPath(); | 
|  | } | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | DFG::CapabilityLevel CodeBlock::capabilityLevel() | 
|  | { | 
|  | DFG::CapabilityLevel result = computeCapabilityLevel(); | 
|  | m_capabilityLevelState = result; | 
|  | return result; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void CodeBlock::insertBasicBlockBoundariesForControlFlowProfiler(RefCountedArray<Instruction>& instructions) | 
|  | { | 
|  | if (!unlinkedCodeBlock()->hasOpProfileControlFlowBytecodeOffsets()) | 
|  | return; | 
|  | const Vector<size_t>& bytecodeOffsets = unlinkedCodeBlock()->opProfileControlFlowBytecodeOffsets(); | 
|  | for (size_t i = 0, offsetsLength = bytecodeOffsets.size(); i < offsetsLength; i++) { | 
|  | // Because op_profile_control_flow is emitted at the beginning of every basic block, finding | 
|  | // the next op_profile_control_flow will give us the text range of a single basic block. | 
|  | size_t startIdx = bytecodeOffsets[i]; | 
|  | RELEASE_ASSERT(Interpreter::getOpcodeID(instructions[startIdx]) == op_profile_control_flow); | 
|  | int basicBlockStartOffset = instructions[startIdx + 1].u.operand; | 
|  | int basicBlockEndOffset; | 
|  | if (i + 1 < offsetsLength) { | 
|  | size_t endIdx = bytecodeOffsets[i + 1]; | 
|  | RELEASE_ASSERT(Interpreter::getOpcodeID(instructions[endIdx]) == op_profile_control_flow); | 
|  | basicBlockEndOffset = instructions[endIdx + 1].u.operand - 1; | 
|  | } else { | 
|  | basicBlockEndOffset = m_sourceOffset + ownerScriptExecutable()->source().length() - 1; // Offset before the closing brace. | 
|  | basicBlockStartOffset = std::min(basicBlockStartOffset, basicBlockEndOffset); // Some start offsets may be at the closing brace, ensure it is the offset before. | 
|  | } | 
|  |  | 
|  | // The following check allows for the same textual JavaScript basic block to have its bytecode emitted more | 
|  | // than once and still play nice with the control flow profiler. When basicBlockStartOffset is larger than | 
|  | // basicBlockEndOffset, it indicates that the bytecode generator has emitted code for the same AST node | 
|  | // more than once (for example: ForInNode, Finally blocks in TryNode, etc). Though these are different | 
|  | // basic blocks at the bytecode level, they are generated from the same textual basic block in the JavaScript | 
|  | // program. The condition: | 
|  | // (basicBlockEndOffset < basicBlockStartOffset) | 
|  | // is encountered when op_profile_control_flow lies across the boundary of these duplicated bytecode basic | 
|  | // blocks and the textual offset goes from the end of the duplicated block back to the beginning. These | 
|  | // ranges are dummy ranges and are ignored. The duplicated bytecode basic blocks point to the same | 
|  | // internal data structure, so if any of them execute, it will record the same textual basic block in the | 
|  | // JavaScript program as executing. | 
|  | // At the bytecode level, this situation looks like: | 
|  | // j: op_profile_control_flow (from j->k, we have basicBlockEndOffset < basicBlockStartOffset) | 
|  | // ... | 
|  | // k: op_profile_control_flow (we want to skip over the j->k block and start fresh at offset k as the start of a new basic block k->m). | 
|  | // ... | 
|  | // m: op_profile_control_flow | 
|  | if (basicBlockEndOffset < basicBlockStartOffset) { | 
|  | RELEASE_ASSERT(i + 1 < offsetsLength); // We should never encounter dummy blocks at the end of a CodeBlock. | 
|  | instructions[startIdx + 1].u.basicBlockLocation = vm()->controlFlowProfiler()->dummyBasicBlock(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BasicBlockLocation* basicBlockLocation = vm()->controlFlowProfiler()->getBasicBlockLocation(ownerScriptExecutable()->sourceID(), basicBlockStartOffset, basicBlockEndOffset); | 
