|  | /* | 
|  | * Copyright (C) 2009, 2013 Apple Inc. All rights reserved. | 
|  | * Copyright (C) 2010 Peter Varga (pvarga@inf.u-szeged.hu), University of Szeged | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | 
|  | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR | 
|  | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
|  | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
|  | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
|  | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include "config.h" | 
|  | #include "YarrPattern.h" | 
|  |  | 
|  | #include "Yarr.h" | 
|  | #include "YarrCanonicalizeUCS2.h" | 
|  | #include "YarrParser.h" | 
|  | #include <wtf/Vector.h> | 
|  |  | 
|  | using namespace WTF; | 
|  |  | 
|  | namespace JSC { namespace Yarr { | 
|  |  | 
|  | #include "RegExpJitTables.h" | 
|  |  | 
|  | class CharacterClassConstructor { | 
|  | public: | 
|  | CharacterClassConstructor(bool isCaseInsensitive = false) | 
|  | : m_isCaseInsensitive(isCaseInsensitive) | 
|  | { | 
|  | } | 
|  |  | 
|  | void reset() | 
|  | { | 
|  | m_matches.clear(); | 
|  | m_ranges.clear(); | 
|  | m_matchesUnicode.clear(); | 
|  | m_rangesUnicode.clear(); | 
|  | } | 
|  |  | 
|  | void append(const CharacterClass* other) | 
|  | { | 
|  | for (size_t i = 0; i < other->m_matches.size(); ++i) | 
|  | addSorted(m_matches, other->m_matches[i]); | 
|  | for (size_t i = 0; i < other->m_ranges.size(); ++i) | 
|  | addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end); | 
|  | for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i) | 
|  | addSorted(m_matchesUnicode, other->m_matchesUnicode[i]); | 
|  | for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i) | 
|  | addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end); | 
|  | } | 
|  |  | 
|  | void putChar(UChar ch) | 
|  | { | 
|  | // Handle ascii cases. | 
|  | if (ch <= 0x7f) { | 
|  | if (m_isCaseInsensitive && isASCIIAlpha(ch)) { | 
|  | addSorted(m_matches, toASCIIUpper(ch)); | 
|  | addSorted(m_matches, toASCIILower(ch)); | 
|  | } else | 
|  | addSorted(m_matches, ch); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Simple case, not a case-insensitive match. | 
|  | if (!m_isCaseInsensitive) { | 
|  | addSorted(m_matchesUnicode, ch); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Add multiple matches, if necessary. | 
|  | const UCS2CanonicalizationRange* info = rangeInfoFor(ch); | 
|  | if (info->type == CanonicalizeUnique) | 
|  | addSorted(m_matchesUnicode, ch); | 
|  | else | 
|  | putUnicodeIgnoreCase(ch, info); | 
|  | } | 
|  |  | 
|  | void putUnicodeIgnoreCase(UChar ch, const UCS2CanonicalizationRange* info) | 
|  | { | 
|  | ASSERT(m_isCaseInsensitive); | 
|  | ASSERT(ch > 0x7f); | 
|  | ASSERT(ch >= info->begin && ch <= info->end); | 
|  | ASSERT(info->type != CanonicalizeUnique); | 
|  | if (info->type == CanonicalizeSet) { | 
|  | for (const uint16_t* set = characterSetInfo[info->value]; (ch = *set); ++set) | 
|  | addSorted(m_matchesUnicode, ch); | 
|  | } else { | 
|  | addSorted(m_matchesUnicode, ch); | 
|  | addSorted(m_matchesUnicode, getCanonicalPair(info, ch)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void putRange(UChar lo, UChar hi) | 
|  | { | 
|  | if (lo <= 0x7f) { | 
|  | char asciiLo = lo; | 
|  | char asciiHi = std::min(hi, (UChar)0x7f); | 
|  | addSortedRange(m_ranges, lo, asciiHi); | 
|  |  | 
|  | if (m_isCaseInsensitive) { | 
|  | if ((asciiLo <= 'Z') && (asciiHi >= 'A')) | 
|  | addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A')); | 
|  | if ((asciiLo <= 'z') && (asciiHi >= 'a')) | 
|  | addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a')); | 
|  | } | 
|  | } | 
|  | if (hi <= 0x7f) | 
|  | return; | 
|  |  | 
|  | lo = std::max(lo, (UChar)0x80); | 
|  | addSortedRange(m_rangesUnicode, lo, hi); | 
|  |  | 
|  | if (!m_isCaseInsensitive) | 
|  | return; | 
|  |  | 
|  | const UCS2CanonicalizationRange* info = rangeInfoFor(lo); | 
|  | while (true) { | 
|  | // Handle the range [lo .. end] | 
|  | UChar end = std::min<UChar>(info->end, hi); | 
|  |  | 
|  | switch (info->type) { | 
|  | case CanonicalizeUnique: | 
|  | // Nothing to do - no canonical equivalents. | 
|  | break; | 
|  | case CanonicalizeSet: { | 
