blob: 7de01ff55aefeffabe44099c008cdf5b1c3ff204 [file] [log] [blame]
// Copyright 2018 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// simd_wrappers_msa.h: MSA specialization of simd_wrappers.h
#ifndef GEMMLOWP_INTERNAL_SIMD_WRAPPERS_MSA_H_
#define GEMMLOWP_INTERNAL_SIMD_WRAPPERS_MSA_H_
#include <msa.h>
namespace gemmlowp {
using Int32x4 = v4i32;
using Int16x8 = v8i16;
using Uint8x16 = v16i8;
template <int ScalarCount>
struct RegisterType<std::int32_t, ScalarCount> {
using Type =
typename std::conditional<ScalarCount >= 4, Int32x4, std::int32_t>::type;
};
template <int ScalarCount>
struct RegisterType<std::int16_t, ScalarCount> {
using Type = typename std::conditional<ScalarCount >= 8, Int16x8, std::int16_t>::type;
};
template <int ScalarCount>
struct RegisterType<std::uint8_t, ScalarCount> {
using Type = typename std::conditional<
ScalarCount >= 16, Uint8x16,
typename std::conditional<ScalarCount >= 4, std::uint32_t,
std::uint8_t>::type>::type;
};
inline Int32x4 LoadInt32x4(const std::int32_t* src) {
return __builtin_msa_ld_w(const_cast<std::int32_t*>(src), 0);
}
inline Int32x4 LoadInt32x4(const Int32x4* src) {
return __builtin_msa_ld_w(const_cast<Int32x4*>(src), 0);
}
inline void StoreInt32x4(std::int32_t* dst, Int32x4 value) {
__builtin_msa_st_w(value, dst, 0);
}
inline void StoreInt32x4(Int32x4* dst, Int32x4 value) {
__builtin_msa_st_w(value, dst, 0);
}
inline Int16x8 LoadInt16x8(const std::int16_t* src) {
return __builtin_msa_ld_h(const_cast<std::int16_t*>(src), 0);
}
inline Int16x8 LoadInt16x8(const Int16x8* src) {
return __builtin_msa_ld_h(const_cast<Int16x8*>(src), 0);
}
inline void StoreInt16x8(std::int16_t* dst, Int16x8 value) { __builtin_msa_st_h(value, dst, 0); }
inline void StoreInt16x8(Int16x8* dst, Int16x8 value) { __builtin_msa_st_h(value, dst, 0); }
inline Uint8x16 LoadUint8x16(const std::uint8_t* src) {
return __builtin_msa_ld_b(const_cast<std::uint8_t*>(src), 0);
}
inline Uint8x16 LoadUint8x16(const Uint8x16* src) {
return __builtin_msa_ld_b(const_cast<Uint8x16*>(src), 0);
}
inline void StoreUint8x16(std::uint8_t* dst, Uint8x16 value) {
__builtin_msa_st_b(value, dst, 0);
}
inline void StoreUint8x16(Uint8x16* dst, Uint8x16 value) {
__builtin_msa_st_b(value, dst, 0);
}
template <int Lane>
std::int32_t GetLane(Int32x4 value) {
return __builtin_msa_copy_s_w(value, Lane);
}
template <int Lane>
Int32x4 DupLane(Int32x4 value) {
static_assert(Lane >= 0 && Lane <= 3, "");
return __builtin_msa_splati_w(value, Lane);
}
inline Int32x4 Mul(Int32x4 a, std::int32_t b) {
return __builtin_msa_mulv_w(a, __builtin_msa_fill_w(b));
}
inline Int32x4 Min(Int32x4 a, Int32x4 b) { return __builtin_msa_min_s_w(a, b); }
inline Int32x4 Max(Int32x4 a, Int32x4 b) { return __builtin_msa_max_s_w(a, b); }
inline Int32x4 SaturatingRoundingDoublingHighMul(Int32x4 a, std::int32_t b) {
return __builtin_msa_mulr_q_w(a, __builtin_msa_fill_w(b));
}
template <int Lane>
Int32x4 MulByRhsLane(Int32x4 a, Int32x4 b) {
static_assert(Lane >= 0 && Lane <= 3, "");
return __builtin_msa_mulv_w(a, __builtin_msa_splati_w(b, Lane));
}
static inline v4i32 workaround_msa_maddv_w(v4i32 a, v4i32 b, v4i32 c) {
// Workaround for incorrect encoding of maddv.df in gcc (a exchanged with c).
#if 0
return __builtin_msa_maddv_w(a, b, c);
#else
asm volatile("maddv.w %w[a], %w[b], %w[c]\n"
// Outputs
: [a] "+f"(a)
// Inputs
: [b] "f"(b), [c] "f"(c));
return a;
#endif
}
inline void MulAdd(Int32x4 lhs, Int32x4 rhs, Int32x4* acc) {
Int32x4 tmp = LoadInt32x4(acc);
tmp = workaround_msa_maddv_w(tmp, lhs, rhs);
StoreInt32x4(acc, tmp);
}
inline void MulAdd(Int32x4 lhs, std::int32_t rhs, Int32x4* acc) {
Int32x4 tmp = LoadInt32x4(acc);
tmp = workaround_msa_maddv_w(tmp, lhs, __builtin_msa_fill_w(rhs));
StoreInt32x4(acc, tmp);
}
template <int Lane>
inline void MulAddByRhsLane(Int32x4 lhs, Int32x4 rhs, Int32x4* acc) {
static_assert(Lane >= 0 && Lane <= 3, "");
Int32x4 tmp = LoadInt32x4(acc);
tmp = workaround_msa_maddv_w(tmp, lhs, __builtin_msa_splati_w(rhs, Lane));
StoreInt32x4(acc, tmp);
}
template <>
struct LoadContiguousImpl<RegBlockUint8<8, 8>> {
static RegBlockUint8<8, 8> Run(const std::uint8_t* src) {
RegBlockUint8<8, 8> result;
for (int i = 0; i < 4; i++) {
result.buf.reg[i] = LoadUint8x16(src + 16 * i);
}
return result;
}
};
template <>
struct LoadContiguousImpl<RegBlockInt32<8, 8>> {
static RegBlockInt32<8, 8> Run(const std::int32_t* src) {
RegBlockInt32<8, 8> result;
for (int i = 0; i < 16; i++) {
result.buf.reg[i] = LoadInt32x4(src + 4 * i);
}
return result;
}
};
template <>
struct LoadContiguousImpl<RegBlockInt16<8, 8>> {
static RegBlockInt16<8, 8> Run(const std::int16_t* src) {
RegBlockInt16<8, 8> result;
for (int i = 0; i < 8; i++) {
result.buf.reg[i] = LoadInt16x8(src + 8 * i);
}
return result;
}
};
} // end namespace gemmlowp
#include "simd_wrappers_common_neon_sse.h"
#endif // GEMMLOWP_INTERNAL_SIMD_WRAPPERS_MSA_H_