blob: a9205f6405962fcd14ae58a2ff88acf950f2f8ff [file] [log] [blame]
// Copyright 2018 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// kernel_msa.h: a collection of MSA optimized kernels.
// Check in kernel_default.h which one(s) are actually used by default.
// Others are mere experiments; they are still covered by tests
// in case they might be useful some day.
#ifndef GEMMLOWP_INTERNAL_KERNEL_MSA_H_
#define GEMMLOWP_INTERNAL_KERNEL_MSA_H_
#include "kernel.h"
#include <msa.h>
#include <cassert>
namespace gemmlowp {
#ifdef GEMMLOWP_MSA
// Some convenience macros to hide differences between MIPS32 and MIPS64.
#ifdef GEMMLOWP_MIPS_64
#define GEMMLOWP_MIPS_XADDU "daddu"
#define GEMMLOWP_MIPS_XADDIU "daddiu"
#define GEMMLOWP_MIPS_XSLL "dsll"
#else
#define GEMMLOWP_MIPS_XADDU "addu"
#define GEMMLOWP_MIPS_XADDIU "addiu"
#define GEMMLOWP_MIPS_XSLL "sll"
#endif
// Our main GEMM kernel.
struct MSA_Kernel12x8Depth2 : KernelBase {
typedef KernelFormat<KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, 3>,
KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, 2> >
Format;
const char* Name() const override { return "MSA, 12x8, depth 2"; }
// TODO(benoitjacob): reorder function arguments so dst comes last
void Run(std::int32_t* dst_ptr, std::size_t dst_row_stride,
std::size_t dst_col_stride, const std::uint8_t* lhs_ptr,
const std::uint8_t* rhs_ptr, std::size_t start_depth,
std::size_t run_depth) const override {
ScopedProfilingLabel label("optimized kernel (MSA 12x8)");
// See comments above for why we need local numerical labels in our asm.
#define GEMMLOWP_LABEL_CLEAR_ACCUMULATORS "1"
#define GEMMLOWP_LABEL_BEFORE_LOOP "2"
#define GEMMLOWP_LABEL_LOOP "3"
#define GEMMLOWP_LABEL_AFTER_LOOP "4"
assert(dst_row_stride == 1);
asm volatile(
// Multiply dst_col_stride by 4 == sizeof(int32) to use
// it as a byte offset below.
GEMMLOWP_MIPS_XSLL
" %[dst_col_stride], %[dst_col_stride], 2\n"
// Check if start_depth==0 to decide whether we will clear
// accumulators or load existing accumulators.
"beqz %[start_depth], " GEMMLOWP_LABEL_CLEAR_ACCUMULATORS "f\n"
// Load accumulators (start_depth != 0).
GEMMLOWP_MIPS_XADDU " $a0, %[dst_ptr], %[dst_col_stride]\n"
"ld.w $w0, (0*16)(%[dst_ptr])\n"
"ld.w $w4, (1*16)(%[dst_ptr])\n"
"ld.w $w8, (2*16)(%[dst_ptr])\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
"ld.w $w1, (0*16)($a0)\n"
"ld.w $w5, (1*16)($a0)\n"
"ld.w $w9, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
"ld.w $w2, (0*16)($a1)\n"
"ld.w $w6, (1*16)($a1)\n"
"ld.w $w10, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
"ld.w $w3, (0*16)($a0)\n"
"ld.w $w7, (1*16)($a0)\n"
"ld.w $w11, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
"ld.w $w12, (0*16)($a1)\n"
"ld.w $w16, (1*16)($a1)\n"
"ld.w $w20, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
"ld.w $w13, (0*16)($a0)\n"
"ld.w $w17, (1*16)($a0)\n"
"ld.w $w21, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
"ld.w $w14, (0*16)($a1)\n"
"ld.w $w18, (1*16)($a1)\n"
"ld.w $w22, (2*16)($a1)\n"
"ld.w $w15, (0*16)($a0)\n"
"ld.w $w19, (1*16)($a0)\n"
"ld.w $w23, (2*16)($a0)\n"
"b " GEMMLOWP_LABEL_BEFORE_LOOP "f\n"
GEMMLOWP_LABEL_CLEAR_ACCUMULATORS ":\n"
// Clear accumulators (start_depth == 0).
