|  | /* | 
|  | * Copyright (C) 2015-2016 Apple Inc. All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | 
|  | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR | 
|  | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
|  | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
|  | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
|  | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include "config.h" | 
|  | #include "MathCommon.h" | 
|  |  | 
|  | #include "PureNaN.h" | 
|  |  | 
|  | namespace JSC { | 
|  |  | 
|  | #if OS(DARWIN) && CPU(ARM_THUMB2) | 
|  |  | 
|  | // The following code is taken from netlib.org: | 
|  | //   http://www.netlib.org/fdlibm/fdlibm.h | 
|  | //   http://www.netlib.org/fdlibm/e_pow.c | 
|  | //   http://www.netlib.org/fdlibm/s_scalbn.c | 
|  | // | 
|  | // And was originally distributed under the following license: | 
|  |  | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunSoft, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | /* __ieee754_pow(x,y) return x**y | 
|  | * | 
|  | *              n | 
|  | * Method:  Let x =  2   * (1+f) | 
|  | *    1. Compute and return log2(x) in two pieces: | 
|  | *        log2(x) = w1 + w2, | 
|  | *       where w1 has 53-24 = 29 bit trailing zeros. | 
|  | *    2. Perform y*log2(x) = n+y' by simulating muti-precision | 
|  | *       arithmetic, where |y'|<=0.5. | 
|  | *    3. Return x**y = 2**n*exp(y'*log2) | 
|  | * | 
|  | * Special cases: | 
|  | *    1.  (anything) ** 0  is 1 | 
|  | *    2.  (anything) ** 1  is itself | 
|  | *    3.  (anything) ** NAN is NAN | 
|  | *    4.  NAN ** (anything except 0) is NAN | 
|  | *    5.  +-(|x| > 1) **  +INF is +INF | 
|  | *    6.  +-(|x| > 1) **  -INF is +0 | 
|  | *    7.  +-(|x| < 1) **  +INF is +0 | 
|  | *    8.  +-(|x| < 1) **  -INF is +INF | 
|  | *    9.  +-1         ** +-INF is NAN | 
|  | *    10. +0 ** (+anything except 0, NAN)               is +0 | 
|  | *    11. -0 ** (+anything except 0, NAN, odd integer)  is +0 | 
|  | *    12. +0 ** (-anything except 0, NAN)               is +INF | 
|  | *    13. -0 ** (-anything except 0, NAN, odd integer)  is +INF | 
|  | *    14. -0 ** (odd integer) = -( +0 ** (odd integer) ) | 
|  | *    15. +INF ** (+anything except 0,NAN) is +INF | 
|  | *    16. +INF ** (-anything except 0,NAN) is +0 | 
|  | *    17. -INF ** (anything)  = -0 ** (-anything) | 
|  | *    18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) | 
|  | *    19. (-anything except 0 and inf) ** (non-integer) is NAN | 
|  | * | 
|  | * Accuracy: | 
|  | *    pow(x,y) returns x**y nearly rounded. In particular | 
|  | *            pow(integer,integer) | 
|  | *    always returns the correct integer provided it is | 
|  | *    representable. | 
|  | * | 
|  | * Constants : | 
|  | * The hexadecimal values are the intended ones for the following | 
|  | * constants. The decimal values may be used, provided that the | 
|  | * compiler will convert from decimal to binary accurately enough | 
|  | * to produce the hexadecimal values shown. | 
|  | */ | 
|  |  | 
|  | #define __HI(x) *(1+(int*)&x) | 
|  | #define __LO(x) *(int*)&x | 
|  |  | 
|  | static const double | 
|  | bp[] = {1.0, 1.5,}, | 
|  | dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ | 
|  | dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ | 
|  | zero    =  0.0, | 
|  | one    =  1.0, | 
|  | two    =  2.0, | 
