blob: cb44492a19fc9e78d9f031eb2eeb0624a1610659 [file] [log] [blame]
/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.flatbuffers;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import static com.google.flatbuffers.FlexBuffers.*;
import static com.google.flatbuffers.FlexBuffers.Unsigned.byteToUnsignedInt;
import static com.google.flatbuffers.FlexBuffers.Unsigned.intToUnsignedLong;
import static com.google.flatbuffers.FlexBuffers.Unsigned.shortToUnsignedInt;
/// @file
/// @addtogroup flatbuffers_java_api
/// @{
/**
* Helper class that builds FlexBuffers
* <p> This class presents all necessary APIs to create FlexBuffers. A `ByteBuffer` will be used to store the
* data. It can be created internally, or passed down in the constructor.</p>
*
* <p>There are some limitations when compared to original implementation in C++. Most notably:
* <ul>
* <li><p> No support for mutations (might change in the future).</p></li>
* <li><p> Buffer size limited to {@link Integer#MAX_VALUE}</p></li>
* <li><p> Since Java does not support unsigned type, all unsigned operations accepts an immediate higher representation
* of similar type.</p></li>
* </ul>
* </p>
*/
public class FlexBuffersBuilder {
/**
* No keys or strings will be shared
*/
public static final int BUILDER_FLAG_NONE = 0;
/**
* Keys will be shared between elements. Identical keys will only be serialized once, thus possibly saving space.
* But serialization performance might be slower and consumes more memory.
*/
public static final int BUILDER_FLAG_SHARE_KEYS = 1;
/**
* Strings will be shared between elements. Identical strings will only be serialized once, thus possibly saving space.
* But serialization performance might be slower and consumes more memory. This is ideal if you expect many repeated
* strings on the message.
*/
public static final int BUILDER_FLAG_SHARE_STRINGS = 2;
/**
* Strings and keys will be shared between elements.
*/
public static final int BUILDER_FLAG_SHARE_KEYS_AND_STRINGS = 3;
/**
* Reserved for the future.
*/
public static final int BUILDER_FLAG_SHARE_KEY_VECTORS = 4;
/**
* Reserved for the future.
*/
public static final int BUILDER_FLAG_SHARE_ALL = 7;
/// @cond FLATBUFFERS_INTERNAL
private static final int WIDTH_8 = 0;
private static final int WIDTH_16 = 1;
private static final int WIDTH_32 = 2;
private static final int WIDTH_64 = 3;
private final ReadWriteBuf bb;
private final ArrayList<Value> stack = new ArrayList<>();
private final HashMap<String, Integer> keyPool = new HashMap<>();
private final HashMap<String, Integer> stringPool = new HashMap<>();
private final int flags;
private boolean finished = false;
// A lambda to sort map keys
private Comparator<Value> keyComparator = new Comparator<Value>() {
@Override
public int compare(Value o1, Value o2) {
int ia = o1.key;
int io = o2.key;
byte c1, c2;
do {
c1 = bb.get(ia);
c2 = bb.get(io);
if (c1 == 0)
return c1 - c2;
ia++;
io++;
}
while (c1 == c2);
return c1 - c2;
}
};
/// @endcond
/**
* Constructs a newly allocated {@code FlexBuffersBuilder} with {@link #BUILDER_FLAG_SHARE_KEYS} set.
* @param bufSize size of buffer in bytes.
*/
public FlexBuffersBuilder(int bufSize) {
this(new ArrayReadWriteBuf(bufSize), BUILDER_FLAG_SHARE_KEYS);
}
/**
* Constructs a newly allocated {@code FlexBuffersBuilder} with {@link #BUILDER_FLAG_SHARE_KEYS} set.
*/
public FlexBuffersBuilder() {
this(256);
}
/**
* Constructs a newly allocated {@code FlexBuffersBuilder}.
*
* @param bb `ByteBuffer` that will hold the message
* @param flags Share flags
*/
@Deprecated
public FlexBuffersBuilder(ByteBuffer bb, int flags) {
this(new ArrayReadWriteBuf(bb.array()), flags);
}
public FlexBuffersBuilder(ReadWriteBuf bb, int flags) {
this.bb = bb;
this.flags = flags;
}
/**
* Constructs a newly allocated {@code FlexBuffersBuilder}.
* By default same keys will be serialized only once
* @param bb `ByteBuffer` that will hold the message
*/
public FlexBuffersBuilder(ByteBuffer bb) {
this(bb, BUILDER_FLAG_SHARE_KEYS);
}
/**
* Return `ByteBuffer` containing FlexBuffer message. {@code #finish()} must be called before calling this
* function otherwise an assert will trigger.