"ldi.w $w0, 0\n"
"ldi.w $w4, 0\n"
"ldi.w $w8, 0\n"
"ldi.w $w1, 0\n"
"ldi.w $w5, 0\n"
"ldi.w $w9, 0\n"
"ldi.w $w2, 0\n"
"ldi.w $w6, 0\n"
"ldi.w $w10, 0\n"
"ldi.w $w3, 0\n"
"ldi.w $w7, 0\n"
"ldi.w $w11, 0\n"
"ldi.w $w12, 0\n"
"ldi.w $w16, 0\n"
"ldi.w $w20, 0\n"
"ldi.w $w13, 0\n"
"ldi.w $w17, 0\n"
"ldi.w $w21, 0\n"
"ldi.w $w14, 0\n"
"ldi.w $w18, 0\n"
"ldi.w $w22, 0\n"
"ldi.w $w15, 0\n"
"ldi.w $w19, 0\n"
"ldi.w $w23, 0\n"
GEMMLOWP_LABEL_BEFORE_LOOP ":\n"
GEMMLOWP_LABEL_LOOP ":\n"
// Overview of register layout:
//
// A half of the 2 2x4 cells of Rhs is stored in 16bit in w28-w31
// (each register contains 4 replicas of a pair of elements).
// A 12x2 block of 3 4x2 cells Lhs is stored in 16bit in w24-w26.
// A 12x8 block of accumulators is stored in 32bit in w0-w23.
//
// +------+------+------+------+
// Rhs |w28 |w29 |w30 |w31 |
// +------+------+------+------+
//
// | | | | |
//
// Lhs | | | | |
//
// +---+ - - - - +------+------+------+------+
// |w24| |w0/12 |w1/13 |w2/14 |w3/15 |
// |w24| |w0/12 |w1/13 |w2/14 |w3/15 |
// |w24| |w0/12 |w1/13 |w2/14 |w3/15 |
// |w24| |w0/12 |w1/13 |w2/14 |w3/15 |
// +---+ - - - - +------+------+------+------+
// |w25| |w4/16 |w5/17 |w6/18 |w7/19 |
// |w25| |w4/16 |w5/17 |w6/18 |w7/19 |
// |w25| |w4/16 |w5/17 |w6/18 |w7/19 |
// |w25| |w4/16 |w5/17 |w6/18 |w7/19 |
// +---+ - - - - +------+------+------+------+
// |w26| |w8/20 |w9/21 |w10/22|w11/23|
// |w26| |w8/20 |w9/21 |w10/22|w11/23|
// |w26| |w8/20 |w9/21 |w10/22|w11/23|
// |w26| |w8/20 |w9/21 |w10/22|w11/23|
// +---+ - - - - +------+------+------+------+
//
// Accumulators
// Load 3 x 8 bytes of lhs[] with 2 16-byte overlapped loads.
"ld.b $w24, 0(%[lhs_ptr])\n"
"ld.b $w25, 8(%[lhs_ptr])\n"
// Load 2 x 8 bytes of rhs[].
"ld.b $w27, 0(%[rhs_ptr])\n"
// Zero-extend 8-bit elements of lhs[] to 16 bits.
"ldi.b $w31, 0\n"
"ilvr.b $w24, $w31, $w24\n"
"ilvl.b $w26, $w31, $w25\n"
"ilvr.b $w25, $w31, $w25\n"
// First half of depths 0 and 1.
// Zero-extend 8-bit elements of rhs[] to 16 bits.
"ilvr.b $w31, $w31, $w27\n"
// Make 4 replicas of every pair of rhs[] elements.
