| /* | 
 |  * Copyright (C) 2008-2018 Apple Inc. All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | 
 |  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR | 
 |  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
 |  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
 |  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
 |  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
 |  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 |  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
 |  */ | 
 |  | 
 | #pragma once | 
 |  | 
 | #include "AbortReason.h" | 
 | #include "AssemblerBuffer.h" | 
 | #include "AssemblerCommon.h" | 
 | #include "CPU.h" | 
 | #include "CodeLocation.h" | 
 | #include "JSCJSValue.h" | 
 | #include "JSCPtrTag.h" | 
 | #include "MacroAssemblerCodeRef.h" | 
 | #include "MacroAssemblerHelpers.h" | 
 | #include "Options.h" | 
 | #include <wtf/CryptographicallyRandomNumber.h> | 
 | #include <wtf/Noncopyable.h> | 
 | #include <wtf/SharedTask.h> | 
 | #include <wtf/Vector.h> | 
 | #include <wtf/WeakRandom.h> | 
 |  | 
 | namespace JSC { | 
 |  | 
 | #if ENABLE(ASSEMBLER) | 
 |  | 
 | class AllowMacroScratchRegisterUsage; | 
 | class DisallowMacroScratchRegisterUsage; | 
 | class LinkBuffer; | 
 | class Watchpoint; | 
 | namespace DFG { | 
 | struct OSRExit; | 
 | } | 
 |  | 
 | class AbstractMacroAssemblerBase { | 
 |     WTF_MAKE_FAST_ALLOCATED; | 
 | public: | 
 |     enum StatusCondition { | 
 |         Success, | 
 |         Failure | 
 |     }; | 
 |      | 
 |     static StatusCondition invert(StatusCondition condition) | 
 |     { | 
 |         switch (condition) { | 
 |         case Success: | 
 |             return Failure; | 
 |         case Failure: | 
 |             return Success; | 
 |         } | 
 |         RELEASE_ASSERT_NOT_REACHED(); | 
 |         return Success; | 
 |     } | 
 | }; | 
 |  | 
 | template <class AssemblerType> | 
 | class AbstractMacroAssembler : public AbstractMacroAssemblerBase { | 
 | public: | 
 |     typedef AbstractMacroAssembler<AssemblerType> AbstractMacroAssemblerType; | 
 |     typedef AssemblerType AssemblerType_T; | 
 |  | 
 |     template<PtrTag tag> using CodePtr = MacroAssemblerCodePtr<tag>; | 
 |     template<PtrTag tag> using CodeRef = MacroAssemblerCodeRef<tag>; | 
 |  | 
 |     enum class CPUIDCheckState { | 
 |         NotChecked, | 
 |         Clear, | 
 |         Set | 
 |     }; | 
 |  | 
 |     class Jump; | 
 |  | 
 |     typedef typename AssemblerType::RegisterID RegisterID; | 
 |     typedef typename AssemblerType::SPRegisterID SPRegisterID; | 
 |     typedef typename AssemblerType::FPRegisterID FPRegisterID; | 
 |      | 
 |     static constexpr RegisterID firstRegister() { return AssemblerType::firstRegister(); } | 
 |     static constexpr RegisterID lastRegister() { return AssemblerType::lastRegister(); } | 
 |     static constexpr unsigned numberOfRegisters() { return AssemblerType::numberOfRegisters(); } | 
 |     static const char* gprName(RegisterID id) { return AssemblerType::gprName(id); } | 
 |  | 
 |     static constexpr SPRegisterID firstSPRegister() { return AssemblerType::firstSPRegister(); } | 
 |     static constexpr SPRegisterID lastSPRegister() { return AssemblerType::lastSPRegister(); } | 
 |     static constexpr unsigned numberOfSPRegisters() { return AssemblerType::numberOfSPRegisters(); } | 
 |     static const char* sprName(SPRegisterID id) { return AssemblerType::sprName(id); } | 
 |  | 
 |     static constexpr FPRegisterID firstFPRegister() { return AssemblerType::firstFPRegister(); } | 
 |     static constexpr FPRegisterID lastFPRegister() { return AssemblerType::lastFPRegister(); } | 
 |     static constexpr unsigned numberOfFPRegisters() { return AssemblerType::numberOfFPRegisters(); } | 
 |     static const char* fprName(FPRegisterID id) { return AssemblerType::fprName(id); } | 
 |  | 
 |     // Section 1: MacroAssembler operand types | 
 |     // | 
 |     // The following types are used as operands to MacroAssembler operations, | 
 |     // describing immediate  and memory operands to the instructions to be planted. | 
 |  | 
 |     enum Scale { | 
 |         TimesOne, | 
 |         TimesTwo, | 
 |         TimesFour, | 
 |         TimesEight, | 
 |         ScalePtr = isAddress64Bit() ? TimesEight : TimesFour, | 
 |     }; | 
 |      | 
 |     struct BaseIndex; | 
 |      | 
 |     static RegisterID withSwappedRegister(RegisterID original, RegisterID left, RegisterID right) | 
 |     { | 
 |         if (original == left) | 
 |             return right; | 
 |         if (original == right) | 
 |             return left; | 
 |         return original; | 
 |     } | 
 |      | 
 |     // Address: | 
 |     // | 
 |     // Describes a simple base-offset address. | 
 |     struct Address { | 
 |         explicit Address(RegisterID base, int32_t offset = 0) | 
 |             : base(base) | 
 |             , offset(offset) | 
 |         { | 
 |         } | 
 |          | 
