|  | /* | 
|  | * Copyright (C) 2011 Apple Inc. All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | 
|  | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR | 
|  | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
|  | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
|  | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
|  | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #pragma once | 
|  |  | 
|  | #include <wtf/MathExtras.h> | 
|  |  | 
|  | namespace JSC { | 
|  |  | 
|  | // Would be nice if this was a static const member, but the OS X linker | 
|  | // seems to want a symbol in the binary in that case... | 
|  | #define oneGreaterThanMaxUInt16 0x10000 | 
|  |  | 
|  | // A uint16_t with an infinite precision fraction. Upon overflowing | 
|  | // the uint16_t range, this class will clamp to oneGreaterThanMaxUInt16. | 
|  | // This is used in converting the fraction part of a number to a string. | 
|  | class Uint16WithFraction { | 
|  | public: | 
|  | explicit Uint16WithFraction(double number, uint16_t divideByExponent = 0) | 
|  | { | 
|  | ASSERT(number && std::isfinite(number) && !std::signbit(number)); | 
|  |  | 
|  | // Check for values out of uint16_t range. | 
|  | if (number >= oneGreaterThanMaxUInt16) { | 
|  | m_values.append(oneGreaterThanMaxUInt16); | 
|  | m_leadingZeros = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Append the units to m_values. | 
|  | double integerPart = floor(number); | 
|  | m_values.append(static_cast<uint32_t>(integerPart)); | 
|  |  | 
|  | bool sign; | 
|  | int32_t exponent; | 
|  | uint64_t mantissa; | 
|  | decomposeDouble(number - integerPart, sign, exponent, mantissa); | 
|  | ASSERT(!sign && exponent < 0); | 
|  | exponent -= divideByExponent; | 
|  |  | 
|  | int32_t zeroBits = -exponent; | 
|  | --zeroBits; | 
|  |  | 
|  | // Append the append words for to m_values. | 
|  | while (zeroBits >= 32) { | 
|  | m_values.append(0); | 
|  | zeroBits -= 32; | 
|  | } | 
|  |  | 
|  | // Left align the 53 bits of the mantissa within 96 bits. | 
|  | uint32_t values[3]; | 
|  | values[0] = static_cast<uint32_t>(mantissa >> 21); | 
|  | values[1] = static_cast<uint32_t>(mantissa << 11); | 
|  | values[2] = 0; | 
|  | // Shift based on the remainder of the exponent. | 
|  | if (zeroBits) { | 
|  | values[2] = values[1] << (32 - zeroBits); | 
|  | values[1] = (values[1] >> zeroBits) | (values[0] << (32 - zeroBits)); | 
|  | values[0] = (values[0] >> zeroBits); | 
|  | } | 
|  | m_values.append(values[0]); | 
|  | m_values.append(values[1]); | 
|  | m_values.append(values[2]); | 
|  |  | 
|  | // Canonicalize; remove any trailing zeros. | 
|  | while (m_values.size() > 1 && !m_values.last()) | 
|  | m_values.removeLast(); | 
|  |  | 
|  | // Count the number of leading zero, this is useful in optimizing multiplies. | 
|  | m_leadingZeros = 0; | 
|  | while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros]) | 
|  | ++m_leadingZeros; | 
|  | } | 
|  |  | 
|  | Uint16WithFraction& operator*=(uint16_t multiplier) | 
|  | { | 
|  | ASSERT(checkConsistency()); | 
|  |  | 
|  | // iteratate backwards over the fraction until we reach the leading zeros, | 
|  | // passing the carry from one calculation into the next. | 
|  | uint64_t accumulator = 0; | 
|  | for (size_t i = m_values.size(); i > m_leadingZeros; ) { | 
|  | --i; | 
|  | accumulator += static_cast<uint64_t>(m_values[i]) * static_cast<uint64_t>(multiplier); | 
|  | m_values[i] = static_cast<uint32_t>(accumulator); | 