|  |  | 
|  | // Find all functions that are enclosed within the range: [basicBlockStartOffset, basicBlockEndOffset] | 
|  | // and insert these functions' start/end offsets as gaps in the current BasicBlockLocation. | 
|  | // This is necessary because in the original source text of a JavaScript program, | 
|  | // function literals form new basic blocks boundaries, but they aren't represented | 
|  | // inside the CodeBlock's instruction stream. | 
|  | auto insertFunctionGaps = [basicBlockLocation, basicBlockStartOffset, basicBlockEndOffset] (const WriteBarrier<FunctionExecutable>& functionExecutable) { | 
|  | const UnlinkedFunctionExecutable* executable = functionExecutable->unlinkedExecutable(); | 
|  | int functionStart = executable->typeProfilingStartOffset(); | 
|  | int functionEnd = executable->typeProfilingEndOffset(); | 
|  | if (functionStart >= basicBlockStartOffset && functionEnd <= basicBlockEndOffset) | 
|  | basicBlockLocation->insertGap(functionStart, functionEnd); | 
|  | }; | 
|  |  | 
|  | for (const WriteBarrier<FunctionExecutable>& executable : m_functionDecls) | 
|  | insertFunctionGaps(executable); | 
|  | for (const WriteBarrier<FunctionExecutable>& executable : m_functionExprs) | 
|  | insertFunctionGaps(executable); | 
|  |  | 
|  | instructions[startIdx + 1].u.basicBlockLocation = basicBlockLocation; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if ENABLE(JIT) | 
|  | void CodeBlock::setPCToCodeOriginMap(std::unique_ptr<PCToCodeOriginMap>&& map) | 
|  | { | 
|  | m_pcToCodeOriginMap = WTFMove(map); | 
|  | } | 
|  |  | 
|  | std::optional<CodeOrigin> CodeBlock::findPC(void* pc) | 
|  | { | 
|  | if (m_pcToCodeOriginMap) { | 
|  | if (std::optional<CodeOrigin> codeOrigin = m_pcToCodeOriginMap->findPC(pc)) | 
|  | return codeOrigin; | 
|  | } | 
|  |  | 
|  | for (auto iter = m_stubInfos.begin(); !!iter; ++iter) { | 
|  | StructureStubInfo* stub = *iter; | 
|  | if (stub->containsPC(pc)) | 
|  | return std::optional<CodeOrigin>(stub->codeOrigin); | 
|  | } | 
|  |  | 
|  | if (std::optional<CodeOrigin> codeOrigin = m_jitCode->findPC(this, pc)) | 
|  | return codeOrigin; | 
|  |  | 
|  | return std::nullopt; | 
|  | } | 
|  | #endif // ENABLE(JIT) | 
|  |  | 
|  | std::optional<unsigned> CodeBlock::bytecodeOffsetFromCallSiteIndex(CallSiteIndex callSiteIndex) | 
|  | { | 
|  | std::optional<unsigned> bytecodeOffset; | 
|  | JITCode::JITType jitType = this->jitType(); | 
|  | if (jitType == JITCode::InterpreterThunk || jitType == JITCode::BaselineJIT) { | 
|  | #if USE(JSVALUE64) | 
|  | bytecodeOffset = callSiteIndex.bits(); | 
|  | #else | 
|  | Instruction* instruction = bitwise_cast<Instruction*>(callSiteIndex.bits()); | 
|  | bytecodeOffset = this->bytecodeOffset(instruction); | 
|  | #endif | 
|  | } else if (jitType == JITCode::DFGJIT || jitType == JITCode::FTLJIT) { | 
|  | #if ENABLE(DFG_JIT) | 
|  | RELEASE_ASSERT(canGetCodeOrigin(callSiteIndex)); | 
|  | CodeOrigin origin = codeOrigin(callSiteIndex); | 
|  | bytecodeOffset = origin.bytecodeIndex; | 
|  | #else | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return bytecodeOffset; | 
|  | } | 
|  |  | 
|  | int32_t CodeBlock::thresholdForJIT(int32_t threshold) | 
|  | { | 
|  | switch (unlinkedCodeBlock()->didOptimize()) { | 
|  | case MixedTriState: | 
|  | return threshold; | 
|  | case FalseTriState: | 
|  | return threshold * 4; | 
|  | case TrueTriState: | 
|  | return threshold / 2; | 
|  | } | 
|  | ASSERT_NOT_REACHED(); | 
|  | return threshold; | 
|  | } | 
|  |  | 
|  | void CodeBlock::jitAfterWarmUp() | 
|  | { | 
|  | m_llintExecuteCounter.setNewThreshold(thresholdForJIT(Options::thresholdForJITAfterWarmUp()), this); | 