 |         Address withOffset(int32_t additionalOffset) | 
 |         { | 
 |             return Address(base, offset + additionalOffset); | 
 |         } | 
 |          | 
 |         Address withSwappedRegister(RegisterID left, RegisterID right) | 
 |         { | 
 |             return Address(AbstractMacroAssembler::withSwappedRegister(base, left, right), offset); | 
 |         } | 
 |          | 
 |         BaseIndex indexedBy(RegisterID index, Scale) const; | 
 |          | 
 |         RegisterID base; | 
 |         int32_t offset; | 
 |     }; | 
 |  | 
 |     struct ExtendedAddress { | 
 |         explicit ExtendedAddress(RegisterID base, intptr_t offset = 0) | 
 |             : base(base) | 
 |             , offset(offset) | 
 |         { | 
 |         } | 
 |          | 
 |         RegisterID base; | 
 |         intptr_t offset; | 
 |     }; | 
 |  | 
 |     // ImplicitAddress: | 
 |     // | 
 |     // This class is used for explicit 'load' and 'store' operations | 
 |     // (as opposed to situations in which a memory operand is provided | 
 |     // to a generic operation, such as an integer arithmetic instruction). | 
 |     // | 
 |     // In the case of a load (or store) operation we want to permit | 
 |     // addresses to be implicitly constructed, e.g. the two calls: | 
 |     // | 
 |     //     load32(Address(addrReg), destReg); | 
 |     //     load32(addrReg, destReg); | 
 |     // | 
 |     // Are equivalent, and the explicit wrapping of the Address in the former | 
 |     // is unnecessary. | 
 |     struct ImplicitAddress { | 
 |         ImplicitAddress(RegisterID base) | 
 |             : base(base) | 
 |             , offset(0) | 
 |         { | 
 |             ASSERT(base != RegisterID::InvalidGPRReg); | 
 |         } | 
 |  | 
 |         ImplicitAddress(Address address) | 
 |             : base(address.base) | 
 |             , offset(address.offset) | 
 |         { | 
 |             ASSERT(base != RegisterID::InvalidGPRReg); | 
 |         } | 
 |  | 
 |         RegisterID base; | 
 |         int32_t offset; | 
 |     }; | 
 |  | 
 |     // BaseIndex: | 
 |     // | 
 |     // Describes a complex addressing mode. | 
 |     struct BaseIndex { | 
 |         BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) | 
 |             : base(base) | 
 |             , index(index) | 
 |             , scale(scale) | 
 |             , offset(offset) | 
 |         { | 
 |         } | 
 |          | 
 |         RegisterID base; | 
 |         RegisterID index; | 
 |         Scale scale; | 
 |         int32_t offset; | 
 |          | 
 |         BaseIndex withOffset(int32_t additionalOffset) | 
 |         { | 
 |             return BaseIndex(base, index, scale, offset + additionalOffset); | 
 |         } | 
 |  | 
 |         BaseIndex withSwappedRegister(RegisterID left, RegisterID right) | 
 |         { | 
 |             return BaseIndex(AbstractMacroAssembler::withSwappedRegister(base, left, right), AbstractMacroAssembler::withSwappedRegister(index, left, right), scale, offset); | 
 |         } | 
 |     }; | 
 |  | 
 |     // AbsoluteAddress: | 
 |     // | 
 |     // Describes an memory operand given by a pointer.  For regular load & store | 
 |     // operations an unwrapped void* will be used, rather than using this. | 
 |     struct AbsoluteAddress { | 
 |         explicit AbsoluteAddress(const void* ptr) | 
 |             : m_ptr(ptr) | 
 |         { | 
 |         } | 
 |  | 
 |         const void* m_ptr; | 
 |     }; | 
 |  | 
 |     // TrustedImm: | 
 |     // | 
 |     // An empty super class of each of the TrustedImm types. This class is used for template overloads | 
 |     // on a TrustedImm type via std::is_base_of. | 
 |     struct TrustedImm { }; | 
 |  | 
 |     // TrustedImmPtr: | 
 |     // | 
 |     // A pointer sized immediate operand to an instruction - this is wrapped | 
 |     // in a class requiring explicit construction in order to differentiate | 
 |     // from pointers used as absolute addresses to memory operations | 
 |     struct TrustedImmPtr : public TrustedImm { | 
 |         TrustedImmPtr() { } | 
 |          | 
 |         explicit TrustedImmPtr(const void* value) | 
 |             : m_value(value) | 
 |         { | 
 |         } | 
 |  | 
 |         template<typename ReturnType, typename... Arguments> | 
 |         explicit TrustedImmPtr(ReturnType(*value)(Arguments...)) | 
 |             : m_value(reinterpret_cast<void*>(value)) | 
 |         { | 
 |         } | 
 |  | 
 |         explicit TrustedImmPtr(std::nullptr_t) | 
 |         { | 
 |         } | 
 |  | 
 |         explicit TrustedImmPtr(size_t value) | 
 |             : m_value(reinterpret_cast<void*>(value)) | 
 |         { | 
 |         } | 
 |  | 
 |         intptr_t asIntptr() | 
 |         { | 
 |             return reinterpret_cast<intptr_t>(m_value); | 
 |         } | 
 |  | 
 |         void* asPtr() | 
 |         { | 
 |             return const_cast<void*>(m_value); | 