|  | accumulator >>= 32; | 
|  | } | 
|  |  | 
|  | if (!m_leadingZeros) { | 
|  | // With a multiplicand and multiplier in the uint16_t range, this cannot carry | 
|  | // (even allowing for the infinity value). | 
|  | ASSERT(!accumulator); | 
|  | // Check for overflow & clamp to 'infinity'. | 
|  | if (m_values[0] >= oneGreaterThanMaxUInt16) { | 
|  | m_values.shrink(1); | 
|  | m_values[0] = oneGreaterThanMaxUInt16; | 
|  | m_leadingZeros = 0; | 
|  | return *this; | 
|  | } | 
|  | } else if (accumulator) { | 
|  | // Check for carry from the last multiply, if so overwrite last leading zero. | 
|  | m_values[--m_leadingZeros] = static_cast<uint32_t>(accumulator); | 
|  | // The limited range of the multiplier should mean that even if we carry into | 
|  | // the units, we don't need to check for overflow of the uint16_t range. | 
|  | ASSERT(m_values[0] < oneGreaterThanMaxUInt16); | 
|  | } | 
|  |  | 
|  | // Multiplication by an even value may introduce trailing zeros; if so, clean them | 
|  | // up. (Keeping the value in a normalized form makes some of the comparison operations | 
|  | // more efficient). | 
|  | while (m_values.size() > 1 && !m_values.last()) | 
|  | m_values.removeLast(); | 
|  | ASSERT(checkConsistency()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool operator<(const Uint16WithFraction& other) | 
|  | { | 
|  | ASSERT(checkConsistency()); | 
|  | ASSERT(other.checkConsistency()); | 
|  |  | 
|  | // Iterate over the common lengths of arrays. | 
|  | size_t minSize = std::min(m_values.size(), other.m_values.size()); | 
|  | for (size_t index = 0; index < minSize; ++index) { | 
|  | // If we find a value that is not equal, compare and return. | 
|  | uint32_t fromThis = m_values[index]; | 
|  | uint32_t fromOther = other.m_values[index]; | 
|  | if (fromThis != fromOther) | 
|  | return fromThis < fromOther; | 
|  | } | 
|  | // If these numbers have the same lengths, they are equal, | 
|  | // otherwise which ever number has a longer fraction in larger. | 
|  | return other.m_values.size() > minSize; | 
|  | } | 
|  |  | 
|  | // Return the floor (non-fractional portion) of the number, clearing this to zero, | 
|  | // leaving the fractional part unchanged. | 
|  | uint32_t floorAndSubtract() | 
|  | { | 
|  | // 'floor' is simple the integer portion of the value. | 
|  | uint32_t floor = m_values[0]; | 
|  |  | 
|  | // If floor is non-zero, | 
|  | if (floor) { | 
|  | m_values[0] = 0; | 
|  | m_leadingZeros = 1; | 
|  | while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros]) | 
|  | ++m_leadingZeros; | 
|  | } | 
|  |  | 
|  | return floor; | 
|  | } | 
|  |  | 
|  | // Compare this value to 0.5, returns -1 for less than, 0 for equal, 1 for greater. | 
|  | int comparePoint5() | 
|  | { | 
|  | ASSERT(checkConsistency()); | 
|  | // If units != 0, this is greater than 0.5. | 
|  | if (m_values[0]) | 
|  | return 1; | 
|  | // If size == 1 this value is 0, hence < 0.5. | 
|  | if (m_values.size() == 1) | 
|  | return -1; | 
|  | // Compare to 0.5. | 
|  | if (m_values[1] > 0x80000000ul) | 
|  | return 1; | 
|  | if (m_values[1] < 0x80000000ul) | 
|  | return -1; | 
|  | // Check for more words - since normalized numbers have no trailing zeros, if | 
|  | // there are more that two digits we can assume at least one more is non-zero, | 
|  | // and hence the value is > 0.5. | 
|  | return m_values.size() > 2 ? 1 : 0; | 
|  | } | 
|  |  | 
|  | // Return true if the sum of this plus addend would be greater than 1. | 
