blob: f21670776b76c50296103356049399296335bbc0 [file] [log] [blame]
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package raft
import (
"bytes"
"fmt"
"math"
"math/rand"
"reflect"
"strings"
"testing"
pb "go.etcd.io/etcd/raft/v3/raftpb"
"go.etcd.io/etcd/raft/v3/tracker"
)
// nextEnts returns the appliable entries and updates the applied index
func nextEnts(r *raft, s *MemoryStorage) (ents []pb.Entry) {
// Transfer all unstable entries to "stable" storage.
s.Append(r.raftLog.unstableEntries())
r.raftLog.stableTo(r.raftLog.lastIndex(), r.raftLog.lastTerm())
ents = r.raftLog.nextEnts()
r.raftLog.appliedTo(r.raftLog.committed)
return ents
}
func mustAppendEntry(r *raft, ents ...pb.Entry) {
if !r.appendEntry(ents...) {
panic("entry unexpectedly dropped")
}
}
type stateMachine interface {
Step(m pb.Message) error
readMessages() []pb.Message
}
func (r *raft) readMessages() []pb.Message {
msgs := r.msgs
r.msgs = make([]pb.Message, 0)
return msgs
}
func TestProgressLeader(t *testing.T) {
r := newTestRaft(1, 5, 1, newTestMemoryStorage(withPeers(1, 2)))
r.becomeCandidate()
r.becomeLeader()
r.prs.Progress[2].BecomeReplicate()
// Send proposals to r1. The first 5 entries should be appended to the log.
propMsg := pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("foo")}}}
for i := 0; i < 5; i++ {
if pr := r.prs.Progress[r.id]; pr.State != tracker.StateReplicate || pr.Match != uint64(i+1) || pr.Next != pr.Match+1 {
t.Errorf("unexpected progress %v", pr)
}
if err := r.Step(propMsg); err != nil {
t.Fatalf("proposal resulted in error: %v", err)
}
}
}
// TestProgressResumeByHeartbeatResp ensures raft.heartbeat reset progress.paused by heartbeat response.
func TestProgressResumeByHeartbeatResp(t *testing.T) {
r := newTestRaft(1, 5, 1, newTestMemoryStorage(withPeers(1, 2)))
r.becomeCandidate()
r.becomeLeader()
r.prs.Progress[2].ProbeSent = true
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
if !r.prs.Progress[2].ProbeSent {
t.Errorf("paused = %v, want true", r.prs.Progress[2].ProbeSent)
}
r.prs.Progress[2].BecomeReplicate()
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgHeartbeatResp})
if r.prs.Progress[2].ProbeSent {
t.Errorf("paused = %v, want false", r.prs.Progress[2].ProbeSent)
}
}
func TestProgressPaused(t *testing.T) {
r := newTestRaft(1, 5, 1, newTestMemoryStorage(withPeers(1, 2)))
r.becomeCandidate()
r.becomeLeader()
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
ms := r.readMessages()
if len(ms) != 1 {
t.Errorf("len(ms) = %d, want 1", len(ms))
}
}
func TestProgressFlowControl(t *testing.T) {
cfg := newTestConfig(1, 5, 1, newTestMemoryStorage(withPeers(1, 2)))
cfg.MaxInflightMsgs = 3
cfg.MaxSizePerMsg = 2048
r := newRaft(cfg)
r.becomeCandidate()
r.becomeLeader()
// Throw away all the messages relating to the initial election.
r.readMessages()
// While node 2 is in probe state, propose a bunch of entries.
r.prs.Progress[2].BecomeProbe()
blob := []byte(strings.Repeat("a", 1000))
for i := 0; i < 10; i++ {
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: blob}}})
}
ms := r.readMessages()
// First append has two entries: the empty entry to confirm the
// election, and the first proposal (only one proposal gets sent
// because we're in probe state).
if len(ms) != 1 || ms[0].Type != pb.MsgApp {
t.Fatalf("expected 1 MsgApp, got %v", ms)
}
if len(ms[0].Entries) != 2 {
t.Fatalf("expected 2 entries, got %d", len(ms[0].Entries))
}
if len(ms[0].Entries[0].Data) != 0 || len(ms[0].Entries[1].Data) != 1000 {
t.Fatalf("unexpected entry sizes: %v", ms[0].Entries)
}
// When this append is acked, we change to replicate state and can
// send multiple messages at once.
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgAppResp, Index: ms[0].Entries[1].Index})
ms = r.readMessages()
if len(ms) != 3 {
t.Fatalf("expected 3 messages, got %d", len(ms))
}
for i, m := range ms {
if m.Type != pb.MsgApp {
t.Errorf("%d: expected MsgApp, got %s", i, m.Type)
}
if len(m.Entries) != 2 {
t.Errorf("%d: expected 2 entries, got %d", i, len(m.Entries))
}
}
// Ack all three of those messages together and get the last two
// messages (containing three entries).
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgAppResp, Index: ms[2].Entries[1].Index})
ms = r.readMessages()
if len(ms) != 2 {
t.Fatalf("expected 2 messages, got %d", len(ms))
}
for i, m := range ms {
if m.Type != pb.MsgApp {
t.Errorf("%d: expected MsgApp, got %s", i, m.Type)
}
}
if len(ms[0].Entries) != 2 {
t.Errorf("%d: expected 2 entries, got %d", 0, len(ms[0].Entries))
}
if len(ms[1].Entries) != 1 {
t.Errorf("%d: expected 1 entry, got %d", 1, len(ms[1].Entries))
}
}
func TestUncommittedEntryLimit(t *testing.T) {
// Use a relatively large number of entries here to prevent regression of a
// bug which computed the size before it was fixed. This test would fail
// with the bug, either because we'd get dropped proposals earlier than we
// expect them, or because the final tally ends up nonzero. (At the time of
// writing, the former).
const maxEntries = 1024
testEntry := pb.Entry{Data: []byte("testdata")}
maxEntrySize := maxEntries * PayloadSize(testEntry)
if n := PayloadSize(pb.Entry{Data: nil}); n != 0 {
t.Fatal("entry with no Data must have zero payload size")
}
cfg := newTestConfig(1, 5, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
cfg.MaxUncommittedEntriesSize = uint64(maxEntrySize)
cfg.MaxInflightMsgs = 2 * 1024 // avoid interference
r := newRaft(cfg)
r.becomeCandidate()
r.becomeLeader()
if n := r.uncommittedSize; n != 0 {
t.Fatalf("expected zero uncommitted size, got %d bytes", n)
}
// Set the two followers to the replicate state. Commit to tail of log.
const numFollowers = 2
r.prs.Progress[2].BecomeReplicate()
r.prs.Progress[3].BecomeReplicate()
r.uncommittedSize = 0
// Send proposals to r1. The first 5 entries should be appended to the log.
propMsg := pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{testEntry}}
propEnts := make([]pb.Entry, maxEntries)
for i := 0; i < maxEntries; i++ {
if err := r.Step(propMsg); err != nil {
t.Fatalf("proposal resulted in error: %v", err)
}
propEnts[i] = testEntry
}
// Send one more proposal to r1. It should be rejected.
if err := r.Step(propMsg); err != ErrProposalDropped {
t.Fatalf("proposal not dropped: %v", err)
}
// Read messages and reduce the uncommitted size as if we had committed
// these entries.
ms := r.readMessages()
if e := maxEntries * numFollowers; len(ms) != e {
t.Fatalf("expected %d messages, got %d", e, len(ms))
}
r.reduceUncommittedSize(propEnts)
if r.uncommittedSize != 0 {
t.Fatalf("committed everything, but still tracking %d", r.uncommittedSize)
}
// Send a single large proposal to r1. Should be accepted even though it
// pushes us above the limit because we were beneath it before the proposal.
propEnts = make([]pb.Entry, 2*maxEntries)
for i := range propEnts {
propEnts[i] = testEntry
}
propMsgLarge := pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: propEnts}
if err := r.Step(propMsgLarge); err != nil {
t.Fatalf("proposal resulted in error: %v", err)
}
// Send one more proposal to r1. It should be rejected, again.
if err := r.Step(propMsg); err != ErrProposalDropped {
t.Fatalf("proposal not dropped: %v", err)
}
// But we can always append an entry with no Data. This is used both for the
// leader's first empty entry and for auto-transitioning out of joint config
// states.
if err := r.Step(
pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}},
); err != nil {
t.Fatal(err)
}
// Read messages and reduce the uncommitted size as if we had committed
// these entries.
ms = r.readMessages()
if e := 2 * numFollowers; len(ms) != e {
t.Fatalf("expected %d messages, got %d", e, len(ms))
}
r.reduceUncommittedSize(propEnts)
if n := r.uncommittedSize; n != 0 {
t.Fatalf("expected zero uncommitted size, got %d", n)
}
}
func TestLeaderElection(t *testing.T) {
testLeaderElection(t, false)
}
func TestLeaderElectionPreVote(t *testing.T) {
testLeaderElection(t, true)
}
func testLeaderElection(t *testing.T, preVote bool) {
var cfg func(*Config)
candState := StateCandidate
candTerm := uint64(1)
if preVote {
cfg = preVoteConfig
// In pre-vote mode, an election that fails to complete
// leaves the node in pre-candidate state without advancing
// the term.
candState = StatePreCandidate
candTerm = 0
}
tests := []struct {
*network
state StateType
expTerm uint64
}{
{newNetworkWithConfig(cfg, nil, nil, nil), StateLeader, 1},
{newNetworkWithConfig(cfg, nil, nil, nopStepper), StateLeader, 1},
{newNetworkWithConfig(cfg, nil, nopStepper, nopStepper), candState, candTerm},
{newNetworkWithConfig(cfg, nil, nopStepper, nopStepper, nil), candState, candTerm},
{newNetworkWithConfig(cfg, nil, nopStepper, nopStepper, nil, nil), StateLeader, 1},
// three logs further along than 0, but in the same term so rejections
// are returned instead of the votes being ignored.
{newNetworkWithConfig(cfg,
nil, entsWithConfig(cfg, 1), entsWithConfig(cfg, 1), entsWithConfig(cfg, 1, 1), nil),
StateFollower, 1},
}
for i, tt := range tests {
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm := tt.network.peers[1].(*raft)
if sm.state != tt.state {
t.Errorf("#%d: state = %s, want %s", i, sm.state, tt.state)
}
if g := sm.Term; g != tt.expTerm {
t.Errorf("#%d: term = %d, want %d", i, g, tt.expTerm)
}
}
}
// TestLearnerElectionTimeout verfies that the leader should not start election even
// when times out.
func TestLearnerElectionTimeout(t *testing.T) {
n1 := newTestLearnerRaft(1, 10, 1, newTestMemoryStorage(withPeers(1), withLearners(2)))
n2 := newTestLearnerRaft(2, 10, 1, newTestMemoryStorage(withPeers(1), withLearners(2)))
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
// n2 is learner. Learner should not start election even when times out.
setRandomizedElectionTimeout(n2, n2.electionTimeout)
for i := 0; i < n2.electionTimeout; i++ {
n2.tick()
}
if n2.state != StateFollower {
t.Errorf("peer 2 state: %s, want %s", n2.state, StateFollower)
}
}
// TestLearnerPromotion verifies that the learner should not election until
// it is promoted to a normal peer.
func TestLearnerPromotion(t *testing.T) {
n1 := newTestLearnerRaft(1, 10, 1, newTestMemoryStorage(withPeers(1), withLearners(2)))
n2 := newTestLearnerRaft(2, 10, 1, newTestMemoryStorage(withPeers(1), withLearners(2)))
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
nt := newNetwork(n1, n2)
if n1.state == StateLeader {
t.Error("peer 1 state is leader, want not", n1.state)
}
// n1 should become leader
setRandomizedElectionTimeout(n1, n1.electionTimeout)
for i := 0; i < n1.electionTimeout; i++ {
n1.tick()
}
if n1.state != StateLeader {
t.Errorf("peer 1 state: %s, want %s", n1.state, StateLeader)
}
if n2.state != StateFollower {
t.Errorf("peer 2 state: %s, want %s", n2.state, StateFollower)
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
n1.applyConfChange(pb.ConfChange{NodeID: 2, Type: pb.ConfChangeAddNode}.AsV2())
n2.applyConfChange(pb.ConfChange{NodeID: 2, Type: pb.ConfChangeAddNode}.AsV2())
if n2.isLearner {
t.Error("peer 2 is learner, want not")
}
// n2 start election, should become leader
setRandomizedElectionTimeout(n2, n2.electionTimeout)
for i := 0; i < n2.electionTimeout; i++ {
n2.tick()
}
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgBeat})
if n1.state != StateFollower {
t.Errorf("peer 1 state: %s, want %s", n1.state, StateFollower)
}
if n2.state != StateLeader {
t.Errorf("peer 2 state: %s, want %s", n2.state, StateLeader)
}
}
// TestLearnerCanVote checks that a learner can vote when it receives a valid Vote request.
// See (*raft).Step for why this is necessary and correct behavior.
func TestLearnerCanVote(t *testing.T) {
n2 := newTestLearnerRaft(2, 10, 1, newTestMemoryStorage(withPeers(1), withLearners(2)))
n2.becomeFollower(1, None)
n2.Step(pb.Message{From: 1, To: 2, Term: 2, Type: pb.MsgVote, LogTerm: 11, Index: 11})
if len(n2.msgs) != 1 {
t.Fatalf("expected exactly one message, not %+v", n2.msgs)
}
msg := n2.msgs[0]
if msg.Type != pb.MsgVoteResp && !msg.Reject {
t.Fatal("expected learner to not reject vote")
}
}
func TestLeaderCycle(t *testing.T) {
testLeaderCycle(t, false)
}
func TestLeaderCyclePreVote(t *testing.T) {
testLeaderCycle(t, true)
}
// testLeaderCycle verifies that each node in a cluster can campaign
// and be elected in turn. This ensures that elections (including
// pre-vote) work when not starting from a clean slate (as they do in
// TestLeaderElection)
func testLeaderCycle(t *testing.T, preVote bool) {
var cfg func(*Config)
if preVote {
cfg = preVoteConfig
}
n := newNetworkWithConfig(cfg, nil, nil, nil)
for campaignerID := uint64(1); campaignerID <= 3; campaignerID++ {
n.send(pb.Message{From: campaignerID, To: campaignerID, Type: pb.MsgHup})
for _, peer := range n.peers {
sm := peer.(*raft)
if sm.id == campaignerID && sm.state != StateLeader {
t.Errorf("preVote=%v: campaigning node %d state = %v, want StateLeader",
preVote, sm.id, sm.state)
} else if sm.id != campaignerID && sm.state != StateFollower {
t.Errorf("preVote=%v: after campaign of node %d, "+
"node %d had state = %v, want StateFollower",
preVote, campaignerID, sm.id, sm.state)
}
}
}
}
// TestLeaderElectionOverwriteNewerLogs tests a scenario in which a
// newly-elected leader does *not* have the newest (i.e. highest term)
// log entries, and must overwrite higher-term log entries with
// lower-term ones.
func TestLeaderElectionOverwriteNewerLogs(t *testing.T) {
testLeaderElectionOverwriteNewerLogs(t, false)
}
func TestLeaderElectionOverwriteNewerLogsPreVote(t *testing.T) {
testLeaderElectionOverwriteNewerLogs(t, true)
}
func testLeaderElectionOverwriteNewerLogs(t *testing.T, preVote bool) {
var cfg func(*Config)
if preVote {
cfg = preVoteConfig
}
// This network represents the results of the following sequence of
// events:
// - Node 1 won the election in term 1.
// - Node 1 replicated a log entry to node 2 but died before sending
// it to other nodes.
// - Node 3 won the second election in term 2.
// - Node 3 wrote an entry to its logs but died without sending it
// to any other nodes.
//
// At this point, nodes 1, 2, and 3 all have uncommitted entries in
// their logs and could win an election at term 3. The winner's log
// entry overwrites the losers'. (TestLeaderSyncFollowerLog tests
// the case where older log entries are overwritten, so this test
// focuses on the case where the newer entries are lost).
n := newNetworkWithConfig(cfg,
entsWithConfig(cfg, 1), // Node 1: Won first election
entsWithConfig(cfg, 1), // Node 2: Got logs from node 1
entsWithConfig(cfg, 2), // Node 3: Won second election
votedWithConfig(cfg, 3, 2), // Node 4: Voted but didn't get logs
votedWithConfig(cfg, 3, 2)) // Node 5: Voted but didn't get logs
// Node 1 campaigns. The election fails because a quorum of nodes
// know about the election that already happened at term 2. Node 1's
// term is pushed ahead to 2.
n.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm1 := n.peers[1].(*raft)
if sm1.state != StateFollower {
t.Errorf("state = %s, want StateFollower", sm1.state)
}
if sm1.Term != 2 {
t.Errorf("term = %d, want 2", sm1.Term)
}
// Node 1 campaigns again with a higher term. This time it succeeds.
n.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if sm1.state != StateLeader {
t.Errorf("state = %s, want StateLeader", sm1.state)
}
if sm1.Term != 3 {
t.Errorf("term = %d, want 3", sm1.Term)
}
// Now all nodes agree on a log entry with term 1 at index 1 (and
// term 3 at index 2).
for i := range n.peers {
sm := n.peers[i].(*raft)
entries := sm.raftLog.allEntries()
if len(entries) != 2 {
t.Fatalf("node %d: len(entries) == %d, want 2", i, len(entries))
}
if entries[0].Term != 1 {
t.Errorf("node %d: term at index 1 == %d, want 1", i, entries[0].Term)
}
if entries[1].Term != 3 {
t.Errorf("node %d: term at index 2 == %d, want 3", i, entries[1].Term)
}
}
}
func TestVoteFromAnyState(t *testing.T) {
testVoteFromAnyState(t, pb.MsgVote)
}
func TestPreVoteFromAnyState(t *testing.T) {
testVoteFromAnyState(t, pb.MsgPreVote)
}
func testVoteFromAnyState(t *testing.T, vt pb.MessageType) {
for st := StateType(0); st < numStates; st++ {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
r.Term = 1
switch st {
case StateFollower:
r.becomeFollower(r.Term, 3)
case StatePreCandidate:
r.becomePreCandidate()
case StateCandidate:
r.becomeCandidate()
case StateLeader:
r.becomeCandidate()
r.becomeLeader()
}
// Note that setting our state above may have advanced r.Term
// past its initial value.
origTerm := r.Term
newTerm := r.Term + 1
msg := pb.Message{
From: 2,
To: 1,
Type: vt,
Term: newTerm,
LogTerm: newTerm,
Index: 42,
}
if err := r.Step(msg); err != nil {
t.Errorf("%s,%s: Step failed: %s", vt, st, err)
}
if len(r.msgs) != 1 {
t.Errorf("%s,%s: %d response messages, want 1: %+v", vt, st, len(r.msgs), r.msgs)
} else {
resp := r.msgs[0]
if resp.Type != voteRespMsgType(vt) {
t.Errorf("%s,%s: response message is %s, want %s",
vt, st, resp.Type, voteRespMsgType(vt))
}
if resp.Reject {
t.Errorf("%s,%s: unexpected rejection", vt, st)
}
}
// If this was a real vote, we reset our state and term.
if vt == pb.MsgVote {
if r.state != StateFollower {
t.Errorf("%s,%s: state %s, want %s", vt, st, r.state, StateFollower)
}
if r.Term != newTerm {
t.Errorf("%s,%s: term %d, want %d", vt, st, r.Term, newTerm)
}
if r.Vote != 2 {
t.Errorf("%s,%s: vote %d, want 2", vt, st, r.Vote)
}
} else {
// In a prevote, nothing changes.
if r.state != st {
t.Errorf("%s,%s: state %s, want %s", vt, st, r.state, st)
}
if r.Term != origTerm {
t.Errorf("%s,%s: term %d, want %d", vt, st, r.Term, origTerm)
}
// if st == StateFollower or StatePreCandidate, r hasn't voted yet.