 |         } | 
 |  | 
 |         const void* m_value { nullptr }; | 
 |     }; | 
 |  | 
 |     struct ImmPtr : private TrustedImmPtr | 
 |     { | 
 |         explicit ImmPtr(const void* value) | 
 |             : TrustedImmPtr(value) | 
 |         { | 
 |         } | 
 |  | 
 |         TrustedImmPtr asTrustedImmPtr() { return *this; } | 
 |     }; | 
 |  | 
 |     // TrustedImm32: | 
 |     // | 
 |     // A 32bit immediate operand to an instruction - this is wrapped in a | 
 |     // class requiring explicit construction in order to prevent RegisterIDs | 
 |     // (which are implemented as an enum) from accidentally being passed as | 
 |     // immediate values. | 
 |     struct TrustedImm32 : public TrustedImm { | 
 |         TrustedImm32() { } | 
 |          | 
 |         explicit TrustedImm32(int32_t value) | 
 |             : m_value(value) | 
 |         { | 
 |         } | 
 |  | 
 | #if !CPU(X86_64) | 
 |         explicit TrustedImm32(TrustedImmPtr ptr) | 
 |             : m_value(ptr.asIntptr()) | 
 |         { | 
 |         } | 
 | #endif | 
 |  | 
 |         int32_t m_value; | 
 |     }; | 
 |  | 
 |  | 
 |     struct Imm32 : private TrustedImm32 { | 
 |         explicit Imm32(int32_t value) | 
 |             : TrustedImm32(value) | 
 |         { | 
 |         } | 
 | #if !CPU(X86_64) | 
 |         explicit Imm32(TrustedImmPtr ptr) | 
 |             : TrustedImm32(ptr) | 
 |         { | 
 |         } | 
 | #endif | 
 |         const TrustedImm32& asTrustedImm32() const { return *this; } | 
 |  | 
 |     }; | 
 |      | 
 |     // TrustedImm64: | 
 |     // | 
 |     // A 64bit immediate operand to an instruction - this is wrapped in a | 
 |     // class requiring explicit construction in order to prevent RegisterIDs | 
 |     // (which are implemented as an enum) from accidentally being passed as | 
 |     // immediate values. | 
 |     struct TrustedImm64 : TrustedImm { | 
 |         TrustedImm64() { } | 
 |          | 
 |         explicit TrustedImm64(int64_t value) | 
 |             : m_value(value) | 
 |         { | 
 |         } | 
 |  | 
 | #if CPU(X86_64) || CPU(ARM64) | 
 |         explicit TrustedImm64(TrustedImmPtr ptr) | 
 |             : m_value(ptr.asIntptr()) | 
 |         { | 
 |         } | 
 | #endif | 
 |  | 
 |         int64_t m_value; | 
 |     }; | 
 |  | 
 |     struct Imm64 : private TrustedImm64 | 
 |     { | 
 |         explicit Imm64(int64_t value) | 
 |             : TrustedImm64(value) | 
 |         { | 
 |         } | 
 | #if CPU(X86_64) || CPU(ARM64) | 
 |         explicit Imm64(TrustedImmPtr ptr) | 
 |             : TrustedImm64(ptr) | 
 |         { | 
 |         } | 
 | #endif | 
 |         const TrustedImm64& asTrustedImm64() const { return *this; } | 
 |     }; | 
 |      | 
 |     // Section 2: MacroAssembler code buffer handles | 
 |     // | 
 |     // The following types are used to reference items in the code buffer | 
 |     // during JIT code generation.  For example, the type Jump is used to | 
 |     // track the location of a jump instruction so that it may later be | 
 |     // linked to a label marking its destination. | 
 |  | 
 |  | 
 |     // Label: | 
 |     // | 
 |     // A Label records a point in the generated instruction stream, typically such that | 
 |     // it may be used as a destination for a jump. | 
 |     class Label { | 
 |         friend class AbstractMacroAssembler<AssemblerType>; | 
 |         friend struct DFG::OSRExit; | 
 |         friend class Jump; | 
 |         template<PtrTag> friend class MacroAssemblerCodeRef; | 
 |         friend class LinkBuffer; | 
 |         friend class Watchpoint; | 
 |  | 
 |     public: | 
 |         Label() | 
 |         { | 
 |         } | 
 |  | 
 |         Label(AbstractMacroAssemblerType* masm) | 
 |             : m_label(masm->m_assembler.label()) | 
 |         { | 
 |             masm->invalidateAllTempRegisters(); | 
 |         } | 
 |  | 
 |         bool operator==(const Label& other) const { return m_label == other.m_label; } | 
 |  | 
 |         bool isSet() const { return m_label.isSet(); } | 
 |     private: | 
 |         AssemblerLabel m_label; | 
 |     }; | 
 |      | 
 |     // ConvertibleLoadLabel: | 
 |     // | 
 |     // A ConvertibleLoadLabel records a loadPtr instruction that can be patched to an addPtr | 
 |     // so that: | 
 |     // | 
 |     // loadPtr(Address(a, i), b) | 
 |     // | 
 |     // becomes: | 
 |     // | 
 |     // addPtr(TrustedImmPtr(i), a, b) | 
 |     class ConvertibleLoadLabel { | 
 |         friend class AbstractMacroAssembler<AssemblerType>; | 
 |         friend class LinkBuffer; | 
 |          | 
 |     public: | 
 |         ConvertibleLoadLabel() | 
 |         { | 
 |         } | 
 |          | 
 |         ConvertibleLoadLabel(AbstractMacroAssemblerType* masm) | 
 |             : m_label(masm->m_assembler.labelIgnoringWatchpoints()) | 
 |         { | 
 |         } | 
 |          | 
 |         bool isSet() const { return m_label.isSet(); } | 
