blob: 0e1498d4668f10e6d42a37db4df1f89c70e0c730 [file] [log] [blame]
// Copyright (c) 2024, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(DART_DYNAMIC_MODULES)
#include "vm/compiler/assembler/disassembler_kbc.h"
#include "platform/assert.h"
#include "vm/bytecode_reader.h"
#include "vm/constants_kbc.h"
#include "vm/zone_text_buffer.h"
namespace dart {
static const char* kOpcodeNames[] = {
#define BYTECODE_NAME(name, encoding, kind, op1, op2, op3) #name,
KERNEL_BYTECODES_LIST(BYTECODE_NAME)
#undef BYTECODE_NAME
};
static const size_t kOpcodeCount =
sizeof(kOpcodeNames) / sizeof(kOpcodeNames[0]);
static_assert(kOpcodeCount <= 256, "Opcode should fit into a byte");
typedef void (*BytecodeFormatter)(char* buffer,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr);
typedef void (*Fmt)(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value);
template <typename ValueType>
void FormatOperand(char** buf,
intptr_t* size,
const char* fmt,
ValueType value) {
intptr_t written = Utils::SNPrint(*buf, *size, fmt, value);
if (written < *size) {
*buf += written;
*size += written;
} else {
*size = -1;
}
}
static void Fmt___(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {}
static void Fmttgt(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {
if (FLAG_disassemble_relative) {
FormatOperand(buf, size, "-> %" Pd, value);
} else {
FormatOperand(buf, size, "-> %" Px, instr + value);
}
}
static void Fmtlit(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {
FormatOperand(buf, size, "k%d", value);
}
static void Fmtreg(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {
FormatOperand(buf, size, "r%d", value);
}
static void Fmtxeg(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {
if (value < 0) {
FormatOperand(buf, size, "FP[%d]", value);
} else {
Fmtreg(buf, size, instr, value);
}
}
static void Fmtnum(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {
FormatOperand(buf, size, "#%d", value);
}
static void Apply(char** buf,
intptr_t* size,
const KBCInstr* instr,
Fmt fmt,
int32_t value,
const char* suffix) {
if (*size <= 0) {
return;
}
fmt(buf, size, instr, value);
if (*size > 0) {
FormatOperand(buf, size, "%s", suffix);
}
}
static void Format0(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {}
static void FormatA(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t a = KernelBytecode::DecodeA(instr);
Apply(&buf, &size, instr, op1, a, "");
}
static void FormatD(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t bc = KernelBytecode::DecodeD(instr);
Apply(&buf, &size, instr, op1, bc, "");
}
static void FormatX(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t bc = KernelBytecode::DecodeX(instr);
Apply(&buf, &size, instr, op1, bc, "");
}
static void FormatT(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t x = KernelBytecode::DecodeT(instr);
Apply(&buf, &size, instr, op1, x, "");
}
static void FormatA_E(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t a = KernelBytecode::DecodeA(instr);
const int32_t e = KernelBytecode::DecodeE(instr);
Apply(&buf, &size, instr, op1, a, ", ");
Apply(&buf, &size, instr, op2, e, "");
}
static void FormatA_Y(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t a = KernelBytecode::DecodeA(instr);
const int32_t y = KernelBytecode::DecodeY(instr);
Apply(&buf, &size, instr, op1, a, ", ");
Apply(&buf, &size, instr, op2, y, "");
}
static void FormatD_F(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t d = KernelBytecode::DecodeD(instr);
const int32_t f = KernelBytecode::DecodeF(instr);
Apply(&buf, &size, instr, op1, d, ", ");
Apply(&buf, &size, instr, op2, f, "");
}
static void FormatA_B_C(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t a = KernelBytecode::DecodeA(instr);
const int32_t b = KernelBytecode::DecodeB(instr);
const int32_t c = KernelBytecode::DecodeC(instr);
Apply(&buf, &size, instr, op1, a, ", ");
Apply(&buf, &size, instr, op2, b, ", ");
Apply(&buf, &size, instr, op3, c, "");