// In StateCandidate or StateLeader, it's voted for itself.
if r.Vote != None && r.Vote != 1 {
t.Errorf("%s,%s: vote %d, want %d or 1", vt, st, r.Vote, None)
}
}
}
}
func TestLogReplication(t *testing.T) {
tests := []struct {
*network
msgs []pb.Message
wcommitted uint64
}{
{
newNetwork(nil, nil, nil),
[]pb.Message{
{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}},
},
2,
},
{
newNetwork(nil, nil, nil),
[]pb.Message{
{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}},
{From: 1, To: 2, Type: pb.MsgHup},
{From: 1, To: 2, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}},
},
4,
},
}
for i, tt := range tests {
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
for _, m := range tt.msgs {
tt.send(m)
}
for j, x := range tt.network.peers {
sm := x.(*raft)
if sm.raftLog.committed != tt.wcommitted {
t.Errorf("#%d.%d: committed = %d, want %d", i, j, sm.raftLog.committed, tt.wcommitted)
}
ents := []pb.Entry{}
for _, e := range nextEnts(sm, tt.network.storage[j]) {
if e.Data != nil {
ents = append(ents, e)
}
}
props := []pb.Message{}
for _, m := range tt.msgs {
if m.Type == pb.MsgProp {
props = append(props, m)
}
}
for k, m := range props {
if !bytes.Equal(ents[k].Data, m.Entries[0].Data) {
t.Errorf("#%d.%d: data = %d, want %d", i, j, ents[k].Data, m.Entries[0].Data)
}
}
}
}
}
// TestLearnerLogReplication tests that a learner can receive entries from the leader.
func TestLearnerLogReplication(t *testing.T) {
n1 := newTestLearnerRaft(1, 10, 1, newTestMemoryStorage(withPeers(1), withLearners(2)))
n2 := newTestLearnerRaft(2, 10, 1, newTestMemoryStorage(withPeers(1), withLearners(2)))
nt := newNetwork(n1, n2)
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
setRandomizedElectionTimeout(n1, n1.electionTimeout)
for i := 0; i < n1.electionTimeout; i++ {
n1.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
// n1 is leader and n2 is learner
if n1.state != StateLeader {
t.Errorf("peer 1 state: %s, want %s", n1.state, StateLeader)
}
if !n2.isLearner {
t.Error("peer 2 state: not learner, want yes")
}
nextCommitted := n1.raftLog.committed + 1
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
if n1.raftLog.committed != nextCommitted {
t.Errorf("peer 1 wants committed to %d, but still %d", nextCommitted, n1.raftLog.committed)
}
if n1.raftLog.committed != n2.raftLog.committed {
t.Errorf("peer 2 wants committed to %d, but still %d", n1.raftLog.committed, n2.raftLog.committed)
}
match := n1.prs.Progress[2].Match
if match != n2.raftLog.committed {
t.Errorf("progress 2 of leader 1 wants match %d, but got %d", n2.raftLog.committed, match)
}
}
func TestSingleNodeCommit(t *testing.T) {
tt := newNetwork(nil)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
sm := tt.peers[1].(*raft)
if sm.raftLog.committed != 3 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 3)
}
}
// TestCannotCommitWithoutNewTermEntry tests the entries cannot be committed
// when leader changes, no new proposal comes in and ChangeTerm proposal is
// filtered.
func TestCannotCommitWithoutNewTermEntry(t *testing.T) {
tt := newNetwork(nil, nil, nil, nil, nil)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// 0 cannot reach 2,3,4
tt.cut(1, 3)
tt.cut(1, 4)
tt.cut(1, 5)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
sm := tt.peers[1].(*raft)
if sm.raftLog.committed != 1 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 1)
}
// network recovery
tt.recover()
// avoid committing ChangeTerm proposal
tt.ignore(pb.MsgApp)
// elect 2 as the new leader with term 2
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
// no log entries from previous term should be committed
sm = tt.peers[2].(*raft)
if sm.raftLog.committed != 1 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 1)
}
tt.recover()
// send heartbeat; reset wait
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgBeat})
// append an entry at current term
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
// expect the committed to be advanced
if sm.raftLog.committed != 5 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 5)
}
}
// TestCommitWithoutNewTermEntry tests the entries could be committed
// when leader changes, no new proposal comes in.
func TestCommitWithoutNewTermEntry(t *testing.T) {
tt := newNetwork(nil, nil, nil, nil, nil)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// 0 cannot reach 2,3,4
tt.cut(1, 3)
tt.cut(1, 4)
tt.cut(1, 5)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
sm := tt.peers[1].(*raft)
if sm.raftLog.committed != 1 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 1)
}
// network recovery
tt.recover()
// elect 2 as the new leader with term 2
// after append a ChangeTerm entry from the current term, all entries
// should be committed
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
if sm.raftLog.committed != 4 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 4)
}
}
func TestDuelingCandidates(t *testing.T) {
a := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
b := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
c := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
nt := newNetwork(a, b, c)
nt.cut(1, 3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
// 1 becomes leader since it receives votes from 1 and 2
sm := nt.peers[1].(*raft)
if sm.state != StateLeader {
t.Errorf("state = %s, want %s", sm.state, StateLeader)
}
// 3 stays as candidate since it receives a vote from 3 and a rejection from 2
sm = nt.peers[3].(*raft)
if sm.state != StateCandidate {
t.Errorf("state = %s, want %s", sm.state, StateCandidate)
}
nt.recover()
// candidate 3 now increases its term and tries to vote again
// we expect it to disrupt the leader 1 since it has a higher term
// 3 will be follower again since both 1 and 2 rejects its vote request since 3 does not have a long enough log
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
wlog := &raftLog{
storage: &MemoryStorage{ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}}},
committed: 1,
unstable: unstable{offset: 2},
}
tests := []struct {
sm *raft
state StateType
term uint64
raftLog *raftLog
}{
{a, StateFollower, 2, wlog},
{b, StateFollower, 2, wlog},
{c, StateFollower, 2, newLog(NewMemoryStorage(), raftLogger)},
}
for i, tt := range tests {
if g := tt.sm.state; g != tt.state {
t.Errorf("#%d: state = %s, want %s", i, g, tt.state)
}
if g := tt.sm.Term; g != tt.term {
t.Errorf("#%d: term = %d, want %d", i, g, tt.term)
}
base := ltoa(tt.raftLog)
if sm, ok := nt.peers[1+uint64(i)].(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(base, l); g != "" {
t.Errorf("#%d: diff:\n%s", i, g)
}
} else {
t.Logf("#%d: empty log", i)
}
}
}
func TestDuelingPreCandidates(t *testing.T) {
cfgA := newTestConfig(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
cfgB := newTestConfig(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
cfgC := newTestConfig(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
cfgA.PreVote = true
cfgB.PreVote = true
cfgC.PreVote = true
a := newRaft(cfgA)
b := newRaft(cfgB)
c := newRaft(cfgC)
nt := newNetwork(a, b, c)
nt.cut(1, 3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
// 1 becomes leader since it receives votes from 1 and 2
sm := nt.peers[1].(*raft)
if sm.state != StateLeader {
t.Errorf("state = %s, want %s", sm.state, StateLeader)
}
// 3 campaigns then reverts to follower when its PreVote is rejected
sm = nt.peers[3].(*raft)
if sm.state != StateFollower {
t.Errorf("state = %s, want %s", sm.state, StateFollower)
}
nt.recover()
// Candidate 3 now increases its term and tries to vote again.
// With PreVote, it does not disrupt the leader.
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
wlog := &raftLog{
storage: &MemoryStorage{ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}}},
committed: 1,
unstable: unstable{offset: 2},
}
tests := []struct {
sm *raft
state StateType
term uint64
raftLog *raftLog
}{
{a, StateLeader, 1, wlog},
{b, StateFollower, 1, wlog},
{c, StateFollower, 1, newLog(NewMemoryStorage(), raftLogger)},
}
for i, tt := range tests {
if g := tt.sm.state; g != tt.state {
t.Errorf("#%d: state = %s, want %s", i, g, tt.state)
}
if g := tt.sm.Term; g != tt.term {
t.Errorf("#%d: term = %d, want %d", i, g, tt.term)
}
base := ltoa(tt.raftLog)
if sm, ok := nt.peers[1+uint64(i)].(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(base, l); g != "" {
t.Errorf("#%d: diff:\n%s", i, g)
}
} else {
t.Logf("#%d: empty log", i)
}
}
}
func TestCandidateConcede(t *testing.T) {
tt := newNetwork(nil, nil, nil)
tt.isolate(1)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
tt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
// heal the partition
tt.recover()
// send heartbeat; reset wait
tt.send(pb.Message{From: 3, To: 3, Type: pb.MsgBeat})
data := []byte("force follower")
// send a proposal to 3 to flush out a MsgApp to 1
tt.send(pb.Message{From: 3, To: 3, Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})
// send heartbeat; flush out commit
tt.send(pb.Message{From: 3, To: 3, Type: pb.MsgBeat})
a := tt.peers[1].(*raft)
if g := a.state; g != StateFollower {
t.Errorf("state = %s, want %s", g, StateFollower)
}
if g := a.Term; g != 1 {
t.Errorf("term = %d, want %d", g, 1)
}
wantLog := ltoa(&raftLog{
storage: &MemoryStorage{
ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}, {Term: 1, Index: 2, Data: data}},
},
unstable: unstable{offset: 3},
committed: 2,
})
for i, p := range tt.peers {
if sm, ok := p.(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(wantLog, l); g != "" {
t.Errorf("#%d: diff:\n%s", i, g)
}
} else {
t.Logf("#%d: empty log", i)
}
}
}
func TestSingleNodeCandidate(t *testing.T) {
tt := newNetwork(nil)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm := tt.peers[1].(*raft)
if sm.state != StateLeader {
t.Errorf("state = %d, want %d", sm.state, StateLeader)
}
}
func TestSingleNodePreCandidate(t *testing.T) {
tt := newNetworkWithConfig(preVoteConfig, nil)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm := tt.peers[1].(*raft)
if sm.state != StateLeader {
t.Errorf("state = %d, want %d", sm.state, StateLeader)
}
}
func TestOldMessages(t *testing.T) {
tt := newNetwork(nil, nil, nil)
// make 0 leader @ term 3
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// pretend we're an old leader trying to make progress; this entry is expected to be ignored.
tt.send(pb.Message{From: 2, To: 1, Type: pb.MsgApp, Term: 2, Entries: []pb.Entry{{Index: 3, Term: 2}}})
// commit a new entry
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
ilog := &raftLog{
storage: &MemoryStorage{
ents: []pb.Entry{
{}, {Data: nil, Term: 1, Index: 1},
{Data: nil, Term: 2, Index: 2}, {Data: nil, Term: 3, Index: 3},
{Data: []byte("somedata"), Term: 3, Index: 4},
},
},
unstable: unstable{offset: 5},
committed: 4,
}
base := ltoa(ilog)
for i, p := range tt.peers {
if sm, ok := p.(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(base, l); g != "" {
t.Errorf("#%d: diff:\n%s", i, g)
}
} else {
t.Logf("#%d: empty log", i)
}
}
}
// TestOldMessagesReply - optimization - reply with new term.
func TestProposal(t *testing.T) {
tests := []struct {
*network
success bool
}{
{newNetwork(nil, nil, nil), true},
{newNetwork(nil, nil, nopStepper), true},
{newNetwork(nil, nopStepper, nopStepper), false},
{newNetwork(nil, nopStepper, nopStepper, nil), false},
{newNetwork(nil, nopStepper, nopStepper, nil, nil), true},
}
for j, tt := range tests {
send := func(m pb.Message) {
defer func() {
// only recover if we expect it to panic (success==false)
if !tt.success {
e := recover()
if e != nil {
t.Logf("#%d: err: %s", j, e)
}
}
}()
tt.send(m)
}
data := []byte("somedata")
// promote 1 to become leader
send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})
wantLog := newLog(NewMemoryStorage(), raftLogger)
if tt.success {
wantLog = &raftLog{
storage: &MemoryStorage{
ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}, {Term: 1, Index: 2, Data: data}},
},
unstable: unstable{offset: 3},
committed: 2}
}
base := ltoa(wantLog)
for i, p := range tt.peers {
if sm, ok := p.(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(base, l); g != "" {
t.Errorf("#%d: peer %d diff:\n%s", j, i, g)
}
} else {
t.Logf("#%d: peer %d empty log", j, i)
}
}
sm := tt.network.peers[1].(*raft)
if g := sm.Term; g != 1 {
t.Errorf("#%d: term = %d, want %d", j, g, 1)
}
}
}
func TestProposalByProxy(t *testing.T) {
data := []byte("somedata")
tests := []*network{
newNetwork(nil, nil, nil),
newNetwork(nil, nil, nopStepper),
}
for j, tt := range tests {
// promote 0 the leader
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// propose via follower
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
wantLog := &raftLog{
storage: &MemoryStorage{
ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}, {Term: 1, Data: data, Index: 2}},
},
unstable: unstable{offset: 3},
committed: 2}
base := ltoa(wantLog)
for i, p := range tt.peers {
if sm, ok := p.(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(base, l); g != "" {
t.Errorf("#%d: peer %d diff:\n%s", j, i, g)
}
} else {
t.Logf("#%d: peer %d empty log", j, i)
}
}
sm := tt.peers[1].(*raft)
if g := sm.Term; g != 1 {
t.Errorf("#%d: term = %d, want %d", j, g, 1)
}
}
}
func TestCommit(t *testing.T) {
tests := []struct {
matches []uint64
logs []pb.Entry
smTerm uint64
w uint64
}{
// single
{[]uint64{1}, []pb.Entry{{Index: 1, Term: 1}}, 1, 1},
{[]uint64{1}, []pb.Entry{{Index: 1, Term: 1}}, 2, 0},
{[]uint64{2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 2, 2},
{[]uint64{1}, []pb.Entry{{Index: 1, Term: 2}}, 2, 1},
// odd
{[]uint64{2, 1, 1}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 1, 1},
{[]uint64{2, 1, 1}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}}, 2, 0},
{[]uint64{2, 1, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 2, 2},
{[]uint64{2, 1, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}}, 2, 0},
// even
{[]uint64{2, 1, 1, 1}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 1, 1},
{[]uint64{2, 1, 1, 1}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}}, 2, 0},
{[]uint64{2, 1, 1, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 1, 1},
{[]uint64{2, 1, 1, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}}, 2, 0},
{[]uint64{2, 1, 2, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 2, 2},
{[]uint64{2, 1, 2, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}}, 2, 0},
}
for i, tt := range tests {
storage := newTestMemoryStorage(withPeers(1))
storage.Append(tt.logs)
storage.hardState = pb.HardState{Term: tt.smTerm}
sm := newTestRaft(1, 10, 2, storage)
for j := 0; j < len(tt.matches); j++ {
id := uint64(j) + 1
if id > 1 {
sm.applyConfChange(pb.ConfChange{Type: pb.ConfChangeAddNode, NodeID: id}.AsV2())
}
pr := sm.prs.Progress[id]
pr.Match, pr.Next = tt.matches[j], tt.matches[j]+1
}
sm.maybeCommit()
if g := sm.raftLog.committed; g != tt.w {
t.Errorf("#%d: committed = %d, want %d", i, g, tt.w)
}
}
}
func TestPastElectionTimeout(t *testing.T) {
tests := []struct {
elapse int
wprobability float64
round bool
}{
{5, 0, false},
{10, 0.1, true},
{13, 0.4, true},
{15, 0.6, true},
{18, 0.9, true},
{20, 1, false},
}
for i, tt := range tests {
sm := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1)))
sm.electionElapsed = tt.elapse
c := 0
for j := 0; j < 10000; j++ {
sm.resetRandomizedElectionTimeout()
if sm.pastElectionTimeout() {
c++
}
}
got := float64(c) / 10000.0
if tt.round {
got = math.Floor(got*10+0.5) / 10.0
}
if got != tt.wprobability {
t.Errorf("#%d: probability = %v, want %v", i, got, tt.wprobability)
}
}
}
// ensure that the Step function ignores the message from old term and does not pass it to the
// actual stepX function.
func TestStepIgnoreOldTermMsg(t *testing.T) {
called := false
fakeStep := func(r *raft, m pb.Message) error {
called = true
return nil
}
sm := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1)))
sm.step = fakeStep
sm.Term = 2
sm.Step(pb.Message{Type: pb.MsgApp, Term: sm.Term - 1})
if called {
t.Errorf("stepFunc called = %v , want %v", called, false)
}
}
// TestHandleMsgApp ensures:
// 1. Reply false if log doesn’t contain an entry at prevLogIndex whose term matches prevLogTerm.
