blob: c58232ab66caa035483f865a9e6a147afa632f85 [file] [log] [blame] [edit]
/**
* @license
* Copyright 2010 The Emscripten Authors
* SPDX-License-Identifier: MIT
*
* Helpers and tools for use at compile time by JavaScript library files.
*
* Tests live in test/other/test_parseTools.js.
*/
import * as path from 'node:path';
import {existsSync} from 'node:fs';
import assert from 'node:assert';
import {
addToCompileTimeContext,
error,
readFile,
runInMacroContext,
pushCurrentFile,
popCurrentFile,
warn,
srcDir,
} from './utility.mjs';
const FOUR_GB = 4 * 1024 * 1024 * 1024;
const WASM_PAGE_SIZE = 64 * 1024;
const FLOAT_TYPES = new Set(['float', 'double']);
// Represents a browser version that is not supported at all.
const TARGET_NOT_SUPPORTED = 0x7fffffff;
// Does simple 'macro' substitution, using Django-like syntax,
// {{{ code }}} will be replaced with |eval(code)|.
// NOTE: Be careful with that ret check. If ret is |0|, |ret ? ret.toString() : ''| would result in ''!
export function processMacros(text, filename) {
// The `?` here in makes the regex non-greedy so it matches with the closest
// set of closing braces.
// `[\s\S]` works like `.` but include newline.
pushCurrentFile(filename);
try {
return text.replace(/{{{([\s\S]+?)}}}/g, (_, str) => {
const ret = runInMacroContext(str, {filename: filename});
return ret?.toString() ?? '';
});
} finally {
popCurrentFile();
}
}
function findIncludeFile(filename, currentDir) {
if (path.isAbsolute(filename)) {
return existsSync(filename) ? filename : null;
}
// Search for include files either relative to the including file,
// or in the src root directory.
const includePath = [currentDir, srcDir];
for (const p of includePath) {
const f = path.join(p, filename);
if (existsSync(f)) {
return f;
}
}
return null;
}
// Simple #if/else/endif preprocessing for a file. Checks if the
// ident checked is true in our global.
// Also handles #include x.js (similar to C #include <file>)
export function preprocess(filename) {
let text = readFile(filename);
if (EXPORT_ES6) {
// `eval`, Terser and Closure don't support module syntax; to allow it,
// we need to temporarily replace `import.meta` and `await import` usages
// with placeholders during preprocess phase, and back after all the other ops.
// See also: `phase_final_emitting` in emcc.py.
text = text
.replace(/\bimport\.meta\b/g, 'EMSCRIPTEN$IMPORT$META')
.replace(/\bawait import\b/g, 'EMSCRIPTEN$AWAIT$IMPORT');
}
// Remove windows line endings, if any
text = text.replace(/\r\n/g, '\n');
const IGNORE = 0;
const SHOW = 1;
// This state is entered after we have shown one of the block of an if/elif/else sequence.
// Once we enter this state we dont show any blocks or evaluate any
// conditions until the sequence ends.
const IGNORE_ALL = 2;
const showStack = [];
const showCurrentLine = () => showStack.every((x) => x == SHOW);
const fileExt = filename.split('.').pop().toLowerCase();
const isHtml = fileExt === 'html' || fileExt === 'htm' ? true : false;
let inStyle = false;
const lines = text.split('\n');
// text.split yields an extra empty element at the end if text itself ends with a newline.
if (!lines[lines.length - 1]) {
lines.pop();
}
let ret = '';
let emptyLine = false;
pushCurrentFile(filename);
try {
for (let [i, line] of lines.entries()) {
if (isHtml) {
if (line.includes('<style') && !inStyle) {
inStyle = true;
}
if (line.includes('</style') && inStyle) {
inStyle = false;
}
if (inStyle) {
if (showCurrentLine()) {
ret += line + '\n';
}
continue;
}
}
const trimmed = line.trim();
if (trimmed.startsWith('#')) {
const first = trimmed.split(' ', 1)[0];
if (first == '#if' || first == '#ifdef' || first == '#elif') {
if (first == '#ifdef') {
warn('use of #ifdef in js library. Use #if instead.');
}
if (first == '#elif') {
const curr = showStack.pop();
if (curr == SHOW || curr == IGNORE_ALL) {
// If we showed to previous block we enter the IGNORE_ALL state
// and stay there until endif is seen
showStack.push(IGNORE_ALL);
continue;
}
}
const after = trimmed.substring(trimmed.indexOf(' '));
const truthy = !!runInMacroContext(after, {
filename,
lineOffset: i,
columnOffset: line.indexOf(after),
});
showStack.push(truthy ? SHOW : IGNORE);
} else if (first === '#include') {
if (showCurrentLine()) {
let includeFile = line.slice(line.indexOf(' ') + 1);
if (includeFile.startsWith('"')) {
includeFile = includeFile.slice(1, -1);
}
const absPath = findIncludeFile(includeFile, path.dirname(filename));
if (!absPath) {
error(`file not found: ${includeFile}`, i + 1);
continue;
}
const result = preprocess(absPath);
if (result) {
ret += `// include: ${includeFile}\n`;
ret += result;
ret += `// end include: ${includeFile}\n`;
}
}
} else if (first === '#else') {
if (showStack.length == 0) {
error('#else without matching #if', i + 1);
}
const curr = showStack.pop();
if (curr == IGNORE) {
showStack.push(SHOW);
} else {
showStack.push(IGNORE);
}
} else if (first === '#endif') {
if (showStack.length == 0) {
error('#endif without matching #if', i + 1);
}
showStack.pop();
} else if (first === '#warning') {
if (showCurrentLine()) {
warn(`#warning ${trimmed.substring(trimmed.indexOf(' ')).trim()}`, i + 1);
}
} else if (first === '#error') {
if (showCurrentLine()) {
error(`#error ${trimmed.substring(trimmed.indexOf(' ')).trim()}`, i + 1);
}
} else if (first === '#preprocess') {
// Do nothing
} else {
error(`Unknown preprocessor directive ${first}`, i + 1);
}
} else {
if (showCurrentLine()) {
// Never emit more than one empty line at a time.