}
#define BYTECODE_FORMATTER(name, encoding, kind, op1, op2, op3) \
static void Format##name(char* buf, intptr_t size, \
KernelBytecode::Opcode opcode, \
const KBCInstr* instr) { \
Format##encoding(buf, size, opcode, instr, Fmt##op1, Fmt##op2, Fmt##op3); \
}
KERNEL_BYTECODES_LIST(BYTECODE_FORMATTER)
#undef BYTECODE_FORMATTER
static const BytecodeFormatter kFormatters[] = {
#define BYTECODE_FORMATTER(name, encoding, kind, op1, op2, op3) &Format##name,
KERNEL_BYTECODES_LIST(BYTECODE_FORMATTER)
#undef BYTECODE_FORMATTER
};
static intptr_t GetConstantPoolIndex(const KBCInstr* instr) {
switch (KernelBytecode::DecodeOpcode(instr)) {
case KernelBytecode::kLoadConstant:
case KernelBytecode::kLoadConstant_Wide:
case KernelBytecode::kInstantiateTypeArgumentsTOS:
case KernelBytecode::kInstantiateTypeArgumentsTOS_Wide:
case KernelBytecode::kAssertAssignable:
case KernelBytecode::kAssertAssignable_Wide:
return KernelBytecode::DecodeE(instr);
case KernelBytecode::kPushConstant:
case KernelBytecode::kPushConstant_Wide:
case KernelBytecode::kInitLateField:
case KernelBytecode::kInitLateField_Wide:
case KernelBytecode::kStoreStaticTOS:
case KernelBytecode::kStoreStaticTOS_Wide:
case KernelBytecode::kLoadStatic:
case KernelBytecode::kLoadStatic_Wide:
case KernelBytecode::kAllocate:
case KernelBytecode::kAllocate_Wide:
case KernelBytecode::kInstantiateType:
case KernelBytecode::kInstantiateType_Wide:
case KernelBytecode::kDirectCall:
case KernelBytecode::kDirectCall_Wide:
case KernelBytecode::kUncheckedDirectCall:
case KernelBytecode::kUncheckedDirectCall_Wide:
case KernelBytecode::kInterfaceCall:
case KernelBytecode::kInterfaceCall_Wide:
case KernelBytecode::kInstantiatedInterfaceCall:
case KernelBytecode::kInstantiatedInterfaceCall_Wide:
case KernelBytecode::kUncheckedClosureCall:
case KernelBytecode::kUncheckedClosureCall_Wide:
case KernelBytecode::kUncheckedInterfaceCall:
case KernelBytecode::kUncheckedInterfaceCall_Wide:
case KernelBytecode::kDynamicCall:
case KernelBytecode::kDynamicCall_Wide:
return KernelBytecode::DecodeD(instr);
default:
return -1;
}
}
static bool GetLoadedObjectAt(uword pc,
const ObjectPool& object_pool,
Object* obj) {
const KBCInstr* instr = reinterpret_cast<const KBCInstr*>(pc);
const intptr_t index = GetConstantPoolIndex(instr);
if (index >= 0) {
if (object_pool.TypeAt(index) == ObjectPool::EntryType::kTaggedObject) {
*obj = object_pool.ObjectAt(index);
return true;
}
}
return false;
}
void KernelBytecodeDisassembler::DecodeInstruction(char* hex_buffer,
intptr_t hex_size,
char* human_buffer,
intptr_t human_size,
int* out_instr_size,
const Bytecode& bytecode,
Object** object,
uword pc) {
const KBCInstr* instr = reinterpret_cast<const KBCInstr*>(pc);
const KernelBytecode::Opcode opcode = KernelBytecode::DecodeOpcode(instr);
const intptr_t instr_size = KernelBytecode::kInstructionSize[opcode];
size_t name_size =
Utils::SNPrint(human_buffer, human_size, "%-10s\t", kOpcodeNames[opcode]);
human_buffer += name_size;
human_size -= name_size;
kFormatters[opcode](human_buffer, human_size, opcode, instr);
const intptr_t kCharactersPerByte = 3;
if (hex_size > instr_size * kCharactersPerByte) {
for (intptr_t i = 0; i < instr_size; ++i) {
Utils::SNPrint(hex_buffer + (i * kCharactersPerByte),
hex_size - (i * kCharactersPerByte), " %02x", instr[i]);
}
}
if (out_instr_size != nullptr) {
*out_instr_size = instr_size;
}
*object = NULL;
if (!bytecode.IsNull()) {
*object = &Object::Handle();
const ObjectPool& pool = ObjectPool::Handle(bytecode.object_pool());
if (!GetLoadedObjectAt(pc, pool, *object)) {
*object = NULL;
}
}
}
void KernelBytecodeDisassembler::Disassemble(uword start,
uword end,
DisassemblyFormatter* formatter,
const Bytecode& bytecode) {
#if !defined(PRODUCT)
ASSERT(formatter != NULL);
char hex_buffer[kHexadecimalBufferSize]; // Instruction in hexadecimal form.
char human_buffer[kUserReadableBufferSize]; // Human-readable instruction.
