|  | /* SPDX-License-Identifier: GPL-2.0-or-later */ | 
|  | /* | 
|  | * Scatterlist Cryptographic API. | 
|  | * | 
|  | * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> | 
|  | * Copyright (c) 2002 David S. Miller (davem@redhat.com) | 
|  | * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> | 
|  | * | 
|  | * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> | 
|  | * and Nettle, by Niels Möller. | 
|  | */ | 
|  | #ifndef _LINUX_CRYPTO_H | 
|  | #define _LINUX_CRYPTO_H | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/completion.h> | 
|  |  | 
|  | /* | 
|  | * Autoloaded crypto modules should only use a prefixed name to avoid allowing | 
|  | * arbitrary modules to be loaded. Loading from userspace may still need the | 
|  | * unprefixed names, so retains those aliases as well. | 
|  | * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 | 
|  | * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro | 
|  | * expands twice on the same line. Instead, use a separate base name for the | 
|  | * alias. | 
|  | */ | 
|  | #define MODULE_ALIAS_CRYPTO(name)	\ | 
|  | __MODULE_INFO(alias, alias_userspace, name);	\ | 
|  | __MODULE_INFO(alias, alias_crypto, "crypto-" name) | 
|  |  | 
|  | /* | 
|  | * Algorithm masks and types. | 
|  | */ | 
|  | #define CRYPTO_ALG_TYPE_MASK		0x0000000f | 
|  | #define CRYPTO_ALG_TYPE_CIPHER		0x00000001 | 
|  | #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002 | 
|  | #define CRYPTO_ALG_TYPE_AEAD		0x00000003 | 
|  | #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005 | 
|  | #define CRYPTO_ALG_TYPE_KPP		0x00000008 | 
|  | #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a | 
|  | #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b | 
|  | #define CRYPTO_ALG_TYPE_RNG		0x0000000c | 
|  | #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d | 
|  | #define CRYPTO_ALG_TYPE_HASH		0x0000000e | 
|  | #define CRYPTO_ALG_TYPE_SHASH		0x0000000e | 
|  | #define CRYPTO_ALG_TYPE_AHASH		0x0000000f | 
|  |  | 
|  | #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e | 
|  | #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e | 
|  | #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e | 
|  |  | 
|  | #define CRYPTO_ALG_LARVAL		0x00000010 | 
|  | #define CRYPTO_ALG_DEAD			0x00000020 | 
|  | #define CRYPTO_ALG_DYING		0x00000040 | 
|  | #define CRYPTO_ALG_ASYNC		0x00000080 | 
|  |  | 
|  | /* | 
|  | * Set this bit if and only if the algorithm requires another algorithm of | 
|  | * the same type to handle corner cases. | 
|  | */ | 
|  | #define CRYPTO_ALG_NEED_FALLBACK	0x00000100 | 
|  |  | 
|  | /* | 
|  | * Set if the algorithm has passed automated run-time testing.  Note that | 
|  | * if there is no run-time testing for a given algorithm it is considered | 
|  | * to have passed. | 
|  | */ | 
|  |  | 
|  | #define CRYPTO_ALG_TESTED		0x00000400 | 
|  |  | 
|  | /* | 
|  | * Set if the algorithm is an instance that is built from templates. | 
|  | */ | 
|  | #define CRYPTO_ALG_INSTANCE		0x00000800 | 
|  |  | 
|  | /* Set this bit if the algorithm provided is hardware accelerated but | 
|  | * not available to userspace via instruction set or so. | 
|  | */ | 
|  | #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000 | 
|  |  | 
|  | /* | 
|  | * Mark a cipher as a service implementation only usable by another | 
|  | * cipher and never by a normal user of the kernel crypto API | 
|  | */ | 
|  | #define CRYPTO_ALG_INTERNAL		0x00002000 | 
|  |  | 
|  | /* | 
|  | * Set if the algorithm has a ->setkey() method but can be used without | 
|  | * calling it first, i.e. there is a default key. | 
|  | */ | 
|  | #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000 | 
|  |  | 
|  | /* | 
|  | * Don't trigger module loading | 
|  | */ | 
|  | #define CRYPTO_NOLOAD			0x00008000 | 
|  |  | 
|  | /* | 
|  | * Transform masks and values (for crt_flags). | 
|  | */ | 
|  | #define CRYPTO_TFM_NEED_KEY		0x00000001 | 
|  |  | 
|  | #define CRYPTO_TFM_REQ_MASK		0x000fff00 | 
|  | #define CRYPTO_TFM_RES_MASK		0xfff00000 | 
|  |  | 
|  | #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS	0x00000100 | 
|  | #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200 | 
|  | #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400 | 
|  | #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000 | 
|  | #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000 | 
|  | #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000 | 
|  | #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000 | 
|  | #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000 | 
|  |  | 
|  | /* | 
|  | * Miscellaneous stuff. | 
|  | */ | 
|  | #define CRYPTO_MAX_ALG_NAME		128 | 
|  |  | 
|  | /* | 
|  | * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual | 
|  | * declaration) is used to ensure that the crypto_tfm context structure is | 
|  | * aligned correctly for the given architecture so that there are no alignment | 
