blob: fe56a133a9a322c848f3f8fbc61fe025b74c8b28 [file] [log] [blame]
/*
This is an optimized C++ implemention of the Relooper algorithm originally
developed as part of Emscripten. This implementation includes optimizations
added since the original academic paper [1] was published about it, and is
written in an LLVM-friendly way with the goal of inclusion in upstream
LLVM.
[1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In Proceedings of the ACM international conference companion on Object oriented programming systems languages and applications companion (SPLASH '11). ACM, New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224 http://doi.acm.org/10.1145/2048147.2048224
*/
#include <assert.h>
#include <stdio.h>
#include <stdarg.h>
#ifdef __cplusplus
#include <map>
#include <deque>
#include <set>
struct Block;
struct Shape;
// Info about a branching from one block to another
struct Branch {
enum FlowType {
Direct = 0, // We will directly reach the right location through other means, no need for continue or break
Break = 1,
Continue = 2
};
Shape *Ancestor; // If not NULL, this shape is the relevant one for purposes of getting to the target block. We break or continue on it
Branch::FlowType Type; // If Ancestor is not NULL, this says whether to break or continue
bool Labeled; // If a break or continue, whether we need to use a label
const char *Condition; // The condition for which we branch. For example, "my_var == 1". Conditions are checked one by one. One of the conditions should have NULL as the condition, in which case it is the default
const char *Code; // If provided, code that is run right before the branch is taken. This is useful for phis
Branch(const char *ConditionInit, const char *CodeInit=NULL);
~Branch();
// Prints out the branch
void Render(Block *Target, bool SetLabel);
};
typedef std::set<Block*> BlockSet;
typedef std::map<Block*, Branch*> BlockBranchMap;
// Represents a basic block of code - some instructions that end with a
// control flow modifier (a branch, return or throw).
struct Block {
// Branches become processed after we finish the shape relevant to them. For example,
// when we recreate a loop, branches to the loop start become continues and are now
// processed. When we calculate what shape to generate from a set of blocks, we ignore
// processed branches.
// Blocks own the Branch objects they use, and destroy them when done.
BlockBranchMap BranchesOut;
BlockSet BranchesIn;
BlockBranchMap ProcessedBranchesOut;
BlockSet ProcessedBranchesIn;
Shape *Parent; // The shape we are directly inside
int Id; // A unique identifier
const char *Code; // The string representation of the code in this block. Owning pointer (we copy the input)
Block *DefaultTarget; // The block we branch to without checking the condition, if none of the other conditions held.
// Since each block *must* branch somewhere, this must be set
bool IsCheckedMultipleEntry; // If true, we are a multiple entry, so reaching us requires setting the label variable
Block(const char *CodeInit);
~Block();
void AddBranchTo(Block *Target, const char *Condition, const char *Code=NULL);
// Prints out the instructions code and branchings
void Render(bool InLoop);
// INTERNAL
static int IdCounter;
};
// Represents a structured control flow shape, one of
//
// Simple: No control flow at all, just instructions. If several
// blocks, then
//
// Multiple: A shape with more than one entry. If the next block to
// be entered is among them, we run it and continue to
// the next shape, otherwise we continue immediately to the
// next shape.
//
// Loop: An infinite loop.
//
// Emulated: Control flow is managed by a switch in a loop. This
// is necessary in some cases, for example when control
// flow is not known until runtime (indirect branches,
// setjmp returns, etc.)
//
class SimpleShape;
class LabeledShape;
class MultipleShape;
class LoopShape;
struct Shape {
int Id; // A unique identifier. Used to identify loops, labels are Lx where x is the Id.