|  | UChar ch; | 
|  | for (const uint16_t* set = characterSetInfo[info->value]; (ch = *set); ++set) | 
|  | addSorted(m_matchesUnicode, ch); | 
|  | break; | 
|  | } | 
|  | case CanonicalizeRangeLo: | 
|  | addSortedRange(m_rangesUnicode, lo + info->value, end + info->value); | 
|  | break; | 
|  | case CanonicalizeRangeHi: | 
|  | addSortedRange(m_rangesUnicode, lo - info->value, end - info->value); | 
|  | break; | 
|  | case CanonicalizeAlternatingAligned: | 
|  | // Use addSortedRange since there is likely an abutting range to combine with. | 
|  | if (lo & 1) | 
|  | addSortedRange(m_rangesUnicode, lo - 1, lo - 1); | 
|  | if (!(end & 1)) | 
|  | addSortedRange(m_rangesUnicode, end + 1, end + 1); | 
|  | break; | 
|  | case CanonicalizeAlternatingUnaligned: | 
|  | // Use addSortedRange since there is likely an abutting range to combine with. | 
|  | if (!(lo & 1)) | 
|  | addSortedRange(m_rangesUnicode, lo - 1, lo - 1); | 
|  | if (end & 1) | 
|  | addSortedRange(m_rangesUnicode, end + 1, end + 1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (hi == end) | 
|  | return; | 
|  |  | 
|  | ++info; | 
|  | lo = info->begin; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | PassOwnPtr<CharacterClass> charClass() | 
|  | { | 
|  | OwnPtr<CharacterClass> characterClass = adoptPtr(new CharacterClass); | 
|  |  | 
|  | characterClass->m_matches.swap(m_matches); | 
|  | characterClass->m_ranges.swap(m_ranges); | 
|  | characterClass->m_matchesUnicode.swap(m_matchesUnicode); | 
|  | characterClass->m_rangesUnicode.swap(m_rangesUnicode); | 
|  |  | 
|  | return characterClass.release(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void addSorted(Vector<UChar>& matches, UChar ch) | 
|  | { | 
|  | unsigned pos = 0; | 
|  | unsigned range = matches.size(); | 
|  |  | 
|  | // binary chop, find position to insert char. | 
|  | while (range) { | 
|  | unsigned index = range >> 1; | 
|  |  | 
|  | int val = matches[pos+index] - ch; | 
|  | if (!val) | 
|  | return; | 
|  | else if (val > 0) | 
|  | range = index; | 
|  | else { | 
|  | pos += (index+1); | 
|  | range -= (index+1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pos == matches.size()) | 
|  | matches.append(ch); | 
|  | else | 
|  | matches.insert(pos, ch); | 
|  | } | 
|  |  | 
|  | void addSortedRange(Vector<CharacterRange>& ranges, UChar lo, UChar hi) | 
|  | { | 
|  | unsigned end = ranges.size(); | 
|  |  | 
|  | // Simple linear scan - I doubt there are that many ranges anyway... | 
|  | // feel free to fix this with something faster (eg binary chop). | 
|  | for (unsigned i = 0; i < end; ++i) { | 
|  | // does the new range fall before the current position in the array | 
|  | if (hi < ranges[i].begin) { | 
|  | // optional optimization: concatenate appending ranges? - may not be worthwhile. | 
|  | if (hi == (ranges[i].begin - 1)) { | 
|  | ranges[i].begin = lo; | 
|  | return; | 
|  | } | 
|  | ranges.insert(i, CharacterRange(lo, hi)); | 
|  | return; | 
|  | } | 
|  | // Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining | 
|  | // If the new range start at or before the end of the last range, then the overlap (if it starts one after the | 
|  | // end of the last range they concatenate, which is just as good. | 
|  | if (lo <= (ranges[i].end + 1)) { | 
|  | // found an intersect! we'll replace this entry in the array. | 
|  | ranges[i].begin = std::min(ranges[i].begin, lo); | 
|  | ranges[i].end = std::max(ranges[i].end, hi); | 
|  |  | 
|  | // now check if the new range can subsume any subsequent ranges. | 
|  | unsigned next = i+1; | 
|  | // each iteration of the loop we will either remove something from the list, or break the loop. | 
|  | while (next < ranges.size()) { | 
|  | if (ranges[next].begin <= (ranges[i].end + 1)) { | 
|  | // the next entry now overlaps / concatenates this one. | 
|  | ranges[i].end = std::max(ranges[i].end, ranges[next].end); | 
|  | ranges.remove(next); | 
|  | } else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // CharacterRange comes after all existing ranges. | 
|  | ranges.append(CharacterRange(lo, hi)); | 
|  | } | 
|  |  | 
|  | bool m_isCaseInsensitive; | 
|  |  | 
|  | Vector<UChar> m_matches; | 
|  | Vector<CharacterRange> m_ranges; | 