 |     private: | 
 |         AssemblerLabel m_label; | 
 |     }; | 
 |  | 
 |     // DataLabelPtr: | 
 |     // | 
 |     // A DataLabelPtr is used to refer to a location in the code containing a pointer to be | 
 |     // patched after the code has been generated. | 
 |     class DataLabelPtr { | 
 |         friend class AbstractMacroAssembler<AssemblerType>; | 
 |         friend class LinkBuffer; | 
 |     public: | 
 |         DataLabelPtr() | 
 |         { | 
 |         } | 
 |  | 
 |         DataLabelPtr(AbstractMacroAssemblerType* masm) | 
 |             : m_label(masm->m_assembler.label()) | 
 |         { | 
 |         } | 
 |  | 
 |         bool isSet() const { return m_label.isSet(); } | 
 |          | 
 |     private: | 
 |         AssemblerLabel m_label; | 
 |     }; | 
 |  | 
 |     // DataLabel32: | 
 |     // | 
 |     // A DataLabel32 is used to refer to a location in the code containing a 32-bit constant to be | 
 |     // patched after the code has been generated. | 
 |     class DataLabel32 { | 
 |         friend class AbstractMacroAssembler<AssemblerType>; | 
 |         friend class LinkBuffer; | 
 |     public: | 
 |         DataLabel32() | 
 |         { | 
 |         } | 
 |  | 
 |         DataLabel32(AbstractMacroAssemblerType* masm) | 
 |             : m_label(masm->m_assembler.label()) | 
 |         { | 
 |         } | 
 |  | 
 |         AssemblerLabel label() const { return m_label; } | 
 |  | 
 |     private: | 
 |         AssemblerLabel m_label; | 
 |     }; | 
 |  | 
 |     // DataLabelCompact: | 
 |     // | 
 |     // A DataLabelCompact is used to refer to a location in the code containing a | 
 |     // compact immediate to be patched after the code has been generated. | 
 |     class DataLabelCompact { | 
 |         friend class AbstractMacroAssembler<AssemblerType>; | 
 |         friend class LinkBuffer; | 
 |     public: | 
 |         DataLabelCompact() | 
 |         { | 
 |         } | 
 |          | 
 |         DataLabelCompact(AbstractMacroAssemblerType* masm) | 
 |             : m_label(masm->m_assembler.label()) | 
 |         { | 
 |         } | 
 |  | 
 |         DataLabelCompact(AssemblerLabel label) | 
 |             : m_label(label) | 
 |         { | 
 |         } | 
 |  | 
 |         AssemblerLabel label() const { return m_label; } | 
 |  | 
 |     private: | 
 |         AssemblerLabel m_label; | 
 |     }; | 
 |  | 
 |     // Call: | 
 |     // | 
 |     // A Call object is a reference to a call instruction that has been planted | 
 |     // into the code buffer - it is typically used to link the call, setting the | 
 |     // relative offset such that when executed it will call to the desired | 
 |     // destination. | 
 |     class Call { | 
 |         friend class AbstractMacroAssembler<AssemblerType>; | 
 |  | 
 |     public: | 
 |         enum Flags { | 
 |             None = 0x0, | 
 |             Linkable = 0x1, | 
 |             Near = 0x2, | 
 |             Tail = 0x4, | 
 |             LinkableNear = 0x3, | 
 |             LinkableNearTail = 0x7, | 
 |         }; | 
 |  | 
 |         Call() | 
 |             : m_flags(None) | 
 |         { | 
 |         } | 
 |          | 
 |         Call(AssemblerLabel jmp, Flags flags) | 
 |             : m_label(jmp) | 
 |             , m_flags(flags) | 
 |         { | 
 |         } | 
 |  | 
 |         bool isFlagSet(Flags flag) | 
 |         { | 
 |             return m_flags & flag; | 
 |         } | 
 |  | 
 |         static Call fromTailJump(Jump jump) | 
 |         { | 
 |             return Call(jump.m_label, Linkable); | 
 |         } | 
 |  | 
 |         AssemblerLabel m_label; | 
 |     private: | 
 |         Flags m_flags; | 
 |     }; | 
 |  | 
 |     // Jump: | 
 |     // | 
 |     // A jump object is a reference to a jump instruction that has been planted | 
 |     // into the code buffer - it is typically used to link the jump, setting the | 
 |     // relative offset such that when executed it will jump to the desired | 
 |     // destination. | 
 |     class Jump { | 
 |         friend class AbstractMacroAssembler<AssemblerType>; | 
 |         friend class Call; | 
 |         friend struct DFG::OSRExit; | 
 |         friend class LinkBuffer; | 
 |     public: | 
 |         Jump() | 
 |         { | 
 |         } | 
 |          | 
 | #if CPU(ARM_THUMB2) | 
 |         // Fixme: this information should be stored in the instruction stream, not in the Jump object. | 
 |         Jump(AssemblerLabel jmp, ARMv7Assembler::JumpType type = ARMv7Assembler::JumpNoCondition, ARMv7Assembler::Condition condition = ARMv7Assembler::ConditionInvalid) | 
 |             : m_label(jmp) | 
 |             , m_type(type) | 
 |             , m_condition(condition) | 
 |         { | 
 |         } | 
 | #elif CPU(ARM64) | 
 |         Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type = ARM64Assembler::JumpNoCondition, ARM64Assembler::Condition condition = ARM64Assembler::ConditionInvalid) | 