if (emptyLine && !line) {
continue;
}
ret += line + '\n';
if (!line) {
emptyLine = true;
} else {
emptyLine = false;
}
}
}
}
assert(
showStack.length == 0,
`preprocessing error in file ${filename}, \
no matching #endif found (${showStack.length$}' unmatched preprocessing directives on stack)`,
);
return ret;
} finally {
popCurrentFile();
}
}
// Returns true if ident is a niceIdent (see toNiceIdent). Also allow () and spaces.
function isNiceIdent(ident) {
return /^\(?[$_]+[\w$_\d ]*\)?$/.test(ident);
}
export const POINTER_SIZE = MEMORY64 ? 8 : 4;
const POINTER_MAX = MEMORY64 ? 'Number.MAX_SAFE_INTEGER' : '0xFFFFFFFF';
const STACK_ALIGN = 16;
const POINTER_BITS = POINTER_SIZE * 8;
const POINTER_TYPE = `u${POINTER_BITS}`;
const POINTER_JS_TYPE = MEMORY64 ? "'bigint'" : "'number'";
const POINTER_SHIFT = MEMORY64 ? '3' : '2';
const POINTER_HEAP = MEMORY64 ? 'HEAP64' : 'HEAP32';
const LONG_TYPE = `i${POINTER_BITS}`;
const SIZE_TYPE = POINTER_TYPE;
// Similar to POINTER_TYPE, but this is the actual wasm type that is
// used in practice, while POINTER_TYPE is the more refined internal
// type (that is unsigned, where as core wasm does not have unsigned
// types).
const POINTER_WASM_TYPE = `i${POINTER_BITS}`;
function isPointerType(type) {
return type.endsWith('*');
}
// Given an expression like (VALUE=VALUE*2,VALUE<10?VALUE:t+1) , this will
// replace VALUE with value. If value is not a simple identifier of a variable,
// value will be replaced with tempVar.
function makeInlineCalculation(expression, value, tempVar) {
if (!isNiceIdent(value)) {
expression = `${tempVar} = ${value},${expression}`;
value = tempVar;
}
return `(${expression.replace(/VALUE/g, value)})`;
}
// XXX Make all i64 parts signed
// Splits a number (an integer in a double, possibly > 32 bits) into an i64
// value, represented by a low and high i32 pair.
// Will suffer from rounding and truncation.
function splitI64(value) {
if (WASM_BIGINT) {
// Nothing to do: just make sure it is a BigInt (as it must be of that
// type, to be sent into wasm).
return `BigInt(${value})`;
}
// general idea:
//
// $1$0 = ~~$d >>> 0;
// $1$1 = Math.abs($d) >= 1 ? (
// $d > 0 ? Math.floor(($d)/ 4294967296.0) >>> 0
// : Math.ceil(Math.min(-4294967296.0, $d - $1$0)/ 4294967296.0)
// ) : 0;
//
// We need to min on positive values here, since our input might be a double,
// and large values are rounded, so they can be slightly higher than expected.
// And if we get 4294967296, that will turn into a 0 if put into a HEAP32 or
// |0'd, etc.
