|  | /* | 
|  | * Copyright (C) 2011-2019 Apple Inc. All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | 
|  | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR | 
|  | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
|  | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
|  | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
|  | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include "config.h" | 
|  | #include "DFGCSEPhase.h" | 
|  |  | 
|  | #if ENABLE(DFG_JIT) | 
|  |  | 
|  | #include "DFGAbstractHeap.h" | 
|  | #include "DFGBlockMapInlines.h" | 
|  | #include "DFGClobberSet.h" | 
|  | #include "DFGClobberize.h" | 
|  | #include "DFGDominators.h" | 
|  | #include "DFGGraph.h" | 
|  | #include "DFGPhase.h" | 
|  | #include "JSCInlines.h" | 
|  | #include <array> | 
|  |  | 
|  | namespace JSC { namespace DFG { | 
|  |  | 
|  | // This file contains two CSE implementations: local and global. LocalCSE typically runs when we're | 
|  | // in DFG mode, i.e. we want to compile quickly. LocalCSE contains a lot of optimizations for | 
|  | // compile time. GlobalCSE, on the other hand, is fairly straight-forward. It will find more | 
|  | // optimization opportunities by virtue of being global. | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | namespace DFGCSEPhaseInternal { | 
|  | static constexpr bool verbose = false; | 
|  | } | 
|  |  | 
|  | class ImpureDataSlot { | 
|  | WTF_MAKE_NONCOPYABLE(ImpureDataSlot); | 
|  | WTF_MAKE_FAST_ALLOCATED; | 
|  | public: | 
|  | ImpureDataSlot(HeapLocation key, LazyNode value, unsigned hash) | 
|  | : key(key), value(value), hash(hash) | 
|  | { } | 
|  |  | 
|  | HeapLocation key; | 
|  | LazyNode value; | 
|  | unsigned hash; | 
|  | }; | 
|  |  | 
|  | struct ImpureDataSlotHash : public DefaultHash<std::unique_ptr<ImpureDataSlot>>::Hash { | 
|  | static unsigned hash(const std::unique_ptr<ImpureDataSlot>& key) | 
|  | { | 
|  | return key->hash; | 
|  | } | 
|  |  | 
|  | static bool equal(const std::unique_ptr<ImpureDataSlot>& a, const std::unique_ptr<ImpureDataSlot>& b) | 
|  | { | 
|  | // The ImpureDataSlot are unique per table per HeapLocation. This lets us compare the key | 
|  | // by just comparing the pointers of the unique ImpureDataSlots. | 
|  | ASSERT(a != b || a->key == b->key); | 
|  | return a == b; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ImpureDataTranslator { | 
|  | static unsigned hash(const HeapLocation& key) | 
|  | { | 
|  | return key.hash(); | 
|  | } | 
|  |  | 
|  | static bool equal(const std::unique_ptr<ImpureDataSlot>& slot, const HeapLocation& key) | 
|  | { | 
|  | if (!slot) | 
|  | return false; | 
|  | if (HashTraits<std::unique_ptr<ImpureDataSlot>>::isDeletedValue(slot)) | 
|  | return false; | 
|  | return slot->key == key; | 
|  | } | 
|  |  | 
|  | static void translate(std::unique_ptr<ImpureDataSlot>& slot, const HeapLocation& key, unsigned hashCode) | 
|  | { | 
|  | new (NotNull, std::addressof(slot)) std::unique_ptr<ImpureDataSlot>(new ImpureDataSlot {key, LazyNode(), hashCode}); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ImpureMap { | 
|  | WTF_MAKE_FAST_ALLOCATED; | 
|  | WTF_MAKE_NONCOPYABLE(ImpureMap); | 
|  | public: | 
|  | ImpureMap() = default; | 
|  |  | 
|  | ImpureMap(ImpureMap&& other) | 
|  | { | 
|  | m_abstractHeapStackMap.swap(other.m_abstractHeapStackMap); | 
|  | m_fallbackStackMap.swap(other.m_fallbackStackMap); | 
|  | m_heapMap.swap(other.m_heapMap); | 
|  | #if !defined(NDEBUG) | 
|  | m_debugImpureData.swap(other.m_debugImpureData); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | const ImpureDataSlot* add(const HeapLocation& location, const LazyNode& node) | 
|  | { | 
|  | const ImpureDataSlot* result = addImpl(location, node); | 
|  |  | 
|  | #if !defined(NDEBUG) | 
|  | auto addResult = m_debugImpureData.add(location, node); | 
|  | ASSERT(!!result == !addResult.isNewEntry); | 
|  | #endif | 
|  | return result; | 
|  | } | 
|  |  | 
|  | LazyNode get(const HeapLocation& location) const | 
|  | { | 
|  | LazyNode result = getImpl(location); | 
|  | #if !defined(NDEBUG) | 
|  | ASSERT(result == m_debugImpureData.get(location)); | 
|  | #endif | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void clobber(AbstractHeap heap, bool clobberConservatively) | 
|  | { | 
|  | switch (heap.kind()) { | 
|  | case World: { | 
|  | clear(); | 
|  | break; | 
|  | } | 
|  | case SideState: | 