|  | Vector<UChar> m_matchesUnicode; | 
|  | Vector<CharacterRange> m_rangesUnicode; | 
|  | }; | 
|  |  | 
|  | class YarrPatternConstructor { | 
|  | public: | 
|  | YarrPatternConstructor(YarrPattern& pattern) | 
|  | : m_pattern(pattern) | 
|  | , m_characterClassConstructor(pattern.m_ignoreCase) | 
|  | , m_invertParentheticalAssertion(false) | 
|  | { | 
|  | OwnPtr<PatternDisjunction> body = adoptPtr(new PatternDisjunction); | 
|  | m_pattern.m_body = body.get(); | 
|  | m_alternative = body->addNewAlternative(); | 
|  | m_pattern.m_disjunctions.append(body.release()); | 
|  | } | 
|  |  | 
|  | ~YarrPatternConstructor() | 
|  | { | 
|  | } | 
|  |  | 
|  | void reset() | 
|  | { | 
|  | m_pattern.reset(); | 
|  | m_characterClassConstructor.reset(); | 
|  |  | 
|  | OwnPtr<PatternDisjunction> body = adoptPtr(new PatternDisjunction); | 
|  | m_pattern.m_body = body.get(); | 
|  | m_alternative = body->addNewAlternative(); | 
|  | m_pattern.m_disjunctions.append(body.release()); | 
|  | } | 
|  |  | 
|  | void assertionBOL() | 
|  | { | 
|  | if (!m_alternative->m_terms.size() & !m_invertParentheticalAssertion) { | 
|  | m_alternative->m_startsWithBOL = true; | 
|  | m_alternative->m_containsBOL = true; | 
|  | m_pattern.m_containsBOL = true; | 
|  | } | 
|  | m_alternative->m_terms.append(PatternTerm::BOL()); | 
|  | } | 
|  | void assertionEOL() | 
|  | { | 
|  | m_alternative->m_terms.append(PatternTerm::EOL()); | 
|  | } | 
|  | void assertionWordBoundary(bool invert) | 
|  | { | 
|  | m_alternative->m_terms.append(PatternTerm::WordBoundary(invert)); | 
|  | } | 
|  |  | 
|  | void atomPatternCharacter(UChar ch) | 
|  | { | 
|  | // We handle case-insensitive checking of unicode characters which do have both | 
|  | // cases by handling them as if they were defined using a CharacterClass. | 
|  | if (!m_pattern.m_ignoreCase || isASCII(ch)) { | 
|  | m_alternative->m_terms.append(PatternTerm(ch)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const UCS2CanonicalizationRange* info = rangeInfoFor(ch); | 
|  | if (info->type == CanonicalizeUnique) { | 
|  | m_alternative->m_terms.append(PatternTerm(ch)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | m_characterClassConstructor.putUnicodeIgnoreCase(ch, info); | 
|  | OwnPtr<CharacterClass> newCharacterClass = m_characterClassConstructor.charClass(); | 
|  | m_alternative->m_terms.append(PatternTerm(newCharacterClass.get(), false)); | 
|  | m_pattern.m_userCharacterClasses.append(newCharacterClass.release()); | 
|  | } | 
|  |  | 
|  | void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert) | 
|  | { | 
|  | switch (classID) { | 
|  | case DigitClassID: | 
|  | m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert)); | 
|  | break; | 
|  | case SpaceClassID: | 
|  | m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert)); | 
|  | break; | 
|  | case WordClassID: | 
|  | m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert)); | 
|  | break; | 
|  | case NewlineClassID: | 
|  | m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void atomCharacterClassBegin(bool invert = false) | 
|  | { | 
|  | m_invertCharacterClass = invert; | 
|  | } | 
|  |  | 
|  | void atomCharacterClassAtom(UChar ch) | 
|  | { | 
|  | m_characterClassConstructor.putChar(ch); | 
|  | } | 
|  |  | 
|  | void atomCharacterClassRange(UChar begin, UChar end) | 
|  | { | 
|  | m_characterClassConstructor.putRange(begin, end); | 
|  | } | 
|  |  | 
|  | void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert) | 
|  | { | 
|  | ASSERT(classID != NewlineClassID); | 
|  |  | 
|  | switch (classID) { | 
|  | case DigitClassID: | 
|  | m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass()); | 
|  | break; | 
|  |  | 
|  | case SpaceClassID: | 
|  | m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass()); | 
|  | break; | 
|  |  | 
|  | case WordClassID: | 
|  | m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass()); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | RELEASE_ASSERT_NOT_REACHED(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void atomCharacterClassEnd() | 
|  | { | 
|  | OwnPtr<CharacterClass> newCharacterClass = m_characterClassConstructor.charClass(); | 
|  | m_alternative->m_terms.append(PatternTerm(newCharacterClass.get(), m_invertCharacterClass)); | 