|  | two53    =  9007199254740992.0,    /* 0x43400000, 0x00000000 */ | 
|  | huge    =  1.0e300, | 
|  | tiny    =  1.0e-300, | 
|  | /* for scalbn */ | 
|  | two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ | 
|  | twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ | 
|  | /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ | 
|  | L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ | 
|  | L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ | 
|  | L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ | 
|  | L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ | 
|  | L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ | 
|  | L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ | 
|  | P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ | 
|  | P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ | 
|  | P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ | 
|  | P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ | 
|  | P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ | 
|  | lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ | 
|  | lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ | 
|  | lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ | 
|  | ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ | 
|  | cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ | 
|  | cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ | 
|  | cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ | 
|  | ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ | 
|  | ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ | 
|  | ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ | 
|  |  | 
|  | inline double fdlibmScalbn (double x, int n) | 
|  | { | 
|  | int  k,hx,lx; | 
|  | hx = __HI(x); | 
|  | lx = __LO(x); | 
|  | k = (hx&0x7ff00000)>>20;        /* extract exponent */ | 
|  | if (k==0) {                /* 0 or subnormal x */ | 
|  | if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ | 
|  | x *= two54; | 
|  | hx = __HI(x); | 
|  | k = ((hx&0x7ff00000)>>20) - 54; | 
|  | if (n< -50000) return tiny*x;     /*underflow*/ | 
|  | } | 
|  | if (k==0x7ff) return x+x;        /* NaN or Inf */ | 
|  | k = k+n; | 
|  | if (k >  0x7fe) return huge*copysign(huge,x); /* overflow  */ | 
|  | if (k > 0)                 /* normal result */ | 
|  | {__HI(x) = (hx&0x800fffff)|(k<<20); return x;} | 
|  | if (k <= -54) { | 
|  | if (n > 50000)     /* in case integer overflow in n+k */ | 
|  | return huge*copysign(huge,x);    /*overflow*/ | 
|  | else return tiny*copysign(tiny,x);     /*underflow*/ | 
|  | } | 
|  | k += 54;                /* subnormal result */ | 
|  | __HI(x) = (hx&0x800fffff)|(k<<20); | 
|  | return x*twom54; | 
|  | } | 
|  |  | 
|  | static double fdlibmPow(double x, double y) | 
|  | { | 
|  | double z,ax,z_h,z_l,p_h,p_l; | 
|  | double y1,t1,t2,r,s,t,u,v,w; | 
|  | int i0,i1,i,j,k,yisint,n; | 
|  | int hx,hy,ix,iy; | 
|  | unsigned lx,ly; | 
|  |  | 
|  | i0 = ((*(const int*)&one)>>29)^1; i1=1-i0; | 
|  | hx = __HI(x); lx = __LO(x); | 
|  | hy = __HI(y); ly = __LO(y); | 
|  | ix = hx&0x7fffffff;  iy = hy&0x7fffffff; | 
|  |  | 
|  | /* y==zero: x**0 = 1 */ | 
|  | if((iy|ly)==0) return one; | 
|  |  | 
|  | /* +-NaN return x+y */ | 
|  | if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || | 
|  | iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) | 