"splati.w $w28, $w31[0]\n"
"splati.w $w29, $w31[1]\n"
"splati.w $w30, $w31[2]\n"
"splati.w $w31, $w31[3]\n"
// Dot-product-(and)-add doubles multiplicand width.
"dpadd_u.w $w0, $w24, $w28\n"
"dpadd_u.w $w4, $w25, $w28\n"
"dpadd_u.w $w8, $w26, $w28\n"
"dpadd_u.w $w1, $w24, $w29\n"
"dpadd_u.w $w5, $w25, $w29\n"
"dpadd_u.w $w9, $w26, $w29\n"
"dpadd_u.w $w2, $w24, $w30\n"
"dpadd_u.w $w6, $w25, $w30\n"
"dpadd_u.w $w10, $w26, $w30\n"
"dpadd_u.w $w3, $w24, $w31\n"
"dpadd_u.w $w7, $w25, $w31\n"
"dpadd_u.w $w11, $w26, $w31\n"
// Second half of depths 0 and 1.
// Zero-extend 8-bit elements of rhs[] to 16 bits.
"ldi.b $w31, 0\n"
"ilvl.b $w31, $w31, $w27\n"
// Make 4 replicas of every pair of rhs[] elements.
"splati.w $w28, $w31[0]\n"
"splati.w $w29, $w31[1]\n"
"splati.w $w30, $w31[2]\n"
"splati.w $w31, $w31[3]\n"
// Dot-product-(and)-add doubles multiplicand width.
"dpadd_u.w $w12, $w24, $w28\n"
"dpadd_u.w $w16, $w25, $w28\n"
"dpadd_u.w $w20, $w26, $w28\n"
"dpadd_u.w $w13, $w24, $w29\n"
"dpadd_u.w $w17, $w25, $w29\n"
"dpadd_u.w $w21, $w26, $w29\n"
"dpadd_u.w $w14, $w24, $w30\n"
"dpadd_u.w $w18, $w25, $w30\n"
"dpadd_u.w $w22, $w26, $w30\n"
"dpadd_u.w $w15, $w24, $w31\n"
"dpadd_u.w $w19, $w25, $w31\n"
"dpadd_u.w $w23, $w26, $w31\n"
GEMMLOWP_MIPS_XADDIU " %[run_depth], -2\n" GEMMLOWP_MIPS_XADDIU
" %[lhs_ptr], 24\n" GEMMLOWP_MIPS_XADDIU " %[rhs_ptr], 16\n"
"bnez %[run_depth]," GEMMLOWP_LABEL_LOOP "b\n"
GEMMLOWP_LABEL_AFTER_LOOP ":\n"
// Store accumulators.
GEMMLOWP_MIPS_XADDU " $a0, %[dst_ptr], %[dst_col_stride]\n"
"st.w $w0, (0*16)(%[dst_ptr])\n"
"st.w $w4, (1*16)(%[dst_ptr])\n"
"st.w $w8, (2*16)(%[dst_ptr])\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
"st.w $w1, (0*16)($a0)\n"
"st.w $w5, (1*16)($a0)\n"
"st.w $w9, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
"st.w $w2, (0*16)($a1)\n"
"st.w $w6, (1*16)($a1)\n"
"st.w $w10, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
"st.w $w3, (0*16)($a0)\n"
"st.w $w7, (1*16)($a0)\n"
"st.w $w11, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
"st.w $w12, (0*16)($a1)\n"
"st.w $w16, (1*16)($a1)\n"
"st.w $w20, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
"st.w $w13, (0*16)($a0)\n"
"st.w $w17, (1*16)($a0)\n"
"st.w $w21, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
"st.w $w14, (0*16)($a1)\n"
"st.w $w18, (1*16)($a1)\n"
"st.w $w22, (2*16)($a1)\n"
"st.w $w15, (0*16)($a0)\n"
"st.w $w19, (1*16)($a0)\n"
"st.w $w23, (2*16)($a0)\n"
: // outputs
[lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr), [run_depth] "+r"(run_depth),
[dst_col_stride] "+r"(dst_col_stride)
: // inputs
[dst_ptr] "r"(dst_ptr),
[start_depth] "r"(start_depth)
: // clobbers
"memory", "a0", "a1", "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", "$f9",
"$f10", "$f11", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17", "$f18", "$f19", "$f20",
"$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31");
#undef GEMMLOWP_LABEL_CLEAR_ACCUMULATORS
#undef GEMMLOWP_LABEL_BEFORE_LOOP
#undef GEMMLOWP_LABEL_LOOP
#undef GEMMLOWP_LABEL_AFTER_LOOP
}
};
// Fast kernel operating on int8 operands.