uword pc = start;
GrowableArray<const Function*> inlined_functions;
GrowableArray<TokenPosition> token_positions;
while (pc < end) {
int instruction_length;
Object* object;
DecodeInstruction(hex_buffer, sizeof(hex_buffer), human_buffer,
sizeof(human_buffer), &instruction_length, bytecode,
&object, pc);
formatter->ConsumeInstruction(hex_buffer, sizeof(hex_buffer), human_buffer,
sizeof(human_buffer), object,
FLAG_disassemble_relative ? pc - start : pc);
pc += instruction_length;
}
#else
UNREACHABLE();
#endif
}
void KernelBytecodeDisassembler::Disassemble(const Function& function) {
#if !defined(PRODUCT)
ASSERT(function.HasBytecode());
const char* function_fullname = function.ToFullyQualifiedCString();
Zone* zone = Thread::Current()->zone();
const Bytecode& bytecode = Bytecode::Handle(zone, function.GetBytecode());
THR_Print("Bytecode for function '%s' {\n", function_fullname);
const uword start = bytecode.PayloadStart();
const uword base = FLAG_disassemble_relative ? 0 : start;
DisassembleToStdout stdout_formatter;
LogBlock lb;
Disassemble(start, start + bytecode.Size(), &stdout_formatter, bytecode);
THR_Print("}\n");
const ObjectPool& object_pool =
ObjectPool::Handle(zone, bytecode.object_pool());
object_pool.DebugPrint();
const PcDescriptors& descriptors =
PcDescriptors::Handle(zone, bytecode.pc_descriptors());
if (!descriptors.IsNull()) {
THR_Print("PC Descriptors for function '%s' {\n", function_fullname);
ZoneTextBuffer buffer(zone);
descriptors.WriteToBuffer(&buffer, base);
THR_Print("%s", buffer.buffer());
THR_Print("}\n");
}
if (bytecode.HasSourcePositions()) {
const Script& script = Script::Handle(zone, function.script());
THR_Print("Source positions for function '%s' {\n", function_fullname);
ZoneTextBuffer buffer(zone);
PrintSourcePositions(zone, &buffer, base, bytecode, script);
THR_Print("%s", buffer.buffer());
THR_Print("}\n");
}
if (bytecode.HasLocalVariablesInfo()) {
THR_Print("Local variable information for function '%s' {\n",
function_fullname);
ZoneTextBuffer buffer(zone);
PrintLocalVariablesInfo(zone, &buffer, bytecode, base);
THR_Print("%s", buffer.buffer());
THR_Print("}\n");
}
const ExceptionHandlers& handlers =
ExceptionHandlers::Handle(zone, bytecode.exception_handlers());
if (!handlers.IsNull()) {
THR_Print("Exception Handlers for function '%s' {\n", function_fullname);
ZoneTextBuffer buffer(zone);
handlers.WriteToBuffer(&buffer, base);
THR_Print("%s", buffer.buffer());
THR_Print("}\n");
}
#else
UNREACHABLE();
#endif
}
// 4 bits per hex digit + 2 for "0x".
static const int kProgramCounterFieldWidth = (kBitsPerWord / 4) + 2;
static const int kUint32FieldWidth = 7;
// For bytecode, these are either:
// * real positions, which are a uint32_t source offset and thus a
// max of 7 digits,
// * synthethic positions, which have a prefix of 'syn:' before a
// source offset and thus a max of 11 characters, or
// * NoSource, which is written as "NoSource" (8).
static const int kSourcePositionFieldWidth = 11;
static const int kSourcePositionColumnWidths[] = {
kProgramCounterFieldWidth, // pc
kSourcePositionFieldWidth, // pos
kUint32FieldWidth, // line
kUint32FieldWidth, // col
};
void KernelBytecodeDisassembler::PrintSourcePositions(Zone* zone,
BaseTextBuffer* buffer,
uword base,
const Bytecode& bytecode,
const Script& script) {
if (!bytecode.HasSourcePositions()) return;
// "*" in a printf format specifier tells it to read the field width from
// the printf argument list.