|  | return x+y; | 
|  |  | 
|  | /* determine if y is an odd int when x < 0 | 
|  | * yisint = 0    ... y is not an integer | 
|  | * yisint = 1    ... y is an odd int | 
|  | * yisint = 2    ... y is an even int | 
|  | */ | 
|  | yisint  = 0; | 
|  | if(hx<0) { | 
|  | if(iy>=0x43400000) yisint = 2; /* even integer y */ | 
|  | else if(iy>=0x3ff00000) { | 
|  | k = (iy>>20)-0x3ff;       /* exponent */ | 
|  | if(k>20) { | 
|  | j = ly>>(52-k); | 
|  | if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1); | 
|  | } else if(ly==0) { | 
|  | j = iy>>(20-k); | 
|  | if((j<<(20-k))==iy) yisint = 2-(j&1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* special value of y */ | 
|  | if(ly==0) { | 
|  | if (iy==0x7ff00000) {    /* y is +-inf */ | 
|  | if(((ix-0x3ff00000)|lx)==0) | 
|  | return  y - y;    /* inf**+-1 is NaN */ | 
|  | else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ | 
|  | return (hy>=0)? y: zero; | 
|  | else            /* (|x|<1)**-,+inf = inf,0 */ | 
|  | return (hy<0)?-y: zero; | 
|  | } | 
|  | if(iy==0x3ff00000) {    /* y is  +-1 */ | 
|  | if(hy<0) return one/x; else return x; | 
|  | } | 
|  | if(hy==0x40000000) return x*x; /* y is  2 */ | 
|  | if(hy==0x3fe00000) {    /* y is  0.5 */ | 
|  | if(hx>=0)    /* x >= +0 */ | 
|  | return sqrt(x); | 
|  | } | 
|  | } | 
|  |  | 
|  | ax   = fabs(x); | 
|  | /* special value of x */ | 
|  | if(lx==0) { | 
|  | if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ | 
|  | z = ax;            /*x is +-0,+-inf,+-1*/ | 
|  | if(hy<0) z = one/z;    /* z = (1/|x|) */ | 
|  | if(hx<0) { | 
|  | if(((ix-0x3ff00000)|yisint)==0) { | 
|  | z = (z-z)/(z-z); /* (-1)**non-int is NaN */ | 
|  | } else if(yisint==1) | 
|  | z = -z;        /* (x<0)**odd = -(|x|**odd) */ | 
|  | } | 
|  | return z; | 
|  | } | 
|  | } | 
|  |  | 
|  | n = (hx>>31)+1; | 
|  |  | 
|  | /* (x<0)**(non-int) is NaN */ | 
|  | if((n|yisint)==0) return (x-x)/(x-x); | 
|  |  | 
|  | s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ | 
|  | if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ | 
|  |  | 
|  | /* |y| is huge */ | 
|  | if(iy>0x41e00000) { /* if |y| > 2**31 */ | 
|  | if(iy>0x43f00000){    /* if |y| > 2**64, must o/uflow */ | 
|  | if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; | 
|  | if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; | 
|  | } | 
|  | /* over/underflow if x is not close to one */ | 
|  | if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; | 
|  | if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; | 
|  | /* now |1-x| is tiny <= 2**-20, suffice to compute | 
|  | log(x) by x-x^2/2+x^3/3-x^4/4 */ | 
|  | t = ax-one;        /* t has 20 trailing zeros */ | 
|  | w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); | 
|  | u = ivln2_h*t;    /* ivln2_h has 21 sig. bits */ | 
|  | v = t*ivln2_l-w*ivln2; | 
|  | t1 = u+v; | 
|  | __LO(t1) = 0; | 
|  | t2 = v-(t1-u); | 
|  | } else { | 
|  | double ss,s2,s_h,s_l,t_h,t_l; | 
|  | n = 0; | 
|  | /* take care subnormal number */ | 
|  | if(ix<0x00100000) | 
|  | {ax *= two53; n -= 53; ix = __HI(ax); } | 
|  | n  += ((ix)>>20)-0x3ff; | 
|  | j  = ix&0x000fffff; | 
|  | /* determine interval */ | 
|  | ix = j|0x3ff00000;        /* normalize ix */ | 
|  | if(j<=0x3988E) k=0;        /* |x|<sqrt(3/2) */ | 
|  | else if(j<0xBB67A) k=1;    /* |x|<sqrt(3)   */ | 
|  | else {k=0;n+=1;ix -= 0x00100000;} | 