// It is assumed that one of the two int8 operands only takes values
// in [-127, 127], while the other may freely range in [-128, 127].
// The issue with both operands taking the value -128 is that:
// -128*-128 + -128*-128 == -32768 overflows int16.
// Every other expression a*b + c*d, for any int8 a,b,c,d, fits in int16
// range. That is the basic idea of this kernel.
struct MSA_GEMM_Int8Operands_LhsNonzero : KernelBase {
typedef KernelFormat<
KernelSideFormatInt8<CellFormat<4, 16, CellOrder::WidthMajor>, 1>,
KernelSideFormatInt8<CellFormat<4, 16, CellOrder::WidthMajor>, 1> >
Format;
const char* Name() const override {
return "MSA, 4x4, depth 16, accumulating two within signed int16";
}
// TODO(benoitjacob): reorder function arguments so dst comes last
void Run(std::int32_t* dst_ptr, std::size_t dst_row_stride,
std::size_t dst_col_stride, const std::uint8_t* lhs_ptr,
const std::uint8_t* rhs_ptr, std::size_t start_depth,
std::size_t run_depth) const override {
(void)dst_row_stride;
#define GEMMLOWP_LABEL_AFTER_LOOP_LAST16 "1"
#define GEMMLOWP_LABEL_LOOP "2"
#define GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES "3"
#define GEMMLOWP_LABEL_STORE "4"
asm volatile(
GEMMLOWP_MIPS_XADDIU " %[run_depth], -16\n"
// Load lhs[] and rhs[], zero out internal accumulators.
"ld.b $w16, 0(%[lhs_ptr])\n"
"ldi.b $w0, 0\n"
"ld.b $w20, 0(%[rhs_ptr])\n"
"ldi.b $w1, 0\n"
"ld.b $w17, 16(%[lhs_ptr])\n"
"ldi.b $w2, 0\n"
"ld.b $w21, 16(%[rhs_ptr])\n"
"ldi.b $w3, 0\n"
"ld.b $w18, 32(%[lhs_ptr])\n"
"ldi.b $w4, 0\n"
"ld.b $w19, 48(%[lhs_ptr])\n"
"ldi.b $w5, 0\n"
"ld.b $w22, 32(%[rhs_ptr])\n"
"ldi.b $w6, 0\n"
"ld.b $w23, 48(%[rhs_ptr])\n"
"ldi.b $w7, 0\n"
"ldi.b $w8, 0\n"
"ldi.b $w9, 0\n"
"ldi.b $w10, 0\n"
"ldi.b $w11, 0\n"
"ldi.b $w12, 0\n"
"ldi.b $w13, 0\n"
"ldi.b $w14, 0\n"
"ldi.b $w15, 0\n"
"ldi.h $w31, 1\n"
// If the loop depth is only 16, then we can skip the general loop
// and go straight to the final part of the code.
"beqz %[run_depth], " GEMMLOWP_LABEL_AFTER_LOOP_LAST16 "f\n"
GEMMLOWP_LABEL_LOOP ":\n"
// Overview of register layout:
//
// A 4x16 block of Rhs is stored in 8 bit in w16-w19.