|  | * faults for C data types.  In particular, this is required on platforms such | 
|  | * as arm where pointers are 32-bit aligned but there are data types such as | 
|  | * u64 which require 64-bit alignment. | 
|  | */ | 
|  | #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN | 
|  |  | 
|  | #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) | 
|  |  | 
|  | struct scatterlist; | 
|  | struct crypto_async_request; | 
|  | struct crypto_tfm; | 
|  | struct crypto_type; | 
|  |  | 
|  | typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); | 
|  |  | 
|  | /** | 
|  | * DOC: Block Cipher Context Data Structures | 
|  | * | 
|  | * These data structures define the operating context for each block cipher | 
|  | * type. | 
|  | */ | 
|  |  | 
|  | struct crypto_async_request { | 
|  | struct list_head list; | 
|  | crypto_completion_t complete; | 
|  | void *data; | 
|  | struct crypto_tfm *tfm; | 
|  |  | 
|  | u32 flags; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * DOC: Block Cipher Algorithm Definitions | 
|  | * | 
|  | * These data structures define modular crypto algorithm implementations, | 
|  | * managed via crypto_register_alg() and crypto_unregister_alg(). | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * struct cipher_alg - single-block symmetric ciphers definition | 
|  | * @cia_min_keysize: Minimum key size supported by the transformation. This is | 
|  | *		     the smallest key length supported by this transformation | 
|  | *		     algorithm. This must be set to one of the pre-defined | 
|  | *		     values as this is not hardware specific. Possible values | 
|  | *		     for this field can be found via git grep "_MIN_KEY_SIZE" | 
|  | *		     include/crypto/ | 
|  | * @cia_max_keysize: Maximum key size supported by the transformation. This is | 
|  | *		    the largest key length supported by this transformation | 
|  | *		    algorithm. This must be set to one of the pre-defined values | 
|  | *		    as this is not hardware specific. Possible values for this | 
|  | *		    field can be found via git grep "_MAX_KEY_SIZE" | 
|  | *		    include/crypto/ | 
|  | * @cia_setkey: Set key for the transformation. This function is used to either | 
|  | *	        program a supplied key into the hardware or store the key in the | 
|  | *	        transformation context for programming it later. Note that this | 
|  | *	        function does modify the transformation context. This function | 
|  | *	        can be called multiple times during the existence of the | 
|  | *	        transformation object, so one must make sure the key is properly | 
|  | *	        reprogrammed into the hardware. This function is also | 
|  | *	        responsible for checking the key length for validity. | 
|  | * @cia_encrypt: Encrypt a single block. This function is used to encrypt a | 
|  | *		 single block of data, which must be @cra_blocksize big. This | 
|  | *		 always operates on a full @cra_blocksize and it is not possible | 
|  | *		 to encrypt a block of smaller size. The supplied buffers must | 
|  | *		 therefore also be at least of @cra_blocksize size. Both the | 
|  | *		 input and output buffers are always aligned to @cra_alignmask. | 
|  | *		 In case either of the input or output buffer supplied by user | 
|  | *		 of the crypto API is not aligned to @cra_alignmask, the crypto | 
|  | *		 API will re-align the buffers. The re-alignment means that a | 
|  | *		 new buffer will be allocated, the data will be copied into the | 
|  | *		 new buffer, then the processing will happen on the new buffer, | 
|  | *		 then the data will be copied back into the original buffer and | 
|  | *		 finally the new buffer will be freed. In case a software | 
|  | *		 fallback was put in place in the @cra_init call, this function | 
|  | *		 might need to use the fallback if the algorithm doesn't support | 
|  | *		 all of the key sizes. In case the key was stored in | 
|  | *		 transformation context, the key might need to be re-programmed | 
|  | *		 into the hardware in this function. This function shall not | 
|  | *		 modify the transformation context, as this function may be | 
|  | *		 called in parallel with the same transformation object. | 
|  | * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to | 
|  | *		 @cia_encrypt, and the conditions are exactly the same. | 
|  | * | 
|  | * All fields are mandatory and must be filled. | 
|  | */ | 
|  | struct cipher_alg { | 
|  | unsigned int cia_min_keysize; | 
|  | unsigned int cia_max_keysize; | 
|  | int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, | 
|  | unsigned int keylen); | 
|  | void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); | 
|  | void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct compress_alg - compression/decompression algorithm | 
|  | * @coa_compress: Compress a buffer of specified length, storing the resulting | 
