blob: ab9ba02cf54ddcda1615ca432633425147b7c332 [file] [log] [blame] [edit]
//===- BitstreamReader.cpp - BitstreamReader implementation ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/BitstreamReader.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// BitstreamCursor implementation
//===----------------------------------------------------------------------===//
void BitstreamCursor::freeState() {
// Free all the Abbrevs.
CurAbbrevs.clear();
// Free all the Abbrevs in the block scope.
BlockScope.clear();
}
/// EnterSubBlock - Having read the ENTER_SUBBLOCK abbrevid, enter
/// the block, and return true if the block has an error.
bool BitstreamCursor::EnterSubBlock(unsigned BlockID, unsigned *NumWordsP) {
// Save the current block's state on BlockScope.
BlockScope.push_back(Block(CurCodeSize));
BlockScope.back().PrevAbbrevs.swap(CurAbbrevs);
// Add the abbrevs specific to this block to the CurAbbrevs list.
if (const BitstreamReader::BlockInfo *Info =
BitStream->getBlockInfo(BlockID)) {
CurAbbrevs.insert(CurAbbrevs.end(), Info->Abbrevs.begin(),
Info->Abbrevs.end());
}
// Get the codesize of this block.
CurCodeSize = ReadVBR(bitc::CodeLenWidth);
// We can't read more than MaxChunkSize at a time
if (CurCodeSize > MaxChunkSize)
return true;
SkipToFourByteBoundary();
unsigned NumWords = Read(bitc::BlockSizeWidth);
if (NumWordsP) *NumWordsP = NumWords;
// Validate that this block is sane.
return CurCodeSize == 0 || AtEndOfStream();
}
static uint64_t readAbbreviatedField(BitstreamCursor &Cursor,
const BitCodeAbbrevOp &Op) {
assert(!Op.isLiteral() && "Not to be used with literals!");
// Decode the value as we are commanded.
switch (Op.getEncoding()) {
case BitCodeAbbrevOp::Array:
case BitCodeAbbrevOp::Blob:
llvm_unreachable("Should not reach here");
case BitCodeAbbrevOp::Fixed:
assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize);
return Cursor.Read((unsigned)Op.getEncodingData());
case BitCodeAbbrevOp::VBR:
assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize);
return Cursor.ReadVBR64((unsigned)Op.getEncodingData());
case BitCodeAbbrevOp::Char6:
return BitCodeAbbrevOp::DecodeChar6(Cursor.Read(6));
}
llvm_unreachable("invalid abbreviation encoding");
}
static void skipAbbreviatedField(BitstreamCursor &Cursor,
const BitCodeAbbrevOp &Op) {
assert(!Op.isLiteral() && "Not to be used with literals!");
// Decode the value as we are commanded.
switch (Op.getEncoding()) {
case BitCodeAbbrevOp::Array:
case BitCodeAbbrevOp::Blob:
llvm_unreachable("Should not reach here");
case BitCodeAbbrevOp::Fixed:
assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize);
Cursor.Read((unsigned)Op.getEncodingData());
break;
case BitCodeAbbrevOp::VBR:
assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize);
Cursor.ReadVBR64((unsigned)Op.getEncodingData());
break;
case BitCodeAbbrevOp::Char6:
Cursor.Read(6);
break;
}
}
/// skipRecord - Read the current record and discard it.
void BitstreamCursor::skipRecord(unsigned AbbrevID) {
// Skip unabbreviated records by reading past their entries.
if (AbbrevID == bitc::UNABBREV_RECORD) {
unsigned Code = ReadVBR(6);
(void)Code;
unsigned NumElts = ReadVBR(6);
for (unsigned i = 0; i != NumElts; ++i)
(void)ReadVBR64(6);
return;
}
const BitCodeAbbrev *Abbv = getAbbrev(AbbrevID);
for (unsigned i = 0, e = Abbv->getNumOperandInfos(); i != e; ++i) {
const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i);
if (Op.isLiteral())
continue;
if (Op.getEncoding() != BitCodeAbbrevOp::Array &&
Op.getEncoding() != BitCodeAbbrevOp::Blob) {
skipAbbreviatedField(*this, Op);
continue;
}
if (Op.getEncoding() == BitCodeAbbrevOp::Array) {
// Array case. Read the number of elements as a vbr6.
unsigned NumElts = ReadVBR(6);
// Get the element encoding.
assert(i+2 == e && "array op not second to last?");
const BitCodeAbbrevOp &EltEnc = Abbv->getOperandInfo(++i);
#if 1 // HLSL Change - Make skipping go brrrrrrrrrrr
{
const auto &Op = EltEnc;
auto &Cursor = *this;
auto CurBit = Cursor.GetCurrentBitNo();
// Decode the value as we are commanded.
switch (EltEnc.getEncoding()) {
case BitCodeAbbrevOp::Array:
case BitCodeAbbrevOp::Blob:
llvm_unreachable("Should not reach here");
case BitCodeAbbrevOp::Fixed:
assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize);
Cursor.JumpToBit(CurBit + NumElts * Op.getEncodingData());
break;
case BitCodeAbbrevOp::VBR:
assert((unsigned)Op.getEncodingData() <= Cursor.MaxChunkSize);
for (; NumElts; --NumElts)
Cursor.ReadVBR64((unsigned)Op.getEncodingData());
break;
case BitCodeAbbrevOp::Char6:
Cursor.JumpToBit(CurBit + NumElts * 6);
break;
}
}
#else
// Read all the elements.