// A 4x16 block of Lhs is stored in 8 bit in w20-w23.
//
// A 4x4 block of accumulators is stored in w0-w15 (as 4x32 bit
// components which need to be horizontally added at the end).
//
// Dot products of Lhs and Rhs are 16-bit values, which can't
// immediately be accumulated in 32-bit accumulators by that
// same instruction that calculates them.
// For example, "dotp_s.h $w25, $w16, $w20" produces 8 16-bit
// sums in w25 (note, the 16 sums have already been reduced to 8
// by the horizontal addition of the dotp instruction).
// They are then sign-extended to 32 bits, horizontally added
// (again) to form 4 32-bit sums and then they are finally added
// to the 32-bit accumulators, all by "dpadd_s.w $w0, $w25, $w31".
//
// +-----+-----+-----+-----+
// Rhs | w20 | w21 | w22 | w23 |
// +-----+-----+-----+-----+
//
// | | | | |
//
// Lhs | | | | |
//
// +---+ - - - - +-----+-----+-----+-----+
// |w16| | w0 | w4 | w8 | w12 |
// |w17| | w1 | w5 | w9 | w13 |
// |w18| | w2 | w6 | w10 | w14 |
// |w19| | w3 | w7 | w11 | w15 |
// +---+ - - - - +-----+-----+-----+-----+
//
// Accumulators
// Calculate the results for 16 depths and load
// lhs[] and rhs[] for the next iteration.
GEMMLOWP_MIPS_XADDIU " %[lhs_ptr], 64\n"
GEMMLOWP_MIPS_XADDIU " %[rhs_ptr], 64\n"
GEMMLOWP_MIPS_XADDIU " %[run_depth], -16\n"
// Dot product: multiply-add pairs of adjacent int8 elements.
// Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
"dotp_s.h $w25, $w16, $w20\n"
"dotp_s.h $w26, $w17, $w20\n"
"dotp_s.h $w27, $w16, $w21\n"
"dotp_s.h $w28, $w17, $w21\n"
"dotp_s.h $w29, $w18, $w20\n"
// Horizontal add of pairs of adjacent int16 sums into internal int32
// accumulators.
"dpadd_s.w $w0, $w25, $w31\n"
"dpadd_s.w $w1, $w26, $w31\n"
"dpadd_s.w $w4, $w27, $w31\n"
"dpadd_s.w $w5, $w28, $w31\n"
"dpadd_s.w $w2, $w29, $w31\n"
// Dot product: multiply-add pairs of adjacent int8 elements.
// Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
"dotp_s.h $w24, $w16, $w22\n"
"dotp_s.h $w25, $w19, $w20\n"
"dotp_s.h $w26, $w16, $w23\n"
"dotp_s.h $w27, $w17, $w22\n"
"ld.b $w20, 0(%[rhs_ptr])\n"
"dotp_s.h $w28, $w17, $w23\n"
"ld.b $w16, 0(%[lhs_ptr])\n"
"dotp_s.h $w29, $w18, $w21\n"
"ld.b $w17, 16(%[lhs_ptr])\n"
// Horizontal add of pairs of adjacent int16 sums into internal int32
// accumulators.
"dpadd_s.w $w8, $w24, $w31\n"
"dpadd_s.w $w3, $w25, $w31\n"
"dpadd_s.w $w12, $w26, $w31\n"
"dpadd_s.w $w9, $w27, $w31\n"
"dpadd_s.w $w13, $w28, $w31\n"
"dpadd_s.w $w6, $w29, $w31\n"
// Dot product: multiply-add pairs of adjacent int8 elements.
// Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
"dotp_s.h $w25, $w19, $w21\n"
"dotp_s.h $w26, $w18, $w22\n"
"dotp_s.h $w27, $w18, $w23\n"
"ld.b $w21, 16(%[rhs_ptr])\n"
"dotp_s.h $w28, $w19, $w22\n"
"ld.b $w18, 32(%[lhs_ptr])\n"
"dotp_s.h $w29, $w19, $w23\n"
"ld.b $w22, 32(%[rhs_ptr])\n"
// Horizontal add of pairs of adjacent int16 sums into internal int32
// accumulators.