// 2. If an existing entry conflicts with a new one (same index but different terms),
// delete the existing entry and all that follow it; append any new entries not already in the log.
// 3. If leaderCommit > commitIndex, set commitIndex = min(leaderCommit, index of last new entry).
func TestHandleMsgApp(t *testing.T) {
tests := []struct {
m pb.Message
wIndex uint64
wCommit uint64
wReject bool
}{
// Ensure 1
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 3, Index: 2, Commit: 3}, 2, 0, true}, // previous log mismatch
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 3, Index: 3, Commit: 3}, 2, 0, true}, // previous log non-exist
// Ensure 2
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 1, Index: 1, Commit: 1}, 2, 1, false},
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 0, Index: 0, Commit: 1, Entries: []pb.Entry{{Index: 1, Term: 2}}}, 1, 1, false},
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 3, Entries: []pb.Entry{{Index: 3, Term: 2}, {Index: 4, Term: 2}}}, 4, 3, false},
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 4, Entries: []pb.Entry{{Index: 3, Term: 2}}}, 3, 3, false},
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 1, Index: 1, Commit: 4, Entries: []pb.Entry{{Index: 2, Term: 2}}}, 2, 2, false},
// Ensure 3
{pb.Message{Type: pb.MsgApp, Term: 1, LogTerm: 1, Index: 1, Commit: 3}, 2, 1, false}, // match entry 1, commit up to last new entry 1
{pb.Message{Type: pb.MsgApp, Term: 1, LogTerm: 1, Index: 1, Commit: 3, Entries: []pb.Entry{{Index: 2, Term: 2}}}, 2, 2, false}, // match entry 1, commit up to last new entry 2
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 3}, 2, 2, false}, // match entry 2, commit up to last new entry 2
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 4}, 2, 2, false}, // commit up to log.last()
}
for i, tt := range tests {
storage := newTestMemoryStorage(withPeers(1))
storage.Append([]pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}})
sm := newTestRaft(1, 10, 1, storage)
sm.becomeFollower(2, None)
sm.handleAppendEntries(tt.m)
if sm.raftLog.lastIndex() != tt.wIndex {
t.Errorf("#%d: lastIndex = %d, want %d", i, sm.raftLog.lastIndex(), tt.wIndex)
}
if sm.raftLog.committed != tt.wCommit {
t.Errorf("#%d: committed = %d, want %d", i, sm.raftLog.committed, tt.wCommit)
}
m := sm.readMessages()
if len(m) != 1 {
t.Fatalf("#%d: msg = nil, want 1", i)
}
if m[0].Reject != tt.wReject {
t.Errorf("#%d: reject = %v, want %v", i, m[0].Reject, tt.wReject)
}
}
}
// TestHandleHeartbeat ensures that the follower commits to the commit in the message.
func TestHandleHeartbeat(t *testing.T) {
commit := uint64(2)
tests := []struct {
m pb.Message
wCommit uint64
}{
{pb.Message{From: 2, To: 1, Type: pb.MsgHeartbeat, Term: 2, Commit: commit + 1}, commit + 1},
{pb.Message{From: 2, To: 1, Type: pb.MsgHeartbeat, Term: 2, Commit: commit - 1}, commit}, // do not decrease commit
}
for i, tt := range tests {
storage := newTestMemoryStorage(withPeers(1, 2))
storage.Append([]pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}, {Index: 3, Term: 3}})
sm := newTestRaft(1, 5, 1, storage)
sm.becomeFollower(2, 2)
sm.raftLog.commitTo(commit)
sm.handleHeartbeat(tt.m)
if sm.raftLog.committed != tt.wCommit {
t.Errorf("#%d: committed = %d, want %d", i, sm.raftLog.committed, tt.wCommit)
}
m := sm.readMessages()
if len(m) != 1 {
t.Fatalf("#%d: msg = nil, want 1", i)
}
if m[0].Type != pb.MsgHeartbeatResp {
t.Errorf("#%d: type = %v, want MsgHeartbeatResp", i, m[0].Type)
}
}
}
// TestHandleHeartbeatResp ensures that we re-send log entries when we get a heartbeat response.
func TestHandleHeartbeatResp(t *testing.T) {
storage := newTestMemoryStorage(withPeers(1, 2))
storage.Append([]pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}, {Index: 3, Term: 3}})
sm := newTestRaft(1, 5, 1, storage)
sm.becomeCandidate()
sm.becomeLeader()
sm.raftLog.commitTo(sm.raftLog.lastIndex())
// A heartbeat response from a node that is behind; re-send MsgApp
sm.Step(pb.Message{From: 2, Type: pb.MsgHeartbeatResp})
msgs := sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want 1", len(msgs))
}
if msgs[0].Type != pb.MsgApp {
t.Errorf("type = %v, want MsgApp", msgs[0].Type)
}
// A second heartbeat response generates another MsgApp re-send
sm.Step(pb.Message{From: 2, Type: pb.MsgHeartbeatResp})
msgs = sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want 1", len(msgs))
}
if msgs[0].Type != pb.MsgApp {
t.Errorf("type = %v, want MsgApp", msgs[0].Type)
}
// Once we have an MsgAppResp, heartbeats no longer send MsgApp.
sm.Step(pb.Message{
From: 2,
Type: pb.MsgAppResp,
Index: msgs[0].Index + uint64(len(msgs[0].Entries)),
})
// Consume the message sent in response to MsgAppResp
sm.readMessages()
sm.Step(pb.Message{From: 2, Type: pb.MsgHeartbeatResp})
msgs = sm.readMessages()
if len(msgs) != 0 {
t.Fatalf("len(msgs) = %d, want 0: %+v", len(msgs), msgs)
}
}
// TestRaftFreesReadOnlyMem ensures raft will free read request from
// readOnly readIndexQueue and pendingReadIndex map.
// related issue: https://github.com/etcd-io/etcd/issues/7571
func TestRaftFreesReadOnlyMem(t *testing.T) {
sm := newTestRaft(1, 5, 1, newTestMemoryStorage(withPeers(1, 2)))
sm.becomeCandidate()
sm.becomeLeader()
sm.raftLog.commitTo(sm.raftLog.lastIndex())
ctx := []byte("ctx")
// leader starts linearizable read request.
// more info: raft dissertation 6.4, step 2.
sm.Step(pb.Message{From: 2, Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: ctx}}})
msgs := sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want 1", len(msgs))
}
if msgs[0].Type != pb.MsgHeartbeat {
t.Fatalf("type = %v, want MsgHeartbeat", msgs[0].Type)
}
if !bytes.Equal(msgs[0].Context, ctx) {
t.Fatalf("Context = %v, want %v", msgs[0].Context, ctx)
}
if len(sm.readOnly.readIndexQueue) != 1 {
t.Fatalf("len(readIndexQueue) = %v, want 1", len(sm.readOnly.readIndexQueue))
}
if len(sm.readOnly.pendingReadIndex) != 1 {
t.Fatalf("len(pendingReadIndex) = %v, want 1", len(sm.readOnly.pendingReadIndex))
}
if _, ok := sm.readOnly.pendingReadIndex[string(ctx)]; !ok {
t.Fatalf("can't find context %v in pendingReadIndex ", ctx)
}
// heartbeat responses from majority of followers (1 in this case)
// acknowledge the authority of the leader.
// more info: raft dissertation 6.4, step 3.
sm.Step(pb.Message{From: 2, Type: pb.MsgHeartbeatResp, Context: ctx})
if len(sm.readOnly.readIndexQueue) != 0 {
t.Fatalf("len(readIndexQueue) = %v, want 0", len(sm.readOnly.readIndexQueue))
}
if len(sm.readOnly.pendingReadIndex) != 0 {
t.Fatalf("len(pendingReadIndex) = %v, want 0", len(sm.readOnly.pendingReadIndex))
}
if _, ok := sm.readOnly.pendingReadIndex[string(ctx)]; ok {
t.Fatalf("found context %v in pendingReadIndex, want none", ctx)
}
}
// TestMsgAppRespWaitReset verifies the resume behavior of a leader
// MsgAppResp.
func TestMsgAppRespWaitReset(t *testing.T) {
sm := newTestRaft(1, 5, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
sm.becomeCandidate()
sm.becomeLeader()
// The new leader has just emitted a new Term 4 entry; consume those messages
// from the outgoing queue.
sm.bcastAppend()
sm.readMessages()
// Node 2 acks the first entry, making it committed.
sm.Step(pb.Message{
From: 2,
Type: pb.MsgAppResp,
Index: 1,
})
if sm.raftLog.committed != 1 {
t.Fatalf("expected committed to be 1, got %d", sm.raftLog.committed)
}
// Also consume the MsgApp messages that update Commit on the followers.
sm.readMessages()
// A new command is now proposed on node 1.
sm.Step(pb.Message{
From: 1,
Type: pb.MsgProp,
Entries: []pb.Entry{{}},
})
// The command is broadcast to all nodes not in the wait state.
// Node 2 left the wait state due to its MsgAppResp, but node 3 is still waiting.
msgs := sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("expected 1 message, got %d: %+v", len(msgs), msgs)
}
if msgs[0].Type != pb.MsgApp || msgs[0].To != 2 {
t.Errorf("expected MsgApp to node 2, got %v to %d", msgs[0].Type, msgs[0].To)
}
if len(msgs[0].Entries) != 1 || msgs[0].Entries[0].Index != 2 {
t.Errorf("expected to send entry 2, but got %v", msgs[0].Entries)
}
// Now Node 3 acks the first entry. This releases the wait and entry 2 is sent.
sm.Step(pb.Message{
From: 3,
Type: pb.MsgAppResp,
Index: 1,
})
msgs = sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("expected 1 message, got %d: %+v", len(msgs), msgs)
}
if msgs[0].Type != pb.MsgApp || msgs[0].To != 3 {
t.Errorf("expected MsgApp to node 3, got %v to %d", msgs[0].Type, msgs[0].To)
}
if len(msgs[0].Entries) != 1 || msgs[0].Entries[0].Index != 2 {
t.Errorf("expected to send entry 2, but got %v", msgs[0].Entries)
}
}
func TestRecvMsgVote(t *testing.T) {
testRecvMsgVote(t, pb.MsgVote)
}
func TestRecvMsgPreVote(t *testing.T) {
testRecvMsgVote(t, pb.MsgPreVote)
}
func testRecvMsgVote(t *testing.T, msgType pb.MessageType) {
tests := []struct {
state StateType
index, logTerm uint64
voteFor uint64
wreject bool
}{
{StateFollower, 0, 0, None, true},
{StateFollower, 0, 1, None, true},
{StateFollower, 0, 2, None, true},
{StateFollower, 0, 3, None, false},
{StateFollower, 1, 0, None, true},
{StateFollower, 1, 1, None, true},
{StateFollower, 1, 2, None, true},
{StateFollower, 1, 3, None, false},
{StateFollower, 2, 0, None, true},
{StateFollower, 2, 1, None, true},
{StateFollower, 2, 2, None, false},
{StateFollower, 2, 3, None, false},
{StateFollower, 3, 0, None, true},
{StateFollower, 3, 1, None, true},
{StateFollower, 3, 2, None, false},
{StateFollower, 3, 3, None, false},
{StateFollower, 3, 2, 2, false},
{StateFollower, 3, 2, 1, true},
{StateLeader, 3, 3, 1, true},
{StatePreCandidate, 3, 3, 1, true},
{StateCandidate, 3, 3, 1, true},
}
max := func(a, b uint64) uint64 {
if a > b {
return a
}
return b
}
for i, tt := range tests {
sm := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1)))
sm.state = tt.state
switch tt.state {
case StateFollower:
sm.step = stepFollower
case StateCandidate, StatePreCandidate:
sm.step = stepCandidate
case StateLeader:
sm.step = stepLeader
}
sm.Vote = tt.voteFor
sm.raftLog = &raftLog{
storage: &MemoryStorage{ents: []pb.Entry{{}, {Index: 1, Term: 2}, {Index: 2, Term: 2}}},
unstable: unstable{offset: 3},
}
// raft.Term is greater than or equal to raft.raftLog.lastTerm. In this
// test we're only testing MsgVote responses when the campaigning node
// has a different raft log compared to the recipient node.
// Additionally we're verifying behaviour when the recipient node has
// already given out its vote for its current term. We're not testing
// what the recipient node does when receiving a message with a
// different term number, so we simply initialize both term numbers to
// be the same.
term := max(sm.raftLog.lastTerm(), tt.logTerm)
sm.Term = term
sm.Step(pb.Message{Type: msgType, Term: term, From: 2, Index: tt.index, LogTerm: tt.logTerm})
msgs := sm.readMessages()
if g := len(msgs); g != 1 {
t.Fatalf("#%d: len(msgs) = %d, want 1", i, g)
continue
}
if g := msgs[0].Type; g != voteRespMsgType(msgType) {
t.Errorf("#%d, m.Type = %v, want %v", i, g, voteRespMsgType(msgType))
}
if g := msgs[0].Reject; g != tt.wreject {
t.Errorf("#%d, m.Reject = %v, want %v", i, g, tt.wreject)
}
}
}
func TestStateTransition(t *testing.T) {
tests := []struct {
from StateType
to StateType
wallow bool
wterm uint64
wlead uint64
}{
{StateFollower, StateFollower, true, 1, None},
{StateFollower, StatePreCandidate, true, 0, None},
{StateFollower, StateCandidate, true, 1, None},
{StateFollower, StateLeader, false, 0, None},
{StatePreCandidate, StateFollower, true, 0, None},
{StatePreCandidate, StatePreCandidate, true, 0, None},
{StatePreCandidate, StateCandidate, true, 1, None},
{StatePreCandidate, StateLeader, true, 0, 1},
{StateCandidate, StateFollower, true, 0, None},
{StateCandidate, StatePreCandidate, true, 0, None},
{StateCandidate, StateCandidate, true, 1, None},
{StateCandidate, StateLeader, true, 0, 1},
{StateLeader, StateFollower, true, 1, None},
{StateLeader, StatePreCandidate, false, 0, None},
{StateLeader, StateCandidate, false, 1, None},
{StateLeader, StateLeader, true, 0, 1},
}
for i, tt := range tests {
func() {
defer func() {
if r := recover(); r != nil {
if tt.wallow {
t.Errorf("%d: allow = %v, want %v", i, false, true)
}
}
}()
sm := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1)))
sm.state = tt.from
switch tt.to {
case StateFollower:
sm.becomeFollower(tt.wterm, tt.wlead)
case StatePreCandidate:
sm.becomePreCandidate()
case StateCandidate:
sm.becomeCandidate()
case StateLeader:
sm.becomeLeader()
}
if sm.Term != tt.wterm {
t.Errorf("%d: term = %d, want %d", i, sm.Term, tt.wterm)
}
if sm.lead != tt.wlead {
t.Errorf("%d: lead = %d, want %d", i, sm.lead, tt.wlead)
}
}()
}
}
func TestAllServerStepdown(t *testing.T) {
tests := []struct {
state StateType
wstate StateType
wterm uint64
windex uint64
}{
{StateFollower, StateFollower, 3, 0},
{StatePreCandidate, StateFollower, 3, 0},
{StateCandidate, StateFollower, 3, 0},
{StateLeader, StateFollower, 3, 1},
}
tmsgTypes := [...]pb.MessageType{pb.MsgVote, pb.MsgApp}
tterm := uint64(3)
for i, tt := range tests {
sm := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
switch tt.state {
case StateFollower:
sm.becomeFollower(1, None)
case StatePreCandidate:
sm.becomePreCandidate()
case StateCandidate:
sm.becomeCandidate()
case StateLeader:
sm.becomeCandidate()
sm.becomeLeader()
}
for j, msgType := range tmsgTypes {
sm.Step(pb.Message{From: 2, Type: msgType, Term: tterm, LogTerm: tterm})
if sm.state != tt.wstate {
t.Errorf("#%d.%d state = %v , want %v", i, j, sm.state, tt.wstate)
}
if sm.Term != tt.wterm {
t.Errorf("#%d.%d term = %v , want %v", i, j, sm.Term, tt.wterm)
}
if sm.raftLog.lastIndex() != tt.windex {
t.Errorf("#%d.%d index = %v , want %v", i, j, sm.raftLog.lastIndex(), tt.windex)
}
if uint64(len(sm.raftLog.allEntries())) != tt.windex {
t.Errorf("#%d.%d len(ents) = %v , want %v", i, j, len(sm.raftLog.allEntries()), tt.windex)
}
wlead := uint64(2)
if msgType == pb.MsgVote {
wlead = None
}
if sm.lead != wlead {
t.Errorf("#%d, sm.lead = %d, want %d", i, sm.lead, None)
}
}
}
}
func TestCandidateResetTermMsgHeartbeat(t *testing.T) {
testCandidateResetTerm(t, pb.MsgHeartbeat)
}
func TestCandidateResetTermMsgApp(t *testing.T) {
testCandidateResetTerm(t, pb.MsgApp)
}
// testCandidateResetTerm tests when a candidate receives a
// MsgHeartbeat or MsgApp from leader, "Step" resets the term
// with leader's and reverts back to follower.