*
* @return `ByteBuffer` with finished message
*/
public ReadWriteBuf getBuffer() {
assert (finished);
return bb;
}
/**
* Insert a single boolean into the buffer
* @param val true or false
*/
public void putBoolean(boolean val) {
putBoolean(null, val);
}
/**
* Insert a single boolean into the buffer
* @param key key used to store element in map
* @param val true or false
*/
public void putBoolean(String key, boolean val) {
stack.add(Value.bool(putKey(key), val));
}
private int putKey(String key) {
if (key == null) {
return -1;
}
int pos = bb.writePosition();
if ((flags & BUILDER_FLAG_SHARE_KEYS) != 0) {
Integer keyFromPool = keyPool.get(key);
if (keyFromPool == null) {
byte[] keyBytes = key.getBytes(StandardCharsets.UTF_8);
bb.put(keyBytes, 0, keyBytes.length);
bb.put((byte) 0);
keyPool.put(key, pos);
} else {
pos = keyFromPool;
}
} else {
byte[] keyBytes = key.getBytes(StandardCharsets.UTF_8);
bb.put(keyBytes, 0, keyBytes.length);
bb.put((byte) 0);
keyPool.put(key, pos);
}
return pos;
}
/**
* Adds a integer into the buff
* @param val integer
*/
public void putInt(int val) {
putInt(null, val);
}
/**
* Adds a integer into the buff
* @param key key used to store element in map
* @param val integer
*/
public void putInt(String key, int val) {
putInt(key, (long) val);
}
/**
* Adds a integer into the buff
* @param key key used to store element in map
* @param val 64-bit integer
*/
public void putInt(String key, long val) {
int iKey = putKey(key);
if (Byte.MIN_VALUE <= val && val <= Byte.MAX_VALUE) {
stack.add(Value.int8(iKey, (int) val));
} else if (Short.MIN_VALUE <= val && val <= Short.MAX_VALUE) {
stack.add(Value.int16(iKey, (int) val));
} else if (Integer.MIN_VALUE <= val && val <= Integer.MAX_VALUE) {
stack.add(Value.int32(iKey, (int) val));
} else {
stack.add(Value.int64(iKey, val));
}
}
/**
* Adds a 64-bit integer into the buff
* @param value integer
*/
public void putInt(long value) {
putInt(null, value);
}
/**
* Adds a unsigned integer into the buff.
* @param value integer representing unsigned value
*/
public void putUInt(int value) {
putUInt(null, (long) value);
}
/**
* Adds a unsigned integer (stored in a signed 64-bit integer) into the buff.
* @param value integer representing unsigned value
*/
public void putUInt(long value) {
putUInt(null, value);
}
/**
* Adds a 64-bit unsigned integer (stored as {@link BigInteger}) into the buff.
* Warning: This operation might be very slow.
* @param value integer representing unsigned value
*/
public void putUInt64(BigInteger value) {
putUInt64(null, value.longValue());
}
private void putUInt64(String key, long value) {
stack.add(Value.uInt64(putKey(key), value));
}
private void putUInt(String key, long value) {
int iKey = putKey(key);
Value vVal;
int width = widthUInBits(value);
if (width == WIDTH_8) {
vVal = Value.uInt8(iKey, (int)value);
} else if (width == WIDTH_16) {
vVal = Value.uInt16(iKey, (int)value);
} else if (width == WIDTH_32) {
vVal = Value.uInt32(iKey, (int)value);
} else {
vVal = Value.uInt64(iKey, value);
}
stack.add(vVal);
}
/**
* Adds a 32-bit float into the buff.
* @param value float representing value
*/
public void putFloat(float value) {
putFloat(null, value);
}
/**
* Adds a 32-bit float into the buff.
* @param key key used to store element in map
* @param value float representing value
*/
public void putFloat(String key, float val) {
stack.add(Value.float32(putKey(key), val));
}
/**
* Adds a 64-bit float into the buff.
* @param value float representing value
*/
public void putFloat(double value) {
putFloat(null, value);
}
/**
* Adds a 64-bit float into the buff.