//
// For negatives, we need to ensure a -1 if the value is overall negative,
// even if not significant negative component
const low = value + '>>>0';
// prettier-ignore
const high = makeInlineCalculation(
asmCoercion('Math.abs(VALUE)', 'double') + ' >= ' + asmEnsureFloat('1', 'double') + ' ? ' +
'(VALUE > ' + asmEnsureFloat('0', 'double') + ' ? ' +
asmCoercion('Math.floor((VALUE)/' +
asmEnsureFloat(4294967296, 'double') + ')', 'double') + '>>>0' +
' : ' +
asmFloatToInt(asmCoercion('Math.ceil((VALUE - +((' + asmFloatToInt('VALUE') + ')>>>0))/' +
asmEnsureFloat(4294967296, 'double') + ')', 'double')) + '>>>0' +
')' +
' : 0',
value,
'tempDouble',
);
return [low, high];
}
// Misc
export function indentify(text, indent) {
// Don't try to indentify huge strings - we may run out of memory
if (text.length > 1024 * 1024) return text;
if (typeof indent == 'number') {
const len = indent;
indent = '';
for (let i = 0; i < len; i++) {
indent += ' ';
}
}
return text.replace(/\n/g, `\n${indent}`);
}
// Correction tools
function getNativeTypeSize(type) {
// prettier-ignore
switch (type) {
case 'i1': case 'i8': case 'u8': return 1;
case 'i16': case 'u16': return 2;
case 'i32': case 'u32': return 4;
case 'i64': case 'u64': return 8;
case 'float': return 4;
case 'double': return 8;
default: {
if (type.endsWith('*')) {
return POINTER_SIZE;
}
if (type[0] === 'i') {
const bits = Number(type.slice(1));
assert(bits % 8 === 0, `getNativeTypeSize invalid bits ${bits}, ${type} type`);
return bits / 8;
}
return 0;
}
}
}
function getHeapOffset(offset, type) {
const sz = getNativeTypeSize(type);
if (sz == 1) {
return offset;
}
if (MEMORY64 == 1) {
return `((${offset})/${sz})`;
}
const shifts = Math.log(sz) / Math.LN2;
if (CAN_ADDRESS_2GB) {
return `((${offset})>>>${shifts})`;
}
return `((${offset})>>${shifts})`;
}
function ensureDot(value) {
value = value.toString();
// if already dotted, or Infinity or NaN, nothing to do here
// if smaller than 1 and running js opts, we always need to force a coercion
// (0.001 will turn into 1e-3, which has no .)
if (value.includes('.') || /[IN]/.test(value)) return value;
const e = value.indexOf('e');
if (e < 0) return value + '.0';
return value.slice(0, e) + '.0' + value.slice(e);
}
export function isNumber(x) {
// XXX this does not handle 0xabc123 etc. We should likely also do x == parseInt(x) (which handles that), and remove hack |// handle 0x... as well|
return x == parseFloat(x) || (typeof x == 'string' && x.match(/^-?\d+$/)) || x == 'NaN';
}
// ensures that a float type has either 5.5 (clearly a float) or +5 (float due to asm coercion)
function asmEnsureFloat(value, type) {
if (!isNumber(value)) return value;
if (type === 'float') {
// normally ok to just emit Math.fround(0), but if the constant is large we
// may need a .0 (if it can't fit in an int)
if (value == 0) return 'Math.fround(0)';
value = ensureDot(value);
return `Math.fround(${value})`;
}
if (FLOAT_TYPES.has(type)) {
return ensureDot(value);
}
return value;
}
function asmCoercion(value, type) {
assert(arguments.length == 2, 'asmCoercion takes exactly two arguments');
if (type == 'void') {
return value;
}
if (FLOAT_TYPES.has(type)) {
if (isNumber(value)) {
return asmEnsureFloat(value, type);
}
if (type === 'float') {
return `Math.fround(${value})`;
}
return `(+(${value}))`;
}
return `((${value})|0)`;
}
function asmFloatToInt(x) {
return `(~~(${x}))`;
}
// See makeSetValue
function makeGetValue(ptr, pos, type) {
assert(arguments.length == 3, 'makeGetValue expects 3 arguments');
const offset = calcFastOffset(ptr, pos);
if (type === 'i53' || type === 'u53') {
// Set `unsigned` based on the type name.
const unsigned = type.startsWith('u');
return `readI53From${unsigned ? 'U' : 'I'}64(${offset})`;
}
const slab = getHeapForType(type);
let ret = `${slab}[${getHeapOffset(offset, type)}]`;
if (MEMORY64 && isPointerType(type)) {
ret = `Number(${ret})`;
}
return ret;
}
/**
* @param {number} ptr The pointer. Used to find both the slab and the offset in that slab. If the pointer
* is just an integer, then this is almost redundant, but in general the pointer type
* may in the future include information about which slab as well. So, for now it is
* possible to put |0| here, but if a pointer is available, that is more future-proof.
* @param {number} pos The position in that slab - the offset. Added to any offset in the pointer itself.
* @param {number} value The value to set.