func testCandidateResetTerm(t *testing.T, mt pb.MessageType) {
a := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
b := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
c := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
nt := newNetwork(a, b, c)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Errorf("state = %s, want %s", a.state, StateLeader)
}
if b.state != StateFollower {
t.Errorf("state = %s, want %s", b.state, StateFollower)
}
if c.state != StateFollower {
t.Errorf("state = %s, want %s", c.state, StateFollower)
}
// isolate 3 and increase term in rest
nt.isolate(3)
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Errorf("state = %s, want %s", a.state, StateLeader)
}
if b.state != StateFollower {
t.Errorf("state = %s, want %s", b.state, StateFollower)
}
// trigger campaign in isolated c
c.resetRandomizedElectionTimeout()
for i := 0; i < c.randomizedElectionTimeout; i++ {
c.tick()
}
if c.state != StateCandidate {
t.Errorf("state = %s, want %s", c.state, StateCandidate)
}
nt.recover()
// leader sends to isolated candidate
// and expects candidate to revert to follower
nt.send(pb.Message{From: 1, To: 3, Term: a.Term, Type: mt})
if c.state != StateFollower {
t.Errorf("state = %s, want %s", c.state, StateFollower)
}
// follower c term is reset with leader's
if a.Term != c.Term {
t.Errorf("follower term expected same term as leader's %d, got %d", a.Term, c.Term)
}
}
func TestLeaderStepdownWhenQuorumActive(t *testing.T) {
sm := newTestRaft(1, 5, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
sm.checkQuorum = true
sm.becomeCandidate()
sm.becomeLeader()
for i := 0; i < sm.electionTimeout+1; i++ {
sm.Step(pb.Message{From: 2, Type: pb.MsgHeartbeatResp, Term: sm.Term})
sm.tick()
}
if sm.state != StateLeader {
t.Errorf("state = %v, want %v", sm.state, StateLeader)
}
}
func TestLeaderStepdownWhenQuorumLost(t *testing.T) {
sm := newTestRaft(1, 5, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
sm.checkQuorum = true
sm.becomeCandidate()
sm.becomeLeader()
for i := 0; i < sm.electionTimeout+1; i++ {
sm.tick()
}
if sm.state != StateFollower {
t.Errorf("state = %v, want %v", sm.state, StateFollower)
}
}
func TestLeaderSupersedingWithCheckQuorum(t *testing.T) {
a := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
b := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
c := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
a.checkQuorum = true
b.checkQuorum = true
c.checkQuorum = true
nt := newNetwork(a, b, c)
setRandomizedElectionTimeout(b, b.electionTimeout+1)
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Errorf("state = %s, want %s", a.state, StateLeader)
}
if c.state != StateFollower {
t.Errorf("state = %s, want %s", c.state, StateFollower)
}
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
// Peer b rejected c's vote since its electionElapsed had not reached to electionTimeout
if c.state != StateCandidate {
t.Errorf("state = %s, want %s", c.state, StateCandidate)
}
// Letting b's electionElapsed reach to electionTimeout
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if c.state != StateLeader {
t.Errorf("state = %s, want %s", c.state, StateLeader)
}
}
func TestLeaderElectionWithCheckQuorum(t *testing.T) {
a := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
b := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
c := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
a.checkQuorum = true
b.checkQuorum = true
c.checkQuorum = true
nt := newNetwork(a, b, c)
setRandomizedElectionTimeout(a, a.electionTimeout+1)
setRandomizedElectionTimeout(b, b.electionTimeout+2)
// Immediately after creation, votes are cast regardless of the
// election timeout.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Errorf("state = %s, want %s", a.state, StateLeader)
}
if c.state != StateFollower {
t.Errorf("state = %s, want %s", c.state, StateFollower)
}
// need to reset randomizedElectionTimeout larger than electionTimeout again,
// because the value might be reset to electionTimeout since the last state changes
setRandomizedElectionTimeout(a, a.electionTimeout+1)
setRandomizedElectionTimeout(b, b.electionTimeout+2)
for i := 0; i < a.electionTimeout; i++ {
a.tick()
}
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if a.state != StateFollower {
t.Errorf("state = %s, want %s", a.state, StateFollower)
}
if c.state != StateLeader {
t.Errorf("state = %s, want %s", c.state, StateLeader)
}
}
// TestFreeStuckCandidateWithCheckQuorum ensures that a candidate with a higher term
// can disrupt the leader even if the leader still "officially" holds the lease, The
// leader is expected to step down and adopt the candidate's term
func TestFreeStuckCandidateWithCheckQuorum(t *testing.T) {
a := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
b := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
c := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
a.checkQuorum = true
b.checkQuorum = true
c.checkQuorum = true
nt := newNetwork(a, b, c)
setRandomizedElectionTimeout(b, b.electionTimeout+1)
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(1)
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if b.state != StateFollower {
t.Errorf("state = %s, want %s", b.state, StateFollower)
}
if c.state != StateCandidate {
t.Errorf("state = %s, want %s", c.state, StateCandidate)
}
if c.Term != b.Term+1 {
t.Errorf("term = %d, want %d", c.Term, b.Term+1)
}
// Vote again for safety
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if b.state != StateFollower {
t.Errorf("state = %s, want %s", b.state, StateFollower)
}
if c.state != StateCandidate {
t.Errorf("state = %s, want %s", c.state, StateCandidate)
}
if c.Term != b.Term+2 {
t.Errorf("term = %d, want %d", c.Term, b.Term+2)
}
nt.recover()
nt.send(pb.Message{From: 1, To: 3, Type: pb.MsgHeartbeat, Term: a.Term})
// Disrupt the leader so that the stuck peer is freed
if a.state != StateFollower {
t.Errorf("state = %s, want %s", a.state, StateFollower)
}
if c.Term != a.Term {
t.Errorf("term = %d, want %d", c.Term, a.Term)
}
// Vote again, should become leader this time
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if c.state != StateLeader {
t.Errorf("peer 3 state: %s, want %s", c.state, StateLeader)
}
}
func TestNonPromotableVoterWithCheckQuorum(t *testing.T) {
a := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2)))
b := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1)))
a.checkQuorum = true
b.checkQuorum = true
nt := newNetwork(a, b)
setRandomizedElectionTimeout(b, b.electionTimeout+1)
// Need to remove 2 again to make it a non-promotable node since newNetwork overwritten some internal states
b.applyConfChange(pb.ConfChange{Type: pb.ConfChangeRemoveNode, NodeID: 2}.AsV2())
if b.promotable() {
t.Fatalf("promotable = %v, want false", b.promotable())
}
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Errorf("state = %s, want %s", a.state, StateLeader)
}
if b.state != StateFollower {
t.Errorf("state = %s, want %s", b.state, StateFollower)
}
if b.lead != 1 {
t.Errorf("lead = %d, want 1", b.lead)
}
}
// TestDisruptiveFollower tests isolated follower,
// with slow network incoming from leader, election times out
// to become a candidate with an increased term. Then, the
// candiate's response to late leader heartbeat forces the leader
// to step down.
func TestDisruptiveFollower(t *testing.T) {
n1 := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n2 := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n3 := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n1.checkQuorum = true
n2.checkQuorum = true
n3.checkQuorum = true
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
n3.becomeFollower(1, None)
nt := newNetwork(n1, n2, n3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// check state
// n1.state == StateLeader
// n2.state == StateFollower
// n3.state == StateFollower
if n1.state != StateLeader {
t.Fatalf("node 1 state: %s, want %s", n1.state, StateLeader)
}
if n2.state != StateFollower {
t.Fatalf("node 2 state: %s, want %s", n2.state, StateFollower)
}
if n3.state != StateFollower {
t.Fatalf("node 3 state: %s, want %s", n3.state, StateFollower)
}
// etcd server "advanceTicksForElection" on restart;
// this is to expedite campaign trigger when given larger
// election timeouts (e.g. multi-datacenter deploy)
// Or leader messages are being delayed while ticks elapse
setRandomizedElectionTimeout(n3, n3.electionTimeout+2)
for i := 0; i < n3.randomizedElectionTimeout-1; i++ {
n3.tick()
}
// ideally, before last election tick elapses,
// the follower n3 receives "pb.MsgApp" or "pb.MsgHeartbeat"
// from leader n1, and then resets its "electionElapsed"
// however, last tick may elapse before receiving any
// messages from leader, thus triggering campaign
n3.tick()
// n1 is still leader yet
// while its heartbeat to candidate n3 is being delayed
// check state
// n1.state == StateLeader
// n2.state == StateFollower
// n3.state == StateCandidate
if n1.state != StateLeader {
t.Fatalf("node 1 state: %s, want %s", n1.state, StateLeader)
}
if n2.state != StateFollower {
t.Fatalf("node 2 state: %s, want %s", n2.state, StateFollower)
}
if n3.state != StateCandidate {
t.Fatalf("node 3 state: %s, want %s", n3.state, StateCandidate)
}
// check term
// n1.Term == 2
// n2.Term == 2
// n3.Term == 3
if n1.Term != 2 {
t.Fatalf("node 1 term: %d, want %d", n1.Term, 2)
}
if n2.Term != 2 {
t.Fatalf("node 2 term: %d, want %d", n2.Term, 2)
}
if n3.Term != 3 {
t.Fatalf("node 3 term: %d, want %d", n3.Term, 3)
}
// while outgoing vote requests are still queued in n3,
// leader heartbeat finally arrives at candidate n3
// however, due to delayed network from leader, leader
// heartbeat was sent with lower term than candidate's
nt.send(pb.Message{From: 1, To: 3, Term: n1.Term, Type: pb.MsgHeartbeat})
// then candidate n3 responds with "pb.MsgAppResp" of higher term
// and leader steps down from a message with higher term
// this is to disrupt the current leader, so that candidate
// with higher term can be freed with following election
// check state
// n1.state == StateFollower
// n2.state == StateFollower
// n3.state == StateCandidate
if n1.state != StateFollower {
t.Fatalf("node 1 state: %s, want %s", n1.state, StateFollower)
}
if n2.state != StateFollower {
t.Fatalf("node 2 state: %s, want %s", n2.state, StateFollower)
}
if n3.state != StateCandidate {
t.Fatalf("node 3 state: %s, want %s", n3.state, StateCandidate)
}
// check term
// n1.Term == 3
// n2.Term == 2
// n3.Term == 3
if n1.Term != 3 {
t.Fatalf("node 1 term: %d, want %d", n1.Term, 3)
}
if n2.Term != 2 {
t.Fatalf("node 2 term: %d, want %d", n2.Term, 2)
}
if n3.Term != 3 {
t.Fatalf("node 3 term: %d, want %d", n3.Term, 3)
}
}
// TestDisruptiveFollowerPreVote tests isolated follower,
// with slow network incoming from leader, election times out
// to become a pre-candidate with less log than current leader.
// Then pre-vote phase prevents this isolated node from forcing
// current leader to step down, thus less disruptions.
func TestDisruptiveFollowerPreVote(t *testing.T) {
n1 := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n2 := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n3 := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n1.checkQuorum = true
n2.checkQuorum = true
n3.checkQuorum = true
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
n3.becomeFollower(1, None)
nt := newNetwork(n1, n2, n3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// check state
// n1.state == StateLeader
// n2.state == StateFollower
// n3.state == StateFollower
if n1.state != StateLeader {
t.Fatalf("node 1 state: %s, want %s", n1.state, StateLeader)
}
if n2.state != StateFollower {
t.Fatalf("node 2 state: %s, want %s", n2.state, StateFollower)
}
if n3.state != StateFollower {
t.Fatalf("node 3 state: %s, want %s", n3.state, StateFollower)
}
nt.isolate(3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
n1.preVote = true
n2.preVote = true
n3.preVote = true
nt.recover()
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
// check state
// n1.state == StateLeader
// n2.state == StateFollower
// n3.state == StatePreCandidate
if n1.state != StateLeader {
t.Fatalf("node 1 state: %s, want %s", n1.state, StateLeader)
}
if n2.state != StateFollower {
t.Fatalf("node 2 state: %s, want %s", n2.state, StateFollower)
}
if n3.state != StatePreCandidate {
t.Fatalf("node 3 state: %s, want %s", n3.state, StatePreCandidate)
}
// check term
// n1.Term == 2
// n2.Term == 2
// n3.Term == 2
if n1.Term != 2 {
t.Fatalf("node 1 term: %d, want %d", n1.Term, 2)
}
if n2.Term != 2 {
t.Fatalf("node 2 term: %d, want %d", n2.Term, 2)
}
if n3.Term != 2 {
t.Fatalf("node 2 term: %d, want %d", n3.Term, 2)
}
// delayed leader heartbeat does not force current leader to step down
nt.send(pb.Message{From: 1, To: 3, Term: n1.Term, Type: pb.MsgHeartbeat})
if n1.state != StateLeader {
t.Fatalf("node 1 state: %s, want %s", n1.state, StateLeader)
}
}
func TestReadOnlyOptionSafe(t *testing.T) {
a := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
b := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
c := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
nt := newNetwork(a, b, c)
setRandomizedElectionTimeout(b, b.electionTimeout+1)
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Fatalf("state = %s, want %s", a.state, StateLeader)
}
tests := []struct {
sm *raft
proposals int
wri uint64
wctx []byte
}{
{a, 10, 11, []byte("ctx1")},
{b, 10, 21, []byte("ctx2")},
{c, 10, 31, []byte("ctx3")},
{a, 10, 41, []byte("ctx4")},
{b, 10, 51, []byte("ctx5")},
{c, 10, 61, []byte("ctx6")},
}
for i, tt := range tests {
for j := 0; j < tt.proposals; j++ {
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
}
nt.send(pb.Message{From: tt.sm.id, To: tt.sm.id, Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: tt.wctx}}})
r := tt.sm
if len(r.readStates) == 0 {
t.Errorf("#%d: len(readStates) = 0, want non-zero", i)
}
rs := r.readStates[0]
if rs.Index != tt.wri {
t.Errorf("#%d: readIndex = %d, want %d", i, rs.Index, tt.wri)
}
if !bytes.Equal(rs.RequestCtx, tt.wctx) {
t.Errorf("#%d: requestCtx = %v, want %v", i, rs.RequestCtx, tt.wctx)
}
r.readStates = nil
}
}
func TestReadOnlyWithLearner(t *testing.T) {
a := newTestLearnerRaft(1, 10, 1, newTestMemoryStorage(withPeers(1), withLearners(2)))
b := newTestLearnerRaft(2, 10, 1, newTestMemoryStorage(withPeers(1), withLearners(2)))
nt := newNetwork(a, b)
setRandomizedElectionTimeout(b, b.electionTimeout+1)
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Fatalf("state = %s, want %s", a.state, StateLeader)
}
tests := []struct {
sm *raft
proposals int
wri uint64
wctx []byte
}{
{a, 10, 11, []byte("ctx1")},
{b, 10, 21, []byte("ctx2")},
{a, 10, 31, []byte("ctx3")},
{b, 10, 41, []byte("ctx4")},
}
for i, tt := range tests {
for j := 0; j < tt.proposals; j++ {
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
}
nt.send(pb.Message{From: tt.sm.id, To: tt.sm.id, Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: tt.wctx}}})
r := tt.sm
if len(r.readStates) == 0 {
t.Fatalf("#%d: len(readStates) = 0, want non-zero", i)
}
rs := r.readStates[0]
if rs.Index != tt.wri {
t.Errorf("#%d: readIndex = %d, want %d", i, rs.Index, tt.wri)
}
if !bytes.Equal(rs.RequestCtx, tt.wctx) {
t.Errorf("#%d: requestCtx = %v, want %v", i, rs.RequestCtx, tt.wctx)
}
r.readStates = nil
}
}
func TestReadOnlyOptionLease(t *testing.T) {
a := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
b := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
c := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
a.readOnly.option = ReadOnlyLeaseBased
b.readOnly.option = ReadOnlyLeaseBased
c.readOnly.option = ReadOnlyLeaseBased
a.checkQuorum = true
b.checkQuorum = true
c.checkQuorum = true
nt := newNetwork(a, b, c)
setRandomizedElectionTimeout(b, b.electionTimeout+1)
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Fatalf("state = %s, want %s", a.state, StateLeader)
}
tests := []struct {
sm *raft
proposals int
wri uint64
wctx []byte
}{
{a, 10, 11, []byte("ctx1")},
{b, 10, 21, []byte("ctx2")},
{c, 10, 31, []byte("ctx3")},
{a, 10, 41, []byte("ctx4")},
{b, 10, 51, []byte("ctx5")},
{c, 10, 61, []byte("ctx6")},
}
for i, tt := range tests {
for j := 0; j < tt.proposals; j++ {
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
}
nt.send(pb.Message{From: tt.sm.id, To: tt.sm.id, Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: tt.wctx}}})
r := tt.sm
rs := r.readStates[0]
if rs.Index != tt.wri {
t.Errorf("#%d: readIndex = %d, want %d", i, rs.Index, tt.wri)
}
if !bytes.Equal(rs.RequestCtx, tt.wctx) {
t.Errorf("#%d: requestCtx = %v, want %v", i, rs.RequestCtx, tt.wctx)
}
r.readStates = nil
}
}
// TestReadOnlyForNewLeader ensures that a leader only accepts MsgReadIndex message
// when it commits at least one log entry at it term.
func TestReadOnlyForNewLeader(t *testing.T) {
nodeConfigs := []struct {
id uint64
committed uint64
applied uint64
compactIndex uint64
}{
{1, 1, 1, 0},
{2, 2, 2, 2},
{3, 2, 2, 2},
}
peers := make([]stateMachine, 0)
for _, c := range nodeConfigs {
storage := newTestMemoryStorage(withPeers(1, 2, 3))
storage.Append([]pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}})
storage.SetHardState(pb.HardState{Term: 1, Commit: c.committed})
if c.compactIndex != 0 {
storage.Compact(c.compactIndex)
}
cfg := newTestConfig(c.id, 10, 1, storage)
cfg.Applied = c.applied
raft := newRaft(cfg)
peers = append(peers, raft)
}
nt := newNetwork(peers...)