* @param key key used to store element in map
* @param value float representing value
*/
public void putFloat(String key, double val) {
stack.add(Value.float64(putKey(key), val));
}
/**
* Adds a String into the buffer
* @param value string
* @return start position of string in the buffer
*/
public int putString(String value) {
return putString(null, value);
}
/**
* Adds a String into the buffer
* @param key key used to store element in map
* @param value string
* @return start position of string in the buffer
*/
public int putString(String key, String val) {
int iKey = putKey(key);
if ((flags & FlexBuffersBuilder.BUILDER_FLAG_SHARE_STRINGS) != 0) {
Integer i = stringPool.get(val);
if (i == null) {
Value value = writeString(iKey, val);
stringPool.put(val, (int) value.iValue);
stack.add(value);
return (int) value.iValue;
} else {
int bitWidth = widthUInBits(val.length());
stack.add(Value.blob(iKey, i, FBT_STRING, bitWidth));
return i;
}
} else {
Value value = writeString(iKey, val);
stack.add(value);
return (int) value.iValue;
}
}
private Value writeString(int key, String s) {
return writeBlob(key, s.getBytes(StandardCharsets.UTF_8), FBT_STRING, true);
}
// in bits to fit a unsigned int
static int widthUInBits(long len) {
if (len <= byteToUnsignedInt((byte)0xff)) return WIDTH_8;
if (len <= shortToUnsignedInt((short)0xffff)) return WIDTH_16;
if (len <= intToUnsignedLong(0xffff_ffff)) return WIDTH_32;
return WIDTH_64;
}
private Value writeBlob(int key, byte[] blob, int type, boolean trailing) {
int bitWidth = widthUInBits(blob.length);
int byteWidth = align(bitWidth);
writeInt(blob.length, byteWidth);
int sloc = bb.writePosition();
bb.put(blob, 0, blob.length);
if (trailing) {
bb.put((byte) 0);
}
return Value.blob(key, sloc, type, bitWidth);
}
// Align to prepare for writing a scalar with a certain size.
private int align(int alignment) {
int byteWidth = 1 << alignment;
int padBytes = Value.paddingBytes(bb.writePosition(), byteWidth);
while (padBytes-- != 0) {
bb.put((byte) 0);
}
return byteWidth;
}
private void writeInt(long value, int byteWidth) {
switch (byteWidth) {
case 1: bb.put((byte) value); break;
case 2: bb.putShort((short) value); break;
case 4: bb.putInt((int) value); break;
case 8: bb.putLong(value); break;
}
}
/**
* Adds a byte array into the message
* @param value byte array
* @return position in buffer as the start of byte array
*/
public int putBlob(byte[] value) {
return putBlob(null, value);
}
/**
* Adds a byte array into the message
* @param key key used to store element in map
* @param value byte array
* @return position in buffer as the start of byte array
*/
public int putBlob(String key, byte[] val) {
int iKey = putKey(key);
Value value = writeBlob(iKey, val, FBT_BLOB, false);
stack.add(value);
return (int) value.iValue;
}
/**
* Start a new vector in the buffer.
* @return a reference indicating position of the vector in buffer. This
* reference must be passed along when the vector is finished using endVector()
*/
public int startVector() {
return stack.size();
}
/**
* Finishes a vector, but writing the information in the buffer
* @param key key used to store element in map
* @param start reference for begining of the vector. Returned by {@link startVector()}
* @param typed boolean indicating wether vector is typed
* @param fixed boolean indicating wether vector is fixed
* @return Reference to the vector
*/
public int endVector(String key, int start, boolean typed, boolean fixed) {
int iKey = putKey(key);
Value vec = createVector(iKey, start, stack.size() - start, typed, fixed, null);
// Remove temp elements and return vector.
while (stack.size() > start) {
stack.remove(stack.size() - 1);
}
stack.add(vec);
return (int) vec.iValue;
}
/**
* Finish writing the message into the buffer. After that no other element must
* be inserted into the buffer. Also, you must call this function before start using the
* FlexBuffer message
* @return `ByteBuffer` containing the FlexBuffer message
*/
public ByteBuffer finish() {
// If you hit this assert, you likely have objects that were never included
// in a parent. You need to have exactly one root to finish a buffer.