|  | break; | 
|  | case Stack: { | 
|  | ASSERT(!heap.payload().isTop()); | 
|  | ASSERT(heap.payload().value() == heap.payload().value32()); | 
|  | m_abstractHeapStackMap.remove(heap.payload().value32()); | 
|  | if (clobberConservatively) | 
|  | m_fallbackStackMap.clear(); | 
|  | else | 
|  | clobber(m_fallbackStackMap, heap); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | if (clobberConservatively) | 
|  | m_heapMap.clear(); | 
|  | else | 
|  | clobber(m_heapMap, heap); | 
|  | break; | 
|  | } | 
|  | #if !defined(NDEBUG) | 
|  | m_debugImpureData.removeIf([heap, clobberConservatively, this](const HashMap<HeapLocation, LazyNode>::KeyValuePairType& pair) -> bool { | 
|  | switch (heap.kind()) { | 
|  | case World: | 
|  | case SideState: | 
|  | break; | 
|  | case Stack: { | 
|  | if (!clobberConservatively) | 
|  | break; | 
|  | if (pair.key.heap().kind() == Stack) { | 
|  | auto iterator = m_abstractHeapStackMap.find(pair.key.heap().payload().value32()); | 
|  | if (iterator != m_abstractHeapStackMap.end() && iterator->value->key == pair.key) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | if (!clobberConservatively) | 
|  | break; | 
|  | AbstractHeapKind kind = pair.key.heap().kind(); | 
|  | if (kind != World && kind != SideState && kind != Stack) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return heap.overlaps(pair.key.heap()); | 
|  | }); | 
|  | ASSERT(m_debugImpureData.size() | 
|  | == (m_heapMap.size() | 
|  | + m_abstractHeapStackMap.size() | 
|  | + m_fallbackStackMap.size())); | 
|  |  | 
|  | const bool verifyClobber = false; | 
|  | if (verifyClobber) { | 
|  | for (auto& pair : m_debugImpureData) | 
|  | ASSERT(!!get(pair.key)); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void clear() | 
|  | { | 
|  | m_abstractHeapStackMap.clear(); | 
|  | m_fallbackStackMap.clear(); | 
|  | m_heapMap.clear(); | 
|  | #if !defined(NDEBUG) | 
|  | m_debugImpureData.clear(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | private: | 
|  | typedef HashSet<std::unique_ptr<ImpureDataSlot>, ImpureDataSlotHash> Map; | 
|  |  | 
|  | const ImpureDataSlot* addImpl(const HeapLocation& location, const LazyNode& node) | 
|  | { | 
|  | switch (location.heap().kind()) { | 
|  | case World: | 
|  | case SideState: | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | case Stack: { | 
|  | AbstractHeap abstractHeap = location.heap(); | 
|  | if (abstractHeap.payload().isTop()) | 
|  | return add(m_fallbackStackMap, location, node); | 
|  | ASSERT(abstractHeap.payload().value() == abstractHeap.payload().value32()); | 
|  | auto addResult = m_abstractHeapStackMap.add(abstractHeap.payload().value32(), nullptr); | 
|  | if (addResult.isNewEntry) { | 
|  | addResult.iterator->value.reset(new ImpureDataSlot {location, node, 0}); | 
|  | return nullptr; | 
|  | } | 
|  | if (addResult.iterator->value->key == location) | 
|  | return addResult.iterator->value.get(); | 
|  | return add(m_fallbackStackMap, location, node); | 
|  | } | 
|  | default: | 
|  | return add(m_heapMap, location, node); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | LazyNode getImpl(const HeapLocation& location) const | 
|  | { | 
|  | switch (location.heap().kind()) { | 
|  | case World: | 
|  | case SideState: | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | case Stack: { | 
|  | ASSERT(location.heap().payload().value() == location.heap().payload().value32()); | 
|  | auto iterator = m_abstractHeapStackMap.find(location.heap().payload().value32()); | 
|  | if (iterator != m_abstractHeapStackMap.end() | 
|  | && iterator->value->key == location) | 
|  | return iterator->value->value; | 
|  | return get(m_fallbackStackMap, location); | 
|  | } | 
|  | default: | 
|  | return get(m_heapMap, location); | 
|  | } | 
|  | return LazyNode(); | 
|  | } | 
|  |  | 
|  | static const ImpureDataSlot* add(Map& map, const HeapLocation& location, const LazyNode& node) | 
|  | { | 
|  | auto result = map.add<ImpureDataTranslator>(location); | 
|  | if (result.isNewEntry) { | 
|  | (*result.iterator)->value = node; | 
|  | return nullptr; | 
|  | } | 
|  | return result.iterator->get(); | 
|  | } | 
|  |  | 
|  | static LazyNode get(const Map& map, const HeapLocation& location) | 
|  | { | 
|  | auto iterator = map.find<ImpureDataTranslator>(location); | 
|  | if (iterator != map.end()) | 
|  | return (*iterator)->value; | 
|  | return LazyNode(); | 
|  | } | 