// Drop MsgApp to forbid peer a to commit any log entry at its term after it becomes leader.
nt.ignore(pb.MsgApp)
// Force peer a to become leader.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm := nt.peers[1].(*raft)
if sm.state != StateLeader {
t.Fatalf("state = %s, want %s", sm.state, StateLeader)
}
// Ensure peer a drops read only request.
var windex uint64 = 4
wctx := []byte("ctx")
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: wctx}}})
if len(sm.readStates) != 0 {
t.Fatalf("len(readStates) = %d, want zero", len(sm.readStates))
}
nt.recover()
// Force peer a to commit a log entry at its term
for i := 0; i < sm.heartbeatTimeout; i++ {
sm.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
if sm.raftLog.committed != 4 {
t.Fatalf("committed = %d, want 4", sm.raftLog.committed)
}
lastLogTerm := sm.raftLog.zeroTermOnErrCompacted(sm.raftLog.term(sm.raftLog.committed))
if lastLogTerm != sm.Term {
t.Fatalf("last log term = %d, want %d", lastLogTerm, sm.Term)
}
// Ensure peer a processed postponed read only request after it committed an entry at its term.
if len(sm.readStates) != 1 {
t.Fatalf("len(readStates) = %d, want 1", len(sm.readStates))
}
rs := sm.readStates[0]
if rs.Index != windex {
t.Fatalf("readIndex = %d, want %d", rs.Index, windex)
}
if !bytes.Equal(rs.RequestCtx, wctx) {
t.Fatalf("requestCtx = %v, want %v", rs.RequestCtx, wctx)
}
// Ensure peer a accepts read only request after it committed an entry at its term.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: wctx}}})
if len(sm.readStates) != 2 {
t.Fatalf("len(readStates) = %d, want 2", len(sm.readStates))
}
rs = sm.readStates[1]
if rs.Index != windex {
t.Fatalf("readIndex = %d, want %d", rs.Index, windex)
}
if !bytes.Equal(rs.RequestCtx, wctx) {
t.Fatalf("requestCtx = %v, want %v", rs.RequestCtx, wctx)
}
}
func TestLeaderAppResp(t *testing.T) {
// initial progress: match = 0; next = 3
tests := []struct {
index uint64
reject bool
// progress
wmatch uint64
wnext uint64
// message
wmsgNum int
windex uint64
wcommitted uint64
}{
{3, true, 0, 3, 0, 0, 0}, // stale resp; no replies
{2, true, 0, 2, 1, 1, 0}, // denied resp; leader does not commit; decrease next and send probing msg
{2, false, 2, 4, 2, 2, 2}, // accept resp; leader commits; broadcast with commit index
{0, false, 0, 3, 0, 0, 0}, // ignore heartbeat replies
}
for i, tt := range tests {
// sm term is 1 after it becomes the leader.
// thus the last log term must be 1 to be committed.
sm := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
sm.raftLog = &raftLog{
storage: &MemoryStorage{ents: []pb.Entry{{}, {Index: 1, Term: 0}, {Index: 2, Term: 1}}},
unstable: unstable{offset: 3},
}
sm.becomeCandidate()
sm.becomeLeader()
sm.readMessages()
sm.Step(pb.Message{From: 2, Type: pb.MsgAppResp, Index: tt.index, Term: sm.Term, Reject: tt.reject, RejectHint: tt.index})
p := sm.prs.Progress[2]
if p.Match != tt.wmatch {
t.Errorf("#%d match = %d, want %d", i, p.Match, tt.wmatch)
}
if p.Next != tt.wnext {
t.Errorf("#%d next = %d, want %d", i, p.Next, tt.wnext)
}
msgs := sm.readMessages()
if len(msgs) != tt.wmsgNum {
t.Errorf("#%d msgNum = %d, want %d", i, len(msgs), tt.wmsgNum)
}
for j, msg := range msgs {
if msg.Index != tt.windex {
t.Errorf("#%d.%d index = %d, want %d", i, j, msg.Index, tt.windex)
}
if msg.Commit != tt.wcommitted {
t.Errorf("#%d.%d commit = %d, want %d", i, j, msg.Commit, tt.wcommitted)
}
}
}
}
// When the leader receives a heartbeat tick, it should
// send a MsgHeartbeat with m.Index = 0, m.LogTerm=0 and empty entries.
func TestBcastBeat(t *testing.T) {
offset := uint64(1000)
// make a state machine with log.offset = 1000
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: offset,
Term: 1,
ConfState: pb.ConfState{Voters: []uint64{1, 2, 3}},
},
}
storage := NewMemoryStorage()
storage.ApplySnapshot(s)
sm := newTestRaft(1, 10, 1, storage)
sm.Term = 1
sm.becomeCandidate()
sm.becomeLeader()
for i := 0; i < 10; i++ {
mustAppendEntry(sm, pb.Entry{Index: uint64(i) + 1})
}
// slow follower
sm.prs.Progress[2].Match, sm.prs.Progress[2].Next = 5, 6
// normal follower
sm.prs.Progress[3].Match, sm.prs.Progress[3].Next = sm.raftLog.lastIndex(), sm.raftLog.lastIndex()+1
sm.Step(pb.Message{Type: pb.MsgBeat})
msgs := sm.readMessages()
if len(msgs) != 2 {
t.Fatalf("len(msgs) = %v, want 2", len(msgs))
}
wantCommitMap := map[uint64]uint64{
2: min(sm.raftLog.committed, sm.prs.Progress[2].Match),
3: min(sm.raftLog.committed, sm.prs.Progress[3].Match),
}
for i, m := range msgs {
if m.Type != pb.MsgHeartbeat {
t.Fatalf("#%d: type = %v, want = %v", i, m.Type, pb.MsgHeartbeat)
}
if m.Index != 0 {
t.Fatalf("#%d: prevIndex = %d, want %d", i, m.Index, 0)
}
if m.LogTerm != 0 {
t.Fatalf("#%d: prevTerm = %d, want %d", i, m.LogTerm, 0)
}
if wantCommitMap[m.To] == 0 {
t.Fatalf("#%d: unexpected to %d", i, m.To)
} else {
if m.Commit != wantCommitMap[m.To] {
t.Fatalf("#%d: commit = %d, want %d", i, m.Commit, wantCommitMap[m.To])
}
delete(wantCommitMap, m.To)
}
if len(m.Entries) != 0 {
t.Fatalf("#%d: len(entries) = %d, want 0", i, len(m.Entries))
}
}
}
// tests the output of the state machine when receiving MsgBeat
func TestRecvMsgBeat(t *testing.T) {
tests := []struct {
state StateType
wMsg int
}{
{StateLeader, 2},
// candidate and follower should ignore MsgBeat
{StateCandidate, 0},
{StateFollower, 0},
}
for i, tt := range tests {
sm := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
sm.raftLog = &raftLog{storage: &MemoryStorage{ents: []pb.Entry{{}, {Index: 1, Term: 0}, {Index: 2, Term: 1}}}}
sm.Term = 1
sm.state = tt.state
switch tt.state {
case StateFollower:
sm.step = stepFollower
case StateCandidate:
sm.step = stepCandidate
case StateLeader:
sm.step = stepLeader
}
sm.Step(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
msgs := sm.readMessages()
if len(msgs) != tt.wMsg {
t.Errorf("%d: len(msgs) = %d, want %d", i, len(msgs), tt.wMsg)
}
for _, m := range msgs {
if m.Type != pb.MsgHeartbeat {
t.Errorf("%d: msg.type = %v, want %v", i, m.Type, pb.MsgHeartbeat)
}
}
}
}
func TestLeaderIncreaseNext(t *testing.T) {
previousEnts := []pb.Entry{{Term: 1, Index: 1}, {Term: 1, Index: 2}, {Term: 1, Index: 3}}
tests := []struct {
// progress
state tracker.StateType
next uint64
wnext uint64
}{
// state replicate, optimistically increase next
// previous entries + noop entry + propose + 1
{tracker.StateReplicate, 2, uint64(len(previousEnts) + 1 + 1 + 1)},
// state probe, not optimistically increase next
{tracker.StateProbe, 2, 2},
}
for i, tt := range tests {
sm := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2)))
sm.raftLog.append(previousEnts...)
sm.becomeCandidate()
sm.becomeLeader()
sm.prs.Progress[2].State = tt.state
sm.prs.Progress[2].Next = tt.next
sm.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
p := sm.prs.Progress[2]
if p.Next != tt.wnext {
t.Errorf("#%d next = %d, want %d", i, p.Next, tt.wnext)
}
}
}
func TestSendAppendForProgressProbe(t *testing.T) {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2)))
r.becomeCandidate()
r.becomeLeader()
r.readMessages()
r.prs.Progress[2].BecomeProbe()
// each round is a heartbeat
for i := 0; i < 3; i++ {
if i == 0 {
// we expect that raft will only send out one msgAPP on the first
// loop. After that, the follower is paused until a heartbeat response is
// received.
mustAppendEntry(r, pb.Entry{Data: []byte("somedata")})
r.sendAppend(2)
msg := r.readMessages()
if len(msg) != 1 {
t.Errorf("len(msg) = %d, want %d", len(msg), 1)
}
if msg[0].Index != 0 {
t.Errorf("index = %d, want %d", msg[0].Index, 0)
}
}
if !r.prs.Progress[2].ProbeSent {
t.Errorf("paused = %v, want true", r.prs.Progress[2].ProbeSent)
}
for j := 0; j < 10; j++ {
mustAppendEntry(r, pb.Entry{Data: []byte("somedata")})
r.sendAppend(2)
if l := len(r.readMessages()); l != 0 {
t.Errorf("len(msg) = %d, want %d", l, 0)
}
}
// do a heartbeat
for j := 0; j < r.heartbeatTimeout; j++ {
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
}
if !r.prs.Progress[2].ProbeSent {
t.Errorf("paused = %v, want true", r.prs.Progress[2].ProbeSent)
}
// consume the heartbeat
msg := r.readMessages()
if len(msg) != 1 {
t.Errorf("len(msg) = %d, want %d", len(msg), 1)
}
if msg[0].Type != pb.MsgHeartbeat {
t.Errorf("type = %v, want %v", msg[0].Type, pb.MsgHeartbeat)
}
}
// a heartbeat response will allow another message to be sent
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgHeartbeatResp})
msg := r.readMessages()
if len(msg) != 1 {
t.Errorf("len(msg) = %d, want %d", len(msg), 1)
}
if msg[0].Index != 0 {
t.Errorf("index = %d, want %d", msg[0].Index, 0)
}
if !r.prs.Progress[2].ProbeSent {
t.Errorf("paused = %v, want true", r.prs.Progress[2].ProbeSent)
}
}
func TestSendAppendForProgressReplicate(t *testing.T) {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2)))
r.becomeCandidate()
r.becomeLeader()
r.readMessages()
r.prs.Progress[2].BecomeReplicate()
for i := 0; i < 10; i++ {
mustAppendEntry(r, pb.Entry{Data: []byte("somedata")})
r.sendAppend(2)
msgs := r.readMessages()
if len(msgs) != 1 {
t.Errorf("len(msg) = %d, want %d", len(msgs), 1)
}
}
}
func TestSendAppendForProgressSnapshot(t *testing.T) {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2)))
r.becomeCandidate()
r.becomeLeader()
r.readMessages()
r.prs.Progress[2].BecomeSnapshot(10)
for i := 0; i < 10; i++ {
mustAppendEntry(r, pb.Entry{Data: []byte("somedata")})
r.sendAppend(2)
msgs := r.readMessages()
if len(msgs) != 0 {
t.Errorf("len(msg) = %d, want %d", len(msgs), 0)
}
}
}
func TestRecvMsgUnreachable(t *testing.T) {
previousEnts := []pb.Entry{{Term: 1, Index: 1}, {Term: 1, Index: 2}, {Term: 1, Index: 3}}
s := newTestMemoryStorage(withPeers(1, 2))
s.Append(previousEnts)
r := newTestRaft(1, 10, 1, s)
r.becomeCandidate()
r.becomeLeader()
r.readMessages()
// set node 2 to state replicate
r.prs.Progress[2].Match = 3
r.prs.Progress[2].BecomeReplicate()
r.prs.Progress[2].OptimisticUpdate(5)
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgUnreachable})
if r.prs.Progress[2].State != tracker.StateProbe {
t.Errorf("state = %s, want %s", r.prs.Progress[2].State, tracker.StateProbe)
}
if wnext := r.prs.Progress[2].Match + 1; r.prs.Progress[2].Next != wnext {
t.Errorf("next = %d, want %d", r.prs.Progress[2].Next, wnext)
}
}
func TestRestore(t *testing.T) {
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Voters: []uint64{1, 2, 3}},
},
}
storage := newTestMemoryStorage(withPeers(1, 2))
sm := newTestRaft(1, 10, 1, storage)
if ok := sm.restore(s); !ok {
t.Fatal("restore fail, want succeed")
}
if sm.raftLog.lastIndex() != s.Metadata.Index {
t.Errorf("log.lastIndex = %d, want %d", sm.raftLog.lastIndex(), s.Metadata.Index)
}
if mustTerm(sm.raftLog.term(s.Metadata.Index)) != s.Metadata.Term {
t.Errorf("log.lastTerm = %d, want %d", mustTerm(sm.raftLog.term(s.Metadata.Index)), s.Metadata.Term)
}
sg := sm.prs.VoterNodes()
if !reflect.DeepEqual(sg, s.Metadata.ConfState.Voters) {
t.Errorf("sm.Voters = %+v, want %+v", sg, s.Metadata.ConfState.Voters)
}
if ok := sm.restore(s); ok {
t.Fatal("restore succeed, want fail")
}
// It should not campaign before actually applying data.
for i := 0; i < sm.randomizedElectionTimeout; i++ {
sm.tick()
}
if sm.state != StateFollower {
t.Errorf("state = %d, want %d", sm.state, StateFollower)
}
}
// TestRestoreWithLearner restores a snapshot which contains learners.
func TestRestoreWithLearner(t *testing.T) {
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Voters: []uint64{1, 2}, Learners: []uint64{3}},
},
}
storage := newTestMemoryStorage(withPeers(1, 2), withLearners(3))
sm := newTestLearnerRaft(3, 8, 2, storage)
if ok := sm.restore(s); !ok {
t.Error("restore fail, want succeed")
}
if sm.raftLog.lastIndex() != s.Metadata.Index {
t.Errorf("log.lastIndex = %d, want %d", sm.raftLog.lastIndex(), s.Metadata.Index)
}
if mustTerm(sm.raftLog.term(s.Metadata.Index)) != s.Metadata.Term {
t.Errorf("log.lastTerm = %d, want %d", mustTerm(sm.raftLog.term(s.Metadata.Index)), s.Metadata.Term)
}
sg := sm.prs.VoterNodes()
if len(sg) != len(s.Metadata.ConfState.Voters) {
t.Errorf("sm.Voters = %+v, length not equal with %+v", sg, s.Metadata.ConfState.Voters)
}
lns := sm.prs.LearnerNodes()
if len(lns) != len(s.Metadata.ConfState.Learners) {
t.Errorf("sm.LearnerNodes = %+v, length not equal with %+v", sg, s.Metadata.ConfState.Learners)
}
for _, n := range s.Metadata.ConfState.Voters {
if sm.prs.Progress[n].IsLearner {
t.Errorf("sm.Node %x isLearner = %s, want %t", n, sm.prs.Progress[n], false)
}
}
for _, n := range s.Metadata.ConfState.Learners {
if !sm.prs.Progress[n].IsLearner {
t.Errorf("sm.Node %x isLearner = %s, want %t", n, sm.prs.Progress[n], true)
}
}
if ok := sm.restore(s); ok {
t.Error("restore succeed, want fail")
}
}
/// Tests if outgoing voter can receive and apply snapshot correctly.
func TestRestoreWithVotersOutgoing(t *testing.T) {
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Voters: []uint64{2, 3, 4}, VotersOutgoing: []uint64{1, 2, 3}},
},
}
storage := newTestMemoryStorage(withPeers(1, 2))
sm := newTestRaft(1, 10, 1, storage)
if ok := sm.restore(s); !ok {
t.Fatal("restore fail, want succeed")
}
if sm.raftLog.lastIndex() != s.Metadata.Index {
t.Errorf("log.lastIndex = %d, want %d", sm.raftLog.lastIndex(), s.Metadata.Index)
}
if mustTerm(sm.raftLog.term(s.Metadata.Index)) != s.Metadata.Term {
t.Errorf("log.lastTerm = %d, want %d", mustTerm(sm.raftLog.term(s.Metadata.Index)), s.Metadata.Term)
}
sg := sm.prs.VoterNodes()
if !reflect.DeepEqual(sg, []uint64{1, 2, 3, 4}) {
t.Errorf("sm.Voters = %+v, want %+v", sg, s.Metadata.ConfState.Voters)
}
if ok := sm.restore(s); ok {
t.Fatal("restore succeed, want fail")
}
// It should not campaign before actually applying data.
for i := 0; i < sm.randomizedElectionTimeout; i++ {
sm.tick()
}
if sm.state != StateFollower {
t.Errorf("state = %d, want %d", sm.state, StateFollower)
}
}
// TestRestoreVoterToLearner verifies that a normal peer can be downgraded to a
// learner through a snapshot. At the time of writing, we don't allow
// configuration changes to do this directly, but note that the snapshot may
// compress multiple changes to the configuration into one: the voter could have
// been removed, then readded as a learner and the snapshot reflects both
// changes. In that case, a voter receives a snapshot telling it that it is now
// a learner. In fact, the node has to accept that snapshot, or it is
// permanently cut off from the Raft log.
func TestRestoreVoterToLearner(t *testing.T) {
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Voters: []uint64{1, 2}, Learners: []uint64{3}},
},
}
storage := newTestMemoryStorage(withPeers(1, 2, 3))
sm := newTestRaft(3, 10, 1, storage)
if sm.isLearner {
t.Errorf("%x is learner, want not", sm.id)
}
if ok := sm.restore(s); !ok {
t.Error("restore failed unexpectedly")
}
}
// TestRestoreLearnerPromotion checks that a learner can become to a follower after
// restoring snapshot.
func TestRestoreLearnerPromotion(t *testing.T) {
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Voters: []uint64{1, 2, 3}},
},
}
storage := newTestMemoryStorage(withPeers(1, 2), withLearners(3))
sm := newTestLearnerRaft(3, 10, 1, storage)
if !sm.isLearner {
t.Errorf("%x is not learner, want yes", sm.id)
}
if ok := sm.restore(s); !ok {
t.Error("restore fail, want succeed")
}
if sm.isLearner {
t.Errorf("%x is learner, want not", sm.id)
}
}
// TestLearnerReceiveSnapshot tests that a learner can receive a snpahost from leader
func TestLearnerReceiveSnapshot(t *testing.T) {
// restore the state machine from a snapshot so it has a compacted log and a snapshot
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Voters: []uint64{1}, Learners: []uint64{2}},
},
}
store := newTestMemoryStorage(withPeers(1), withLearners(2))
n1 := newTestLearnerRaft(1, 10, 1, store)
n2 := newTestLearnerRaft(2, 10, 1, newTestMemoryStorage(withPeers(1), withLearners(2)))
n1.restore(s)
ready := newReady(n1, &SoftState{}, pb.HardState{})
store.ApplySnapshot(ready.Snapshot)
n1.advance(ready)
// Force set n1 appplied index.