// Check your Start/End calls are matched, and all objects are inside
// some other object.
assert (stack.size() == 1);
// Write root value.
int byteWidth = align(stack.get(0).elemWidth(bb.writePosition(), 0));
writeAny(stack.get(0), byteWidth);
// Write root type.
bb.put(stack.get(0).storedPackedType());
// Write root size. Normally determined by parent, but root has no parent :)
bb.put((byte) byteWidth);
this.finished = true;
return ByteBuffer.wrap(bb.data(), 0, bb.writePosition());
}
/*
* Create a vector based on the elements stored in the stack
*
* @param key reference to its key
* @param start element in the stack
* @param length size of the vector
* @param typed whether is TypedVector or not
* @param fixed whether is Fixed vector or not
* @param keys Value representing key vector
* @return Value representing the created vector
*/
private Value createVector(int key, int start, int length, boolean typed, boolean fixed, Value keys) {
assert (!fixed || typed); // typed=false, fixed=true combination is not supported.
// Figure out smallest bit width we can store this vector with.
int bitWidth = Math.max(WIDTH_8, widthUInBits(length));
int prefixElems = 1;
if (keys != null) {
// If this vector is part of a map, we will pre-fix an offset to the keys
// to this vector.
bitWidth = Math.max(bitWidth, keys.elemWidth(bb.writePosition(), 0));
prefixElems += 2;
}
int vectorType = FBT_KEY;
// Check bit widths and types for all elements.
for (int i = start; i < stack.size(); i++) {
int elemWidth = stack.get(i).elemWidth(bb.writePosition(), i + prefixElems);
bitWidth = Math.max(bitWidth, elemWidth);
if (typed) {
if (i == start) {
vectorType = stack.get(i).type;
if (!FlexBuffers.isTypedVectorElementType(vectorType)) {
throw new FlexBufferException("TypedVector does not support this element type");
}
} else {
// If you get this assert, you are writing a typed vector with
// elements that are not all the same type.
assert (vectorType == stack.get(i).type);
}
}
}
// If you get this assert, your fixed types are not one of:
// Int / UInt / Float / Key.
assert (!fixed || FlexBuffers.isTypedVectorElementType(vectorType));
int byteWidth = align(bitWidth);
// Write vector. First the keys width/offset if available, and size.
if (keys != null) {
writeOffset(keys.iValue, byteWidth);
writeInt(1L << keys.minBitWidth, byteWidth);
}
if (!fixed) {
writeInt(length, byteWidth);
}
// Then the actual data.
int vloc = bb.writePosition();
for (int i = start; i < stack.size(); i++) {
writeAny(stack.get(i), byteWidth);
}
// Then the types.
if (!typed) {
for (int i = start; i < stack.size(); i++) {
bb.put(stack.get(i).storedPackedType(bitWidth));
}
}
return new Value(key, keys != null ? FBT_MAP
: (typed ? FlexBuffers.toTypedVector(vectorType, fixed ? length : 0)
: FBT_VECTOR), bitWidth, vloc);
}
private void writeOffset(long val, int byteWidth) {
int reloff = (int) (bb.writePosition() - val);
assert (byteWidth == 8 || reloff < 1L << (byteWidth * 8));
writeInt(reloff, byteWidth);
}
private void writeAny(final Value val, int byteWidth) {
switch (val.type) {
case FBT_NULL:
case FBT_BOOL:
case FBT_INT:
case FBT_UINT:
writeInt(val.iValue, byteWidth);
break;
case FBT_FLOAT:
writeDouble(val.dValue, byteWidth);
break;
default:
writeOffset(val.iValue, byteWidth);
break;
}
}
private void writeDouble(double val, int byteWidth) {
if (byteWidth == 4) {
bb.putFloat((float) val);
} else if (byteWidth == 8) {
bb.putDouble(val);
}
}
/**
* Start a new map in the buffer.
* @return a reference indicating position of the map in buffer. This
* reference must be passed along when the map is finished using endMap()
*/
public int startMap() {
return stack.size();
}
/**
* Finishes a map, but writing the information in the buffer
* @param key key used to store element in map
* @param start reference for begining of the map. Returned by {@link startMap()}
* @return Reference to the map
*/
public int endMap(String key, int start) {
int iKey = putKey(key);
Collections.sort(stack.subList(start, stack.size()), keyComparator);
Value keys = createKeyVector(start, stack.size() - start);
Value vec = createVector(iKey, start, stack.size() - start, false, false, keys);
// Remove temp elements and return map.
while (stack.size() > start) {
stack.remove(stack.size() - 1);
}
stack.add(vec);
return (int) vec.iValue;
}
private Value createKeyVector(int start, int length) {
// Figure out smallest bit width we can store this vector with.
int bitWidth = Math.max(WIDTH_8, widthUInBits(length));
int prefixElems = 1;
// Check bit widths and types for all elements.