|  | bool sumGreaterThanOne(const Uint16WithFraction& addend) | 
|  | { | 
|  | ASSERT(checkConsistency()); | 
|  | ASSERT(addend.checkConsistency()); | 
|  |  | 
|  | // First, sum the units. If the result is greater than one, return true. | 
|  | // If equal to one, return true if either number has a fractional part. | 
|  | uint32_t sum = m_values[0] + addend.m_values[0]; | 
|  | if (sum) | 
|  | return sum > 1 || std::max(m_values.size(), addend.m_values.size()) > 1; | 
|  |  | 
|  | // We could still produce a result greater than zero if addition of the next | 
|  | // word from the fraction were to carry, leaving a result > 0. | 
|  |  | 
|  | // Iterate over the common lengths of arrays. | 
|  | size_t minSize = std::min(m_values.size(), addend.m_values.size()); | 
|  | for (size_t index = 1; index < minSize; ++index) { | 
|  | // Sum the next word from this & the addend. | 
|  | uint32_t fromThis = m_values[index]; | 
|  | uint32_t fromAddend = addend.m_values[index]; | 
|  | sum = fromThis + fromAddend; | 
|  |  | 
|  | // Check for overflow. If so, check whether the remaining result is non-zero, | 
|  | // or if there are any further words in the fraction. | 
|  | if (sum < fromThis) | 
|  | return sum || (index + 1) < std::max(m_values.size(), addend.m_values.size()); | 
|  |  | 
|  | // If the sum is uint32_t max, then we would carry a 1 if addition of the next | 
|  | // digits in the number were to overflow. | 
|  | if (sum != 0xFFFFFFFF) | 
|  | return false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool checkConsistency() const | 
|  | { | 
|  | // All values should have at least one value. | 
|  | return (m_values.size()) | 
|  | // The units value must be a uint16_t, or the value is the overflow value. | 
|  | && (m_values[0] < oneGreaterThanMaxUInt16 || (m_values[0] == oneGreaterThanMaxUInt16 && m_values.size() == 1)) | 
|  | // There should be no trailing zeros (unless this value is zero!). | 
|  | && (m_values.last() || m_values.size() == 1); | 
|  | } | 
|  |  | 
|  | // The internal storage of the number. This vector is always at least one entry in size, | 
|  | // with the first entry holding the portion of the number greater than zero. The first | 
|  | // value always hold a value in the uint16_t range, or holds the value oneGreaterThanMaxUInt16 to | 
|  | // indicate the value has overflowed to >= 0x10000. If the units value is oneGreaterThanMaxUInt16, | 
|  | // there can be no fraction (size must be 1). | 
|  | // | 
|  | // Subsequent values in the array represent portions of the fractional part of this number. | 
|  | // The total value of the number is the sum of (m_values[i] / pow(2^32, i)), for each i | 
|  | // in the array. The vector should contain no trailing zeros, except for the value '0', | 
|  | // represented by a vector contianing a single zero value. These constraints are checked | 
|  | // by 'checkConsistency()', above. | 
|  | // | 
|  | // The inline capacity of the vector is set to be able to contain any IEEE double (1 for | 
|  | // the units column, 32 for zeros introduced due to an exponent up to -3FE, and 2 for | 
|  | // bits taken from the mantissa). | 
|  | Vector<uint32_t, 36> m_values; | 
|  |  | 
|  | // Cache a count of the number of leading zeros in m_values. We can use this to optimize | 
|  | // methods that would otherwise need visit all words in the vector, e.g. multiplication. | 
|  | size_t m_leadingZeros; | 
|  | }; | 
|  |  | 
|  | } // namespace JSC |