* @param {string} type A string defining the type. Used to find the slab (HEAPU8, HEAP16, HEAPU32, etc.).
* which means we should write to all slabs, ignore type differences if any on reads, etc.
* @return {string} JS code for performing the memory set operation
*/
function makeSetValue(ptr, pos, value, type) {
var rtn = makeSetValueImpl(ptr, pos, value, type);
if (ASSERTIONS == 2 && (type.startsWith('i') || type.startsWith('u'))) {
const width = getBitWidth(type);
const assertion = `checkInt${width}(${value})`;
rtn += `;${assertion}`;
}
return rtn;
}
function makeSetValueImpl(ptr, pos, value, type) {
if (type == 'i64' && !WASM_BIGINT) {
// If we lack BigInt support we must fall back to an reading a pair of I32
// values.
// prettier-ignore
return '(tempI64 = [' + splitI64(value) + '], ' +
makeSetValueImpl(ptr, pos, 'tempI64[0]', 'i32') + ',' +
makeSetValueImpl(ptr, getFastValue(pos, '+', getNativeTypeSize('i32')), 'tempI64[1]', 'i32') + ')';
}
const offset = calcFastOffset(ptr, pos);
if (type === 'i53') {
return `writeI53ToI64(${offset}, ${value})`;
}
const slab = getHeapForType(type);
if (slab == 'HEAPU64' || slab == 'HEAP64') {
value = `BigInt(${value})`;
}
return `${slab}[${getHeapOffset(offset, type)}] = ${value}`;
}
function makeHEAPView(which, start, end) {
// The makeHEAPView, for legacy reasons, takes a heap "suffix"
// rather than the heap "type" that used by other APIs here.
const type = {
8: 'i8',
U8: 'u8',
16: 'i16',
U16: 'u16',
32: 'i32',
U32: 'u32',
64: 'i64',
U64: 'u64',
F32: 'float',
F64: 'double',
}[which];
const heap = getHeapForType(type);
start = getHeapOffset(start, type);
end = getHeapOffset(end, type);
return `${heap}.subarray((${start}), ${end})`;
}
// Given two values and an operation, returns the result of that operation.
// Tries to do as much as possible at compile time.
function getFastValue(a, op, b) {
// In the past we supported many operations, but today we only use addition.
assert(op == '+');
// Convert 'true' and 'false' to '1' and '0'.
a = a === 'true' ? '1' : a === 'false' ? '0' : a;
b = b === 'true' ? '1' : b === 'false' ? '0' : b;
let aNumber = null;
let bNumber = null;
if (typeof a == 'number') {
aNumber = a;
a = a.toString();
} else if (isNumber(a)) {
aNumber = parseFloat(a);
}
if (typeof b == 'number') {
bNumber = b;
b = b.toString();
} else if (isNumber(b)) {
bNumber = parseFloat(b);
}
// First check if we can do the addition at compile time
if (aNumber !== null && bNumber !== null) {
return (aNumber + bNumber).toString();
}
// If one of them is a number, keep it last
if (aNumber !== null) {
const c = b;
b = a;
a = c;
const cNumber = bNumber;
bNumber = aNumber;
aNumber = cNumber;
}
if (aNumber === 0) {
return b;
} else if (bNumber === 0) {
return a;
}
if (b[0] === '-') {
op = '-';
b = b.slice(1);
}
return `(${a})${op}(${b})`;
}
function calcFastOffset(ptr, pos) {
return getFastValue(ptr, '+', pos);
}
function getBitWidth(type) {
if (type == 'i53' || type == 'u53') return 53;
return getNativeTypeSize(type) * 8;
}
function getHeapForType(type) {
assert(type);
if (isPointerType(type)) {
type = POINTER_TYPE;
}
if (WASM_BIGINT) {
switch (type) {
case 'i64':
return 'HEAP64';
case 'u64':
return 'HEAPU64';
}
}
// prettier-ignore
switch (type) {
case 'i1': // fallthrough
case 'i8': return 'HEAP8';
case 'u8': return 'HEAPU8';
case 'i16': return 'HEAP16';
case 'u16': return 'HEAPU16';
case 'i32': return 'HEAP32';
case 'u32': return 'HEAPU32';
case 'double': return 'HEAPF64';
case 'float': return 'HEAPF32';
case 'i64': // fallthrough
case 'u64': error('use i53/u53, or avoid i64/u64 without WASM_BIGINT');
}
assert(false, `bad heap type: ${type}`);
}
export function makeReturn64(value) {
if (WASM_BIGINT) {
return `BigInt(${value})`;
}
const pair = splitI64(value);
// `return (a, b, c)` in JavaScript will execute `a`, and `b` and return the final
// element `c`
return `(setTempRet0(${pair[1]}), ${pair[0]})`;
}
function makeThrow(excPtr) {