|  | *		  data in the specified buffer. Return the length of the | 
|  | *		  compressed data in dlen. | 
|  | * @coa_decompress: Decompress the source buffer, storing the uncompressed | 
|  | *		    data in the specified buffer. The length of the data is | 
|  | *		    returned in dlen. | 
|  | * | 
|  | * All fields are mandatory. | 
|  | */ | 
|  | struct compress_alg { | 
|  | int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, | 
|  | unsigned int slen, u8 *dst, unsigned int *dlen); | 
|  | int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, | 
|  | unsigned int slen, u8 *dst, unsigned int *dlen); | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_CRYPTO_STATS | 
|  | /* | 
|  | * struct crypto_istat_aead - statistics for AEAD algorithm | 
|  | * @encrypt_cnt:	number of encrypt requests | 
|  | * @encrypt_tlen:	total data size handled by encrypt requests | 
|  | * @decrypt_cnt:	number of decrypt requests | 
|  | * @decrypt_tlen:	total data size handled by decrypt requests | 
|  | * @err_cnt:		number of error for AEAD requests | 
|  | */ | 
|  | struct crypto_istat_aead { | 
|  | atomic64_t encrypt_cnt; | 
|  | atomic64_t encrypt_tlen; | 
|  | atomic64_t decrypt_cnt; | 
|  | atomic64_t decrypt_tlen; | 
|  | atomic64_t err_cnt; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct crypto_istat_akcipher - statistics for akcipher algorithm | 
|  | * @encrypt_cnt:	number of encrypt requests | 
|  | * @encrypt_tlen:	total data size handled by encrypt requests | 
|  | * @decrypt_cnt:	number of decrypt requests | 
|  | * @decrypt_tlen:	total data size handled by decrypt requests | 
|  | * @verify_cnt:		number of verify operation | 
|  | * @sign_cnt:		number of sign requests | 
|  | * @err_cnt:		number of error for akcipher requests | 
|  | */ | 
|  | struct crypto_istat_akcipher { | 
|  | atomic64_t encrypt_cnt; | 
|  | atomic64_t encrypt_tlen; | 
|  | atomic64_t decrypt_cnt; | 
|  | atomic64_t decrypt_tlen; | 
|  | atomic64_t verify_cnt; | 
|  | atomic64_t sign_cnt; | 
|  | atomic64_t err_cnt; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct crypto_istat_cipher - statistics for cipher algorithm | 
|  | * @encrypt_cnt:	number of encrypt requests | 
|  | * @encrypt_tlen:	total data size handled by encrypt requests | 
|  | * @decrypt_cnt:	number of decrypt requests | 
|  | * @decrypt_tlen:	total data size handled by decrypt requests | 
|  | * @err_cnt:		number of error for cipher requests | 
|  | */ | 
|  | struct crypto_istat_cipher { | 
|  | atomic64_t encrypt_cnt; | 
|  | atomic64_t encrypt_tlen; | 
|  | atomic64_t decrypt_cnt; | 
|  | atomic64_t decrypt_tlen; | 
|  | atomic64_t err_cnt; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct crypto_istat_compress - statistics for compress algorithm | 
|  | * @compress_cnt:	number of compress requests | 
|  | * @compress_tlen:	total data size handled by compress requests | 
|  | * @decompress_cnt:	number of decompress requests | 
|  | * @decompress_tlen:	total data size handled by decompress requests | 
|  | * @err_cnt:		number of error for compress requests | 
|  | */ | 
|  | struct crypto_istat_compress { | 
|  | atomic64_t compress_cnt; | 
|  | atomic64_t compress_tlen; | 
|  | atomic64_t decompress_cnt; | 
|  | atomic64_t decompress_tlen; | 
|  | atomic64_t err_cnt; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct crypto_istat_hash - statistics for has algorithm | 
|  | * @hash_cnt:		number of hash requests | 
|  | * @hash_tlen:		total data size hashed | 
|  | * @err_cnt:		number of error for hash requests | 
|  | */ | 
|  | struct crypto_istat_hash { | 
|  | atomic64_t hash_cnt; | 
|  | atomic64_t hash_tlen; | 
|  | atomic64_t err_cnt; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct crypto_istat_kpp - statistics for KPP algorithm | 
|  | * @setsecret_cnt:		number of setsecrey operation | 
|  | * @generate_public_key_cnt:	number of generate_public_key operation | 
|  | * @compute_shared_secret_cnt:	number of compute_shared_secret operation | 
|  | * @err_cnt:			number of error for KPP requests | 
|  | */ | 
|  | struct crypto_istat_kpp { | 
|  | atomic64_t setsecret_cnt; | 
|  | atomic64_t generate_public_key_cnt; | 
|  | atomic64_t compute_shared_secret_cnt; | 
|  | atomic64_t err_cnt; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct crypto_istat_rng: statistics for RNG algorithm | 
|  | * @generate_cnt:	number of RNG generate requests | 
|  | * @generate_tlen:	total data size of generated data by the RNG | 
|  | * @seed_cnt:		number of times the RNG was seeded | 
|  | * @err_cnt:		number of error for RNG requests | 
|  | */ | 
|  | struct crypto_istat_rng { | 
|  | atomic64_t generate_cnt; | 
|  | atomic64_t generate_tlen; | 
|  | atomic64_t seed_cnt; | 
|  | atomic64_t err_cnt; | 
|  | }; | 
|  | #endif /* CONFIG_CRYPTO_STATS */ | 
|  |  | 
|  | #define cra_cipher	cra_u.cipher | 
|  | #define cra_compress	cra_u.compress | 
|  |  | 
|  | /** | 