buffer->Printf(" %-*s %*s %*s %*s yield\n", kSourcePositionColumnWidths[0],
"pc", kSourcePositionColumnWidths[1], "pos",
kSourcePositionColumnWidths[2], "line",
kSourcePositionColumnWidths[3], "col");
bytecode::BytecodeSourcePositionsIterator iter(zone, bytecode);
while (iter.MoveNext()) {
buffer->Printf(" %#-*" Px "", kSourcePositionColumnWidths[0],
base + iter.PcOffset());
const TokenPosition pos = iter.TokenPos();
buffer->Printf(" %*s", kSourcePositionColumnWidths[1], pos.ToCString());
intptr_t line = -1, column = -1;
if (!script.IsNull() && script.GetTokenLocation(pos, &line, &column)) {
buffer->Printf(" %*" Pd " %*" Pd "", kSourcePositionColumnWidths[2], line,
kSourcePositionColumnWidths[3], column);
} else {
buffer->Printf(" %*s %*s", kSourcePositionColumnWidths[2], "-",
kSourcePositionColumnWidths[3], "-");
}
if (iter.IsYieldPoint()) {
buffer->AddString(" X");
}
buffer->AddString("\n");
}
}
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
static const int kLocalVariableKindFieldWidth = strlen(
bytecode::BytecodeLocalVariablesIterator::kKindNames
[bytecode::BytecodeLocalVariablesIterator::kVariableDeclaration]);
static const int kLocalVariableColumnWidths[] = {
kLocalVariableKindFieldWidth, // kind
kProgramCounterFieldWidth, // start pc
kProgramCounterFieldWidth, // end pc
kUint32FieldWidth, // context level
kUint32FieldWidth, // index
kSourcePositionFieldWidth, // start token pos
kSourcePositionFieldWidth, // end token pos
kSourcePositionFieldWidth, // decl token pos
};
#endif // !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
void KernelBytecodeDisassembler::PrintLocalVariablesInfo(
Zone* zone,
BaseTextBuffer* buffer,
const Bytecode& bytecode,
uword base) {
if (!bytecode.HasLocalVariablesInfo()) return;
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
// "*" in a printf format specifier tells it to read the field width from
// the printf argument list.
buffer->Printf(
" %-*s %*s %*s %*s %*s %*s %*s %*s name\n",
kLocalVariableColumnWidths[0], "kind", kLocalVariableColumnWidths[1],
"start pc", kLocalVariableColumnWidths[2], "end pc",
kLocalVariableColumnWidths[3], "ctx", kLocalVariableColumnWidths[4],
"index", kLocalVariableColumnWidths[5], "start",
kLocalVariableColumnWidths[6], "end", kLocalVariableColumnWidths[7],
"decl");
auto& name = String::Handle(zone);
auto& type = AbstractType::Handle(zone);
bytecode::BytecodeLocalVariablesIterator iter(zone, bytecode);
while (iter.MoveNext()) {
buffer->Printf(" %-*s %#*" Px "", kLocalVariableColumnWidths[0],
iter.KindName(), kLocalVariableColumnWidths[1],
base + iter.StartPC());
if (iter.IsVariableDeclaration() || iter.IsScope()) {
buffer->Printf(" %#*" Px "", kLocalVariableColumnWidths[2],
base + iter.EndPC());
} else {
buffer->Printf(" %*s", kLocalVariableColumnWidths[2], "-");
}
if (iter.IsScope()) {
buffer->Printf(" %*" Pd "", kLocalVariableColumnWidths[3],
iter.ContextLevel());
} else {
buffer->Printf(" %*s", kLocalVariableColumnWidths[3], "-");
}
if (iter.IsContextVariable() || iter.IsVariableDeclaration()) {
buffer->Printf(" %*" Pd "", kLocalVariableColumnWidths[4], iter.Index());
} else {
buffer->Printf(" %*s", kLocalVariableColumnWidths[4], "-");
}
if (iter.IsVariableDeclaration() || iter.IsScope()) {
buffer->Printf(" %*s %*s", kLocalVariableColumnWidths[5],
iter.StartTokenPos().ToCString(),
kLocalVariableColumnWidths[6],
iter.EndTokenPos().ToCString());
} else {
buffer->Printf(" %*s %*s", kLocalVariableColumnWidths[5], "-",
kLocalVariableColumnWidths[6], "-");
}
if (iter.IsVariableDeclaration()) {
name = iter.Name();
type = iter.Type();
buffer->Printf(" %*s %s: ", kLocalVariableColumnWidths[7],
iter.DeclarationTokenPos().ToCString(), name.ToCString());
type.PrintName(Object::kInternalName, buffer);
if (iter.IsCaptured()) {
buffer->AddString(" (captured)");
}
} else {
buffer->Printf(" %*s %s", kLocalVariableColumnWidths[7], "-", "-");
}
buffer->AddString("\n");
}
#else
UNREACHABLE();
#endif // !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
}
} // namespace dart
#endif // defined(DART_DYNAMIC_MODULES)