if (ASSERTIONS && DISABLE_EXCEPTION_CATCHING) {
var assertInfo =
'Exception thrown, but exception catching is not enabled. Compile with -sNO_DISABLE_EXCEPTION_CATCHING or -sEXCEPTION_CATCHING_ALLOWED=[..] to catch.';
if (MAIN_MODULE) {
assertInfo +=
' (note: in dynamic linking, if a side module wants exceptions, the main module must be built with that support)';
}
return `assert(false, '${assertInfo}');`;
}
return `throw ${excPtr};`;
}
function storeException(varName, excPtr) {
var exceptionToStore = EXCEPTION_STACK_TRACES ? `new CppException(${excPtr})` : `${excPtr}`;
return `${varName} = ${exceptionToStore};`;
}
function charCode(char) {
return char.charCodeAt(0);
}
function makeDynCall(sig, funcPtr, promising = false) {
assert(
!sig.includes('j'),
'Cannot specify 64-bit signatures ("j" in signature string) with makeDynCall!',
);
assert(!(DYNCALLS && promising), 'DYNCALLS cannot be used with JSPI.');
let args = [];
for (let i = 1; i < sig.length; ++i) {
args.push(`a${i}`);
}
args = args.join(', ');
const needArgConversion = MEMORY64 && sig.includes('p');
let callArgs = args;
if (needArgConversion) {
callArgs = [];
for (let i = 1; i < sig.length; ++i) {
if (sig[i] == 'p') {
callArgs.push(`BigInt(a${i})`);
} else {
callArgs.push(`a${i}`);
}
}
callArgs = callArgs.join(', ');
}
// Normalize any 'p' characters to either 'j' (wasm64) or 'i' (wasm32)
if (sig.includes('p')) {
let normalizedSig = '';
for (let sigChr of sig) {
if (sigChr == 'p') {
sigChr = MEMORY64 ? 'j' : 'i';
}
normalizedSig += sigChr;
}
sig = normalizedSig;
}
if (funcPtr === undefined) {
warn(`
Legacy use of {{{ makeDynCall("${sig}") }}}(funcPtr, arg1, arg2, ...). \
Starting from Emscripten 2.0.2 (Aug 31st 2020), syntax for makeDynCall has changed. \
New syntax is {{{ makeDynCall("${sig}", "funcPtr") }}}(arg1, arg2, ...). \
Please update to new syntax.`);
if (DYNCALLS) {
if (!hasExportedSymbol(`dynCall_${sig}`)) {
if (ASSERTIONS) {
return `((${args}) => { throw 'Internal Error! Attempted to invoke wasm function pointer with signature "${sig}", but no such functions have gotten exported!' })`;
} else {
return `((${args}) => {} /* a dynamic function call to signature ${sig}, but there are no exported function pointers with that signature, so this path should never be taken. Build with ASSERTIONS enabled to validate. */)`;
}
}
return `((cb, ${args}) => getDynCaller("${sig}", cb)(${callArgs}))`;
} else {
return `((cb, ${args}) => getWasmTableEntry(cb)(${callArgs}))`;
}
}
if (DYNCALLS) {
if (!hasExportedSymbol(`dynCall_${sig}`)) {
if (ASSERTIONS) {
return `((${args}) => { throw 'Internal Error! Attempted to invoke wasm function pointer with signature "${sig}", but no such functions have gotten exported!' })`;
} else {
return `((${args}) => {} /* a dynamic function call to signature ${sig}, but there are no exported function pointers with that signature, so this path should never be taken. Build with ASSERTIONS enabled to validate. */)`;
}
}
const dyncall = `dynCall_${sig}`;
if (sig.length > 1) {
return `((${args}) => ${dyncall}(${funcPtr}, ${callArgs}))`;
}
return `(() => ${dyncall}(${funcPtr}))`;
}
let getWasmTableEntry = `getWasmTableEntry(${funcPtr})`;
if (promising) {
getWasmTableEntry = `WebAssembly.promising(${getWasmTableEntry})`;
}
if (needArgConversion) {
return `((${args}) => ${getWasmTableEntry}.call(null, ${callArgs}))`;
}
return getWasmTableEntry;
}
function makeEval(code) {
if (DYNAMIC_EXECUTION == 0) {
// Treat eval as error.
return "abort('DYNAMIC_EXECUTION=0 was set, cannot eval');";
}
let ret = '';
if (DYNAMIC_EXECUTION == 2) {
// Warn on evals, but proceed.
ret +=
"err('Warning: DYNAMIC_EXECUTION=2 was set, but calling eval in the following location:');\n";
ret += 'err(stackTrace());\n';
}
ret += code;
return ret;
}
// Add code that runs before the wasm modules is loaded. This is the first
// point at which the global `Module` object is guaranteed to exist. This hook
// is mostly used to read incoming `Module` properties.