 |             : m_label(jmp) | 
 |             , m_type(type) | 
 |             , m_condition(condition) | 
 |         { | 
 |         } | 
 |  | 
 |         Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, bool is64Bit, ARM64Assembler::RegisterID compareRegister) | 
 |             : m_label(jmp) | 
 |             , m_type(type) | 
 |             , m_condition(condition) | 
 |             , m_is64Bit(is64Bit) | 
 |             , m_compareRegister(compareRegister) | 
 |         { | 
 |             ASSERT((type == ARM64Assembler::JumpCompareAndBranch) || (type == ARM64Assembler::JumpCompareAndBranchFixedSize)); | 
 |         } | 
 |  | 
 |         Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, unsigned bitNumber, ARM64Assembler::RegisterID compareRegister) | 
 |             : m_label(jmp) | 
 |             , m_type(type) | 
 |             , m_condition(condition) | 
 |             , m_bitNumber(bitNumber) | 
 |             , m_compareRegister(compareRegister) | 
 |         { | 
 |             ASSERT((type == ARM64Assembler::JumpTestBit) || (type == ARM64Assembler::JumpTestBitFixedSize)); | 
 |         } | 
 | #else | 
 |         Jump(AssemblerLabel jmp)     | 
 |             : m_label(jmp) | 
 |         { | 
 |         } | 
 | #endif | 
 |          | 
 |         Label label() const | 
 |         { | 
 |             Label result; | 
 |             result.m_label = m_label; | 
 |             return result; | 
 |         } | 
 |  | 
 |         void link(AbstractMacroAssemblerType* masm) const | 
 |         { | 
 |             masm->invalidateAllTempRegisters(); | 
 |  | 
 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) | 
 |             masm->checkRegisterAllocationAgainstBranchRange(m_label.m_offset, masm->debugOffset()); | 
 | #endif | 
 |  | 
 | #if CPU(ARM_THUMB2) | 
 |             masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); | 
 | #elif CPU(ARM64) | 
 |             if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) | 
 |                 masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_is64Bit, m_compareRegister); | 
 |             else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) | 
 |                 masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_bitNumber, m_compareRegister); | 
 |             else | 
 |                 masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); | 
 | #else | 
 |             masm->m_assembler.linkJump(m_label, masm->m_assembler.label()); | 
 | #endif | 
 |         } | 
 |          | 
 |         void linkTo(Label label, AbstractMacroAssemblerType* masm) const | 
 |         { | 
 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) | 
 |             masm->checkRegisterAllocationAgainstBranchRange(label.m_label.m_offset, m_label.m_offset); | 
 | #endif | 
 |  | 
 | #if CPU(ARM_THUMB2) | 
 |             masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); | 
 | #elif CPU(ARM64) | 
 |             if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) | 
 |                 masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_is64Bit, m_compareRegister); | 
 |             else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) | 
 |                 masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_bitNumber, m_compareRegister); | 
 |             else | 
 |                 masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); | 
 | #else | 
 |             masm->m_assembler.linkJump(m_label, label.m_label); | 
 | #endif | 
 |         } | 
 |  | 
 |         bool isSet() const { return m_label.isSet(); } | 
 |  | 
 |     private: | 
 |         AssemblerLabel m_label; | 
 | #if CPU(ARM_THUMB2) | 
 |         ARMv7Assembler::JumpType m_type; | 
 |         ARMv7Assembler::Condition m_condition; | 
 | #elif CPU(ARM64) | 
 |         ARM64Assembler::JumpType m_type; | 
 |         ARM64Assembler::Condition m_condition; | 
 |         bool m_is64Bit; | 
 |         unsigned m_bitNumber; | 
 |         ARM64Assembler::RegisterID m_compareRegister; | 
 | #endif | 
 |     }; | 
 |  | 
 |     struct PatchableJump { | 
 |         PatchableJump() | 
 |         { | 
 |         } | 
 |  | 
 |         explicit PatchableJump(Jump jump) | 
 |             : m_jump(jump) | 
 |         { | 
 |         } | 
 |  | 
 |         operator Jump&() { return m_jump; } | 
 |  | 
 |         Jump m_jump; | 
 |     }; | 
 |  | 
 |     // JumpList: | 
 |     // | 
 |     // A JumpList is a set of Jump objects. | 
 |     // All jumps in the set will be linked to the same destination. | 
 |     class JumpList { | 
 |     public: | 
 |         typedef Vector<Jump, 2> JumpVector; | 
 |          | 
 |         JumpList() { } | 
 |          | 
 |         JumpList(Jump jump) | 
 |         { | 
 |             if (jump.isSet()) | 
 |                 append(jump); | 
 |         } | 
 |  | 
 |         void link(AbstractMacroAssemblerType* masm) const | 
 |         { | 
 |             size_t size = m_jumps.size(); | 
