|  | //===-- Square root of x86 long double numbers ------------------*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H | 
|  | #define LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H | 
|  |  | 
|  | #include "FPBits.h" | 
|  | #include "Sqrt.h" | 
|  |  | 
|  | #include "utils/CPP/TypeTraits.h" | 
|  |  | 
|  | namespace __llvm_libc { | 
|  | namespace fputil { | 
|  |  | 
|  | #if (defined(__x86_64__) || defined(__i386__)) | 
|  | namespace internal { | 
|  |  | 
|  | template <> | 
|  | inline void normalize<long double>(int &exponent, __uint128_t &mantissa) { | 
|  | // Use binary search to shift the leading 1 bit similar to float. | 
|  | // With MantissaWidth<long double> = 63, it will take | 
|  | // ceil(log2(63)) = 6 steps checking the mantissa bits. | 
|  | constexpr int nsteps = 6; // = ceil(log2(MantissaWidth)) | 
|  | constexpr __uint128_t bounds[nsteps] = { | 
|  | __uint128_t(1) << 32, __uint128_t(1) << 48, __uint128_t(1) << 56, | 
|  | __uint128_t(1) << 60, __uint128_t(1) << 62, __uint128_t(1) << 63}; | 
|  | constexpr int shifts[nsteps] = {32, 16, 8, 4, 2, 1}; | 
|  |  | 
|  | for (int i = 0; i < nsteps; ++i) { | 
|  | if (mantissa < bounds[i]) { | 
|  | exponent -= shifts[i]; | 
|  | mantissa <<= shifts[i]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } // namespace internal | 
|  |  | 
|  | // Correctly rounded SQRT with round to nearest, ties to even. | 
|  | // Shift-and-add algorithm. | 
|  | template <> inline long double sqrt<long double, 0>(long double x) { | 
|  | using UIntType = typename FPBits<long double>::UIntType; | 
|  | constexpr UIntType One = UIntType(1) | 
|  | << int(MantissaWidth<long double>::value); | 
|  |  | 
|  | FPBits<long double> bits(x); | 
|  |  | 
|  | if (bits.isInfOrNaN()) { | 
|  | if (bits.sign && (bits.mantissa == 0)) { | 
|  | // sqrt(-Inf) = NaN | 
|  | return FPBits<long double>::buildNaN(One >> 1); | 
|  | } else { | 
|  | // sqrt(NaN) = NaN | 
|  | // sqrt(+Inf) = +Inf | 
|  | return x; | 
|  | } | 
|  | } else if (bits.isZero()) { | 
|  | // sqrt(+0) = +0 | 
|  | // sqrt(-0) = -0 | 
|  | return x; | 
|  | } else if (bits.sign) { | 
|  | // sqrt( negative numbers ) = NaN | 
|  | return FPBits<long double>::buildNaN(One >> 1); | 
|  | } else { | 
|  | int xExp = bits.getExponent(); | 
|  | UIntType xMant = bits.mantissa; | 
|  |  | 
|  | // Step 1a: Normalize denormal input | 
|  | if (bits.implicitBit) { | 
|  | xMant |= One; | 
|  | } else if (bits.exponent == 0) { | 
|  | internal::normalize<long double>(xExp, xMant); | 
|  | } | 
|  |  | 
|  | // Step 1b: Make sure the exponent is even. | 
|  | if (xExp & 1) { | 
|  | --xExp; | 
|  | xMant <<= 1; | 
|  | } | 
|  |  | 
|  | // After step 1b, x = 2^(xExp) * xMant, where xExp is even, and | 
|  | // 1 <= xMant < 4.  So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2. | 
|  | // Notice that the output of sqrt is always in the normal range. | 
|  | // To perform shift-and-add algorithm to find y, let denote: | 
|  | //   y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be: | 
|  | //   r(n) = 2^n ( xMant - y(n)^2 ). | 
|  | // That leads to the following recurrence formula: | 
|  | //   r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ] | 
|  | // with the initial conditions: y(0) = 1, and r(0) = x - 1. | 
|  | // So the nth digit y_n of the mantissa of sqrt(x) can be found by: | 
|  | //   y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1) | 
|  | //         0 otherwise. | 
|  | UIntType y = One; | 
|  | UIntType r = xMant - One; | 
|  |  | 
|  | for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) { | 
|  | r <<= 1; | 
|  | UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1) | 
|  | if (r >= tmp) { | 
|  | r -= tmp; | 
|  | y += current_bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We compute one more iteration in order to round correctly. | 
|  | bool lsb = y & 1; // Least significant bit | 
|  | bool rb = false;  // Round bit | 
|  | r <<= 2; | 
|  | UIntType tmp = (y << 2) + 1; | 
|  | if (r >= tmp) { | 
|  | r -= tmp; | 
|  | rb = true; | 
|  | } | 
|  |  | 
|  | // Append the exponent field. | 
|  | xExp = ((xExp >> 1) + FPBits<long double>::exponentBias); | 
|  | y |= (static_cast<UIntType>(xExp) | 
|  | << (MantissaWidth<long double>::value + 1)); | 
|  |  | 
|  | // Round to nearest, ties to even | 
|  | if (rb && (lsb || (r != 0))) { | 
|  | ++y; | 
|  | } | 
|  |  | 
|  | // Extract output | 
|  | FPBits<long double> out(0.0L); | 
|  | out.exponent = xExp; | 
|  | out.implicitBit = 1; | 
|  | out.mantissa = (y & (One - 1)); | 
|  |  | 
|  | return out; | 
|  | } | 
|  | } | 
|  | #endif // defined(__x86_64__) || defined(__i386__) | 
|  |  | 
|  | } // namespace fputil | 
|  | } // namespace __llvm_libc | 
|  |  | 
|  | #endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H |