Shape *Next; // The shape that will appear in the code right after this one
Shape *Natural; // The shape that control flow gets to naturally (if there is Next, then this is Next)
enum ShapeType {
Simple,
Multiple,
Loop
};
ShapeType Type;
Shape(ShapeType TypeInit) : Id(Shape::IdCounter++), Next(NULL), Type(TypeInit) {}
virtual ~Shape() {}
virtual void Render(bool InLoop) = 0;
static SimpleShape *IsSimple(Shape *It) { return It && It->Type == Simple ? (SimpleShape*)It : NULL; }
static MultipleShape *IsMultiple(Shape *It) { return It && It->Type == Multiple ? (MultipleShape*)It : NULL; }
static LoopShape *IsLoop(Shape *It) { return It && It->Type == Loop ? (LoopShape*)It : NULL; }
static LabeledShape *IsLabeled(Shape *It) { return IsMultiple(It) || IsLoop(It) ? (LabeledShape*)It : NULL; }
// INTERNAL
static int IdCounter;
};
struct SimpleShape : public Shape {
Block *Inner;
SimpleShape() : Shape(Simple), Inner(NULL) {}
void Render(bool InLoop) {
Inner->Render(InLoop);
if (Next) Next->Render(InLoop);
}
};
typedef std::map<Block*, Shape*> BlockShapeMap;
// A shape that may be implemented with a labeled loop.
struct LabeledShape : public Shape {
bool Labeled; // If we have a loop, whether it needs to be labeled
LabeledShape(ShapeType TypeInit) : Shape(TypeInit), Labeled(false) {}
};
struct MultipleShape : public LabeledShape {
BlockShapeMap InnerMap; // entry block -> shape
int NeedLoop; // If we have branches, we need a loop. This is a counter of loop requirements,
// if we optimize it to 0, the loop is unneeded
MultipleShape() : LabeledShape(Multiple), NeedLoop(0) {}
void RenderLoopPrefix();
void RenderLoopPostfix();
void Render(bool InLoop);
};
struct LoopShape : public LabeledShape {
Shape *Inner;
LoopShape() : LabeledShape(Loop), Inner(NULL) {}
void Render(bool InLoop);
};
/*
struct EmulatedShape : public Shape {
std::deque<Block*> Blocks;
void Render(bool InLoop);
};
*/
// Implements the relooper algorithm for a function's blocks.
//
// Usage:
// 1. Instantiate this struct.
// 2. Call AddBlock with the blocks you have. Each should already
// have its branchings in specified (the branchings out will
// be calculated by the relooper).
// 3. Call Render().
//
// Implementation details: The Relooper instance has
// ownership of the blocks and shapes, and frees them when done.
struct Relooper {
std::deque<Block*> Blocks;
std::deque<Shape*> Shapes;
Shape *Root;
Relooper();
~Relooper();
void AddBlock(Block *New);
// Calculates the shapes
void Calculate(Block *Entry);
// Renders the result.
void Render();
// Sets the global buffer all printing goes to. Must call this or MakeOutputBuffer.
static void SetOutputBuffer(char *Buffer, int Size);
// Creates an output buffer. Must call this or SetOutputBuffer.
static void MakeOutputBuffer(int Size);
// Sets asm.js mode on or off (default is off)
static void SetAsmJSMode(int On);
};
typedef std::map<Block*, BlockSet> BlockBlockSetMap;
#if DEBUG
struct Debugging {
static void Dump(BlockSet &Blocks, const char *prefix=NULL);
static void Dump(Shape *S, const char *prefix=NULL);
};
#endif
#endif // __cplusplus
// C API - useful for binding to other languages
#ifdef _WIN32
#ifdef RELOOPERDLL_EXPORTS
#define RELOOPERDLL_API __declspec(dllexport)
#else
#define RELOOPERDLL_API __declspec(dllimport)
#endif
#else
#define RELOOPERDLL_API
#endif
#ifdef __cplusplus
extern "C" {
#endif
RELOOPERDLL_API void rl_set_output_buffer(char *buffer, int size);
RELOOPERDLL_API void rl_make_output_buffer(int size);
RELOOPERDLL_API void rl_set_asm_js_mode(int on);
RELOOPERDLL_API void *rl_new_block(const char *text);
RELOOPERDLL_API void rl_delete_block(void *block);
RELOOPERDLL_API void rl_block_add_branch_to(void *from, void *to, const char *condition, const char *code);
RELOOPERDLL_API void *rl_new_relooper();
RELOOPERDLL_API void rl_delete_relooper(void *relooper);
RELOOPERDLL_API void rl_relooper_add_block(void *relooper, void *block);
RELOOPERDLL_API void rl_relooper_calculate(void *relooper, void *entry);
RELOOPERDLL_API void rl_relooper_render(void *relooper);
#ifdef __cplusplus
}
#endif