n1.raftLog.appliedTo(n1.raftLog.committed)
nt := newNetwork(n1, n2)
setRandomizedElectionTimeout(n1, n1.electionTimeout)
for i := 0; i < n1.electionTimeout; i++ {
n1.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
if n2.raftLog.committed != n1.raftLog.committed {
t.Errorf("peer 2 must commit to %d, but %d", n1.raftLog.committed, n2.raftLog.committed)
}
}
func TestRestoreIgnoreSnapshot(t *testing.T) {
previousEnts := []pb.Entry{{Term: 1, Index: 1}, {Term: 1, Index: 2}, {Term: 1, Index: 3}}
commit := uint64(1)
storage := newTestMemoryStorage(withPeers(1, 2))
sm := newTestRaft(1, 10, 1, storage)
sm.raftLog.append(previousEnts...)
sm.raftLog.commitTo(commit)
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: commit,
Term: 1,
ConfState: pb.ConfState{Voters: []uint64{1, 2}},
},
}
// ignore snapshot
if ok := sm.restore(s); ok {
t.Errorf("restore = %t, want %t", ok, false)
}
if sm.raftLog.committed != commit {
t.Errorf("commit = %d, want %d", sm.raftLog.committed, commit)
}
// ignore snapshot and fast forward commit
s.Metadata.Index = commit + 1
if ok := sm.restore(s); ok {
t.Errorf("restore = %t, want %t", ok, false)
}
if sm.raftLog.committed != commit+1 {
t.Errorf("commit = %d, want %d", sm.raftLog.committed, commit+1)
}
}
func TestProvideSnap(t *testing.T) {
// restore the state machine from a snapshot so it has a compacted log and a snapshot
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Voters: []uint64{1, 2}},
},
}
storage := newTestMemoryStorage(withPeers(1))
sm := newTestRaft(1, 10, 1, storage)
sm.restore(s)
sm.becomeCandidate()
sm.becomeLeader()
// force set the next of node 2, so that node 2 needs a snapshot
sm.prs.Progress[2].Next = sm.raftLog.firstIndex()
sm.Step(pb.Message{From: 2, To: 1, Type: pb.MsgAppResp, Index: sm.prs.Progress[2].Next - 1, Reject: true})
msgs := sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want 1", len(msgs))
}
m := msgs[0]
if m.Type != pb.MsgSnap {
t.Errorf("m.Type = %v, want %v", m.Type, pb.MsgSnap)
}
}
func TestIgnoreProvidingSnap(t *testing.T) {
// restore the state machine from a snapshot so it has a compacted log and a snapshot
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Voters: []uint64{1, 2}},
},
}
storage := newTestMemoryStorage(withPeers(1))
sm := newTestRaft(1, 10, 1, storage)
sm.restore(s)
sm.becomeCandidate()
sm.becomeLeader()
// force set the next of node 2, so that node 2 needs a snapshot
// change node 2 to be inactive, expect node 1 ignore sending snapshot to 2
sm.prs.Progress[2].Next = sm.raftLog.firstIndex() - 1
sm.prs.Progress[2].RecentActive = false
sm.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
msgs := sm.readMessages()
if len(msgs) != 0 {
t.Errorf("len(msgs) = %d, want 0", len(msgs))
}
}
func TestRestoreFromSnapMsg(t *testing.T) {
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Voters: []uint64{1, 2}},
},
}
m := pb.Message{Type: pb.MsgSnap, From: 1, Term: 2, Snapshot: s}
sm := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2)))
sm.Step(m)
if sm.lead != uint64(1) {
t.Errorf("sm.lead = %d, want 1", sm.lead)
}
// TODO(bdarnell): what should this test?
}
func TestSlowNodeRestore(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
for j := 0; j <= 100; j++ {
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
}
lead := nt.peers[1].(*raft)
nextEnts(lead, nt.storage[1])
nt.storage[1].CreateSnapshot(lead.raftLog.applied, &pb.ConfState{Voters: lead.prs.VoterNodes()}, nil)
nt.storage[1].Compact(lead.raftLog.applied)
nt.recover()
// send heartbeats so that the leader can learn everyone is active.
// node 3 will only be considered as active when node 1 receives a reply from it.
for {
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
if lead.prs.Progress[3].RecentActive {
break
}
}
// trigger a snapshot
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
follower := nt.peers[3].(*raft)
// trigger a commit
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
if follower.raftLog.committed != lead.raftLog.committed {
t.Errorf("follower.committed = %d, want %d", follower.raftLog.committed, lead.raftLog.committed)
}
}
// TestStepConfig tests that when raft step msgProp in EntryConfChange type,
// it appends the entry to log and sets pendingConf to be true.
func TestStepConfig(t *testing.T) {
// a raft that cannot make progress
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2)))
r.becomeCandidate()
r.becomeLeader()
index := r.raftLog.lastIndex()
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange}}})
if g := r.raftLog.lastIndex(); g != index+1 {
t.Errorf("index = %d, want %d", g, index+1)
}
if r.pendingConfIndex != index+1 {
t.Errorf("pendingConfIndex = %d, want %d", r.pendingConfIndex, index+1)
}
}
// TestStepIgnoreConfig tests that if raft step the second msgProp in
// EntryConfChange type when the first one is uncommitted, the node will set
// the proposal to noop and keep its original state.
func TestStepIgnoreConfig(t *testing.T) {
// a raft that cannot make progress
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2)))
r.becomeCandidate()
r.becomeLeader()
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange}}})
index := r.raftLog.lastIndex()
pendingConfIndex := r.pendingConfIndex
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange}}})
wents := []pb.Entry{{Type: pb.EntryNormal, Term: 1, Index: 3, Data: nil}}
ents, err := r.raftLog.entries(index+1, noLimit)
if err != nil {
t.Fatalf("unexpected error %v", err)
}
if !reflect.DeepEqual(ents, wents) {
t.Errorf("ents = %+v, want %+v", ents, wents)
}
if r.pendingConfIndex != pendingConfIndex {
t.Errorf("pendingConfIndex = %d, want %d", r.pendingConfIndex, pendingConfIndex)
}
}
// TestNewLeaderPendingConfig tests that new leader sets its pendingConfigIndex
// based on uncommitted entries.
func TestNewLeaderPendingConfig(t *testing.T) {
tests := []struct {
addEntry bool
wpendingIndex uint64
}{
{false, 0},
{true, 1},
}
for i, tt := range tests {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2)))
if tt.addEntry {
mustAppendEntry(r, pb.Entry{Type: pb.EntryNormal})
}
r.becomeCandidate()
r.becomeLeader()
if r.pendingConfIndex != tt.wpendingIndex {
t.Errorf("#%d: pendingConfIndex = %d, want %d",
i, r.pendingConfIndex, tt.wpendingIndex)
}
}
}
// TestAddNode tests that addNode could update nodes correctly.
func TestAddNode(t *testing.T) {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1)))
r.applyConfChange(pb.ConfChange{NodeID: 2, Type: pb.ConfChangeAddNode}.AsV2())
nodes := r.prs.VoterNodes()
wnodes := []uint64{1, 2}
if !reflect.DeepEqual(nodes, wnodes) {
t.Errorf("nodes = %v, want %v", nodes, wnodes)
}
}
// TestAddLearner tests that addLearner could update nodes correctly.
func TestAddLearner(t *testing.T) {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1)))
// Add new learner peer.
r.applyConfChange(pb.ConfChange{NodeID: 2, Type: pb.ConfChangeAddLearnerNode}.AsV2())
if r.isLearner {
t.Fatal("expected 1 to be voter")
}
nodes := r.prs.LearnerNodes()
wnodes := []uint64{2}
if !reflect.DeepEqual(nodes, wnodes) {
t.Errorf("nodes = %v, want %v", nodes, wnodes)
}
if !r.prs.Progress[2].IsLearner {
t.Fatal("expected 2 to be learner")
}
// Promote peer to voter.
r.applyConfChange(pb.ConfChange{NodeID: 2, Type: pb.ConfChangeAddNode}.AsV2())
if r.prs.Progress[2].IsLearner {
t.Fatal("expected 2 to be voter")
}
// Demote r.
r.applyConfChange(pb.ConfChange{NodeID: 1, Type: pb.ConfChangeAddLearnerNode}.AsV2())
if !r.prs.Progress[1].IsLearner {
t.Fatal("expected 1 to be learner")
}
if !r.isLearner {
t.Fatal("expected 1 to be learner")
}
// Promote r again.
r.applyConfChange(pb.ConfChange{NodeID: 1, Type: pb.ConfChangeAddNode}.AsV2())
if r.prs.Progress[1].IsLearner {
t.Fatal("expected 1 to be voter")
}
if r.isLearner {
t.Fatal("expected 1 to be voter")
}
}
// TestAddNodeCheckQuorum tests that addNode does not trigger a leader election
// immediately when checkQuorum is set.
func TestAddNodeCheckQuorum(t *testing.T) {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1)))
r.checkQuorum = true
r.becomeCandidate()
r.becomeLeader()
for i := 0; i < r.electionTimeout-1; i++ {
r.tick()
}
r.applyConfChange(pb.ConfChange{NodeID: 2, Type: pb.ConfChangeAddNode}.AsV2())
// This tick will reach electionTimeout, which triggers a quorum check.
r.tick()
// Node 1 should still be the leader after a single tick.
if r.state != StateLeader {
t.Errorf("state = %v, want %v", r.state, StateLeader)
}
// After another electionTimeout ticks without hearing from node 2,
// node 1 should step down.
for i := 0; i < r.electionTimeout; i++ {
r.tick()
}
if r.state != StateFollower {
t.Errorf("state = %v, want %v", r.state, StateFollower)
}
}
// TestRemoveNode tests that removeNode could update nodes and
// and removed list correctly.
func TestRemoveNode(t *testing.T) {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2)))
r.applyConfChange(pb.ConfChange{NodeID: 2, Type: pb.ConfChangeRemoveNode}.AsV2())
w := []uint64{1}
if g := r.prs.VoterNodes(); !reflect.DeepEqual(g, w) {
t.Errorf("nodes = %v, want %v", g, w)
}
// Removing the remaining voter will panic.
defer func() {
if r := recover(); r == nil {
t.Error("did not panic")
}
}()
r.applyConfChange(pb.ConfChange{NodeID: 1, Type: pb.ConfChangeRemoveNode}.AsV2())
}
// TestRemoveLearner tests that removeNode could update nodes and
// and removed list correctly.
func TestRemoveLearner(t *testing.T) {
r := newTestLearnerRaft(1, 10, 1, newTestMemoryStorage(withPeers(1), withLearners(2)))
r.applyConfChange(pb.ConfChange{NodeID: 2, Type: pb.ConfChangeRemoveNode}.AsV2())
w := []uint64{1}
if g := r.prs.VoterNodes(); !reflect.DeepEqual(g, w) {
t.Errorf("nodes = %v, want %v", g, w)
}
w = nil
if g := r.prs.LearnerNodes(); !reflect.DeepEqual(g, w) {
t.Errorf("nodes = %v, want %v", g, w)
}
// Removing the remaining voter will panic.
defer func() {
if r := recover(); r == nil {
t.Error("did not panic")
}
}()
r.applyConfChange(pb.ConfChange{NodeID: 1, Type: pb.ConfChangeRemoveNode}.AsV2())
}
func TestPromotable(t *testing.T) {
id := uint64(1)
tests := []struct {
peers []uint64
wp bool
}{
{[]uint64{1}, true},
{[]uint64{1, 2, 3}, true},
{[]uint64{}, false},
{[]uint64{2, 3}, false},
}
for i, tt := range tests {
r := newTestRaft(id, 5, 1, newTestMemoryStorage(withPeers(tt.peers...)))
if g := r.promotable(); g != tt.wp {
t.Errorf("#%d: promotable = %v, want %v", i, g, tt.wp)
}
}
}
func TestRaftNodes(t *testing.T) {
tests := []struct {
ids []uint64
wids []uint64
}{
{
[]uint64{1, 2, 3},
[]uint64{1, 2, 3},
},
{
[]uint64{3, 2, 1},
[]uint64{1, 2, 3},
},
}
for i, tt := range tests {
r := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(tt.ids...)))
if !reflect.DeepEqual(r.prs.VoterNodes(), tt.wids) {
t.Errorf("#%d: nodes = %+v, want %+v", i, r.prs.VoterNodes(), tt.wids)
}
}
}
func TestCampaignWhileLeader(t *testing.T) {
testCampaignWhileLeader(t, false)
}
func TestPreCampaignWhileLeader(t *testing.T) {
testCampaignWhileLeader(t, true)
}
func testCampaignWhileLeader(t *testing.T, preVote bool) {
cfg := newTestConfig(1, 5, 1, newTestMemoryStorage(withPeers(1)))
cfg.PreVote = preVote
r := newRaft(cfg)
if r.state != StateFollower {
t.Errorf("expected new node to be follower but got %s", r.state)
}
// We don't call campaign() directly because it comes after the check
// for our current state.
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if r.state != StateLeader {
t.Errorf("expected single-node election to become leader but got %s", r.state)
}
term := r.Term
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if r.state != StateLeader {
t.Errorf("expected to remain leader but got %s", r.state)
}
if r.Term != term {
t.Errorf("expected to remain in term %v but got %v", term, r.Term)
}
}
// TestCommitAfterRemoveNode verifies that pending commands can become
// committed when a config change reduces the quorum requirements.
func TestCommitAfterRemoveNode(t *testing.T) {
// Create a cluster with two nodes.
s := newTestMemoryStorage(withPeers(1, 2))
r := newTestRaft(1, 5, 1, s)
r.becomeCandidate()
r.becomeLeader()
// Begin to remove the second node.
cc := pb.ConfChange{
Type: pb.ConfChangeRemoveNode,
NodeID: 2,
}
ccData, err := cc.Marshal()
if err != nil {
t.Fatal(err)
}
r.Step(pb.Message{
Type: pb.MsgProp,
Entries: []pb.Entry{
{Type: pb.EntryConfChange, Data: ccData},
},
})
// Stabilize the log and make sure nothing is committed yet.
if ents := nextEnts(r, s); len(ents) > 0 {
t.Fatalf("unexpected committed entries: %v", ents)
}
ccIndex := r.raftLog.lastIndex()
// While the config change is pending, make another proposal.
r.Step(pb.Message{
Type: pb.MsgProp,
Entries: []pb.Entry{
{Type: pb.EntryNormal, Data: []byte("hello")},
},
})
// Node 2 acknowledges the config change, committing it.
r.Step(pb.Message{
Type: pb.MsgAppResp,
From: 2,
Index: ccIndex,
})
ents := nextEnts(r, s)
if len(ents) != 2 {
t.Fatalf("expected two committed entries, got %v", ents)
}
if ents[0].Type != pb.EntryNormal || ents[0].Data != nil {
t.Fatalf("expected ents[0] to be empty, but got %v", ents[0])
}
if ents[1].Type != pb.EntryConfChange {
t.Fatalf("expected ents[1] to be EntryConfChange, got %v", ents[1])
}
// Apply the config change. This reduces quorum requirements so the
// pending command can now commit.
r.applyConfChange(cc.AsV2())
ents = nextEnts(r, s)
if len(ents) != 1 || ents[0].Type != pb.EntryNormal ||
string(ents[0].Data) != "hello" {
t.Fatalf("expected one committed EntryNormal, got %v", ents)
}
}
// TestLeaderTransferToUpToDateNode verifies transferring should succeed
// if the transferee has the most up-to-date log entries when transfer starts.
func TestLeaderTransferToUpToDateNode(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
lead := nt.peers[1].(*raft)
if lead.lead != 1 {
t.Fatalf("after election leader is %x, want 1", lead.lead)
}
// Transfer leadership to 2.
nt.send(pb.Message{From: 2, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateFollower, 2)
// After some log replication, transfer leadership back to 1.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
nt.send(pb.Message{From: 1, To: 2, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
// TestLeaderTransferToUpToDateNodeFromFollower verifies transferring should succeed
// if the transferee has the most up-to-date log entries when transfer starts.
// Not like TestLeaderTransferToUpToDateNode, where the leader transfer message
// is sent to the leader, in this test case every leader transfer message is sent
// to the follower.
func TestLeaderTransferToUpToDateNodeFromFollower(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
lead := nt.peers[1].(*raft)
if lead.lead != 1 {
t.Fatalf("after election leader is %x, want 1", lead.lead)
}
// Transfer leadership to 2.