"dpadd_s.w $w7, $w25, $w31\n"
"ld.b $w19, 48(%[lhs_ptr])\n"
"dpadd_s.w $w10, $w26, $w31\n"
"ld.b $w23, 48(%[rhs_ptr])\n"
"dpadd_s.w $w14, $w27, $w31\n"
"dpadd_s.w $w11, $w28, $w31\n"
"dpadd_s.w $w15, $w29, $w31\n"
"bnez %[run_depth], " GEMMLOWP_LABEL_LOOP "b\n"
GEMMLOWP_LABEL_AFTER_LOOP_LAST16 ":\n"
// Calculate the results for the last 16 depths.
// Dot product: multiply-add pairs of adjacent int8 elements.
// Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
"dotp_s.h $w25, $w16, $w20\n"
"dotp_s.h $w26, $w17, $w20\n"
"dotp_s.h $w27, $w16, $w21\n"
"dotp_s.h $w28, $w17, $w21\n"
"dotp_s.h $w29, $w18, $w20\n"
// Horizontal add of pairs of adjacent int16 sums into internal int32
// accumulators.
"dpadd_s.w $w0, $w25, $w31\n"
"dpadd_s.w $w1, $w26, $w31\n"
"dpadd_s.w $w4, $w27, $w31\n"
"dpadd_s.w $w5, $w28, $w31\n"
"dpadd_s.w $w2, $w29, $w31\n"
// Dot product: multiply-add pairs of adjacent int8 elements.
// Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
"dotp_s.h $w24, $w16, $w22\n"
"dotp_s.h $w25, $w19, $w20\n"
"dotp_s.h $w26, $w16, $w23\n"
"dotp_s.h $w27, $w17, $w22\n"
"dotp_s.h $w28, $w17, $w23\n"
"dotp_s.h $w29, $w18, $w21\n"
// Horizontal add of pairs of adjacent int16 sums into internal int32
// accumulators.
"dpadd_s.w $w8, $w24, $w31\n"
"dpadd_s.w $w3, $w25, $w31\n"
"dpadd_s.w $w12, $w26, $w31\n"
"dpadd_s.w $w9, $w27, $w31\n"
"dpadd_s.w $w13, $w28, $w31\n"
"dpadd_s.w $w6, $w29, $w31\n"
// Dot product: multiply-add pairs of adjacent int8 elements.
// Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
"dotp_s.h $w25, $w19, $w21\n"
"dotp_s.h $w26, $w18, $w22\n"
"dotp_s.h $w27, $w18, $w23\n"
"dotp_s.h $w28, $w19, $w22\n"
"dotp_s.h $w29, $w19, $w23\n"
// Horizontal add of pairs of adjacent int16 sums into internal int32
// accumulators.
"dpadd_s.w $w7, $w25, $w31\n"
"dpadd_s.w $w10, $w26, $w31\n"
"dpadd_s.w $w14, $w27, $w31\n"
"dpadd_s.w $w11, $w28, $w31\n"
"dpadd_s.w $w15, $w29, $w31\n"
// Horizontal-add internal accumulators.