|  | * struct crypto_alg - definition of a cryptograpic cipher algorithm | 
|  | * @cra_flags: Flags describing this transformation. See include/linux/crypto.h | 
|  | *	       CRYPTO_ALG_* flags for the flags which go in here. Those are | 
|  | *	       used for fine-tuning the description of the transformation | 
|  | *	       algorithm. | 
|  | * @cra_blocksize: Minimum block size of this transformation. The size in bytes | 
|  | *		   of the smallest possible unit which can be transformed with | 
|  | *		   this algorithm. The users must respect this value. | 
|  | *		   In case of HASH transformation, it is possible for a smaller | 
|  | *		   block than @cra_blocksize to be passed to the crypto API for | 
|  | *		   transformation, in case of any other transformation type, an | 
|  | * 		   error will be returned upon any attempt to transform smaller | 
|  | *		   than @cra_blocksize chunks. | 
|  | * @cra_ctxsize: Size of the operational context of the transformation. This | 
|  | *		 value informs the kernel crypto API about the memory size | 
|  | *		 needed to be allocated for the transformation context. | 
|  | * @cra_alignmask: Alignment mask for the input and output data buffer. The data | 
|  | *		   buffer containing the input data for the algorithm must be | 
|  | *		   aligned to this alignment mask. The data buffer for the | 
|  | *		   output data must be aligned to this alignment mask. Note that | 
|  | *		   the Crypto API will do the re-alignment in software, but | 
|  | *		   only under special conditions and there is a performance hit. | 
|  | *		   The re-alignment happens at these occasions for different | 
|  | *		   @cra_u types: cipher -- For both input data and output data | 
|  | *		   buffer; ahash -- For output hash destination buf; shash -- | 
|  | *		   For output hash destination buf. | 
|  | *		   This is needed on hardware which is flawed by design and | 
|  | *		   cannot pick data from arbitrary addresses. | 
|  | * @cra_priority: Priority of this transformation implementation. In case | 
|  | *		  multiple transformations with same @cra_name are available to | 
|  | *		  the Crypto API, the kernel will use the one with highest | 
|  | *		  @cra_priority. | 
|  | * @cra_name: Generic name (usable by multiple implementations) of the | 
|  | *	      transformation algorithm. This is the name of the transformation | 
|  | *	      itself. This field is used by the kernel when looking up the | 
|  | *	      providers of particular transformation. | 
|  | * @cra_driver_name: Unique name of the transformation provider. This is the | 
|  | *		     name of the provider of the transformation. This can be any | 
|  | *		     arbitrary value, but in the usual case, this contains the | 
|  | *		     name of the chip or provider and the name of the | 
|  | *		     transformation algorithm. | 
|  | * @cra_type: Type of the cryptographic transformation. This is a pointer to | 
|  | *	      struct crypto_type, which implements callbacks common for all | 
|  | *	      transformation types. There are multiple options, such as | 
|  | *	      &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. | 
|  | *	      This field might be empty. In that case, there are no common | 
|  | *	      callbacks. This is the case for: cipher, compress, shash. | 
|  | * @cra_u: Callbacks implementing the transformation. This is a union of | 
|  | *	   multiple structures. Depending on the type of transformation selected | 
|  | *	   by @cra_type and @cra_flags above, the associated structure must be | 
|  | *	   filled with callbacks. This field might be empty. This is the case | 
|  | *	   for ahash, shash. | 
|  | * @cra_init: Initialize the cryptographic transformation object. This function | 
|  | *	      is used to initialize the cryptographic transformation object. | 
|  | *	      This function is called only once at the instantiation time, right | 
|  | *	      after the transformation context was allocated. In case the | 
|  | *	      cryptographic hardware has some special requirements which need to | 
|  | *	      be handled by software, this function shall check for the precise | 
|  | *	      requirement of the transformation and put any software fallbacks | 
|  | *	      in place. | 
|  | * @cra_exit: Deinitialize the cryptographic transformation object. This is a | 
|  | *	      counterpart to @cra_init, used to remove various changes set in | 
|  | *	      @cra_init. | 
|  | * @cra_u.cipher: Union member which contains a single-block symmetric cipher | 
|  | *		  definition. See @struct @cipher_alg. | 
|  | * @cra_u.compress: Union member which contains a (de)compression algorithm. | 
|  | *		    See @struct @compress_alg. | 
|  | * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE | 
|  | * @cra_list: internally used | 
|  | * @cra_users: internally used | 
|  | * @cra_refcnt: internally used | 
|  | * @cra_destroy: internally used | 
|  | * | 