|  | m_pattern.m_userCharacterClasses.append(newCharacterClass.release()); | 
|  | } | 
|  |  | 
|  | void atomParenthesesSubpatternBegin(bool capture = true) | 
|  | { | 
|  | unsigned subpatternId = m_pattern.m_numSubpatterns + 1; | 
|  | if (capture) | 
|  | m_pattern.m_numSubpatterns++; | 
|  |  | 
|  | OwnPtr<PatternDisjunction> parenthesesDisjunction = adoptPtr(new PatternDisjunction(m_alternative)); | 
|  | m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction.get(), capture, false)); | 
|  | m_alternative = parenthesesDisjunction->addNewAlternative(); | 
|  | m_pattern.m_disjunctions.append(parenthesesDisjunction.release()); | 
|  | } | 
|  |  | 
|  | void atomParentheticalAssertionBegin(bool invert = false) | 
|  | { | 
|  | OwnPtr<PatternDisjunction> parenthesesDisjunction = adoptPtr(new PatternDisjunction(m_alternative)); | 
|  | m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction.get(), false, invert)); | 
|  | m_alternative = parenthesesDisjunction->addNewAlternative(); | 
|  | m_invertParentheticalAssertion = invert; | 
|  | m_pattern.m_disjunctions.append(parenthesesDisjunction.release()); | 
|  | } | 
|  |  | 
|  | void atomParenthesesEnd() | 
|  | { | 
|  | ASSERT(m_alternative->m_parent); | 
|  | ASSERT(m_alternative->m_parent->m_parent); | 
|  |  | 
|  | PatternDisjunction* parenthesesDisjunction = m_alternative->m_parent; | 
|  | m_alternative = m_alternative->m_parent->m_parent; | 
|  |  | 
|  | PatternTerm& lastTerm = m_alternative->lastTerm(); | 
|  |  | 
|  | unsigned numParenAlternatives = parenthesesDisjunction->m_alternatives.size(); | 
|  | unsigned numBOLAnchoredAlts = 0; | 
|  |  | 
|  | for (unsigned i = 0; i < numParenAlternatives; i++) { | 
|  | // Bubble up BOL flags | 
|  | if (parenthesesDisjunction->m_alternatives[i]->m_startsWithBOL) | 
|  | numBOLAnchoredAlts++; | 
|  | } | 
|  |  | 
|  | if (numBOLAnchoredAlts) { | 
|  | m_alternative->m_containsBOL = true; | 
|  | // If all the alternatives in parens start with BOL, then so does this one | 
|  | if (numBOLAnchoredAlts == numParenAlternatives) | 
|  | m_alternative->m_startsWithBOL = true; | 
|  | } | 
|  |  | 
|  | lastTerm.parentheses.lastSubpatternId = m_pattern.m_numSubpatterns; | 
|  | m_invertParentheticalAssertion = false; | 
|  | } | 
|  |  | 
|  | void atomBackReference(unsigned subpatternId) | 
|  | { | 
|  | ASSERT(subpatternId); | 
|  | m_pattern.m_containsBackreferences = true; | 
|  | m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId); | 
|  |  | 
|  | if (subpatternId > m_pattern.m_numSubpatterns) { | 
|  | m_alternative->m_terms.append(PatternTerm::ForwardReference()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | PatternAlternative* currentAlternative = m_alternative; | 
|  | ASSERT(currentAlternative); | 
|  |  | 
|  | // Note to self: if we waited until the AST was baked, we could also remove forwards refs | 
|  | while ((currentAlternative = currentAlternative->m_parent->m_parent)) { | 
|  | PatternTerm& term = currentAlternative->lastTerm(); | 
|  | ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion)); | 
|  |  | 
|  | if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.capture() && (subpatternId == term.parentheses.subpatternId)) { | 
|  | m_alternative->m_terms.append(PatternTerm::ForwardReference()); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | m_alternative->m_terms.append(PatternTerm(subpatternId)); | 
|  | } | 
|  |  | 
|  | // deep copy the argument disjunction.  If filterStartsWithBOL is true, | 
|  | // skip alternatives with m_startsWithBOL set true. | 
|  | PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction, bool filterStartsWithBOL = false) | 
|  | { | 
|  | OwnPtr<PatternDisjunction> newDisjunction; | 
|  | for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) { | 
|  | PatternAlternative* alternative = disjunction->m_alternatives[alt].get(); | 
|  | if (!filterStartsWithBOL || !alternative->m_startsWithBOL) { | 
|  | if (!newDisjunction) { | 
|  | newDisjunction = adoptPtr(new PatternDisjunction()); | 
|  | newDisjunction->m_parent = disjunction->m_parent; | 
|  | } | 
|  | PatternAlternative* newAlternative = newDisjunction->addNewAlternative(); | 