|  | __HI(ax) = ix; | 
|  |  | 
|  | /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ | 
|  | u = ax-bp[k];        /* bp[0]=1.0, bp[1]=1.5 */ | 
|  | v = one/(ax+bp[k]); | 
|  | ss = u*v; | 
|  | s_h = ss; | 
|  | __LO(s_h) = 0; | 
|  | /* t_h=ax+bp[k] High */ | 
|  | t_h = zero; | 
|  | __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); | 
|  | t_l = ax - (t_h-bp[k]); | 
|  | s_l = v*((u-s_h*t_h)-s_h*t_l); | 
|  | /* compute log(ax) */ | 
|  | s2 = ss*ss; | 
|  | r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); | 
|  | r += s_l*(s_h+ss); | 
|  | s2  = s_h*s_h; | 
|  | t_h = 3.0+s2+r; | 
|  | __LO(t_h) = 0; | 
|  | t_l = r-((t_h-3.0)-s2); | 
|  | /* u+v = ss*(1+...) */ | 
|  | u = s_h*t_h; | 
|  | v = s_l*t_h+t_l*ss; | 
|  | /* 2/(3log2)*(ss+...) */ | 
|  | p_h = u+v; | 
|  | __LO(p_h) = 0; | 
|  | p_l = v-(p_h-u); | 
|  | z_h = cp_h*p_h;        /* cp_h+cp_l = 2/(3*log2) */ | 
|  | z_l = cp_l*p_h+p_l*cp+dp_l[k]; | 
|  | /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ | 
|  | t = (double)n; | 
|  | t1 = (((z_h+z_l)+dp_h[k])+t); | 
|  | __LO(t1) = 0; | 
|  | t2 = z_l-(((t1-t)-dp_h[k])-z_h); | 
|  | } | 
|  |  | 
|  | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ | 
|  | y1  = y; | 
|  | __LO(y1) = 0; | 
|  | p_l = (y-y1)*t1+y*t2; | 
|  | p_h = y1*t1; | 
|  | z = p_l+p_h; | 
|  | j = __HI(z); | 
|  | i = __LO(z); | 
|  | if (j>=0x40900000) {                /* z >= 1024 */ | 
|  | if(((j-0x40900000)|i)!=0)            /* if z > 1024 */ | 
|  | return s*huge*huge;            /* overflow */ | 
|  | else { | 
|  | if(p_l+ovt>z-p_h) return s*huge*huge;    /* overflow */ | 
|  | } | 
|  | } else if((j&0x7fffffff)>=0x4090cc00 ) {    /* z <= -1075 */ | 
|  | if(((j-0xc090cc00)|i)!=0)         /* z < -1075 */ | 
|  | return s*tiny*tiny;        /* underflow */ | 
|  | else { | 
|  | if(p_l<=z-p_h) return s*tiny*tiny;    /* underflow */ | 
|  | } | 
|  | } | 
|  | /* | 
|  | * compute 2**(p_h+p_l) | 
|  | */ | 
|  | i = j&0x7fffffff; | 
|  | k = (i>>20)-0x3ff; | 
|  | n = 0; | 
|  | if(i>0x3fe00000) {        /* if |z| > 0.5, set n = [z+0.5] */ | 
|  | n = j+(0x00100000>>(k+1)); | 
|  | k = ((n&0x7fffffff)>>20)-0x3ff;    /* new k for n */ | 
|  | t = zero; | 
|  | __HI(t) = (n&~(0x000fffff>>k)); | 
|  | n = ((n&0x000fffff)|0x00100000)>>(20-k); | 
|  | if(j<0) n = -n; | 
|  | p_h -= t; | 
|  | } | 
|  | t = p_l+p_h; | 
|  | __LO(t) = 0; | 
|  | u = t*lg2_h; | 
|  | v = (p_l-(t-p_h))*lg2+t*lg2_l; | 
|  | z = u+v; | 
|  | w = v-(z-u); | 
|  | t  = z*z; | 
|  | t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); | 
|  | r  = (z*t1)/(t1-two)-(w+z*w); | 
|  | z  = one-(r-z); | 
|  | j  = __HI(z); | 
|  | j += (n<<20); | 
|  | if((j>>20)<=0) z = fdlibmScalbn(z,n);    /* subnormal output */ | 
|  | else __HI(z) += (n<<20); | 
|  | return s*z; | 
|  | } | 
|  |  | 
|  | static ALWAYS_INLINE bool isDenormal(double x) | 
|  | { | 
|  | static const uint64_t signbit = 0x8000000000000000ULL; | 
|  | static const uint64_t minNormal = 0x0001000000000000ULL; | 
|  | return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1; | 
|  | } | 
|  |  | 
|  | static ALWAYS_INLINE bool isEdgeCase(double x) | 
|  | { | 
|  | static const uint64_t signbit = 0x8000000000000000ULL; | 
|  | static const uint64_t infinity = 0x7fffffffffffffffULL; | 
|  | return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1; | 