 |             for (size_t i = 0; i < size; ++i) | 
 |                 m_jumps[i].link(masm); | 
 |         } | 
 |          | 
 |         void linkTo(Label label, AbstractMacroAssemblerType* masm) const | 
 |         { | 
 |             size_t size = m_jumps.size(); | 
 |             for (size_t i = 0; i < size; ++i) | 
 |                 m_jumps[i].linkTo(label, masm); | 
 |         } | 
 |          | 
 |         void append(Jump jump) | 
 |         { | 
 |             if (jump.isSet()) | 
 |                 m_jumps.append(jump); | 
 |         } | 
 |          | 
 |         void append(const JumpList& other) | 
 |         { | 
 |             m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); | 
 |         } | 
 |  | 
 |         bool empty() const | 
 |         { | 
 |             return !m_jumps.size(); | 
 |         } | 
 |          | 
 |         void clear() | 
 |         { | 
 |             m_jumps.clear(); | 
 |         } | 
 |          | 
 |         const JumpVector& jumps() const { return m_jumps; } | 
 |  | 
 |     private: | 
 |         JumpVector m_jumps; | 
 |     }; | 
 |  | 
 |  | 
 |     // Section 3: Misc admin methods | 
 | #if ENABLE(DFG_JIT) | 
 |     Label labelIgnoringWatchpoints() | 
 |     { | 
 |         Label result; | 
 |         result.m_label = m_assembler.labelIgnoringWatchpoints(); | 
 |         return result; | 
 |     } | 
 | #else | 
 |     Label labelIgnoringWatchpoints() | 
 |     { | 
 |         return label(); | 
 |     } | 
 | #endif | 
 |      | 
 |     Label label() | 
 |     { | 
 |         return Label(this); | 
 |     } | 
 |      | 
 |     void padBeforePatch() | 
 |     { | 
 |         // Rely on the fact that asking for a label already does the padding. | 
 |         (void)label(); | 
 |     } | 
 |      | 
 |     Label watchpointLabel() | 
 |     { | 
 |         Label result; | 
 |         result.m_label = m_assembler.labelForWatchpoint(); | 
 |         return result; | 
 |     } | 
 |      | 
 |     Label align() | 
 |     { | 
 |         m_assembler.align(16); | 
 |         return Label(this); | 
 |     } | 
 |  | 
 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) | 
 |     class RegisterAllocationOffset { | 
 |     public: | 
 |         RegisterAllocationOffset(unsigned offset) | 
 |             : m_offset(offset) | 
 |         { | 
 |         } | 
 |  | 
 |         void checkOffsets(unsigned low, unsigned high) | 
 |         { | 
 |             RELEASE_ASSERT_WITH_MESSAGE(!(low <= m_offset && m_offset <= high), "Unsafe branch over register allocation at instruction offset %u in jump offset range %u..%u", m_offset, low, high); | 
 |         } | 
 |  | 
 |     private: | 
 |         unsigned m_offset; | 
 |     }; | 
 |  | 
 |     void addRegisterAllocationAtOffset(unsigned offset) | 
 |     { | 
 |         m_registerAllocationForOffsets.append(RegisterAllocationOffset(offset)); | 
 |     } | 
 |  | 
 |     void clearRegisterAllocationOffsets() | 
 |     { | 
 |         m_registerAllocationForOffsets.clear(); | 
 |     } | 
 |  | 
 |     void checkRegisterAllocationAgainstBranchRange(unsigned offset1, unsigned offset2) | 
 |     { | 
 |         if (offset1 > offset2) | 
 |             std::swap(offset1, offset2); | 
 |  | 
 |         size_t size = m_registerAllocationForOffsets.size(); | 
 |         for (size_t i = 0; i < size; ++i) | 
 |             m_registerAllocationForOffsets[i].checkOffsets(offset1, offset2); | 
 |     } | 
 | #endif | 
 |  | 
 |     template<typename T, typename U> | 
 |     static ptrdiff_t differenceBetween(T from, U to) | 
 |     { | 
 |         return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); | 
 |     } | 
 |  | 
 |     template<PtrTag aTag, PtrTag bTag> | 
 |     static ptrdiff_t differenceBetweenCodePtr(const MacroAssemblerCodePtr<aTag>& a, const MacroAssemblerCodePtr<bTag>& b) | 
 |     { | 
 |         return b.template dataLocation<ptrdiff_t>() - a.template dataLocation<ptrdiff_t>(); | 
 |     } | 
 |  | 
 |     unsigned debugOffset() { return m_assembler.debugOffset(); } | 
 |  | 
 |     ALWAYS_INLINE static void cacheFlush(void* code, size_t size) | 
 |     { | 
 |         AssemblerType::cacheFlush(code, size); | 
 |     } | 
 |  | 
 |     template<PtrTag tag> | 
 |     static void linkJump(void* code, Jump jump, CodeLocationLabel<tag> target) | 
 |     { | 
 |         AssemblerType::linkJump(code, jump.m_label, target.dataLocation()); | 
 |     } | 
 |  | 
 |     static void linkPointer(void* code, AssemblerLabel label, void* value) | 
 |     { | 
 |         AssemblerType::linkPointer(code, label, value); | 
 |     } | 
 |  | 
 |     template<PtrTag tag> | 
 |     static void linkPointer(void* code, AssemblerLabel label, MacroAssemblerCodePtr<tag> value) | 
 |     { | 
 |         AssemblerType::linkPointer(code, label, value.executableAddress()); | 
 |     } | 
 |  | 
 |     template<PtrTag tag> | 
 |     static void* getLinkerAddress(void* code, AssemblerLabel label) | 
 |     { | 