|  | newAlternative->m_terms.reserveInitialCapacity(alternative->m_terms.size()); | 
|  | for (unsigned i = 0; i < alternative->m_terms.size(); ++i) | 
|  | newAlternative->m_terms.append(copyTerm(alternative->m_terms[i], filterStartsWithBOL)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!newDisjunction) | 
|  | return 0; | 
|  |  | 
|  | PatternDisjunction* copiedDisjunction = newDisjunction.get(); | 
|  | m_pattern.m_disjunctions.append(newDisjunction.release()); | 
|  | return copiedDisjunction; | 
|  | } | 
|  |  | 
|  | PatternTerm copyTerm(PatternTerm& term, bool filterStartsWithBOL = false) | 
|  | { | 
|  | if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion)) | 
|  | return PatternTerm(term); | 
|  |  | 
|  | PatternTerm termCopy = term; | 
|  | termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction, filterStartsWithBOL); | 
|  | return termCopy; | 
|  | } | 
|  |  | 
|  | void quantifyAtom(unsigned min, unsigned max, bool greedy) | 
|  | { | 
|  | ASSERT(min <= max); | 
|  | ASSERT(m_alternative->m_terms.size()); | 
|  |  | 
|  | if (!max) { | 
|  | m_alternative->removeLastTerm(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | PatternTerm& term = m_alternative->lastTerm(); | 
|  | ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary); | 
|  | ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount)); | 
|  |  | 
|  | if (term.type == PatternTerm::TypeParentheticalAssertion) { | 
|  | // If an assertion is quantified with a minimum count of zero, it can simply be removed. | 
|  | // This arises from the RepeatMatcher behaviour in the spec. Matching an assertion never | 
|  | // results in any input being consumed, however the continuation passed to the assertion | 
|  | // (called in steps, 8c and 9 of the RepeatMatcher definition, ES5.1 15.10.2.5) will | 
|  | // reject all zero length matches (see step 2.1). A match from the continuation of the | 
|  | // expression will still be accepted regardless (via steps 8a and 11) - the upshot of all | 
|  | // this is that matches from the assertion are not required, and won't be accepted anyway, | 
|  | // so no need to ever run it. | 
|  | if (!min) | 
|  | m_alternative->removeLastTerm(); | 
|  | // We never need to run an assertion more than once. Subsequent interations will be run | 
|  | // with the same start index (since assertions are non-capturing) and the same captures | 
|  | // (per step 4 of RepeatMatcher in ES5.1 15.10.2.5), and as such will always produce the | 
|  | // same result and captures. If the first match succeeds then the subsequent (min - 1) | 
|  | // matches will too. Any additional optional matches will fail (on the same basis as the | 
|  | // minimum zero quantified assertions, above), but this will still result in a match. | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (min == 0) | 
|  | term.quantify(max, greedy   ? QuantifierGreedy : QuantifierNonGreedy); | 
|  | else if (min == max) | 
|  | term.quantify(min, QuantifierFixedCount); | 
|  | else { | 
|  | term.quantify(min, QuantifierFixedCount); | 
|  | m_alternative->m_terms.append(copyTerm(term)); | 
|  | // NOTE: this term is interesting from an analysis perspective, in that it can be ignored..... | 
|  | m_alternative->lastTerm().quantify((max == quantifyInfinite) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy); | 
|  | if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern) | 
|  | m_alternative->lastTerm().parentheses.isCopy = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void disjunction() | 
|  | { | 
|  | m_alternative = m_alternative->m_parent->addNewAlternative(); | 
|  | } | 
|  |  | 
|  | unsigned setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition) | 
|  | { | 
|  | alternative->m_hasFixedSize = true; | 
|  | Checked<unsigned> currentInputPosition = initialInputPosition; | 
|  |  | 
|  | for (unsigned i = 0; i < alternative->m_terms.size(); ++i) { | 
|  | PatternTerm& term = alternative->m_terms[i]; | 
|  |  | 
|  | switch (term.type) { | 
|  | case PatternTerm::TypeAssertionBOL: | 
|  | case PatternTerm::TypeAssertionEOL: | 
|  | case PatternTerm::TypeAssertionWordBoundary: | 
|  | term.inputPosition = currentInputPosition.unsafeGet(); | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeBackReference: | 