|  | * @stats: union of all possible crypto_istat_xxx structures | 
|  | * @stats.aead:		statistics for AEAD algorithm | 
|  | * @stats.akcipher:	statistics for akcipher algorithm | 
|  | * @stats.cipher:	statistics for cipher algorithm | 
|  | * @stats.compress:	statistics for compress algorithm | 
|  | * @stats.hash:		statistics for hash algorithm | 
|  | * @stats.rng:		statistics for rng algorithm | 
|  | * @stats.kpp:		statistics for KPP algorithm | 
|  | * | 
|  | * The struct crypto_alg describes a generic Crypto API algorithm and is common | 
|  | * for all of the transformations. Any variable not documented here shall not | 
|  | * be used by a cipher implementation as it is internal to the Crypto API. | 
|  | */ | 
|  | struct crypto_alg { | 
|  | struct list_head cra_list; | 
|  | struct list_head cra_users; | 
|  |  | 
|  | u32 cra_flags; | 
|  | unsigned int cra_blocksize; | 
|  | unsigned int cra_ctxsize; | 
|  | unsigned int cra_alignmask; | 
|  |  | 
|  | int cra_priority; | 
|  | refcount_t cra_refcnt; | 
|  |  | 
|  | char cra_name[CRYPTO_MAX_ALG_NAME]; | 
|  | char cra_driver_name[CRYPTO_MAX_ALG_NAME]; | 
|  |  | 
|  | const struct crypto_type *cra_type; | 
|  |  | 
|  | union { | 
|  | struct cipher_alg cipher; | 
|  | struct compress_alg compress; | 
|  | } cra_u; | 
|  |  | 
|  | int (*cra_init)(struct crypto_tfm *tfm); | 
|  | void (*cra_exit)(struct crypto_tfm *tfm); | 
|  | void (*cra_destroy)(struct crypto_alg *alg); | 
|  |  | 
|  | struct module *cra_module; | 
|  |  | 
|  | #ifdef CONFIG_CRYPTO_STATS | 
|  | union { | 
|  | struct crypto_istat_aead aead; | 
|  | struct crypto_istat_akcipher akcipher; | 
|  | struct crypto_istat_cipher cipher; | 
|  | struct crypto_istat_compress compress; | 
|  | struct crypto_istat_hash hash; | 
|  | struct crypto_istat_rng rng; | 
|  | struct crypto_istat_kpp kpp; | 
|  | } stats; | 
|  | #endif /* CONFIG_CRYPTO_STATS */ | 
|  |  | 
|  | } CRYPTO_MINALIGN_ATTR; | 
|  |  | 
|  | #ifdef CONFIG_CRYPTO_STATS | 
|  | void crypto_stats_init(struct crypto_alg *alg); | 
|  | void crypto_stats_get(struct crypto_alg *alg); | 
|  | void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); | 
|  | void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); | 
|  | void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); | 
|  | void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); | 
|  | void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); | 
|  | void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); | 
|  | void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); | 
|  | void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); | 
|  | void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); | 
|  | void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); | 
|  | void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); | 
|  | void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); | 
|  | void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); | 
|  | void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); | 
|  | void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); | 
|  | void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); | 
|  | void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); | 
|  | #else | 
|  | static inline void crypto_stats_init(struct crypto_alg *alg) | 
|  | {} | 
|  | static inline void crypto_stats_get(struct crypto_alg *alg) | 
|  | {} | 
|  | static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) | 
|  | {} | 
|  | static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) | 
|  | {} | 
|  | static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) | 
|  | {} | 
|  | static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) | 
|  | {} | 
|  | static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) | 
|  | {} | 
|  | static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) | 
|  | {} | 
|  | static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) | 
|  | {} | 
|  | static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) | 
|  | {} | 
|  | static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) | 
|  | {} | 
|  | static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) | 
|  | {} | 
|  | static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) | 
|  | {} | 
|  | static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) | 
|  | {} | 
|  | static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) | 
|  | {} | 
|  | static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) | 
|  | {} | 
|  | static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) | 
|  | {} | 
|  | static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) | 
|  | {} | 
|  | static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) | 
|  | {} | 
|  | #endif | 
|  | /* | 
|  | * A helper struct for waiting for completion of async crypto ops | 
|  | */ | 
|  | struct crypto_wait { | 