for (int i = start; i < stack.size(); i++) {
int elemWidth = Value.elemWidth(FBT_KEY, WIDTH_8, stack.get(i).key, bb.writePosition(), i + prefixElems);
bitWidth = Math.max(bitWidth, elemWidth);
}
int byteWidth = align(bitWidth);
// Write vector. First the keys width/offset if available, and size.
writeInt(length, byteWidth);
// Then the actual data.
int vloc = bb.writePosition();
for (int i = start; i < stack.size(); i++) {
int pos = stack.get(i).key;
assert(pos != -1);
writeOffset(stack.get(i).key, byteWidth);
}
// Then the types.
return new Value(-1, FlexBuffers.toTypedVector(FBT_KEY,0), bitWidth, vloc);
}
private static class Value {
final int type;
// for scalars, represents scalar size in bytes
// for vectors, represents the size
// for string, length
final int minBitWidth;
// float value
final double dValue;
// integer value
long iValue;
// position of the key associated with this value in buffer
int key;
Value(int key, int type, int bitWidth, long iValue) {
this.key = key;
this.type = type;
this.minBitWidth = bitWidth;
this.iValue = iValue;
this.dValue = Double.MIN_VALUE;
}
Value(int key, int type, int bitWidth, double dValue) {
this.key = key;
this.type = type;
this.minBitWidth = bitWidth;
this.dValue = dValue;
this.iValue = Long.MIN_VALUE;
}
static Value bool(int key, boolean b) {
return new Value(key, FBT_BOOL, WIDTH_8, b ? 1 : 0);
}
static Value blob(int key, int position, int type, int bitWidth) {
return new Value(key, type, bitWidth, position);
}
static Value int8(int key, int value) {
return new Value(key, FBT_INT, WIDTH_8, value);
}
static Value int16(int key, int value) {
return new Value(key, FBT_INT, WIDTH_16, value);
}
static Value int32(int key, int value) {
return new Value(key, FBT_INT, WIDTH_32, value);
}
static Value int64(int key, long value) {
return new Value(key, FBT_INT, WIDTH_64, value);
}
static Value uInt8(int key, int value) {
return new Value(key, FBT_UINT, WIDTH_8, value);
}
static Value uInt16(int key, int value) {
return new Value(key, FBT_UINT, WIDTH_16, value);
}
static Value uInt32(int key, int value) {
return new Value(key, FBT_UINT, WIDTH_32, value);
}
static Value uInt64(int key, long value) {
return new Value(key, FBT_UINT, WIDTH_64, value);
}
static Value float32(int key, float value) {
return new Value(key, FBT_FLOAT, WIDTH_32, value);
}
static Value float64(int key, double value) {
return new Value(key, FBT_FLOAT, WIDTH_64, value);
}
private byte storedPackedType() {
return storedPackedType(WIDTH_8);
}
private byte storedPackedType(int parentBitWidth) {
return packedType(storedWidth(parentBitWidth), type);
}
private static byte packedType(int bitWidth, int type) {
return (byte) (bitWidth | (type << 2));
}
private int storedWidth(int parentBitWidth) {
if (FlexBuffers.isTypeInline(type)) {
return Math.max(minBitWidth, parentBitWidth);
} else {
return minBitWidth;
}
}
private int elemWidth(int bufSize, int elemIndex) {
return elemWidth(type, minBitWidth, iValue, bufSize, elemIndex);
}
private static int elemWidth(int type, int minBitWidth, long iValue, int bufSize, int elemIndex) {
if (FlexBuffers.isTypeInline(type)) {
return minBitWidth;
} else {
// We have an absolute offset, but want to store a relative offset
// elem_index elements beyond the current buffer end. Since whether
// the relative offset fits in a certain byte_width depends on
// the size of the elements before it (and their alignment), we have
// to test for each size in turn.
// Original implementation checks for largest scalar
// which is long unsigned int
for (int byteWidth = 1; byteWidth <= 32; byteWidth *= 2) {
// Where are we going to write this offset?
int offsetLoc = bufSize + paddingBytes(bufSize, byteWidth) + (elemIndex * byteWidth);
// Compute relative offset.
long offset = offsetLoc - iValue;
// Does it fit?
int bitWidth = widthUInBits((int) offset);
if (((1L) << bitWidth) == byteWidth)
return bitWidth;
}
assert (false); // Must match one of the sizes above.
return WIDTH_64;
}
}
private static int paddingBytes(int bufSize, int scalarSize) {
return ((~bufSize) + 1) & (scalarSize - 1);
}
}
}
/// @}