|  | term.inputPosition = currentInputPosition.unsafeGet(); | 
|  | term.frameLocation = currentCallFrameSize; | 
|  | currentCallFrameSize += YarrStackSpaceForBackTrackInfoBackReference; | 
|  | alternative->m_hasFixedSize = false; | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeForwardReference: | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypePatternCharacter: | 
|  | term.inputPosition = currentInputPosition.unsafeGet(); | 
|  | if (term.quantityType != QuantifierFixedCount) { | 
|  | term.frameLocation = currentCallFrameSize; | 
|  | currentCallFrameSize += YarrStackSpaceForBackTrackInfoPatternCharacter; | 
|  | alternative->m_hasFixedSize = false; | 
|  | } else | 
|  | currentInputPosition += term.quantityCount; | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeCharacterClass: | 
|  | term.inputPosition = currentInputPosition.unsafeGet(); | 
|  | if (term.quantityType != QuantifierFixedCount) { | 
|  | term.frameLocation = currentCallFrameSize; | 
|  | currentCallFrameSize += YarrStackSpaceForBackTrackInfoCharacterClass; | 
|  | alternative->m_hasFixedSize = false; | 
|  | } else | 
|  | currentInputPosition += term.quantityCount; | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeParenthesesSubpattern: | 
|  | // Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own. | 
|  | term.frameLocation = currentCallFrameSize; | 
|  | if (term.quantityCount == 1 && !term.parentheses.isCopy) { | 
|  | if (term.quantityType != QuantifierFixedCount) | 
|  | currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesOnce; | 
|  | currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition.unsafeGet()); | 
|  | // If quantity is fixed, then pre-check its minimum size. | 
|  | if (term.quantityType == QuantifierFixedCount) | 
|  | currentInputPosition += term.parentheses.disjunction->m_minimumSize; | 
|  | term.inputPosition = currentInputPosition.unsafeGet(); | 
|  | } else if (term.parentheses.isTerminal) { | 
|  | currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesTerminal; | 
|  | currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition.unsafeGet()); | 
|  | term.inputPosition = currentInputPosition.unsafeGet(); | 
|  | } else { | 
|  | term.inputPosition = currentInputPosition.unsafeGet(); | 
|  | setupDisjunctionOffsets(term.parentheses.disjunction, 0, currentInputPosition.unsafeGet()); | 
|  | currentCallFrameSize += YarrStackSpaceForBackTrackInfoParentheses; | 
|  | } | 
|  | // Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length. | 
|  | alternative->m_hasFixedSize = false; | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeParentheticalAssertion: | 
|  | term.inputPosition = currentInputPosition.unsafeGet(); | 
|  | term.frameLocation = currentCallFrameSize; | 
|  | currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + YarrStackSpaceForBackTrackInfoParentheticalAssertion, currentInputPosition.unsafeGet()); | 
|  | break; | 
|  |  | 
|  | case PatternTerm::TypeDotStarEnclosure: | 
|  | alternative->m_hasFixedSize = false; | 
|  | term.inputPosition = initialInputPosition; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | alternative->m_minimumSize = (currentInputPosition - initialInputPosition).unsafeGet(); | 
|  | return currentCallFrameSize; | 
|  | } | 
|  |  | 
|  | unsigned setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition) | 
|  | { | 
|  | if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1)) | 
|  | initialCallFrameSize += YarrStackSpaceForBackTrackInfoAlternative; | 
|  |  | 
|  | unsigned minimumInputSize = UINT_MAX; | 
|  | unsigned maximumCallFrameSize = 0; | 
|  | bool hasFixedSize = true; | 
|  |  | 
|  | for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) { | 
|  | PatternAlternative* alternative = disjunction->m_alternatives[alt].get(); | 
|  | unsigned currentAlternativeCallFrameSize = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition); | 
|  | minimumInputSize = std::min(minimumInputSize, alternative->m_minimumSize); | 
|  | maximumCallFrameSize = std::max(maximumCallFrameSize, currentAlternativeCallFrameSize); | 
|  | hasFixedSize &= alternative->m_hasFixedSize; | 
|  | if (alternative->m_minimumSize > INT_MAX) | 
|  | m_pattern.m_containsUnsignedLengthPattern = true; | 