|  | struct completion completion; | 
|  | int err; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Macro for declaring a crypto op async wait object on stack | 
|  | */ | 
|  | #define DECLARE_CRYPTO_WAIT(_wait) \ | 
|  | struct crypto_wait _wait = { \ | 
|  | COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } | 
|  |  | 
|  | /* | 
|  | * Async ops completion helper functioons | 
|  | */ | 
|  | void crypto_req_done(struct crypto_async_request *req, int err); | 
|  |  | 
|  | static inline int crypto_wait_req(int err, struct crypto_wait *wait) | 
|  | { | 
|  | switch (err) { | 
|  | case -EINPROGRESS: | 
|  | case -EBUSY: | 
|  | wait_for_completion(&wait->completion); | 
|  | reinit_completion(&wait->completion); | 
|  | err = wait->err; | 
|  | break; | 
|  | }; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline void crypto_init_wait(struct crypto_wait *wait) | 
|  | { | 
|  | init_completion(&wait->completion); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Algorithm registration interface. | 
|  | */ | 
|  | int crypto_register_alg(struct crypto_alg *alg); | 
|  | int crypto_unregister_alg(struct crypto_alg *alg); | 
|  | int crypto_register_algs(struct crypto_alg *algs, int count); | 
|  | int crypto_unregister_algs(struct crypto_alg *algs, int count); | 
|  |  | 
|  | /* | 
|  | * Algorithm query interface. | 
|  | */ | 
|  | int crypto_has_alg(const char *name, u32 type, u32 mask); | 
|  |  | 
|  | /* | 
|  | * Transforms: user-instantiated objects which encapsulate algorithms | 
|  | * and core processing logic.  Managed via crypto_alloc_*() and | 
|  | * crypto_free_*(), as well as the various helpers below. | 
|  | */ | 
|  |  | 
|  | struct cipher_tfm { | 
|  | int (*cit_setkey)(struct crypto_tfm *tfm, | 
|  | const u8 *key, unsigned int keylen); | 
|  | void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); | 
|  | void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); | 
|  | }; | 
|  |  | 
|  | struct compress_tfm { | 
|  | int (*cot_compress)(struct crypto_tfm *tfm, | 
|  | const u8 *src, unsigned int slen, | 
|  | u8 *dst, unsigned int *dlen); | 
|  | int (*cot_decompress)(struct crypto_tfm *tfm, | 
|  | const u8 *src, unsigned int slen, | 
|  | u8 *dst, unsigned int *dlen); | 
|  | }; | 
|  |  | 
|  | #define crt_cipher	crt_u.cipher | 
|  | #define crt_compress	crt_u.compress | 
|  |  | 
|  | struct crypto_tfm { | 
|  |  | 
|  | u32 crt_flags; | 
|  |  | 
|  | union { | 
|  | struct cipher_tfm cipher; | 
|  | struct compress_tfm compress; | 
|  | } crt_u; | 
|  |  | 
|  | void (*exit)(struct crypto_tfm *tfm); | 
|  |  | 
|  | struct crypto_alg *__crt_alg; | 
|  |  | 
|  | void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; | 
|  | }; | 
|  |  | 
|  | struct crypto_cipher { | 
|  | struct crypto_tfm base; | 
|  | }; | 
|  |  | 
|  | struct crypto_comp { | 
|  | struct crypto_tfm base; | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | CRYPTOA_UNSPEC, | 
|  | CRYPTOA_ALG, | 
|  | CRYPTOA_TYPE, | 
|  | CRYPTOA_U32, | 
|  | __CRYPTOA_MAX, | 
|  | }; | 
|  |  | 
|  | #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) | 
|  |  | 
|  | /* Maximum number of (rtattr) parameters for each template. */ | 
|  | #define CRYPTO_MAX_ATTRS 32 | 
|  |  | 
|  | struct crypto_attr_alg { | 
|  | char name[CRYPTO_MAX_ALG_NAME]; | 
|  | }; | 
|  |  | 
|  | struct crypto_attr_type { | 
|  | u32 type; | 
|  | u32 mask; | 
|  | }; | 
|  |  | 
|  | struct crypto_attr_u32 { | 
|  | u32 num; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Transform user interface. | 
|  | */ | 
|  |  | 
|  | struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); | 
|  | void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); | 
|  |  | 
|  | static inline void crypto_free_tfm(struct crypto_tfm *tfm) | 
|  | { | 
|  | return crypto_destroy_tfm(tfm, tfm); | 
|  | } | 
|  |  | 
|  | int alg_test(const char *driver, const char *alg, u32 type, u32 mask); | 
|  |  | 
|  | /* | 
|  | * Transform helpers which query the underlying algorithm. | 
|  | */ | 
|  | static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) | 
|  | { | 
|  | return tfm->__crt_alg->cra_name; | 
|  | } | 
|  |  | 
|  | static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) | 
|  | { | 
|  | return tfm->__crt_alg->cra_driver_name; | 
|  | } | 
|  |  | 
|  | static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) | 
|  | { | 
|  | return tfm->__crt_alg->cra_priority; | 
|  | } | 
|  |  | 
|  | static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) | 
|  | { | 
|  | return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; | 
|  | } | 
|  |  | 
|  | static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) | 
|  | { | 
|  | return tfm->__crt_alg->cra_blocksize; | 
|  | } | 
|  |  | 
|  | static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) | 
|  | { | 
|  | return tfm->__crt_alg->cra_alignmask; | 
|  | } | 
|  |  | 