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateFollower, 2)
// After some log replication, transfer leadership back to 1.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
// TestLeaderTransferWithCheckQuorum ensures transferring leader still works
// even the current leader is still under its leader lease
func TestLeaderTransferWithCheckQuorum(t *testing.T) {
nt := newNetwork(nil, nil, nil)
for i := 1; i < 4; i++ {
r := nt.peers[uint64(i)].(*raft)
r.checkQuorum = true
setRandomizedElectionTimeout(r, r.electionTimeout+i)
}
// Letting peer 2 electionElapsed reach to timeout so that it can vote for peer 1
f := nt.peers[2].(*raft)
for i := 0; i < f.electionTimeout; i++ {
f.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
lead := nt.peers[1].(*raft)
if lead.lead != 1 {
t.Fatalf("after election leader is %x, want 1", lead.lead)
}
// Transfer leadership to 2.
nt.send(pb.Message{From: 2, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateFollower, 2)
// After some log replication, transfer leadership back to 1.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
nt.send(pb.Message{From: 1, To: 2, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
func TestLeaderTransferToSlowFollower(t *testing.T) {
defaultLogger.EnableDebug()
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
nt.recover()
lead := nt.peers[1].(*raft)
if lead.prs.Progress[3].Match != 1 {
t.Fatalf("node 1 has match %x for node 3, want %x", lead.prs.Progress[3].Match, 1)
}
// Transfer leadership to 3 when node 3 is lack of log.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateFollower, 3)
}
func TestLeaderTransferAfterSnapshot(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
lead := nt.peers[1].(*raft)
nextEnts(lead, nt.storage[1])
nt.storage[1].CreateSnapshot(lead.raftLog.applied, &pb.ConfState{Voters: lead.prs.VoterNodes()}, nil)
nt.storage[1].Compact(lead.raftLog.applied)
nt.recover()
if lead.prs.Progress[3].Match != 1 {
t.Fatalf("node 1 has match %x for node 3, want %x", lead.prs.Progress[3].Match, 1)
}
filtered := pb.Message{}
// Snapshot needs to be applied before sending MsgAppResp
nt.msgHook = func(m pb.Message) bool {
if m.Type != pb.MsgAppResp || m.From != 3 || m.Reject {
return true
}
filtered = m
return false
}
// Transfer leadership to 3 when node 3 is lack of snapshot.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.state != StateLeader {
t.Fatalf("node 1 should still be leader as snapshot is not applied, got %x", lead.state)
}
if reflect.DeepEqual(filtered, pb.Message{}) {
t.Fatalf("Follower should report snapshot progress automatically.")
}
// Apply snapshot and resume progress
follower := nt.peers[3].(*raft)
ready := newReady(follower, &SoftState{}, pb.HardState{})
nt.storage[3].ApplySnapshot(ready.Snapshot)
follower.advance(ready)
nt.msgHook = nil
nt.send(filtered)
checkLeaderTransferState(t, lead, StateFollower, 3)
}
func TestLeaderTransferToSelf(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
lead := nt.peers[1].(*raft)
// Transfer leadership to self, there will be noop.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
func TestLeaderTransferToNonExistingNode(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
lead := nt.peers[1].(*raft)
// Transfer leadership to non-existing node, there will be noop.
nt.send(pb.Message{From: 4, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
func TestLeaderTransferTimeout(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
// Transfer leadership to isolated node, wait for timeout.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
for i := 0; i < lead.heartbeatTimeout; i++ {
lead.tick()
}
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
for i := 0; i < lead.electionTimeout-lead.heartbeatTimeout; i++ {
lead.tick()
}
checkLeaderTransferState(t, lead, StateLeader, 1)
}
func TestLeaderTransferIgnoreProposal(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
// Transfer leadership to isolated node to let transfer pending, then send proposal.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
err := lead.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
if err != ErrProposalDropped {
t.Fatalf("should return drop proposal error while transferring")
}
if lead.prs.Progress[1].Match != 1 {
t.Fatalf("node 1 has match %x, want %x", lead.prs.Progress[1].Match, 1)
}
}
func TestLeaderTransferReceiveHigherTermVote(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
// Transfer leadership to isolated node to let transfer pending.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup, Index: 1, Term: 2})
checkLeaderTransferState(t, lead, StateFollower, 2)
}
func TestLeaderTransferRemoveNode(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.ignore(pb.MsgTimeoutNow)
lead := nt.peers[1].(*raft)
// The leadTransferee is removed when leadship transferring.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
lead.applyConfChange(pb.ConfChange{NodeID: 3, Type: pb.ConfChangeRemoveNode}.AsV2())
checkLeaderTransferState(t, lead, StateLeader, 1)
}
func TestLeaderTransferDemoteNode(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.ignore(pb.MsgTimeoutNow)
lead := nt.peers[1].(*raft)
// The leadTransferee is demoted when leadship transferring.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
lead.applyConfChange(pb.ConfChangeV2{
Changes: []pb.ConfChangeSingle{
{
Type: pb.ConfChangeRemoveNode,
NodeID: 3,
},
{
Type: pb.ConfChangeAddLearnerNode,
NodeID: 3,
},
},
})
// Make the Raft group commit the LeaveJoint entry.
lead.applyConfChange(pb.ConfChangeV2{})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
// TestLeaderTransferBack verifies leadership can transfer back to self when last transfer is pending.
func TestLeaderTransferBack(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
// Transfer leadership back to self.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
// TestLeaderTransferSecondTransferToAnotherNode verifies leader can transfer to another node
// when last transfer is pending.
func TestLeaderTransferSecondTransferToAnotherNode(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
// Transfer leadership to another node.
nt.send(pb.Message{From: 2, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateFollower, 2)
}
// TestLeaderTransferSecondTransferToSameNode verifies second transfer leader request
// to the same node should not extend the timeout while the first one is pending.
func TestLeaderTransferSecondTransferToSameNode(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
for i := 0; i < lead.heartbeatTimeout; i++ {
lead.tick()
}
// Second transfer leadership request to the same node.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
for i := 0; i < lead.electionTimeout-lead.heartbeatTimeout; i++ {
lead.tick()
}
checkLeaderTransferState(t, lead, StateLeader, 1)
}
func checkLeaderTransferState(t *testing.T, r *raft, state StateType, lead uint64) {
if r.state != state || r.lead != lead {
t.Fatalf("after transferring, node has state %v lead %v, want state %v lead %v", r.state, r.lead, state, lead)
}
if r.leadTransferee != None {
t.Fatalf("after transferring, node has leadTransferee %v, want leadTransferee %v", r.leadTransferee, None)
}
}
// TestTransferNonMember verifies that when a MsgTimeoutNow arrives at
// a node that has been removed from the group, nothing happens.
// (previously, if the node also got votes, it would panic as it
// transitioned to StateLeader)
func TestTransferNonMember(t *testing.T) {
r := newTestRaft(1, 5, 1, newTestMemoryStorage(withPeers(2, 3, 4)))
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgTimeoutNow})
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgVoteResp})
r.Step(pb.Message{From: 3, To: 1, Type: pb.MsgVoteResp})
if r.state != StateFollower {
t.Fatalf("state is %s, want StateFollower", r.state)
}
}
// TestNodeWithSmallerTermCanCompleteElection tests the scenario where a node
// that has been partitioned away (and fallen behind) rejoins the cluster at
// about the same time the leader node gets partitioned away.
// Previously the cluster would come to a standstill when run with PreVote
// enabled.
func TestNodeWithSmallerTermCanCompleteElection(t *testing.T) {
n1 := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n2 := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n3 := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
n3.becomeFollower(1, None)
n1.preVote = true
n2.preVote = true
n3.preVote = true
// cause a network partition to isolate node 3
nt := newNetwork(n1, n2, n3)
nt.cut(1, 3)
nt.cut(2, 3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm := nt.peers[1].(*raft)
if sm.state != StateLeader {
t.Errorf("peer 1 state: %s, want %s", sm.state, StateLeader)
}
sm = nt.peers[2].(*raft)
if sm.state != StateFollower {
t.Errorf("peer 2 state: %s, want %s", sm.state, StateFollower)
}
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
sm = nt.peers[3].(*raft)
if sm.state != StatePreCandidate {
t.Errorf("peer 3 state: %s, want %s", sm.state, StatePreCandidate)
}
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
// check whether the term values are expected
// a.Term == 3
// b.Term == 3
// c.Term == 1
sm = nt.peers[1].(*raft)
if sm.Term != 3 {
t.Errorf("peer 1 term: %d, want %d", sm.Term, 3)
}
sm = nt.peers[2].(*raft)
if sm.Term != 3 {
t.Errorf("peer 2 term: %d, want %d", sm.Term, 3)
}
sm = nt.peers[3].(*raft)
if sm.Term != 1 {
t.Errorf("peer 3 term: %d, want %d", sm.Term, 1)
}
// check state
// a == follower
// b == leader
// c == pre-candidate
sm = nt.peers[1].(*raft)
if sm.state != StateFollower {
t.Errorf("peer 1 state: %s, want %s", sm.state, StateFollower)
}
sm = nt.peers[2].(*raft)
if sm.state != StateLeader {
t.Errorf("peer 2 state: %s, want %s", sm.state, StateLeader)
}
sm = nt.peers[3].(*raft)
if sm.state != StatePreCandidate {
t.Errorf("peer 3 state: %s, want %s", sm.state, StatePreCandidate)
}
sm.logger.Infof("going to bring back peer 3 and kill peer 2")
// recover the network then immediately isolate b which is currently
// the leader, this is to emulate the crash of b.
nt.recover()
nt.cut(2, 1)
nt.cut(2, 3)
// call for election
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// do we have a leader?
sma := nt.peers[1].(*raft)
smb := nt.peers[3].(*raft)
if sma.state != StateLeader && smb.state != StateLeader {
t.Errorf("no leader")
}
}
// TestPreVoteWithSplitVote verifies that after split vote, cluster can complete
// election in next round.
func TestPreVoteWithSplitVote(t *testing.T) {
n1 := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n2 := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n3 := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
n3.becomeFollower(1, None)
n1.preVote = true
n2.preVote = true
n3.preVote = true
nt := newNetwork(n1, n2, n3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// simulate leader down. followers start split vote.
nt.isolate(1)
nt.send([]pb.Message{
{From: 2, To: 2, Type: pb.MsgHup},
{From: 3, To: 3, Type: pb.MsgHup},
}...)
// check whether the term values are expected
// n2.Term == 3
// n3.Term == 3
sm := nt.peers[2].(*raft)
if sm.Term != 3 {
t.Errorf("peer 2 term: %d, want %d", sm.Term, 3)
}
sm = nt.peers[3].(*raft)
if sm.Term != 3 {
t.Errorf("peer 3 term: %d, want %d", sm.Term, 3)
}
// check state
// n2 == candidate
// n3 == candidate
sm = nt.peers[2].(*raft)
if sm.state != StateCandidate {
t.Errorf("peer 2 state: %s, want %s", sm.state, StateCandidate)
}
sm = nt.peers[3].(*raft)
if sm.state != StateCandidate {
t.Errorf("peer 3 state: %s, want %s", sm.state, StateCandidate)
}
// node 2 election timeout first
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
// check whether the term values are expected
// n2.Term == 4
// n3.Term == 4
sm = nt.peers[2].(*raft)
if sm.Term != 4 {
t.Errorf("peer 2 term: %d, want %d", sm.Term, 4)
}
sm = nt.peers[3].(*raft)
if sm.Term != 4 {
t.Errorf("peer 3 term: %d, want %d", sm.Term, 4)
}
// check state
// n2 == leader
// n3 == follower
sm = nt.peers[2].(*raft)
if sm.state != StateLeader {
t.Errorf("peer 2 state: %s, want %s", sm.state, StateLeader)
}
sm = nt.peers[3].(*raft)
if sm.state != StateFollower {
t.Errorf("peer 3 state: %s, want %s", sm.state, StateFollower)
}
}
// TestPreVoteWithCheckQuorum ensures that after a node become pre-candidate,
// it will checkQuorum correctly.
func TestPreVoteWithCheckQuorum(t *testing.T) {
n1 := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n2 := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n3 := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
n3.becomeFollower(1, None)
n1.preVote = true
n2.preVote = true
n3.preVote = true
n1.checkQuorum = true
n2.checkQuorum = true
n3.checkQuorum = true
nt := newNetwork(n1, n2, n3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// isolate node 1. node 2 and node 3 have leader info
nt.isolate(1)
// check state
sm := nt.peers[1].(*raft)
if sm.state != StateLeader {
t.Fatalf("peer 1 state: %s, want %s", sm.state, StateLeader)
}
sm = nt.peers[2].(*raft)
if sm.state != StateFollower {
t.Fatalf("peer 2 state: %s, want %s", sm.state, StateFollower)
}
sm = nt.peers[3].(*raft)
if sm.state != StateFollower {
t.Fatalf("peer 3 state: %s, want %s", sm.state, StateFollower)
}
// node 2 will ignore node 3's PreVote
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
// Do we have a leader?
if n2.state != StateLeader && n3.state != StateFollower {
t.Errorf("no leader")
}
}
// TestLearnerCampaign verifies that a learner won't campaign even if it receives
// a MsgHup or MsgTimeoutNow.
func TestLearnerCampaign(t *testing.T) {
n1 := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1)))
n1.applyConfChange(pb.ConfChange{NodeID: 2, Type: pb.ConfChangeAddLearnerNode}.AsV2())
n2 := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1)))
n2.applyConfChange(pb.ConfChange{NodeID: 2, Type: pb.ConfChangeAddLearnerNode}.AsV2())
nt := newNetwork(n1, n2)
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
if !n2.isLearner {
t.Fatalf("failed to make n2 a learner")
}
if n2.state != StateFollower {
t.Fatalf("n2 campaigned despite being learner")
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if n1.state != StateLeader || n1.lead != 1 {
t.Fatalf("n1 did not become leader")
}
// NB: TransferLeader already checks that the recipient is not a learner, but
// the check could have happened by the time the recipient becomes a learner,
// in which case it will receive MsgTimeoutNow as in this test case and we
// verify that it's ignored.
nt.send(pb.Message{From: 1, To: 2, Type: pb.MsgTimeoutNow})
if n2.state != StateFollower {
t.Fatalf("n2 accepted leadership transfer despite being learner")
}
}
// simulate rolling update a cluster for Pre-Vote. cluster has 3 nodes [n1, n2, n3].
// n1 is leader with term 2
// n2 is follower with term 2
// n3 is partitioned, with term 4 and less log, state is candidate
func newPreVoteMigrationCluster(t *testing.T) *network {
n1 := newTestRaft(1, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n2 := newTestRaft(2, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n3 := newTestRaft(3, 10, 1, newTestMemoryStorage(withPeers(1, 2, 3)))
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
n3.becomeFollower(1, None)
n1.preVote = true
n2.preVote = true
// We intentionally do not enable PreVote for n3, this is done so in order
// to simulate a rolling restart process where it's possible to have a mixed
// version cluster with replicas with PreVote enabled, and replicas without.
nt := newNetwork(n1, n2, n3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// Cause a network partition to isolate n3.
nt.isolate(3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
// check state
// n1.state == StateLeader
// n2.state == StateFollower
// n3.state == StateCandidate
if n1.state != StateLeader {
t.Fatalf("node 1 state: %s, want %s", n1.state, StateLeader)
}
if n2.state != StateFollower {
t.Fatalf("node 2 state: %s, want %s", n2.state, StateFollower)
}
if n3.state != StateCandidate {
t.Fatalf("node 3 state: %s, want %s", n3.state, StateCandidate)
}
// check term
// n1.Term == 2
// n2.Term == 2
// n3.Term == 4
if n1.Term != 2 {
t.Fatalf("node 1 term: %d, want %d", n1.Term, 2)
}
if n2.Term != 2 {
t.Fatalf("node 2 term: %d, want %d", n2.Term, 2)
}
if n3.Term != 4 {
t.Fatalf("node 3 term: %d, want %d", n3.Term, 4)
}
// Enable prevote on n3, then recover the network
n3.preVote = true
nt.recover()
return nt
}
func TestPreVoteMigrationCanCompleteElection(t *testing.T) {
nt := newPreVoteMigrationCluster(t)
// n1 is leader with term 2
// n2 is follower with term 2
// n3 is pre-candidate with term 4, and less log
n2 := nt.peers[2].(*raft)
n3 := nt.peers[3].(*raft)
// simulate leader down
nt.isolate(1)
// Call for elections from both n2 and n3.
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
// check state
// n2.state == Follower
// n3.state == PreCandidate
if n2.state != StateFollower {
t.Errorf("node 2 state: %s, want %s", n2.state, StateFollower)
}
if n3.state != StatePreCandidate {
t.Errorf("node 3 state: %s, want %s", n3.state, StatePreCandidate)
}
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
// Do we have a leader?
if n2.state != StateLeader && n3.state != StateFollower {
t.Errorf("no leader")
}
}
func TestPreVoteMigrationWithFreeStuckPreCandidate(t *testing.T) {
nt := newPreVoteMigrationCluster(t)
// n1 is leader with term 2
// n2 is follower with term 2
// n3 is pre-candidate with term 4, and less log
n1 := nt.peers[1].(*raft)
n2 := nt.peers[2].(*raft)
n3 := nt.peers[3].(*raft)
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if n1.state != StateLeader {
t.Errorf("node 1 state: %s, want %s", n1.state, StateLeader)
}
if n2.state != StateFollower {
t.Errorf("node 2 state: %s, want %s", n2.state, StateFollower)
}
if n3.state != StatePreCandidate {
t.Errorf("node 3 state: %s, want %s", n3.state, StatePreCandidate)
}
// Pre-Vote again for safety
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if n1.state != StateLeader {
t.Errorf("node 1 state: %s, want %s", n1.state, StateLeader)
}
if n2.state != StateFollower {
t.Errorf("node 2 state: %s, want %s", n2.state, StateFollower)
}
if n3.state != StatePreCandidate {
t.Errorf("node 3 state: %s, want %s", n3.state, StatePreCandidate)
}
nt.send(pb.Message{From: 1, To: 3, Type: pb.MsgHeartbeat, Term: n1.Term})
// Disrupt the leader so that the stuck peer is freed
if n1.state != StateFollower {
t.Errorf("state = %s, want %s", n1.state, StateFollower)
}
if n3.Term != n1.Term {
t.Errorf("term = %d, want %d", n3.Term, n1.Term)
}
}
func testConfChangeCheckBeforeCampaign(t *testing.T, v2 bool) {
nt := newNetwork(nil, nil, nil)
n1 := nt.peers[1].(*raft)
n2 := nt.peers[2].(*raft)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if n1.state != StateLeader {
t.Errorf("node 1 state: %s, want %s", n1.state, StateLeader)
}
// Begin to remove the third node.
cc := pb.ConfChange{
Type: pb.ConfChangeRemoveNode,
NodeID: 2,
}
var ccData []byte
var err error
var ty pb.EntryType
if v2 {
ccv2 := cc.AsV2()
ccData, err = ccv2.Marshal()
ty = pb.EntryConfChangeV2
} else {
ccData, err = cc.Marshal()
ty = pb.EntryConfChange
}
if err != nil {
t.Fatal(err)
}
nt.send(pb.Message{
From: 1,
To: 1,
Type: pb.MsgProp,
Entries: []pb.Entry{
{Type: ty, Data: ccData},
},
})
// Trigger campaign in node 2
for i := 0; i < n2.randomizedElectionTimeout; i++ {
n2.tick()
}
// It's still follower because committed conf change is not applied.
if n2.state != StateFollower {
t.Errorf("node 2 state: %s, want %s", n2.state, StateFollower)
}
// Transfer leadership to peer 2.
nt.send(pb.Message{From: 2, To: 1, Type: pb.MsgTransferLeader})
if n1.state != StateLeader {
t.Errorf("node 1 state: %s, want %s", n1.state, StateLeader)
}
// It's still follower because committed conf change is not applied.
if n2.state != StateFollower {
t.Errorf("node 2 state: %s, want %s", n2.state, StateFollower)
}
// Abort transfer leader
for i := 0; i < n1.electionTimeout; i++ {
n1.tick()
}
// Advance apply
nextEnts(n2, nt.storage[2])
// Transfer leadership to peer 2 again.
nt.send(pb.Message{From: 2, To: 1, Type: pb.MsgTransferLeader})
if n1.state != StateFollower {
t.Errorf("node 1 state: %s, want %s", n1.state, StateFollower)
}
if n2.state != StateLeader {
t.Errorf("node 2 state: %s, want %s", n2.state, StateLeader)
}
nextEnts(n1, nt.storage[1])
// Trigger campaign in node 2
for i := 0; i < n1.randomizedElectionTimeout; i++ {
n1.tick()
}
if n1.state != StateCandidate {
t.Errorf("node 1 state: %s, want %s", n1.state, StateCandidate)
}
}
// Tests if unapplied ConfChange is checked before campaign.
func TestConfChangeCheckBeforeCampaign(t *testing.T) {
testConfChangeCheckBeforeCampaign(t, false)
}
// Tests if unapplied ConfChangeV2 is checked before campaign.
func TestConfChangeV2CheckBeforeCampaign(t *testing.T) {
testConfChangeCheckBeforeCampaign(t, true)
}
func TestFastLogRejection(t *testing.T) {
tests := []struct {
leaderLog []pb.Entry // Logs on the leader
followerLog []pb.Entry // Logs on the follower
rejectHintTerm uint64 // Expected term included in rejected MsgAppResp.
rejectHintIndex uint64 // Expected index included in rejected MsgAppResp.
nextAppendTerm uint64 // Expected term when leader appends after rejected.
nextAppendIndex uint64 // Expected index when leader appends after rejected.