|  |  | 
|  | static void clobber(Map& map, AbstractHeap heap) | 
|  | { | 
|  | map.removeIf([heap](const std::unique_ptr<ImpureDataSlot>& slot) -> bool { | 
|  | return heap.overlaps(slot->key.heap()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // The majority of Impure Stack Slots are unique per value. | 
|  | // This is very useful for fast clobber(), we can just remove the slot addressed by AbstractHeap | 
|  | // in O(1). | 
|  | // | 
|  | // When there are conflict, any additional HeapLocation is added in the fallback map. | 
|  | // This works well because fallbackStackMap remains tiny. | 
|  | // | 
|  | // One cannot assume a unique ImpureData is in m_abstractHeapStackMap. It may have been | 
|  | // a duplicate in the past and now only live in m_fallbackStackMap. | 
|  | // | 
|  | // Obviously, TOP always goes into m_fallbackStackMap since it does not have a unique value. | 
|  | HashMap<int32_t, std::unique_ptr<ImpureDataSlot>, DefaultHash<int32_t>::Hash, WTF::SignedWithZeroKeyHashTraits<int32_t>> m_abstractHeapStackMap; | 
|  | Map m_fallbackStackMap; | 
|  |  | 
|  | Map m_heapMap; | 
|  |  | 
|  | #if !defined(NDEBUG) | 
|  | HashMap<HeapLocation, LazyNode> m_debugImpureData; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | class LocalCSEPhase : public Phase { | 
|  | public: | 
|  | LocalCSEPhase(Graph& graph) | 
|  | : Phase(graph, "local common subexpression elimination") | 
|  | , m_smallBlock(graph) | 
|  | , m_largeBlock(graph) | 
|  | , m_hugeBlock(graph) | 
|  | { | 
|  | } | 
|  |  | 
|  | bool run() | 
|  | { | 
|  | ASSERT(m_graph.m_fixpointState == FixpointNotConverged); | 
|  | ASSERT(m_graph.m_form == ThreadedCPS || m_graph.m_form == LoadStore); | 
|  |  | 
|  | bool changed = false; | 
|  |  | 
|  | m_graph.clearReplacements(); | 
|  |  | 
|  | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { | 
|  | BasicBlock* block = m_graph.block(blockIndex); | 
|  | if (!block) | 
|  | continue; | 
|  |  | 
|  | if (block->size() <= SmallMaps::capacity) | 
|  | changed |= m_smallBlock.run(block); | 
|  | else if (block->size() <= Options::maxDFGNodesInBasicBlockForPreciseAnalysis()) | 
|  | changed |= m_largeBlock.run(block); | 
|  | else | 
|  | changed |= m_hugeBlock.run(block); | 
|  | } | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | private: | 
|  | class SmallMaps { | 
|  | public: | 
|  | // This permits SmallMaps to be used for blocks that have up to 100 nodes. In practice, | 
|  | // fewer than half of the nodes in a block have pure defs, and even fewer have impure defs. | 
|  | // Thus, a capacity limit of 100 probably means that somewhere around ~40 things may end up | 
|  | // in one of these "small" list-based maps. That number still seems largeish, except that | 
|  | // the overhead of HashMaps can be quite high currently: clearing them, or even removing | 
|  | // enough things from them, deletes (or resizes) their backing store eagerly. Hence | 
|  | // HashMaps induce a lot of malloc traffic. | 
|  | static constexpr unsigned capacity = 100; | 
|  |  | 
|  | SmallMaps() | 
|  | : m_pureLength(0) | 
|  | , m_impureLength(0) | 
|  | { | 
|  | } | 
|  |  | 
|  | void clear() | 
|  | { | 
|  | m_pureLength = 0; | 
|  | m_impureLength = 0; | 
|  | } | 
|  |  | 
|  | void write(AbstractHeap heap) | 
|  | { | 
|  | if (heap.kind() == SideState) | 
|  | return; | 
|  |  | 
|  | for (unsigned i = 0; i < m_impureLength; ++i) { | 
|  | if (heap.overlaps(m_impureMap[i].key.heap())) | 
|  | m_impureMap[i--] = m_impureMap[--m_impureLength]; | 
|  | } | 
|  | } | 
|  |  | 
|  | Node* addPure(PureValue value, Node* node) | 
|  | { | 
|  | for (unsigned i = m_pureLength; i--;) { | 
|  | if (m_pureMap[i].key == value) | 
|  | return m_pureMap[i].value; | 
|  | } | 
|  |  | 
|  | RELEASE_ASSERT(m_pureLength < capacity); | 
|  | m_pureMap[m_pureLength++] = WTF::KeyValuePair<PureValue, Node*>(value, node); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | LazyNode findReplacement(HeapLocation location) | 
|  | { | 
|  | for (unsigned i = m_impureLength; i--;) { | 
|  | if (m_impureMap[i].key == location) | 
|  | return m_impureMap[i].value; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | LazyNode addImpure(HeapLocation location, LazyNode node) | 
|  | { | 
|  | // FIXME: If we are using small maps, we must not def() derived values. | 
|  | // For now the only derived values we def() are constant-based. | 