export const ATMODULES = [];
function addAtModule(code) {
ATMODULES.push(code);
}
// Add code to run soon after the Wasm module has been loaded. This is the first
// injection point before all the other addAt<X> functions below. The code will
// be executed after the runtime `onPreRuns` callbacks.
export const ATPRERUNS = [];
function addAtPreRun(code) {
ATPRERUNS.push(code);
}
// Add code to run after the Wasm module is loaded, but before static
// constructors and main (if applicable). The code will be executed after the
// runtime `onInits` callbacks.
export const ATINITS = [];
function addAtInit(code) {
ATINITS.push(code);
}
// Add code to run after static constructors, but before main (if applicable).
// The code will be executed after the runtime `onPostCtors` callbacks.
export const ATPOSTCTORS = [];
function addAtPostCtor(code) {
ATPOSTCTORS.push(code);
}
// Add code to run right before main is called. This is only available if the
// the Wasm module has a main function. The code will be executed after the
// runtime `onMains` callbacks.
export const ATMAINS = [];
function addAtPreMain(code) {
ATMAINS.push(code);
}
// Add code to run after main has executed and the runtime is shutdown. This is
// only available when the Wasm module has a main function and -sEXIT_RUNTIME is
// set. The code will be executed after the runtime `onExits` callbacks.
export const ATEXITS = [];
function addAtExit(code) {
if (EXIT_RUNTIME) {
ATEXITS.push(code);
}
}
// Add code to run after main and ATEXITS (if applicable). The code will be
// executed after the runtime `onPostRuns` callbacks.
export const ATPOSTRUNS = [];
function addAtPostRun(code) {
ATPOSTRUNS.push(code);
}
function makeRetainedCompilerSettings() {
const ignore = new Set();
if (STRICT) {
for (const setting of LEGACY_SETTINGS) {
ignore.add(setting);
}
}
const ret = {};
for (const x in global) {
if (!ignore.has(x) && x[0] !== '_' && x == x.toUpperCase()) {
const value = global[x];
if (
typeof value == 'number' ||
typeof value == 'boolean' ||
typeof value == 'string' ||
Array.isArray(x)
) {
ret[x] = value;
}
}
}
return ret;
}
// Receives a function as text, and a function that constructs a modified
// function, to which we pass the parsed-out arguments, body, and possible
// "async" prefix of the input function. Returns the output of that function.
export function modifyJSFunction(text, func) {
// Match a function with a name.
let async_;
let args;
let rest;
let oneliner = false;
let match = text.match(/^\s*(async\s+)?function\s+([^(]*)?\s*\(([^)]*)\)/);
if (match) {
async_ = match[1] || '';
args = match[3];
rest = text.slice(match[0].length);
} else {
// Match an arrow function
let match = text.match(/^\s*(var (\w+) = )?(async\s+)?\(([^)]*)\)\s+=>\s+/);
if (match) {
async_ = match[3] || '';
args = match[4];
rest = text.slice(match[0].length);
rest = rest.trim();
oneliner = rest[0] != '{';
} else {
// Match a function without a name (we could probably use a single regex
// for both, but it would be more complex).
match = text.match(/^\s*(async\s+)?function\(([^)]*)\)/);
assert(match, `could not match function:\n${text}\n`);
async_ = match[1] || '';
args = match[2];
rest = text.slice(match[0].length);
}
}
let body = rest;
if (!oneliner) {
const bodyStart = rest.indexOf('{');
const bodyEnd = rest.lastIndexOf('}');
assert(bodyEnd > 0);
body = rest.substring(bodyStart + 1, bodyEnd);
}
return func(args, body, async_, oneliner);
}
export function runIfMainThread(text) {
if (WASM_WORKERS || PTHREADS) {
return `if (${ENVIRONMENT_IS_MAIN_THREAD()}) { ${text} }`;
} else {
return text;
}
}
function runIfWorkerThread(text) {
if (WASM_WORKERS || PTHREADS) {
return `if (${ENVIRONMENT_IS_WORKER_THREAD()}) { ${text} }`;
} else {
return '';
}
}
function expectToReceiveOnModule(name) {
return INCOMING_MODULE_JS_API.has(name);
}
// Return true if the user requested that a library symbol be included
// either via DEFAULT_LIBRARY_FUNCS_TO_INCLUDE or EXPORTED_RUNTIME_METHODS.
function isSymbolNeeded(symName) {
if (DEFAULT_LIBRARY_FUNCS_TO_INCLUDE.includes(symName)) {
return true;
}
if (symName.startsWith('$') && EXPORTED_RUNTIME_METHODS.has(symName.slice(1))) {
return true;
}
return false;
}
function checkReceiving(name) {
// ALL_INCOMING_MODULE_JS_API contains all valid incoming module API symbols
// so calling makeModuleReceive* with a symbol not in this list is an error
assert(ALL_INCOMING_MODULE_JS_API.has(name), `${name} is not part of INCOMING_MODULE_JS_API`);
}
// Make code to receive a value on the incoming Module object.