|  | } | 
|  |  | 
|  | static ALWAYS_INLINE double mathPowInternal(double x, double y) | 
|  | { | 
|  | if (!isDenormal(x) && !isDenormal(y)) { | 
|  | double libmResult = std::pow(x, y); | 
|  | if (libmResult || isEdgeCase(x) || isEdgeCase(y)) | 
|  | return libmResult; | 
|  | } | 
|  | return fdlibmPow(x, y); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | ALWAYS_INLINE double mathPowInternal(double x, double y) | 
|  | { | 
|  | return pow(x, y); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | JSC_DEFINE_JIT_OPERATION(operationMathPow, double, (double x, double y)) | 
|  | { | 
|  | if (std::isnan(y)) | 
|  | return PNaN; | 
|  | double absoluteBase = fabs(x); | 
|  | if (absoluteBase == 1 && std::isinf(y)) | 
|  | return PNaN; | 
|  |  | 
|  | if (y == 0.5) { | 
|  | if (!absoluteBase) | 
|  | return 0; | 
|  | if (absoluteBase == std::numeric_limits<double>::infinity()) | 
|  | return std::numeric_limits<double>::infinity(); | 
|  | return sqrt(x); | 
|  | } | 
|  |  | 
|  | if (y == -0.5) { | 
|  | if (!absoluteBase) | 
|  | return std::numeric_limits<double>::infinity(); | 
|  | if (absoluteBase == std::numeric_limits<double>::infinity()) | 
|  | return 0.; | 
|  | return 1. / sqrt(x); | 
|  | } | 
|  |  | 
|  | int32_t yAsInt = y; | 
|  | if (static_cast<double>(yAsInt) == y && yAsInt >= 0 && yAsInt <= maxExponentForIntegerMathPow) { | 
|  | // If the exponent is a small positive int32 integer, we do a fast exponentiation | 
|  | double result = 1; | 
|  | double xd = x; | 
|  | while (yAsInt) { | 
|  | if (yAsInt & 1) | 
|  | result *= xd; | 
|  | xd *= xd; | 
|  | yAsInt >>= 1; | 
|  | } | 
|  | return result; | 
|  | } | 
|  | return mathPowInternal(x, y); | 
|  | } | 
|  |  | 
|  | JSC_DEFINE_JIT_OPERATION(operationToInt32, UCPUStrictInt32, (double value)) | 
|  | { | 
|  | return toUCPUStrictInt32(JSC::toInt32(value)); | 
|  | } | 
|  |  | 
|  | JSC_DEFINE_JIT_OPERATION(operationToInt32SensibleSlow, UCPUStrictInt32, (double number)) | 
|  | { | 
|  | return toUCPUStrictInt32(toInt32Internal<ToInt32Mode::AfterSensibleConversionAttempt>(number)); | 
|  | } | 
|  |  | 
|  | #if HAVE(ARM_IDIV_INSTRUCTIONS) | 
|  | static inline bool isStrictInt32(double value) | 
|  | { | 
|  | int32_t valueAsInt32 = static_cast<int32_t>(value); | 
|  | if (value != valueAsInt32) | 
|  | return false; | 
|  |  | 
|  | if (!valueAsInt32) { | 
|  | if (std::signbit(value)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | extern "C" { | 
|  |  | 
|  | JSC_DEFINE_JIT_OPERATION(jsRound, double, (double value)) | 
|  | { | 
|  | double integer = ceil(value); | 
|  | return integer - (integer - 0.5 > value); | 
|  | } | 
|  |  | 
|  | } // extern "C" | 
|  |  | 
|  | namespace Math { | 
|  |  | 
|  | static ALWAYS_INLINE double log1pDoubleImpl(double value) | 
|  | { | 
|  | if (value == 0.0) | 
|  | return value; | 
|  | return std::log1p(value); | 
|  | } | 
|  |  | 
|  | static ALWAYS_INLINE float log1pFloatImpl(float value) | 
|  | { | 
|  | if (value == 0.0) | 
|  | return value; | 
|  | return std::log1p(value); | 
|  | } | 
|  |  | 
|  | double log1p(double value) | 
|  | { | 
|  | return log1pDoubleImpl(value); | 
|  | } | 
|  |  | 
|  | #define JSC_DEFINE_VIA_STD(capitalizedName, lowerName) \ | 
|  | JSC_DEFINE_JIT_OPERATION(lowerName##Double, double, (double value)) \ | 
|  | { \ | 
|  | return std::lowerName(value); \ | 