|  | if (location.index() && !location.index().isNode()) | 
|  | return nullptr; | 
|  | if (LazyNode result = findReplacement(location)) | 
|  | return result; | 
|  | RELEASE_ASSERT(m_impureLength < capacity); | 
|  | m_impureMap[m_impureLength++] = WTF::KeyValuePair<HeapLocation, LazyNode>(location, node); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | private: | 
|  | WTF::KeyValuePair<PureValue, Node*> m_pureMap[capacity]; | 
|  | WTF::KeyValuePair<HeapLocation, LazyNode> m_impureMap[capacity]; | 
|  | unsigned m_pureLength; | 
|  | unsigned m_impureLength; | 
|  | }; | 
|  |  | 
|  | class LargeMaps { | 
|  | public: | 
|  | LargeMaps() | 
|  | { | 
|  | } | 
|  |  | 
|  | void clear() | 
|  | { | 
|  | m_pureMap.clear(); | 
|  | m_impureMap.clear(); | 
|  | } | 
|  |  | 
|  | void write(AbstractHeap heap) | 
|  | { | 
|  | bool clobberConservatively = false; | 
|  | m_impureMap.clobber(heap, clobberConservatively); | 
|  | } | 
|  |  | 
|  | Node* addPure(PureValue value, Node* node) | 
|  | { | 
|  | auto result = m_pureMap.add(value, node); | 
|  | if (result.isNewEntry) | 
|  | return nullptr; | 
|  | return result.iterator->value; | 
|  | } | 
|  |  | 
|  | LazyNode findReplacement(HeapLocation location) | 
|  | { | 
|  | return m_impureMap.get(location); | 
|  | } | 
|  |  | 
|  | LazyNode addImpure(const HeapLocation& location, const LazyNode& node) | 
|  | { | 
|  | if (const ImpureDataSlot* slot = m_impureMap.add(location, node)) | 
|  | return slot->value; | 
|  | return LazyNode(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | HashMap<PureValue, Node*> m_pureMap; | 
|  | ImpureMap m_impureMap; | 
|  | }; | 
|  |  | 
|  | // This is used only for huge basic blocks. Our usual CSE is quadratic complexity for # of DFG nodes in a basic block. | 
|  | // HugeMaps model results conservatively to avoid an O(N^2) algorithm. In particular, we clear all the slots of the specified heap kind | 
|  | // in ImpureMap instead of iterating slots and removing a matched slot. This change makes the complexity O(N). | 
|  | // FIXME: We can make LargeMap O(N) without introducing conservative behavior if we track clobbering by hierarchical epochs. | 
|  | // https://bugs.webkit.org/show_bug.cgi?id=200014 | 
|  | class HugeMaps { | 
|  | public: | 
|  | HugeMaps() = default; | 
|  |  | 
|  | void clear() | 
|  | { | 
|  | m_pureMap.clear(); | 
|  | m_impureMap.clear(); | 
|  | } | 
|  |  | 
|  | void write(AbstractHeap heap) | 
|  | { | 
|  | bool clobberConservatively = true; | 
|  | m_impureMap.clobber(heap, clobberConservatively); | 
|  | } | 
|  |  | 
|  | Node* addPure(PureValue value, Node* node) | 
|  | { | 
|  | auto result = m_pureMap.add(value, node); | 
|  | if (result.isNewEntry) | 
|  | return nullptr; | 
|  | return result.iterator->value; | 
|  | } | 
|  |  | 
|  | LazyNode findReplacement(HeapLocation location) | 
|  | { | 
|  | return m_impureMap.get(location); | 
|  | } | 
|  |  | 
|  | LazyNode addImpure(const HeapLocation& location, const LazyNode& node) | 
|  | { | 
|  | if (const ImpureDataSlot* slot = m_impureMap.add(location, node)) | 
|  | return slot->value; | 
|  | return LazyNode(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | HashMap<PureValue, Node*> m_pureMap; | 
|  | ImpureMap m_impureMap; | 
|  | }; | 
|  |  | 
|  | template<typename Maps> | 
|  | class BlockCSE { | 
|  | public: | 
|  | BlockCSE(Graph& graph) | 
|  | : m_graph(graph) | 
|  | , m_insertionSet(graph) | 
|  | { | 
|  | } | 
|  |  | 
|  | bool run(BasicBlock* block) | 
|  | { | 
|  | m_maps.clear(); | 
|  | m_changed = false; | 
|  | m_block = block; | 
|  |  | 
|  | for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { | 
|  | m_node = block->at(nodeIndex); | 
|  | m_graph.performSubstitution(m_node); | 
|  |  | 
|  | if (m_node->op() == Identity || m_node->op() == IdentityWithProfile) { | 
|  | m_node->replaceWith(m_graph, m_node->child1().node()); | 
|  | m_changed = true; | 
|  | } else { | 
|  | // This rule only makes sense for local CSE, since in SSA form we have already | 
|  | // factored the bounds check out of the PutByVal. It's kind of gross, but we | 
|  | // still have reason to believe that PutByValAlias is a good optimization and | 
|  | // that it's better to do it with a single node rather than separating out the | 
|  | // CheckInBounds. | 
|  | if (m_node->op() == PutByVal || m_node->op() == PutByValDirect) { | 