 |         return tagCodePtr(AssemblerType::getRelocatedAddress(code, label), tag); | 
 |     } | 
 |  | 
 |     static unsigned getLinkerCallReturnOffset(Call call) | 
 |     { | 
 |         return AssemblerType::getCallReturnOffset(call.m_label); | 
 |     } | 
 |  | 
 |     template<PtrTag jumpTag, PtrTag destTag> | 
 |     static void repatchJump(CodeLocationJump<jumpTag> jump, CodeLocationLabel<destTag> destination) | 
 |     { | 
 |         AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation()); | 
 |     } | 
 |      | 
 |     template<PtrTag jumpTag> | 
 |     static void repatchJumpToNop(CodeLocationJump<jumpTag> jump) | 
 |     { | 
 |         AssemblerType::relinkJumpToNop(jump.dataLocation()); | 
 |     } | 
 |  | 
 |     template<PtrTag callTag, PtrTag destTag> | 
 |     static void repatchNearCall(CodeLocationNearCall<callTag> nearCall, CodeLocationLabel<destTag> destination) | 
 |     { | 
 |         switch (nearCall.callMode()) { | 
 |         case NearCallMode::Tail: | 
 |             AssemblerType::relinkJump(nearCall.dataLocation(), destination.dataLocation()); | 
 |             return; | 
 |         case NearCallMode::Regular: | 
 |             AssemblerType::relinkCall(nearCall.dataLocation(), destination.untaggedExecutableAddress()); | 
 |             return; | 
 |         } | 
 |         RELEASE_ASSERT_NOT_REACHED(); | 
 |     } | 
 |  | 
 |     template<PtrTag callTag, PtrTag destTag> | 
 |     static CodeLocationLabel<destTag> prepareForAtomicRepatchNearCallConcurrently(CodeLocationNearCall<callTag> nearCall, CodeLocationLabel<destTag> destination) | 
 |     { | 
 | #if USE(JUMP_ISLANDS) | 
 |         switch (nearCall.callMode()) { | 
 |         case NearCallMode::Tail: | 
 |             return CodeLocationLabel<destTag>(tagCodePtr<destTag>(AssemblerType::prepareForAtomicRelinkJumpConcurrently(nearCall.dataLocation(), destination.dataLocation()))); | 
 |         case NearCallMode::Regular: | 
 |             return CodeLocationLabel<destTag>(tagCodePtr<destTag>(AssemblerType::prepareForAtomicRelinkCallConcurrently(nearCall.dataLocation(), destination.untaggedExecutableAddress()))); | 
 |         } | 
 | #else | 
 |         UNUSED_PARAM(nearCall); | 
 |         return destination; | 
 | #endif | 
 |     } | 
 |  | 
 |     template<PtrTag tag> | 
 |     static void repatchCompact(CodeLocationDataLabelCompact<tag> dataLabelCompact, int32_t value) | 
 |     { | 
 |         AssemblerType::repatchCompact(dataLabelCompact.template dataLocation(), value); | 
 |     } | 
 |  | 
 |     template<PtrTag tag> | 
 |     static void repatchInt32(CodeLocationDataLabel32<tag> dataLabel32, int32_t value) | 
 |     { | 
 |         AssemblerType::repatchInt32(dataLabel32.dataLocation(), value); | 
 |     } | 
 |  | 
 |     template<PtrTag tag> | 
 |     static void repatchPointer(CodeLocationDataLabelPtr<tag> dataLabelPtr, void* value) | 
 |     { | 
 |         AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value); | 
 |     } | 
 |  | 
 |     template<PtrTag tag> | 
 |     static void* readPointer(CodeLocationDataLabelPtr<tag> dataLabelPtr) | 
 |     { | 
 |         return AssemblerType::readPointer(dataLabelPtr.dataLocation()); | 
 |     } | 
 |      | 
 |     template<PtrTag tag> | 
 |     static void replaceWithLoad(CodeLocationConvertibleLoad<tag> label) | 
 |     { | 
 |         AssemblerType::replaceWithLoad(label.dataLocation()); | 
 |     } | 
 |  | 
 |     template<PtrTag tag> | 
 |     static void replaceWithAddressComputation(CodeLocationConvertibleLoad<tag> label) | 
 |     { | 
 |         AssemblerType::replaceWithAddressComputation(label.dataLocation()); | 
 |     } | 
 |  | 
 |     template<typename Functor> | 
 |     void addLinkTask(const Functor& functor) | 
 |     { | 
 |         m_linkTasks.append(createSharedTask<void(LinkBuffer&)>(functor)); | 
 |     } | 
 |  | 
 | #if COMPILER(GCC) | 
 |     // Workaround for GCC demanding that memcpy "must be the name of a function with external linkage". | 
 |     static void* memcpy(void* dst, const void* src, size_t size) | 
 |     { | 
 |         return std::memcpy(dst, src, size); | 
 |     } | 
 | #endif | 
 |  | 
 |     void emitNops(size_t memoryToFillWithNopsInBytes) | 
 |     { | 
 | #if CPU(ARM64) | 
 |         RELEASE_ASSERT(memoryToFillWithNopsInBytes % 4 == 0); | 
 |         for (unsigned i = 0; i < memoryToFillWithNopsInBytes / 4; ++i) | 
 |             m_assembler.nop(); | 
 | #else | 
 |         AssemblerBuffer& buffer = m_assembler.buffer(); | 
 |         size_t startCodeSize = buffer.codeSize(); | 
 |         size_t targetCodeSize = startCodeSize + memoryToFillWithNopsInBytes; | 
 |         buffer.ensureSpace(memoryToFillWithNopsInBytes); | 
 |         AssemblerType::template fillNops<memcpy>(static_cast<char*>(buffer.data()) + startCodeSize, memoryToFillWithNopsInBytes); | 
 |         buffer.setCodeSize(targetCodeSize); | 
 | #endif | 
 |     } | 
 |  | 
 |     ALWAYS_INLINE void tagReturnAddress() { } | 