|  | } | 
|  |  | 
|  | ASSERT(minimumInputSize != UINT_MAX); | 
|  | ASSERT(maximumCallFrameSize >= initialCallFrameSize); | 
|  |  | 
|  | disjunction->m_hasFixedSize = hasFixedSize; | 
|  | disjunction->m_minimumSize = minimumInputSize; | 
|  | disjunction->m_callFrameSize = maximumCallFrameSize; | 
|  | return maximumCallFrameSize; | 
|  | } | 
|  |  | 
|  | void setupOffsets() | 
|  | { | 
|  | setupDisjunctionOffsets(m_pattern.m_body, 0, 0); | 
|  | } | 
|  |  | 
|  | // This optimization identifies sets of parentheses that we will never need to backtrack. | 
|  | // In these cases we do not need to store state from prior iterations. | 
|  | // We can presently avoid backtracking for: | 
|  | //   * where the parens are at the end of the regular expression (last term in any of the | 
|  | //     alternatives of the main body disjunction). | 
|  | //   * where the parens are non-capturing, and quantified unbounded greedy (*). | 
|  | //   * where the parens do not contain any capturing subpatterns. | 
|  | void checkForTerminalParentheses() | 
|  | { | 
|  | // This check is much too crude; should be just checking whether the candidate | 
|  | // node contains nested capturing subpatterns, not the whole expression! | 
|  | if (m_pattern.m_numSubpatterns) | 
|  | return; | 
|  |  | 
|  | Vector<OwnPtr<PatternAlternative>>& alternatives = m_pattern.m_body->m_alternatives; | 
|  | for (size_t i = 0; i < alternatives.size(); ++i) { | 
|  | Vector<PatternTerm>& terms = alternatives[i]->m_terms; | 
|  | if (terms.size()) { | 
|  | PatternTerm& term = terms.last(); | 
|  | if (term.type == PatternTerm::TypeParenthesesSubpattern | 
|  | && term.quantityType == QuantifierGreedy | 
|  | && term.quantityCount == quantifyInfinite | 
|  | && !term.capture()) | 
|  | term.parentheses.isTerminal = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void optimizeBOL() | 
|  | { | 
|  | // Look for expressions containing beginning of line (^) anchoring and unroll them. | 
|  | // e.g. /^a|^b|c/ becomes /^a|^b|c/ which is executed once followed by /c/ which loops | 
|  | // This code relies on the parsing code tagging alternatives with m_containsBOL and | 
|  | // m_startsWithBOL and rolling those up to containing alternatives. | 
|  | // At this point, this is only valid for non-multiline expressions. | 
|  | PatternDisjunction* disjunction = m_pattern.m_body; | 
|  |  | 
|  | if (!m_pattern.m_containsBOL || m_pattern.m_multiline) | 
|  | return; | 
|  |  | 
|  | PatternDisjunction* loopDisjunction = copyDisjunction(disjunction, true); | 
|  |  | 
|  | // Set alternatives in disjunction to "onceThrough" | 
|  | for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) | 
|  | disjunction->m_alternatives[alt]->setOnceThrough(); | 
|  |  | 
|  | if (loopDisjunction) { | 
|  | // Move alternatives from loopDisjunction to disjunction | 
|  | for (unsigned alt = 0; alt < loopDisjunction->m_alternatives.size(); ++alt) | 
|  | disjunction->m_alternatives.append(loopDisjunction->m_alternatives[alt].release()); | 
|  |  | 
|  | loopDisjunction->m_alternatives.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool containsCapturingTerms(PatternAlternative* alternative, size_t firstTermIndex, size_t lastTermIndex) | 
|  | { | 
|  | Vector<PatternTerm>& terms = alternative->m_terms; | 
|  |  | 
|  | for (size_t termIndex = firstTermIndex; termIndex <= lastTermIndex; ++termIndex) { | 
|  | PatternTerm& term = terms[termIndex]; | 
|  |  | 
|  | if (term.m_capture) | 
|  | return true; | 
|  |  | 
|  | if (term.type == PatternTerm::TypeParenthesesSubpattern) { | 
|  | PatternDisjunction* nestedDisjunction = term.parentheses.disjunction; | 
|  | for (unsigned alt = 0; alt < nestedDisjunction->m_alternatives.size(); ++alt) { | 
|  | if (containsCapturingTerms(nestedDisjunction->m_alternatives[alt].get(), 0, nestedDisjunction->m_alternatives[alt]->m_terms.size() - 1)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This optimization identifies alternatives in the form of | 
|  | // [^].*[?]<expression>.*[$] for expressions that don't have any | 
|  | // capturing terms. The alternative is changed to <expression> | 
|  | // followed by processing of the dot stars to find and adjust the | 