|  | HeapLocation heap; | 
|  |  | 
|  | Node* base = m_graph.varArgChild(m_node, 0).node(); | 
|  | Node* index = m_graph.varArgChild(m_node, 1).node(); | 
|  | LocationKind indexedPropertyLoc = indexedPropertyLocForResultType(m_node->result()); | 
|  |  | 
|  | ArrayMode mode = m_node->arrayMode(); | 
|  | switch (mode.type()) { | 
|  | case Array::Int32: | 
|  | if (!mode.isInBounds()) | 
|  | break; | 
|  | heap = HeapLocation(indexedPropertyLoc, IndexedInt32Properties, base, index); | 
|  | break; | 
|  |  | 
|  | case Array::Double: { | 
|  | if (!mode.isInBounds()) | 
|  | break; | 
|  | LocationKind kind = mode.isSaneChain() ? IndexedPropertyDoubleSaneChainLoc : IndexedPropertyDoubleLoc; | 
|  | heap = HeapLocation(kind, IndexedDoubleProperties, base, index); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Array::Contiguous: | 
|  | if (!mode.isInBounds()) | 
|  | break; | 
|  | heap = HeapLocation(indexedPropertyLoc, IndexedContiguousProperties, base, index); | 
|  | break; | 
|  |  | 
|  | case Array::Int8Array: | 
|  | case Array::Int16Array: | 
|  | case Array::Int32Array: | 
|  | case Array::Uint8Array: | 
|  | case Array::Uint8ClampedArray: | 
|  | case Array::Uint16Array: | 
|  | case Array::Uint32Array: | 
|  | case Array::Float32Array: | 
|  | case Array::Float64Array: | 
|  | if (!mode.isInBounds()) | 
|  | break; | 
|  | heap = HeapLocation( | 
|  | indexedPropertyLoc, TypedArrayProperties, base, index); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!!heap && m_maps.findReplacement(heap)) | 
|  | m_node->setOp(PutByValAlias); | 
|  | } | 
|  |  | 
|  | clobberize(m_graph, m_node, *this); | 
|  | } | 
|  | } | 
|  |  | 
|  | m_insertionSet.execute(block); | 
|  |  | 
|  | return m_changed; | 
|  | } | 
|  |  | 
|  | void read(AbstractHeap) { } | 
|  |  | 
|  | void write(AbstractHeap heap) | 
|  | { | 
|  | m_maps.write(heap); | 
|  | } | 
|  |  | 
|  | void def(PureValue value) | 
|  | { | 
|  | Node* match = m_maps.addPure(value, m_node); | 
|  | if (!match) | 
|  | return; | 
|  |  | 
|  | m_node->replaceWith(m_graph, match); | 
|  | m_changed = true; | 
|  | } | 
|  |  | 
|  | void def(const HeapLocation& location, const LazyNode& value) | 
|  | { | 
|  | LazyNode match = m_maps.addImpure(location, value); | 
|  | if (!match) | 
|  | return; | 
|  |  | 
|  | if (m_node->op() == GetLocal) { | 
|  | // Usually the CPS rethreading phase does this. But it's OK for us to mess with | 
|  | // locals so long as: | 
|  | // | 
|  | // - We dethread the graph. Any changes we make may invalidate the assumptions of | 
|  | //   our CPS form, particularly if this GetLocal is linked to the variablesAtTail. | 
|  | // | 
|  | // - We don't introduce a Phantom for the child of the GetLocal. This wouldn't be | 
|  | //   totally wrong but it would pessimize the code. Just because there is a | 
|  | //   GetLocal doesn't mean that the child was live. Simply rerouting the all uses | 
|  | //   of this GetLocal will preserve the live-at-exit information just fine. | 
|  | // | 
|  | // We accomplish the latter by just clearing the child; then the Phantom that we | 
|  | // introduce won't have children and so it will eventually just be deleted. | 
|  |  | 
|  | m_node->child1() = Edge(); | 
|  | m_graph.dethread(); | 
|  | } | 
|  |  | 
|  | if (value.isNode() && value.asNode() == m_node) { | 
|  | match.ensureIsNode(m_insertionSet, m_block, 0)->owner = m_block; | 
|  | ASSERT(match.isNode()); | 
|  | m_node->replaceWith(m_graph, match.asNode()); | 
|  | m_changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | Graph& m_graph; | 
|  |  | 
|  | bool m_changed; | 
|  | Node* m_node; | 
|  | BasicBlock* m_block; | 
|  |  | 
|  | Maps m_maps; | 
|  |  | 
|  | InsertionSet m_insertionSet; | 
|  | }; | 
|  |  | 
|  | BlockCSE<SmallMaps> m_smallBlock; | 
|  | BlockCSE<LargeMaps> m_largeBlock; | 
|  | BlockCSE<HugeMaps> m_hugeBlock; | 
|  | }; | 
|  |  | 
|  | class GlobalCSEPhase : public Phase { | 
|  | public: | 
|  | GlobalCSEPhase(Graph& graph) | 
|  | : Phase(graph, "global common subexpression elimination") | 
|  | , m_impureDataMap(graph) | 
|  | , m_insertionSet(graph) | 
|  | { | 
|  | } | 
|  |  | 
|  | bool run() | 
|  | { | 
|  | ASSERT(m_graph.m_fixpointState == FixpointNotConverged); | 
|  | ASSERT(m_graph.m_form == SSA); | 
|  |  | 
|  | m_graph.initializeNodeOwners(); | 
|  | m_graph.ensureSSADominators(); | 
|  |  | 