function makeModuleReceive(localName, moduleName) {
moduleName ||= localName;
checkReceiving(moduleName);
let ret = '';
if (expectToReceiveOnModule(moduleName)) {
// Usually the local we use is the same as the Module property name,
// but sometimes they must differ.
ret = `if (Module['${moduleName}']) ${localName} = Module['${moduleName}'];`;
}
return ret;
}
function makeModuleReceiveExpr(name, defaultValue) {
checkReceiving(name);
if (expectToReceiveOnModule(name)) {
return `Module['${name}'] || ${defaultValue}`;
} else {
return `${defaultValue}`;
}
}
function makeModuleReceiveWithVar(localName, moduleName, defaultValue) {
moduleName ||= localName;
checkReceiving(moduleName);
let ret = `var ${localName}`;
if (defaultValue) {
ret += ` = ${defaultValue}`;
}
ret += ';';
if (expectToReceiveOnModule(moduleName)) {
addAtModule(`if (Module['${moduleName}']) ${localName} = Module['${moduleName}'];`);
}
return ret;
}
function makeRemovedFSAssert(fsName) {
assert(ASSERTIONS);
const lower = fsName.toLowerCase();
if (JS_LIBRARIES.includes(path.resolve(path.join('lib', `lib${lower}.js`)))) return '';
return `var ${fsName} = '${fsName} is no longer included by default; build with -l${lower}.js';`;
}
// Given an array of elements [elem1,elem2,elem3], returns a string "['elem1','elem2','elem3']"
function buildStringArray(array) {
if (array.length > 0) {
return "['" + array.join("','") + "']";
} else {
return '[]';
}
}
function hasExportedSymbol(sym) {
return WASM_EXPORTS.has(sym);
}
// Called when global runtime symbols such as wasmMemory, wasmExports and
// wasmTable are set. In this case we maybe need to re-export them on the
// Module object.
function receivedSymbol(sym) {
if (EXPORTED_RUNTIME_METHODS.has(sym)) {
return `Module['${sym}'] = ${sym};`;
}
return '';
}
// JS API I64 param handling: if we have BigInt support, the ABI is simple,
// it is a BigInt. Otherwise, we legalize into pairs of i32s.
export function defineI64Param(name) {
if (WASM_BIGINT) {
return name;
}
return `${name}_low, ${name}_high`;
}
export function receiveI64ParamAsI53(name, onError, handleErrors = true) {
var errorHandler = handleErrors ? `if (isNaN(${name})) { return ${onError}; }` : '';
if (WASM_BIGINT) {
// Just convert the bigint into a double.
return `${name} = bigintToI53Checked(${name});${errorHandler}`;
}
// Convert the high/low pair to a Number, checking for
// overflow of the I53 range and returning onError in that case.
return `var ${name} = convertI32PairToI53Checked(${name}_low, ${name}_high);${errorHandler}`;
}
function receiveI64ParamAsI53Unchecked(name) {
if (WASM_BIGINT) {
return `${name} = Number(${name});`;
}
return `var ${name} = convertI32PairToI53(${name}_low, ${name}_high);`;
}
// Convert a pointer value under wasm64 from BigInt (used at local level API
// level) to Number (used in JS library code). No-op under wasm32.
function from64(x) {
if (!MEMORY64) return '';
return `${x} = Number(${x});`;
}
// Like from64 above but generate an expression instead of an assignment
// statement.
function from64Expr(x) {
if (!MEMORY64) return x;
return `Number(${x})`;
}
function toIndexType(x) {
if (MEMORY64 == 1) return `BigInt(${x})`;
return x;
}
function to64(x) {
if (!MEMORY64) return x;
return `BigInt(${x})`;
}
function asyncIf(condition) {
return condition ? 'async ' : '';
}
function awaitIf(condition) {
return condition ? 'await ' : '';
}
// Adds a call to runtimeKeepalivePush, if needed by the current build
// configuration.
// We skip this completely in MINIMAL_RUNTIME and also in builds that
// don't ever need to exit the runtime.
function runtimeKeepalivePush() {
if (MINIMAL_RUNTIME || (EXIT_RUNTIME == 0 && PTHREADS == 0)) return '';
return 'runtimeKeepalivePush();';
}
// Adds a call to runtimeKeepalivePush, if needed by the current build
// configuration.