 |     ALWAYS_INLINE void untagReturnAddress() { } | 
 |  | 
 |     ALWAYS_INLINE void tagPtr(PtrTag, RegisterID) { } | 
 |     ALWAYS_INLINE void tagPtr(RegisterID, RegisterID) { } | 
 |     ALWAYS_INLINE void untagPtr(PtrTag, RegisterID) { } | 
 |     ALWAYS_INLINE void untagPtr(RegisterID, RegisterID) { } | 
 |     ALWAYS_INLINE void removePtrTag(RegisterID) { } | 
 |  | 
 | protected: | 
 |     AbstractMacroAssembler() | 
 |         : m_randomSource(0) | 
 |         , m_assembler() | 
 |     { | 
 |         invalidateAllTempRegisters(); | 
 |     } | 
 |  | 
 |     uint32_t random() | 
 |     { | 
 |         if (!m_randomSourceIsInitialized) { | 
 |             m_randomSourceIsInitialized = true; | 
 |             m_randomSource.setSeed(cryptographicallyRandomNumber()); | 
 |         } | 
 |         return m_randomSource.getUint32(); | 
 |     } | 
 |  | 
 |     bool m_randomSourceIsInitialized { false }; | 
 |     WeakRandom m_randomSource; | 
 | public: | 
 |     AssemblerType m_assembler; | 
 | protected: | 
 |  | 
 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) | 
 |     Vector<RegisterAllocationOffset, 10> m_registerAllocationForOffsets; | 
 | #endif | 
 |  | 
 |     static bool haveScratchRegisterForBlinding() | 
 |     { | 
 |         return false; | 
 |     } | 
 |     static RegisterID scratchRegisterForBlinding() | 
 |     { | 
 |         UNREACHABLE_FOR_PLATFORM(); | 
 |         return firstRegister(); | 
 |     } | 
 |     static bool canBlind() { return false; } | 
 |     static bool shouldBlindForSpecificArch(uint32_t) { return false; } | 
 |     static bool shouldBlindForSpecificArch(uint64_t) { return false; } | 
 |  | 
 |     class CachedTempRegister { | 
 |         friend class DataLabelPtr; | 
 |         friend class DataLabel32; | 
 |         friend class DataLabelCompact; | 
 |         friend class Jump; | 
 |         friend class Label; | 
 |  | 
 |     public: | 
 |         CachedTempRegister(AbstractMacroAssemblerType* masm, RegisterID registerID) | 
 |             : m_masm(masm) | 
 |             , m_registerID(registerID) | 
 |             , m_value(0) | 
 |             , m_validBit(1 << static_cast<unsigned>(registerID)) | 
 |         { | 
 |             ASSERT(static_cast<unsigned>(registerID) < (sizeof(unsigned) * 8)); | 
 |         } | 
 |  | 
 |         ALWAYS_INLINE RegisterID registerIDInvalidate() { invalidate(); return m_registerID; } | 
 |  | 
 |         ALWAYS_INLINE RegisterID registerIDNoInvalidate() { return m_registerID; } | 
 |  | 
 |         bool value(intptr_t& value) | 
 |         { | 
 |             value = m_value; | 
 |             return m_masm->isTempRegisterValid(m_validBit); | 
 |         } | 
 |  | 
 |         void setValue(intptr_t value) | 
 |         { | 
 |             m_value = value; | 
 |             m_masm->setTempRegisterValid(m_validBit); | 
 |         } | 
 |  | 
 |         ALWAYS_INLINE void invalidate() { m_masm->clearTempRegisterValid(m_validBit); } | 
 |  | 
 |     private: | 
 |         AbstractMacroAssemblerType* m_masm; | 
 |         RegisterID m_registerID; | 
 |         intptr_t m_value; | 
 |         unsigned m_validBit; | 
 |     }; | 
 |  | 
 |     ALWAYS_INLINE void invalidateAllTempRegisters() | 
 |     { | 
 |         m_tempRegistersValidBits = 0; | 
 |     } | 
 |  | 
 |     ALWAYS_INLINE bool isTempRegisterValid(unsigned registerMask) | 
 |     { | 
 |         return (m_tempRegistersValidBits & registerMask); | 
 |     } | 
 |  | 
 |     ALWAYS_INLINE void clearTempRegisterValid(unsigned registerMask) | 
 |     { | 
 |         m_tempRegistersValidBits &=  ~registerMask; | 
 |     } | 
 |  | 
 |     ALWAYS_INLINE void setTempRegisterValid(unsigned registerMask) | 
 |     { | 
 |         m_tempRegistersValidBits |= registerMask; | 
 |     } | 
 |  | 
 |     friend class AllowMacroScratchRegisterUsage; | 
 |     friend class AllowMacroScratchRegisterUsageIf; | 
 |     friend class DisallowMacroScratchRegisterUsage; | 
 |     unsigned m_tempRegistersValidBits; | 
 |     bool m_allowScratchRegister { true }; | 
 |  | 
 |     Vector<RefPtr<SharedTask<void(LinkBuffer&)>>> m_linkTasks; | 
 |  | 
 |     friend class LinkBuffer; | 
 | }; // class AbstractMacroAssembler | 
 |  | 
 | template <class AssemblerType> | 
 | inline typename AbstractMacroAssembler<AssemblerType>::BaseIndex | 
 | AbstractMacroAssembler<AssemblerType>::Address::indexedBy( | 
 |     typename AbstractMacroAssembler<AssemblerType>::RegisterID index, | 
 |     typename AbstractMacroAssembler<AssemblerType>::Scale scale) const | 
 | { | 
 |     return BaseIndex(base, index, scale, offset); | 
 | } | 
 |  | 
 | #endif // ENABLE(ASSEMBLER) | 
 |  | 
 | } // namespace JSC | 
 |  | 
 | #if ENABLE(ASSEMBLER) | 
 |  | 
 | namespace WTF { | 
 |  | 
 | class PrintStream; | 
 |  | 
 | void printInternal(PrintStream& out, JSC::AbstractMacroAssemblerBase::StatusCondition); | 
 |  | 
 | } // namespace WTF | 
 |  | 
 | #endif // ENABLE(ASSEMBLER) | 
 |  |