|  | m_preOrder = m_graph.blocksInPreOrder(); | 
|  |  | 
|  | // First figure out what gets clobbered by blocks. Node that this uses the preOrder list | 
|  | // for convenience only. | 
|  | for (unsigned i = m_preOrder.size(); i--;) { | 
|  | m_block = m_preOrder[i]; | 
|  | m_impureData = &m_impureDataMap[m_block]; | 
|  | for (unsigned nodeIndex = m_block->size(); nodeIndex--;) | 
|  | addWrites(m_graph, m_block->at(nodeIndex), m_impureData->writes); | 
|  | } | 
|  |  | 
|  | // Based on my experience doing this before, what follows might have to be made iterative. | 
|  | // Right now it doesn't have to be iterative because everything is dominator-bsed. But when | 
|  | // validation is enabled, we check if iterating would find new CSE opportunities. | 
|  |  | 
|  | bool changed = iterate(); | 
|  |  | 
|  | // FIXME: It should be possible to assert that CSE will not find any new opportunities if you | 
|  | // run it a second time. Unfortunately, we cannot assert this right now. Note that if we did | 
|  | // this, we'd have to first reset all of our state. | 
|  | // https://bugs.webkit.org/show_bug.cgi?id=145853 | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | bool iterate() | 
|  | { | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("Performing iteration.\n"); | 
|  |  | 
|  | m_changed = false; | 
|  | m_graph.clearReplacements(); | 
|  |  | 
|  | for (unsigned i = 0; i < m_preOrder.size(); ++i) { | 
|  | m_block = m_preOrder[i]; | 
|  | m_impureData = &m_impureDataMap[m_block]; | 
|  | m_writesSoFar.clear(); | 
|  |  | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("Processing block ", *m_block, ":\n"); | 
|  |  | 
|  | for (unsigned nodeIndex = 0; nodeIndex < m_block->size(); ++nodeIndex) { | 
|  | m_nodeIndex = nodeIndex; | 
|  | m_node = m_block->at(nodeIndex); | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("  Looking at node ", m_node, ":\n"); | 
|  |  | 
|  | m_graph.performSubstitution(m_node); | 
|  |  | 
|  | if (m_node->op() == Identity || m_node->op() == IdentityWithProfile) { | 
|  | m_node->replaceWith(m_graph, m_node->child1().node()); | 
|  | m_changed = true; | 
|  | } else | 
|  | clobberize(m_graph, m_node, *this); | 
|  | } | 
|  |  | 
|  | m_insertionSet.execute(m_block); | 
|  |  | 
|  | m_impureData->didVisit = true; | 
|  | } | 
|  |  | 
|  | return m_changed; | 
|  | } | 
|  |  | 
|  | void read(AbstractHeap) { } | 
|  |  | 
|  | void write(AbstractHeap heap) | 
|  | { | 
|  | bool clobberConservatively = false; | 
|  | m_impureData->availableAtTail.clobber(heap, clobberConservatively); | 
|  | m_writesSoFar.add(heap); | 
|  | } | 
|  |  | 
|  | void def(PureValue value) | 
|  | { | 
|  | // With pure values we do not have to worry about the possibility of some control flow path | 
|  | // clobbering the value. So, we just search for all of the like values that have been | 
|  | // computed. We pick one that is in a block that dominates ours. Note that this means that | 
|  | // a PureValue will map to a list of nodes, since there may be many places in the control | 
|  | // flow graph that compute a value but only one of them that dominates us. We may build up | 
|  | // a large list of nodes that compute some value in the case of gnarly control flow. This | 
|  | // is probably OK. | 
|  |  | 
|  | auto result = m_pureValues.add(value, Vector<Node*>()); | 
|  | if (result.isNewEntry) { | 
|  | result.iterator->value.append(m_node); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (unsigned i = result.iterator->value.size(); i--;) { | 
|  | Node* candidate = result.iterator->value[i]; | 
|  | if (m_graph.m_ssaDominators->dominates(candidate->owner, m_block)) { | 
|  | m_node->replaceWith(m_graph, candidate); | 
|  | m_changed = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | result.iterator->value.append(m_node); | 
|  | } | 
|  |  | 
|  | LazyNode findReplacement(HeapLocation location) | 
|  | { | 
|  | // At this instant, our "availableAtTail" reflects the set of things that are available in | 
|  | // this block so far. We check this map to find block-local CSE opportunities before doing | 
|  | // a global search. | 
|  | LazyNode match = m_impureData->availableAtTail.get(location); | 
|  | if (!!match) { | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("      Found local match: ", match, "\n"); | 
|  | return match; | 
|  | } | 
|  |  | 
|  | // If it's not available at this point in the block, and at some prior point in the block | 