|  | } | 
|  |  | 
|  | void CodeBlock::jitSoon() | 
|  | { | 
|  | m_llintExecuteCounter.setNewThreshold(thresholdForJIT(Options::thresholdForJITSoon()), this); | 
|  | } | 
|  |  | 
|  | bool CodeBlock::hasInstalledVMTrapBreakpoints() const | 
|  | { | 
|  | #if ENABLE(SIGNAL_BASED_VM_TRAPS) | 
|  | // This function may be called from a signal handler. We need to be | 
|  | // careful to not call anything that is not signal handler safe, e.g. | 
|  | // we should not perturb the refCount of m_jitCode. | 
|  | if (!JITCode::isOptimizingJIT(jitType())) | 
|  | return false; | 
|  | return m_jitCode->dfgCommon()->hasInstalledVMTrapsBreakpoints(); | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool CodeBlock::installVMTrapBreakpoints() | 
|  | { | 
|  | #if ENABLE(SIGNAL_BASED_VM_TRAPS) | 
|  | // This function may be called from a signal handler. We need to be | 
|  | // careful to not call anything that is not signal handler safe, e.g. | 
|  | // we should not perturb the refCount of m_jitCode. | 
|  | if (!JITCode::isOptimizingJIT(jitType())) | 
|  | return false; | 
|  | auto& commonData = *m_jitCode->dfgCommon(); | 
|  | commonData.installVMTrapBreakpoints(this); | 
|  | return true; | 
|  | #else | 
|  | UNREACHABLE_FOR_PLATFORM(); | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CodeBlock::dumpMathICStats() | 
|  | { | 
|  | #if ENABLE(MATH_IC_STATS) | 
|  | double numAdds = 0.0; | 
|  | double totalAddSize = 0.0; | 
|  | double numMuls = 0.0; | 
|  | double totalMulSize = 0.0; | 
|  | double numNegs = 0.0; | 
|  | double totalNegSize = 0.0; | 
|  | double numSubs = 0.0; | 
|  | double totalSubSize = 0.0; | 
|  |  | 
|  | auto countICs = [&] (CodeBlock* codeBlock) { | 
|  | for (JITAddIC* addIC : codeBlock->m_addICs) { | 
|  | numAdds++; | 
|  | totalAddSize += addIC->codeSize(); | 
|  | } | 
|  |  | 
|  | for (JITMulIC* mulIC : codeBlock->m_mulICs) { | 
|  | numMuls++; | 
|  | totalMulSize += mulIC->codeSize(); | 
|  | } | 
|  |  | 
|  | for (JITNegIC* negIC : codeBlock->m_negICs) { | 
|  | numNegs++; | 
|  | totalNegSize += negIC->codeSize(); | 
|  | } | 
|  |  | 
|  | for (JITSubIC* subIC : codeBlock->m_subICs) { | 
|  | numSubs++; | 
|  | totalSubSize += subIC->codeSize(); | 
|  | } | 
|  | }; | 
|  | heap()->forEachCodeBlock(countICs); | 
|  |  | 
|  | dataLog("Num Adds: ", numAdds, "\n"); | 
|  | dataLog("Total Add size in bytes: ", totalAddSize, "\n"); | 
|  | dataLog("Average Add size: ", totalAddSize / numAdds, "\n"); | 
|  | dataLog("\n"); | 
|  | dataLog("Num Muls: ", numMuls, "\n"); | 
|  | dataLog("Total Mul size in bytes: ", totalMulSize, "\n"); | 
|  | dataLog("Average Mul size: ", totalMulSize / numMuls, "\n"); | 
|  | dataLog("\n"); | 
|  | dataLog("Num Negs: ", numNegs, "\n"); | 
|  | dataLog("Total Neg size in bytes: ", totalNegSize, "\n"); | 
|  | dataLog("Average Neg size: ", totalNegSize / numNegs, "\n"); | 
|  | dataLog("\n"); | 
|  | dataLog("Num Subs: ", numSubs, "\n"); | 
|  | dataLog("Total Sub size in bytes: ", totalSubSize, "\n"); | 
|  | dataLog("Average Sub size: ", totalSubSize / numSubs, "\n"); | 
|  |  | 
|  | dataLog("-----------------------\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void setPrinter(Printer::PrintRecord& record, CodeBlock* codeBlock) | 
|  | { | 
|  | Printer::setPrinter(record, toCString(codeBlock)); | 
|  | } | 
|  |  | 
|  | } // namespace JSC | 
|  |  | 
|  | namespace WTF { | 
|  |  | 
|  | void printInternal(PrintStream& out, JSC::CodeBlock* codeBlock) | 
|  | { | 
|  | if (UNLIKELY(!codeBlock)) { | 
|  | out.print("<null codeBlock>"); | 
|  | return; | 
|  | } | 
|  | out.print(*codeBlock); | 
|  | } | 
|  |  | 
|  | } // namespace WTF |