|  | } \ | 
|  | JSC_DEFINE_JIT_OPERATION(lowerName##Float, float, (float value)) \ | 
|  | { \ | 
|  | return std::lowerName(value); \ | 
|  | } | 
|  | FOR_EACH_ARITH_UNARY_OP_STD(JSC_DEFINE_VIA_STD) | 
|  | #undef JSC_DEFINE_VIA_STD | 
|  |  | 
|  | #define JSC_DEFINE_VIA_CUSTOM(capitalizedName, lowerName) \ | 
|  | JSC_DEFINE_JIT_OPERATION(lowerName##Double, double, (double value)) \ | 
|  | { \ | 
|  | return lowerName##DoubleImpl(value); \ | 
|  | } \ | 
|  | JSC_DEFINE_JIT_OPERATION(lowerName##Float, float, (float value)) \ | 
|  | { \ | 
|  | return lowerName##FloatImpl(value); \ | 
|  | } | 
|  | FOR_EACH_ARITH_UNARY_OP_CUSTOM(JSC_DEFINE_VIA_CUSTOM) | 
|  | #undef JSC_DEFINE_VIA_CUSTOM | 
|  |  | 
|  | JSC_DEFINE_JIT_OPERATION(truncDouble, double, (double value)) | 
|  | { | 
|  | return std::trunc(value); | 
|  | } | 
|  | JSC_DEFINE_JIT_OPERATION(truncFloat, float, (float value)) | 
|  | { | 
|  | return std::trunc(value); | 
|  | } | 
|  | JSC_DEFINE_JIT_OPERATION(ceilDouble, double, (double value)) | 
|  | { | 
|  | return std::ceil(value); | 
|  | } | 
|  | JSC_DEFINE_JIT_OPERATION(ceilFloat, float, (float value)) | 
|  | { | 
|  | return std::ceil(value); | 
|  | } | 
|  | JSC_DEFINE_JIT_OPERATION(floorDouble, double, (double value)) | 
|  | { | 
|  | return std::floor(value); | 
|  | } | 
|  | JSC_DEFINE_JIT_OPERATION(floorFloat, float, (float value)) | 
|  | { | 
|  | return std::floor(value); | 
|  | } | 
|  | JSC_DEFINE_JIT_OPERATION(sqrtDouble, double, (double value)) | 
|  | { | 
|  | return std::sqrt(value); | 
|  | } | 
|  | JSC_DEFINE_JIT_OPERATION(sqrtFloat, float, (float value)) | 
|  | { | 
|  | return std::sqrt(value); | 
|  | } | 
|  |  | 
|  | JSC_DEFINE_JIT_OPERATION(stdPowDouble, double, (double x, double y)) | 
|  | { | 
|  | return std::pow(x, y); | 
|  | } | 
|  | JSC_DEFINE_JIT_OPERATION(stdPowFloat, float, (float x, float y)) | 
|  | { | 
|  | return std::pow(x, y); | 
|  | } | 
|  |  | 
|  | JSC_DEFINE_JIT_OPERATION(fmodDouble, double, (double x, double y)) | 
|  | { | 
|  | #if HAVE(ARM_IDIV_INSTRUCTIONS) | 
|  | // fmod() does not have exact results for integer on ARMv7. | 
|  | // When DFG/FTL use IDIV, the result of op_mod can change if we use fmod(). | 
|  | // | 
|  | // We implement here the same algorithm and conditions as the upper tier to keep | 
|  | // a stable result when tiering up. | 
|  | if (y) { | 
|  | if (isStrictInt32(x) && isStrictInt32(y)) { | 
|  | int32_t xAsInt32 = static_cast<int32_t>(x); | 
|  | int32_t yAsInt32 = static_cast<int32_t>(y); | 
|  | int32_t quotient = xAsInt32 / yAsInt32; | 
|  | if (!productOverflows<int32_t>(quotient, yAsInt32)) { | 
|  | int32_t remainder = xAsInt32 - (quotient * yAsInt32); | 
|  | if (remainder || xAsInt32 >= 0) | 
|  | return remainder; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return fmod(x, y); | 
|  | } | 
|  |  | 
|  | static ALWAYS_INLINE double roundDoubleImpl(double value) | 
|  | { | 
|  | double integer = ceil(value); | 
|  | return integer - (integer - 0.5 > value); | 
|  | } | 
|  |  | 
|  | JSC_DEFINE_JIT_OPERATION(roundDouble, double, (double value)) | 
|  | { | 
|  | return roundDoubleImpl(value); | 
|  | } | 
|  |  | 
|  | JSC_DEFINE_JIT_OPERATION(jsRoundDouble, double, (double value)) | 
|  | { | 
|  | return roundDoubleImpl(value); | 
|  | } | 
|  |  | 
|  | } // namespace Math | 
|  | } // namespace JSC |