|  | static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) | 
|  | { | 
|  | return tfm->crt_flags; | 
|  | } | 
|  |  | 
|  | static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) | 
|  | { | 
|  | tfm->crt_flags |= flags; | 
|  | } | 
|  |  | 
|  | static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) | 
|  | { | 
|  | tfm->crt_flags &= ~flags; | 
|  | } | 
|  |  | 
|  | static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) | 
|  | { | 
|  | return tfm->__crt_ctx; | 
|  | } | 
|  |  | 
|  | static inline unsigned int crypto_tfm_ctx_alignment(void) | 
|  | { | 
|  | struct crypto_tfm *tfm; | 
|  | return __alignof__(tfm->__crt_ctx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * DOC: Single Block Cipher API | 
|  | * | 
|  | * The single block cipher API is used with the ciphers of type | 
|  | * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). | 
|  | * | 
|  | * Using the single block cipher API calls, operations with the basic cipher | 
|  | * primitive can be implemented. These cipher primitives exclude any block | 
|  | * chaining operations including IV handling. | 
|  | * | 
|  | * The purpose of this single block cipher API is to support the implementation | 
|  | * of templates or other concepts that only need to perform the cipher operation | 
|  | * on one block at a time. Templates invoke the underlying cipher primitive | 
|  | * block-wise and process either the input or the output data of these cipher | 
|  | * operations. | 
|  | */ | 
|  |  | 
|  | static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) | 
|  | { | 
|  | return (struct crypto_cipher *)tfm; | 
|  | } | 
|  |  | 
|  | static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) | 
|  | { | 
|  | BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); | 
|  | return __crypto_cipher_cast(tfm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * crypto_alloc_cipher() - allocate single block cipher handle | 
|  | * @alg_name: is the cra_name / name or cra_driver_name / driver name of the | 
|  | *	     single block cipher | 
|  | * @type: specifies the type of the cipher | 
|  | * @mask: specifies the mask for the cipher | 
|  | * | 
|  | * Allocate a cipher handle for a single block cipher. The returned struct | 
|  | * crypto_cipher is the cipher handle that is required for any subsequent API | 
|  | * invocation for that single block cipher. | 
|  | * | 
|  | * Return: allocated cipher handle in case of success; IS_ERR() is true in case | 
|  | *	   of an error, PTR_ERR() returns the error code. | 
|  | */ | 
|  | static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, | 
|  | u32 type, u32 mask) | 
|  | { | 
|  | type &= ~CRYPTO_ALG_TYPE_MASK; | 
|  | type |= CRYPTO_ALG_TYPE_CIPHER; | 
|  | mask |= CRYPTO_ALG_TYPE_MASK; | 
|  |  | 
|  | return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); | 
|  | } | 
|  |  | 
|  | static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) | 
|  | { | 
|  | return &tfm->base; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * crypto_free_cipher() - zeroize and free the single block cipher handle | 
|  | * @tfm: cipher handle to be freed | 
|  | */ | 
|  | static inline void crypto_free_cipher(struct crypto_cipher *tfm) | 
|  | { | 
|  | crypto_free_tfm(crypto_cipher_tfm(tfm)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * crypto_has_cipher() - Search for the availability of a single block cipher | 
|  | * @alg_name: is the cra_name / name or cra_driver_name / driver name of the | 
|  | *	     single block cipher | 
|  | * @type: specifies the type of the cipher | 
|  | * @mask: specifies the mask for the cipher | 
|  | * | 
|  | * Return: true when the single block cipher is known to the kernel crypto API; | 
|  | *	   false otherwise | 
|  | */ | 
|  | static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) | 
|  | { | 
|  | type &= ~CRYPTO_ALG_TYPE_MASK; | 
|  | type |= CRYPTO_ALG_TYPE_CIPHER; | 
|  | mask |= CRYPTO_ALG_TYPE_MASK; | 
|  |  | 
|  | return crypto_has_alg(alg_name, type, mask); | 
|  | } | 
|  |  | 
|  | static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) | 
|  | { | 
|  | return &crypto_cipher_tfm(tfm)->crt_cipher; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * crypto_cipher_blocksize() - obtain block size for cipher | 
|  | * @tfm: cipher handle | 
|  | * | 
|  | * The block size for the single block cipher referenced with the cipher handle | 
|  | * tfm is returned. The caller may use that information to allocate appropriate | 
|  | * memory for the data returned by the encryption or decryption operation | 
|  | * | 
|  | * Return: block size of cipher | 
|  | */ | 
|  | static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) | 
|  | { | 
|  | return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); | 
|  | } | 
|  |  | 
|  | static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) | 
|  | { | 
|  | return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); | 