"hadd_s.d $w0, $w0, $w0\n"
"hadd_s.d $w1, $w1, $w1\n"
"hadd_s.d $w2, $w2, $w2\n"
"hadd_s.d $w3, $w3, $w3\n"
"hadd_s.d $w4, $w4, $w4\n"
"hadd_s.d $w5, $w5, $w5\n"
"hadd_s.d $w6, $w6, $w6\n"
"hadd_s.d $w7, $w7, $w7\n"
"hadd_s.d $w8, $w8, $w8\n"
"hadd_s.d $w9, $w9, $w9\n"
"hadd_s.d $w10, $w10, $w10\n"
"hadd_s.d $w11, $w11, $w11\n"
"hadd_s.d $w12, $w12, $w12\n"
"hadd_s.d $w13, $w13, $w13\n"
"hadd_s.d $w14, $w14, $w14\n"
"hadd_s.d $w15, $w15, $w15\n"
"pckev.w $w0, $w1, $w0\n"
"pckev.w $w2, $w3, $w2\n"
"pckev.w $w4, $w5, $w4\n"
"pckev.w $w6, $w7, $w6\n"
"pckev.w $w8, $w9, $w8\n"
"pckev.w $w10, $w11, $w10\n"
"pckev.w $w12, $w13, $w12\n"
"pckev.w $w14, $w15, $w14\n"
"hadd_s.d $w0, $w0, $w0\n"
"hadd_s.d $w2, $w2, $w2\n"
"hadd_s.d $w4, $w4, $w4\n"
"hadd_s.d $w6, $w6, $w6\n"
"hadd_s.d $w8, $w8, $w8\n"
"hadd_s.d $w10, $w10, $w10\n"
"hadd_s.d $w12, $w12, $w12\n"
"hadd_s.d $w14, $w14, $w14\n"
// 4 more pckev instructions follow in both paths below.
// Check if start_depth==0 to decide whether we will load
// existing accumulators from memory.
"bnez %[start_depth], " GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES "f\n"
"pckev.w $w0, $w2, $w0\n"
"pckev.w $w1, $w6, $w4\n"
"pckev.w $w2, $w10, $w8\n"
"pckev.w $w3, $w14, $w12\n"
"b " GEMMLOWP_LABEL_STORE "f\n"
GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES ":\n"
// Load accumulators from memory.
"ld.w $w16, 0(%[dst_ptr0])\n"
"pckev.w $w0, $w2, $w0\n"
"ld.w $w17, 0(%[dst_ptr1])\n"
"pckev.w $w1, $w6, $w4\n"
"ld.w $w18, 0(%[dst_ptr2])\n"
"pckev.w $w2, $w10, $w8\n"
"ld.w $w19, 0(%[dst_ptr3])\n"
"pckev.w $w3, $w14, $w12\n"
// Add them to internal accumulators.
"addv.w $w0, $w0, $w16\n"
"addv.w $w1, $w1, $w17\n"
"addv.w $w2, $w2, $w18\n"
"addv.w $w3, $w3, $w19\n"
GEMMLOWP_LABEL_STORE ":\n"
// Store accumulators.
"st.w $w0, 0(%[dst_ptr0])\n"
"st.w $w1, 0(%[dst_ptr1])\n"
"st.w $w2, 0(%[dst_ptr2])\n"
"st.w $w3, 0(%[dst_ptr3])\n"
: // outputs
[lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
[run_depth] "+r"(run_depth)
: // inputs
[dst_ptr0] "r"(dst_ptr), [dst_ptr1] "r"(dst_ptr + dst_col_stride),
[dst_ptr2] "r"(dst_ptr + dst_col_stride * 2),
[dst_ptr3] "r"(dst_ptr + dst_col_stride * 3),
[start_depth] "r"(start_depth)
: // clobbers
"memory", "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8",
"$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17",
"$f18", "$f19", "$f20", "$f21", "$f22", "$f23", "$f24", "$f25", "$f26",
"$f27", "$f28", "$f29", "$f30", "$f31");
#undef GEMMLOWP_LABEL_LOOP
#undef GEMMLOWP_LABEL_AFTER_LOOP_LAST16
#undef GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES
#undef GEMMLOWP_LABEL_STORE
}
};
#undef GEMMLOWP_MIPS_XADDU
#undef GEMMLOWP_MIPS_XADDIU
#undef GEMMLOWP_MIPS_XSLL
#endif // GEMMLOWP_MSA
} // namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_KERNEL_MSA_H_