|  | // we have clobbered this heap location, then there is no point in doing a global search. | 
|  | if (m_writesSoFar.overlaps(location.heap())) { | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("      Not looking globally because of local clobber: ", m_writesSoFar, "\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // This perfoms a backward search over the control flow graph to find some possible | 
|  | // non-local def() that matches our heap location. Such a match is only valid if there does | 
|  | // not exist any path from that def() to our block that contains a write() that overlaps | 
|  | // our heap. This algorithm looks for both of these things (the matching def and the | 
|  | // overlapping writes) in one backwards DFS pass. | 
|  | // | 
|  | // This starts by looking at the starting block's predecessors, and then it continues along | 
|  | // their predecessors. As soon as this finds a possible def() - one that defines the heap | 
|  | // location we want while dominating our starting block - it assumes that this one must be | 
|  | // the match. It then lets the DFS over predecessors complete, but it doesn't add the | 
|  | // def()'s predecessors; this ensures that any blocks we visit thereafter are on some path | 
|  | // from the def() to us. As soon as the DFG finds a write() that overlaps the location's | 
|  | // heap, it stops, assuming that there is no possible match. Note that the write() case may | 
|  | // trigger before we find a def(), or after. Either way, the write() case causes this | 
|  | // function to immediately return nullptr. | 
|  | // | 
|  | // If the write() is found before we find the def(), then we know that any def() we would | 
|  | // find would have a path to us that trips over the write() and hence becomes invalid. This | 
|  | // is just a direct outcome of us looking for a def() that dominates us. Given a block A | 
|  | // that dominates block B - so that A is the one that would have the def() and B is our | 
|  | // starting block - we know that any other block must either be on the path from A to B, or | 
|  | // it must be on a path from the root to A, but not both. So, if we haven't found A yet but | 
|  | // we already have found a block C that has a write(), then C must be on some path from A | 
|  | // to B, which means that A's def() is invalid for our purposes. Hence, before we find the | 
|  | // def(), stopping on write() is the right thing to do. | 
|  | // | 
|  | // Stopping on write() is also the right thing to do after we find the def(). After we find | 
|  | // the def(), we don't add that block's predecessors to the search worklist. That means | 
|  | // that henceforth the only blocks we will see in the search are blocks on the path from | 
|  | // the def() to us. If any such block has a write() that clobbers our heap then we should | 
|  | // give up. | 
|  | // | 
|  | // Hence this graph search algorithm ends up being deceptively simple: any overlapping | 
|  | // write() causes us to immediately return nullptr, and a matching def() means that we just | 
|  | // record it and neglect to visit its precessors. | 
|  |  | 
|  | Vector<BasicBlock*, 8> worklist; | 
|  | Vector<BasicBlock*, 8> seenList; | 
|  | BitVector seen; | 
|  |  | 
|  | for (unsigned i = m_block->predecessors.size(); i--;) { | 
|  | BasicBlock* predecessor = m_block->predecessors[i]; | 
|  | if (!seen.get(predecessor->index)) { | 
|  | worklist.append(predecessor); | 
|  | seen.set(predecessor->index); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (!worklist.isEmpty()) { | 
|  | BasicBlock* block = worklist.takeLast(); | 
|  | seenList.append(block); | 
|  |  | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("      Searching in block ", *block, "\n"); | 
|  | ImpureBlockData& data = m_impureDataMap[block]; | 
|  |  | 
|  | // We require strict domination because this would only see things in our own block if | 
|  | // they came *after* our position in the block. Clearly, while our block dominates | 
|  | // itself, the things in the block after us don't dominate us. | 
|  | if (m_graph.m_ssaDominators->strictlyDominates(block, m_block)) { | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("        It strictly dominates.\n"); | 
|  | DFG_ASSERT(m_graph, m_node, data.didVisit); | 
|  | DFG_ASSERT(m_graph, m_node, !match); | 