|  | } | 
|  |  | 
|  | static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) | 
|  | { | 
|  | return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); | 
|  | } | 
|  |  | 
|  | static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, | 
|  | u32 flags) | 
|  | { | 
|  | crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); | 
|  | } | 
|  |  | 
|  | static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, | 
|  | u32 flags) | 
|  | { | 
|  | crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * crypto_cipher_setkey() - set key for cipher | 
|  | * @tfm: cipher handle | 
|  | * @key: buffer holding the key | 
|  | * @keylen: length of the key in bytes | 
|  | * | 
|  | * The caller provided key is set for the single block cipher referenced by the | 
|  | * cipher handle. | 
|  | * | 
|  | * Note, the key length determines the cipher type. Many block ciphers implement | 
|  | * different cipher modes depending on the key size, such as AES-128 vs AES-192 | 
|  | * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 | 
|  | * is performed. | 
|  | * | 
|  | * Return: 0 if the setting of the key was successful; < 0 if an error occurred | 
|  | */ | 
|  | static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, | 
|  | const u8 *key, unsigned int keylen) | 
|  | { | 
|  | return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), | 
|  | key, keylen); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * crypto_cipher_encrypt_one() - encrypt one block of plaintext | 
|  | * @tfm: cipher handle | 
|  | * @dst: points to the buffer that will be filled with the ciphertext | 
|  | * @src: buffer holding the plaintext to be encrypted | 
|  | * | 
|  | * Invoke the encryption operation of one block. The caller must ensure that | 
|  | * the plaintext and ciphertext buffers are at least one block in size. | 
|  | */ | 
|  | static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, | 
|  | u8 *dst, const u8 *src) | 
|  | { | 
|  | crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), | 
|  | dst, src); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * crypto_cipher_decrypt_one() - decrypt one block of ciphertext | 
|  | * @tfm: cipher handle | 
|  | * @dst: points to the buffer that will be filled with the plaintext | 
|  | * @src: buffer holding the ciphertext to be decrypted | 
|  | * | 
|  | * Invoke the decryption operation of one block. The caller must ensure that | 
|  | * the plaintext and ciphertext buffers are at least one block in size. | 
|  | */ | 
|  | static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, | 
|  | u8 *dst, const u8 *src) | 
|  | { | 
|  | crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), | 
|  | dst, src); | 
|  | } | 
|  |  | 
|  | static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) | 
|  | { | 
|  | return (struct crypto_comp *)tfm; | 
|  | } | 
|  |  | 
|  | static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) | 
|  | { | 
|  | BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & | 
|  | CRYPTO_ALG_TYPE_MASK); | 
|  | return __crypto_comp_cast(tfm); | 
|  | } | 
|  |  | 
|  | static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, | 
|  | u32 type, u32 mask) | 
|  | { | 
|  | type &= ~CRYPTO_ALG_TYPE_MASK; | 
|  | type |= CRYPTO_ALG_TYPE_COMPRESS; | 
|  | mask |= CRYPTO_ALG_TYPE_MASK; | 
|  |  | 
|  | return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); | 
|  | } | 
|  |  | 
|  | static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) | 
|  | { | 
|  | return &tfm->base; | 
|  | } | 
|  |  | 
|  | static inline void crypto_free_comp(struct crypto_comp *tfm) | 
|  | { | 
|  | crypto_free_tfm(crypto_comp_tfm(tfm)); | 
|  | } | 
|  |  | 
|  | static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) | 
|  | { | 
|  | type &= ~CRYPTO_ALG_TYPE_MASK; | 
|  | type |= CRYPTO_ALG_TYPE_COMPRESS; | 
|  | mask |= CRYPTO_ALG_TYPE_MASK; | 
|  |  | 
|  | return crypto_has_alg(alg_name, type, mask); | 
|  | } | 
|  |  | 
|  | static inline const char *crypto_comp_name(struct crypto_comp *tfm) | 
|  | { | 
|  | return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); | 
|  | } | 
|  |  | 
|  | static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) | 
|  | { | 
|  | return &crypto_comp_tfm(tfm)->crt_compress; | 
|  | } | 
|  |  | 
|  | static inline int crypto_comp_compress(struct crypto_comp *tfm, | 
|  | const u8 *src, unsigned int slen, | 
|  | u8 *dst, unsigned int *dlen) | 
|  | { | 
|  | return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), | 
|  | src, slen, dst, dlen); | 
|  | } | 
|  |  | 
|  | static inline int crypto_comp_decompress(struct crypto_comp *tfm, | 
|  | const u8 *src, unsigned int slen, | 
|  | u8 *dst, unsigned int *dlen) | 
|  | { | 
|  | return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), | 
|  | src, slen, dst, dlen); | 
|  | } | 
|  |  | 
|  | #endif	/* _LINUX_CRYPTO_H */ | 
|  |  |