}{
// This case tests that leader can find the conflict index quickly.
// Firstly leader appends (type=MsgApp,index=7,logTerm=4, entries=...);
// After rejected leader appends (type=MsgApp,index=3,logTerm=2).
{
leaderLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 2, Index: 2},
{Term: 2, Index: 3},
{Term: 4, Index: 4},
{Term: 4, Index: 5},
{Term: 4, Index: 6},
{Term: 4, Index: 7},
},
followerLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 2, Index: 2},
{Term: 2, Index: 3},
{Term: 3, Index: 4},
{Term: 3, Index: 5},
{Term: 3, Index: 6},
{Term: 3, Index: 7},
{Term: 3, Index: 8},
{Term: 3, Index: 9},
{Term: 3, Index: 10},
{Term: 3, Index: 11},
},
rejectHintTerm: 3,
rejectHintIndex: 7,
nextAppendTerm: 2,
nextAppendIndex: 3,
},
// This case tests that leader can find the conflict index quickly.
// Firstly leader appends (type=MsgApp,index=8,logTerm=5, entries=...);
// After rejected leader appends (type=MsgApp,index=4,logTerm=3).
{
leaderLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 2, Index: 2},
{Term: 2, Index: 3},
{Term: 3, Index: 4},
{Term: 4, Index: 5},
{Term: 4, Index: 6},
{Term: 4, Index: 7},
{Term: 5, Index: 8},
},
followerLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 2, Index: 2},
{Term: 2, Index: 3},
{Term: 3, Index: 4},
{Term: 3, Index: 5},
{Term: 3, Index: 6},
{Term: 3, Index: 7},
{Term: 3, Index: 8},
{Term: 3, Index: 9},
{Term: 3, Index: 10},
{Term: 3, Index: 11},
},
rejectHintTerm: 3,
rejectHintIndex: 8,
nextAppendTerm: 3,
nextAppendIndex: 4,
},
// This case tests that follower can find the conflict index quickly.
// Firstly leader appends (type=MsgApp,index=4,logTerm=1, entries=...);
// After rejected leader appends (type=MsgApp,index=1,logTerm=1).
{
leaderLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 1, Index: 2},
{Term: 1, Index: 3},
{Term: 1, Index: 4},
},
followerLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 2, Index: 2},
{Term: 2, Index: 3},
{Term: 4, Index: 4},
},
rejectHintTerm: 1,
rejectHintIndex: 1,
nextAppendTerm: 1,
nextAppendIndex: 1,
},
// This case is similar to the previous case. However, this time, the
// leader has a longer uncommitted log tail than the follower.
// Firstly leader appends (type=MsgApp,index=6,logTerm=1, entries=...);
// After rejected leader appends (type=MsgApp,index=1,logTerm=1).
{
leaderLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 1, Index: 2},
{Term: 1, Index: 3},
{Term: 1, Index: 4},
{Term: 1, Index: 5},
{Term: 1, Index: 6},
},
followerLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 2, Index: 2},
{Term: 2, Index: 3},
{Term: 4, Index: 4},
},
rejectHintTerm: 1,
rejectHintIndex: 1,
nextAppendTerm: 1,
nextAppendIndex: 1,
},
// This case is similar to the previous case. However, this time, the
// follower has a longer uncommitted log tail than the leader.
// Firstly leader appends (type=MsgApp,index=4,logTerm=1, entries=...);
// After rejected leader appends (type=MsgApp,index=1,logTerm=1).
{
leaderLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 1, Index: 2},
{Term: 1, Index: 3},
{Term: 1, Index: 4},
},
followerLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 2, Index: 2},
{Term: 2, Index: 3},
{Term: 4, Index: 4},
{Term: 4, Index: 5},
{Term: 4, Index: 6},
},
rejectHintTerm: 1,
rejectHintIndex: 1,
nextAppendTerm: 1,
nextAppendIndex: 1,
},
// An normal case that there are no log conflicts.
// Firstly leader appends (type=MsgApp,index=5,logTerm=5, entries=...);
// After rejected leader appends (type=MsgApp,index=4,logTerm=4).
{
leaderLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 1, Index: 2},
{Term: 1, Index: 3},
{Term: 4, Index: 4},
{Term: 5, Index: 5},
},
followerLog: []pb.Entry{
{Term: 1, Index: 1},
{Term: 1, Index: 2},
{Term: 1, Index: 3},
{Term: 4, Index: 4},
},
rejectHintTerm: 4,
rejectHintIndex: 4,
nextAppendTerm: 4,
nextAppendIndex: 4,
},
// Test case from example comment in stepLeader (on leader).
{
leaderLog: []pb.Entry{
{Term: 2, Index: 1},
{Term: 5, Index: 2},
{Term: 5, Index: 3},
{Term: 5, Index: 4},
{Term: 5, Index: 5},
{Term: 5, Index: 6},
{Term: 5, Index: 7},
{Term: 5, Index: 8},
{Term: 5, Index: 9},
},
followerLog: []pb.Entry{
{Term: 2, Index: 1},
{Term: 4, Index: 2},
{Term: 4, Index: 3},
{Term: 4, Index: 4},
{Term: 4, Index: 5},
{Term: 4, Index: 6},
},
rejectHintTerm: 4,
rejectHintIndex: 6,
nextAppendTerm: 2,
nextAppendIndex: 1,
},
// Test case from example comment in handleAppendEntries (on follower).
{
leaderLog: []pb.Entry{
{Term: 2, Index: 1},
{Term: 2, Index: 2},
{Term: 2, Index: 3},
{Term: 2, Index: 4},
{Term: 2, Index: 5},
},
followerLog: []pb.Entry{
{Term: 2, Index: 1},
{Term: 4, Index: 2},
{Term: 4, Index: 3},
{Term: 4, Index: 4},
{Term: 4, Index: 5},
{Term: 4, Index: 6},
{Term: 4, Index: 7},
{Term: 4, Index: 8},
},
nextAppendTerm: 2,
nextAppendIndex: 1,
rejectHintTerm: 2,
rejectHintIndex: 1,
},
}
for i, test := range tests {
t.Run("", func(t *testing.T) {
s1 := NewMemoryStorage()
s1.snapshot.Metadata.ConfState = pb.ConfState{Voters: []uint64{1, 2, 3}}
s1.Append(test.leaderLog)
s2 := NewMemoryStorage()
s2.snapshot.Metadata.ConfState = pb.ConfState{Voters: []uint64{1, 2, 3}}
s2.Append(test.followerLog)
n1 := newTestRaft(1, 10, 1, s1)
n2 := newTestRaft(2, 10, 1, s2)
n1.becomeCandidate()
n1.becomeLeader()
n2.Step(pb.Message{From: 1, To: 1, Type: pb.MsgHeartbeat})
msgs := n2.readMessages()
if len(msgs) != 1 {
t.Errorf("can't read 1 message from peer 2")
}
if msgs[0].Type != pb.MsgHeartbeatResp {
t.Errorf("can't read heartbeat response from peer 2")
}
if n1.Step(msgs[0]) != nil {
t.Errorf("peer 1 step heartbeat response fail")
}
msgs = n1.readMessages()
if len(msgs) != 1 {
t.Errorf("can't read 1 message from peer 1")
}
if msgs[0].Type != pb.MsgApp {
t.Errorf("can't read append from peer 1")
}
if n2.Step(msgs[0]) != nil {
t.Errorf("peer 2 step append fail")
}
msgs = n2.readMessages()
if len(msgs) != 1 {
t.Errorf("can't read 1 message from peer 2")
}
if msgs[0].Type != pb.MsgAppResp {
t.Errorf("can't read append response from peer 2")
}
if !msgs[0].Reject {
t.Errorf("expected rejected append response from peer 2")
}
if msgs[0].LogTerm != test.rejectHintTerm {
t.Fatalf("#%d expected hint log term = %d, but got %d", i, test.rejectHintTerm, msgs[0].LogTerm)
}
if msgs[0].RejectHint != test.rejectHintIndex {
t.Fatalf("#%d expected hint index = %d, but got %d", i, test.rejectHintIndex, msgs[0].RejectHint)
}
if n1.Step(msgs[0]) != nil {
t.Errorf("peer 1 step append fail")
}
msgs = n1.readMessages()
if msgs[0].LogTerm != test.nextAppendTerm {
t.Fatalf("#%d expected log term = %d, but got %d", i, test.nextAppendTerm, msgs[0].LogTerm)
}
if msgs[0].Index != test.nextAppendIndex {
t.Fatalf("#%d expected index = %d, but got %d", i, test.nextAppendIndex, msgs[0].Index)
}
})
}
}
func entsWithConfig(configFunc func(*Config), terms ...uint64) *raft {
storage := NewMemoryStorage()
for i, term := range terms {
storage.Append([]pb.Entry{{Index: uint64(i + 1), Term: term}})
}
cfg := newTestConfig(1, 5, 1, storage)
if configFunc != nil {
configFunc(cfg)
}
sm := newRaft(cfg)
sm.reset(terms[len(terms)-1])
return sm
}
// votedWithConfig creates a raft state machine with Vote and Term set
// to the given value but no log entries (indicating that it voted in
// the given term but has not received any logs).
func votedWithConfig(configFunc func(*Config), vote, term uint64) *raft {
storage := NewMemoryStorage()
storage.SetHardState(pb.HardState{Vote: vote, Term: term})
cfg := newTestConfig(1, 5, 1, storage)
if configFunc != nil {
configFunc(cfg)
}
sm := newRaft(cfg)
sm.reset(term)
return sm
}
type network struct {
peers map[uint64]stateMachine
storage map[uint64]*MemoryStorage
dropm map[connem]float64
ignorem map[pb.MessageType]bool
// msgHook is called for each message sent. It may inspect the
// message and return true to send it or false to drop it.
msgHook func(pb.Message) bool
}
// newNetwork initializes a network from peers.
// A nil node will be replaced with a new *stateMachine.
// A *stateMachine will get its k, id.
// When using stateMachine, the address list is always [1, n].
func newNetwork(peers ...stateMachine) *network {
return newNetworkWithConfig(nil, peers...)
}
// newNetworkWithConfig is like newNetwork but calls the given func to
// modify the configuration of any state machines it creates.
func newNetworkWithConfig(configFunc func(*Config), peers ...stateMachine) *network {
size := len(peers)
peerAddrs := idsBySize(size)
npeers := make(map[uint64]stateMachine, size)
nstorage := make(map[uint64]*MemoryStorage, size)
for j, p := range peers {
id := peerAddrs[j]
switch v := p.(type) {
case nil:
nstorage[id] = newTestMemoryStorage(withPeers(peerAddrs...))
cfg := newTestConfig(id, 10, 1, nstorage[id])
if configFunc != nil {
configFunc(cfg)
}
sm := newRaft(cfg)
npeers[id] = sm
case *raft:
// TODO(tbg): this is all pretty confused. Clean this up.
learners := make(map[uint64]bool, len(v.prs.Learners))
for i := range v.prs.Learners {
learners[i] = true
}
v.id = id
v.prs = tracker.MakeProgressTracker(v.prs.MaxInflight)
if len(learners) > 0 {
v.prs.Learners = map[uint64]struct{}{}
}
for i := 0; i < size; i++ {
pr := &tracker.Progress{}
if _, ok := learners[peerAddrs[i]]; ok {
pr.IsLearner = true
v.prs.Learners[peerAddrs[i]] = struct{}{}
} else {
v.prs.Voters[0][peerAddrs[i]] = struct{}{}
}
v.prs.Progress[peerAddrs[i]] = pr
}
v.reset(v.Term)
npeers[id] = v
case *blackHole:
npeers[id] = v
default:
panic(fmt.Sprintf("unexpected state machine type: %T", p))
}
}
return &network{
peers: npeers,
storage: nstorage,
dropm: make(map[connem]float64),
ignorem: make(map[pb.MessageType]bool),
}
}
func preVoteConfig(c *Config) {
c.PreVote = true
}
func (nw *network) send(msgs ...pb.Message) {
for len(msgs) > 0 {
m := msgs[0]
p := nw.peers[m.To]
p.Step(m)
msgs = append(msgs[1:], nw.filter(p.readMessages())...)
}
}
func (nw *network) drop(from, to uint64, perc float64) {
nw.dropm[connem{from, to}] = perc
}
func (nw *network) cut(one, other uint64) {
nw.drop(one, other, 2.0) // always drop
nw.drop(other, one, 2.0) // always drop
}
func (nw *network) isolate(id uint64) {
for i := 0; i < len(nw.peers); i++ {
nid := uint64(i) + 1
if nid != id {
nw.drop(id, nid, 1.0) // always drop
nw.drop(nid, id, 1.0) // always drop
}
}
}
func (nw *network) ignore(t pb.MessageType) {
nw.ignorem[t] = true
}
func (nw *network) recover() {
nw.dropm = make(map[connem]float64)
nw.ignorem = make(map[pb.MessageType]bool)
}
func (nw *network) filter(msgs []pb.Message) []pb.Message {
mm := []pb.Message{}
for _, m := range msgs {
if nw.ignorem[m.Type] {
continue
}
switch m.Type {
case pb.MsgHup:
// hups never go over the network, so don't drop them but panic
panic("unexpected msgHup")
default:
perc := nw.dropm[connem{m.From, m.To}]
if n := rand.Float64(); n < perc {
continue
}
}
if nw.msgHook != nil {
if !nw.msgHook(m) {
continue
}
}
mm = append(mm, m)
}
return mm
}
type connem struct {
from, to uint64
}
type blackHole struct{}
func (blackHole) Step(pb.Message) error { return nil }
func (blackHole) readMessages() []pb.Message { return nil }
var nopStepper = &blackHole{}
func idsBySize(size int) []uint64 {
ids := make([]uint64, size)
for i := 0; i < size; i++ {
ids[i] = 1 + uint64(i)
}
return ids
}
// setRandomizedElectionTimeout set up the value by caller instead of choosing
// by system, in some test scenario we need to fill in some expected value to
// ensure the certainty
func setRandomizedElectionTimeout(r *raft, v int) {
r.randomizedElectionTimeout = v
}
func newTestConfig(id uint64, election, heartbeat int, storage Storage) *Config {
return &Config{
ID: id,
ElectionTick: election,
HeartbeatTick: heartbeat,
Storage: storage,
MaxSizePerMsg: noLimit,
MaxInflightMsgs: 256,
}
}
type testMemoryStorageOptions func(*MemoryStorage)
func withPeers(peers ...uint64) testMemoryStorageOptions {
return func(ms *MemoryStorage) {
ms.snapshot.Metadata.ConfState.Voters = peers
}
}
func withLearners(learners ...uint64) testMemoryStorageOptions {
return func(ms *MemoryStorage) {
ms.snapshot.Metadata.ConfState.Learners = learners
}
}
func newTestMemoryStorage(opts ...testMemoryStorageOptions) *MemoryStorage {
ms := NewMemoryStorage()
for _, o := range opts {
o(ms)
}
return ms
}
func newTestRaft(id uint64, election, heartbeat int, storage Storage) *raft {
return newRaft(newTestConfig(id, election, heartbeat, storage))
}
func newTestLearnerRaft(id uint64, election, heartbeat int, storage Storage) *raft {
cfg := newTestConfig(id, election, heartbeat, storage)
return newRaft(cfg)
}
// newTestRawNode sets up a RawNode with the given peers. The configuration will
// not be reflected in the Storage.
func newTestRawNode(id uint64, election, heartbeat int, storage Storage) *RawNode {
cfg := newTestConfig(id, election, heartbeat, storage)
rn, err := NewRawNode(cfg)
if err != nil {
panic(err)
}
return rn
}