|  | match = data.availableAtTail.get(location); | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("        Availability: ", match, "\n"); | 
|  | if (!!match) { | 
|  | // Don't examine the predecessors of a match. At this point we just want to | 
|  | // establish that other blocks on the path from here to there don't clobber | 
|  | // the location we're interested in. | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("        Dealing with write set ", data.writes, "\n"); | 
|  | if (data.writes.overlaps(location.heap())) { | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("        Clobbered.\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | for (unsigned i = block->predecessors.size(); i--;) { | 
|  | BasicBlock* predecessor = block->predecessors[i]; | 
|  | if (!seen.get(predecessor->index)) { | 
|  | worklist.append(predecessor); | 
|  | seen.set(predecessor->index); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!match) | 
|  | return nullptr; | 
|  |  | 
|  | // Cache the results for next time. We cache them both for this block and for all of our | 
|  | // predecessors, since even though we've already visited our predecessors, our predecessors | 
|  | // probably have successors other than us. | 
|  | // FIXME: Consider caching failed searches as well, when match is null. It's not clear that | 
|  | // the reduction in compile time would warrant the increase in complexity, though. | 
|  | // https://bugs.webkit.org/show_bug.cgi?id=134876 | 
|  | for (BasicBlock* block : seenList) | 
|  | m_impureDataMap[block].availableAtTail.add(location, match); | 
|  | m_impureData->availableAtTail.add(location, match); | 
|  |  | 
|  | return match; | 
|  | } | 
|  |  | 
|  | void def(HeapLocation location, LazyNode value) | 
|  | { | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("    Got heap location def: ", location, " -> ", value, "\n"); | 
|  |  | 
|  | LazyNode match = findReplacement(location); | 
|  |  | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("      Got match: ", match, "\n"); | 
|  |  | 
|  | if (!match) { | 
|  | if (DFGCSEPhaseInternal::verbose) | 
|  | dataLog("      Adding at-tail mapping: ", location, " -> ", value, "\n"); | 
|  | auto result = m_impureData->availableAtTail.add(location, value); | 
|  | ASSERT_UNUSED(result, !result); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (value.isNode() && value.asNode() == m_node) { | 
|  | if (!match.isNode()) { | 
|  | // We need to properly record the constant in order to use an existing one if applicable. | 
|  | // This ensures that re-running GCSE will not find new optimizations. | 
|  | match.ensureIsNode(m_insertionSet, m_block, m_nodeIndex)->owner = m_block; | 
|  | auto result = m_pureValues.add(PureValue(match.asNode(), match->constant()), Vector<Node*>()); | 
|  | bool replaced = false; | 
|  | if (!result.isNewEntry) { | 
|  | for (unsigned i = result.iterator->value.size(); i--;) { | 
|  | Node* candidate = result.iterator->value[i]; | 
|  | if (m_graph.m_ssaDominators->dominates(candidate->owner, m_block)) { | 
|  | ASSERT(candidate); | 
|  | match->replaceWith(m_graph, candidate); | 
|  | match.setNode(candidate); | 
|  | replaced = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!replaced) | 
|  | result.iterator->value.append(match.asNode()); | 
|  | } | 
|  | ASSERT(match.asNode()); | 
|  | m_node->replaceWith(m_graph, match.asNode()); | 
|  | m_changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | struct ImpureBlockData { | 
|  | ImpureBlockData() | 
|  | : didVisit(false) | 
|  | { | 
|  | } | 
|  |  | 
|  | ClobberSet writes; | 
|  | ImpureMap availableAtTail; | 
|  | bool didVisit; | 
|  | }; | 
|  |  | 
|  | Vector<BasicBlock*> m_preOrder; | 
|  |  | 
|  | PureMultiMap m_pureValues; | 
|  | BlockMap<ImpureBlockData> m_impureDataMap; | 
|  |  | 
|  | BasicBlock* m_block; | 
|  | Node* m_node; | 
|  | unsigned m_nodeIndex; | 
|  | ImpureBlockData* m_impureData; | 
|  | ClobberSet m_writesSoFar; | 
|  | InsertionSet m_insertionSet; | 
|  |  | 
|  | bool m_changed; | 
|  | }; | 
|  |  | 
|  | } // anonymous namespace | 
|  |  | 
|  | bool performLocalCSE(Graph& graph) | 
|  | { | 
|  | return runPhase<LocalCSEPhase>(graph); | 
|  | } | 
|  |  | 
|  | bool performGlobalCSE(Graph& graph) | 
|  | { | 
|  | return runPhase<GlobalCSEPhase>(graph); | 
|  | } | 
|  |  | 
|  | } } // namespace JSC::DFG | 
|  |  | 
|  | #endif // ENABLE(DFG_JIT) |