|  | // beginning and the end of the match. | 
|  | void optimizeDotStarWrappedExpressions() | 
|  | { | 
|  | Vector<OwnPtr<PatternAlternative>>& alternatives = m_pattern.m_body->m_alternatives; | 
|  | if (alternatives.size() != 1) | 
|  | return; | 
|  |  | 
|  | PatternAlternative* alternative = alternatives[0].get(); | 
|  | Vector<PatternTerm>& terms = alternative->m_terms; | 
|  | if (terms.size() >= 3) { | 
|  | bool startsWithBOL = false; | 
|  | bool endsWithEOL = false; | 
|  | size_t termIndex, firstExpressionTerm, lastExpressionTerm; | 
|  |  | 
|  | termIndex = 0; | 
|  | if (terms[termIndex].type == PatternTerm::TypeAssertionBOL) { | 
|  | startsWithBOL = true; | 
|  | ++termIndex; | 
|  | } | 
|  |  | 
|  | PatternTerm& firstNonAnchorTerm = terms[termIndex]; | 
|  | if ((firstNonAnchorTerm.type != PatternTerm::TypeCharacterClass) || (firstNonAnchorTerm.characterClass != m_pattern.newlineCharacterClass()) || !((firstNonAnchorTerm.quantityType == QuantifierGreedy) || (firstNonAnchorTerm.quantityType == QuantifierNonGreedy))) | 
|  | return; | 
|  |  | 
|  | firstExpressionTerm = termIndex + 1; | 
|  |  | 
|  | termIndex = terms.size() - 1; | 
|  | if (terms[termIndex].type == PatternTerm::TypeAssertionEOL) { | 
|  | endsWithEOL = true; | 
|  | --termIndex; | 
|  | } | 
|  |  | 
|  | PatternTerm& lastNonAnchorTerm = terms[termIndex]; | 
|  | if ((lastNonAnchorTerm.type != PatternTerm::TypeCharacterClass) || (lastNonAnchorTerm.characterClass != m_pattern.newlineCharacterClass()) || (lastNonAnchorTerm.quantityType != QuantifierGreedy)) | 
|  | return; | 
|  |  | 
|  | lastExpressionTerm = termIndex - 1; | 
|  |  | 
|  | if (firstExpressionTerm > lastExpressionTerm) | 
|  | return; | 
|  |  | 
|  | if (!containsCapturingTerms(alternative, firstExpressionTerm, lastExpressionTerm)) { | 
|  | for (termIndex = terms.size() - 1; termIndex > lastExpressionTerm; --termIndex) | 
|  | terms.remove(termIndex); | 
|  |  | 
|  | for (termIndex = firstExpressionTerm; termIndex > 0; --termIndex) | 
|  | terms.remove(termIndex - 1); | 
|  |  | 
|  | terms.append(PatternTerm(startsWithBOL, endsWithEOL)); | 
|  |  | 
|  | m_pattern.m_containsBOL = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | YarrPattern& m_pattern; | 
|  | PatternAlternative* m_alternative; | 
|  | CharacterClassConstructor m_characterClassConstructor; | 
|  | bool m_invertCharacterClass; | 
|  | bool m_invertParentheticalAssertion; | 
|  | }; | 
|  |  | 
|  | const char* YarrPattern::compile(const String& patternString) | 
|  | { | 
|  | YarrPatternConstructor constructor(*this); | 
|  |  | 
|  | if (const char* error = parse(constructor, patternString)) | 
|  | return error; | 
|  |  | 
|  | // If the pattern contains illegal backreferences reset & reparse. | 
|  | // Quoting Netscape's "What's new in JavaScript 1.2", | 
|  | //      "Note: if the number of left parentheses is less than the number specified | 
|  | //       in \#, the \# is taken as an octal escape as described in the next row." | 
|  | if (containsIllegalBackReference()) { | 
|  | unsigned numSubpatterns = m_numSubpatterns; | 
|  |  | 
|  | constructor.reset(); | 
|  | #if !ASSERT_DISABLED | 
|  | const char* error = | 
|  | #endif | 
|  | parse(constructor, patternString, numSubpatterns); | 
|  |  | 
|  | ASSERT(!error); | 
|  | ASSERT(numSubpatterns == m_numSubpatterns); | 
|  | } | 
|  |  | 
|  | constructor.checkForTerminalParentheses(); | 
|  | constructor.optimizeDotStarWrappedExpressions(); | 
|  | constructor.optimizeBOL(); | 
|  |  | 
|  | constructor.setupOffsets(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | YarrPattern::YarrPattern(const String& pattern, bool ignoreCase, bool multiline, const char** error) | 
|  | : m_ignoreCase(ignoreCase) | 
|  | , m_multiline(multiline) | 
|  | , m_containsBackreferences(false) | 
|  | , m_containsBOL(false) | 
|  | , m_containsUnsignedLengthPattern(false) | 
|  | , m_numSubpatterns(0) | 
|  | , m_maxBackReference(0) | 
|  | , newlineCached(0) | 
|  | , digitsCached(0) | 
|  | , spacesCached(0) | 
|  | , wordcharCached(0) | 
|  | , nondigitsCached(0) | 
|  | , nonspacesCached(0) | 
|  | , nonwordcharCached(0) | 
|  | { | 
|  | *error = compile(pattern); | 
|  | } | 
|  |  | 
|  | } } |