// We skip this completely in MINIMAL_RUNTIME and also in builds that
// don't ever need to exit the runtime.
function runtimeKeepalivePop() {
if (MINIMAL_RUNTIME || (EXIT_RUNTIME == 0 && PTHREADS == 0)) return '';
return 'runtimeKeepalivePop();';
}
// Some web functions like TextDecoder.decode() may not work with a view of a
// SharedArrayBuffer, see https://github.com/whatwg/encoding/issues/172
// To avoid that, this function allows obtaining an unshared copy of an
// ArrayBuffer.
function getUnsharedTextDecoderView(heap, start, end) {
const shared = `${heap}.slice(${start}, ${end})`;
const unshared = `${heap}.subarray(${start}, ${end})`;
// No need to worry about this in non-shared memory builds
if (!SHARED_MEMORY) return unshared;
// If asked to get an unshared view to what we know will be a shared view, or if in -Oz,
// then unconditionally do a .slice() for smallest code size.
if (SHRINK_LEVEL == 2 || heap == 'HEAPU8') return shared;
// Otherwise, generate a runtime type check: must do a .slice() if looking at
// a SAB, or can use .subarray() otherwise. Note: We compare with
// `ArrayBuffer` here to avoid referencing `SharedArrayBuffer` which could be
// undefined.
return `${heap}.buffer instanceof ArrayBuffer ? ${unshared} : ${shared}`;
}
function getEntryFunction() {
var entryFunction = 'main';
if (STANDALONE_WASM) {
if (EXPECT_MAIN) {
entryFunction = '_start';
} else {
entryFunction = '_initialize';
}
} else if (PROXY_TO_PTHREAD) {
// User requested the PROXY_TO_PTHREAD option, so call a stub main which pthread_create()s a new thread
// that will call the user's real main() for the application.
entryFunction = '_emscripten_proxy_main';
}
if (MAIN_MODULE) {
return `resolveGlobalSymbol('${entryFunction}').sym;`;
}
return `_${entryFunction}`;
}
function formattedMinNodeVersion() {
var major = MIN_NODE_VERSION / 10000;
var minor = (MIN_NODE_VERSION / 100) % 100;
var rev = MIN_NODE_VERSION % 100;
return `v${major}.${minor}.${rev}`;
}
function getPerformanceNow() {
if (DETERMINISTIC) {
return 'deterministicNow';
} else {
return 'performance.now';
}
}
function ENVIRONMENT_IS_MAIN_THREAD() {
return `(!${ENVIRONMENT_IS_WORKER_THREAD()})`;
}
function ENVIRONMENT_IS_WORKER_THREAD() {
assert(PTHREADS || WASM_WORKERS);
var envs = [];
if (PTHREADS) envs.push('ENVIRONMENT_IS_PTHREAD');
if (WASM_WORKERS) envs.push('ENVIRONMENT_IS_WASM_WORKER');
return '(' + envs.join('||') + ')';
}
function nodeDetectionCode() {
return "typeof process == 'object' && process.versions?.node && process.type != 'renderer'";
}
addToCompileTimeContext({
ATEXITS,
ATPRERUNS,
ATINITS,
ATPOSTCTORS,
ATMAINS,
ATPOSTRUNS,
FOUR_GB,
LONG_TYPE,
POINTER_HEAP,
POINTER_BITS,
POINTER_JS_TYPE,
POINTER_MAX,
POINTER_SHIFT,
POINTER_SIZE,
POINTER_TYPE,
POINTER_WASM_TYPE,
SIZE_TYPE,
STACK_ALIGN,
TARGET_NOT_SUPPORTED,
WASM_PAGE_SIZE,
ENVIRONMENT_IS_MAIN_THREAD,
ENVIRONMENT_IS_WORKER_THREAD,
addAtExit,
addAtPreRun,
addAtModule,
addAtInit,
addAtPostCtor,
addAtPreMain,
addAtPostRun,
asyncIf,
awaitIf,
buildStringArray,
charCode,
defineI64Param,
expectToReceiveOnModule,
formattedMinNodeVersion,
from64,
from64Expr,
getEntryFunction,
getHeapForType,
getHeapOffset,
getNativeTypeSize,
getPerformanceNow,
getUnsharedTextDecoderView,
hasExportedSymbol,
isSymbolNeeded,
makeDynCall,
makeEval,
makeGetValue,
makeHEAPView,
makeModuleReceive,
makeModuleReceiveExpr,
makeModuleReceiveWithVar,
makeRemovedFSAssert,
makeRetainedCompilerSettings,
makeReturn64,
makeSetValue,
makeThrow,
modifyJSFunction,
nodeDetectionCode,
receiveI64ParamAsI53,
receiveI64ParamAsI53Unchecked,
receivedSymbol,
runIfMainThread,
runIfWorkerThread,
runtimeKeepalivePop,
runtimeKeepalivePush,
splitI64,
storeException,
to64,
toIndexType,
});