for (; NumElts; --NumElts)
skipAbbreviatedField(*this, EltEnc);
#endif
continue;
}
assert(Op.getEncoding() == BitCodeAbbrevOp::Blob);
// Blob case. Read the number of bytes as a vbr6.
unsigned NumElts = ReadVBR(6);
SkipToFourByteBoundary(); // 32-bit alignment
// Figure out where the end of this blob will be including tail padding.
size_t NewEnd = GetCurrentBitNo()+((NumElts+3)&~3)*8;
// If this would read off the end of the bitcode file, just set the
// record to empty and return.
if (!canSkipToPos(NewEnd/8)) {
NextChar = BitStream->getBitcodeBytes().getExtent();
break;
}
// Skip over the blob.
JumpToBit(NewEnd);
}
}
// HLSL Change - Begin
unsigned BitstreamCursor::peekRecord(unsigned AbbrevID) {
auto last_bit_pos = GetCurrentBitNo();
if (AbbrevID == bitc::UNABBREV_RECORD) {
unsigned Code = ReadVBR(6);
this->JumpToBit(last_bit_pos);
return Code;
}
const BitCodeAbbrev *Abbv = getAbbrev(AbbrevID);
// Read the record code first.
assert(Abbv->getNumOperandInfos() != 0 && "no record code in abbreviation?");
const BitCodeAbbrevOp &CodeOp = Abbv->getOperandInfo(0);
unsigned Code;
if (CodeOp.isLiteral())
Code = CodeOp.getLiteralValue();
else {
if (CodeOp.getEncoding() == BitCodeAbbrevOp::Array ||
CodeOp.getEncoding() == BitCodeAbbrevOp::Blob)
report_fatal_error("Abbreviation starts with an Array or a Blob");
Code = readAbbreviatedField(*this, CodeOp);
}
this->JumpToBit(last_bit_pos);
return Code;
}
template<typename T>
void BitstreamCursor::AddRecordElements(BitCodeAbbrevOp::Encoding enc, uint64_t encData, unsigned NumElts, SmallVectorImpl<T> &Vals) {
const unsigned size = (unsigned)encData;
if (enc == BitCodeAbbrevOp::VBR) {
assert((unsigned)encData <= MaxChunkSize);
for (; NumElts; --NumElts) {
Vals.push_back((T)ReadVBR64(size));
}
}
else if (enc == BitCodeAbbrevOp::Char6) {
assert((unsigned)encData <= MaxChunkSize);
for (; NumElts; --NumElts) {
Vals.push_back(BitCodeAbbrevOp::DecodeChar6(Read(6)));
}
}
else {
llvm_unreachable("Unknown kind of thing");
}
}
// HLSL Change - End
unsigned BitstreamCursor::readRecord(unsigned AbbrevID,
SmallVectorImpl<uint64_t> &Vals,
StringRef *Blob,
SmallVectorImpl<uint8_t> *Uint8Vals // HLSL Change
) {
if (AbbrevID == bitc::UNABBREV_RECORD) {
unsigned Code = ReadVBR(6);
unsigned NumElts = ReadVBR(6);
if (Uint8Vals) {
for (unsigned i = 0; i != NumElts; ++i)
Uint8Vals->push_back((uint8_t)ReadVBR64(6));
}
else {
for (unsigned i = 0; i != NumElts; ++i)
Vals.push_back(ReadVBR64(6));
}
return Code;
}
const BitCodeAbbrev *Abbv = getAbbrev(AbbrevID);
// Read the record code first.
assert(Abbv->getNumOperandInfos() != 0 && "no record code in abbreviation?");
const BitCodeAbbrevOp &CodeOp = Abbv->getOperandInfo(0);
unsigned Code;
if (CodeOp.isLiteral())
Code = CodeOp.getLiteralValue();
else {
if (CodeOp.getEncoding() == BitCodeAbbrevOp::Array ||
CodeOp.getEncoding() == BitCodeAbbrevOp::Blob)
report_fatal_error("Abbreviation starts with an Array or a Blob");
Code = readAbbreviatedField(*this, CodeOp);
}
for (unsigned i = 1, e = Abbv->getNumOperandInfos(); i != e; ++i) {
const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i);
if (Op.isLiteral()) {
Vals.push_back(Op.getLiteralValue());
continue;
}
if (Op.getEncoding() != BitCodeAbbrevOp::Array &&
Op.getEncoding() != BitCodeAbbrevOp::Blob) {
Vals.push_back(readAbbreviatedField(*this, Op));
continue;
}
if (Op.getEncoding() == BitCodeAbbrevOp::Array) {
// Array case. Read the number of elements as a vbr6.
unsigned NumElts = ReadVBR(6);
// Get the element encoding.
if (i + 2 != e)
report_fatal_error("Array op not second to last");
const BitCodeAbbrevOp &EltEnc = Abbv->getOperandInfo(++i);
if (!EltEnc.isEncoding())
report_fatal_error(
"Array element type has to be an encoding of a type");
if (EltEnc.getEncoding() == BitCodeAbbrevOp::Array ||
EltEnc.getEncoding() == BitCodeAbbrevOp::Blob)
report_fatal_error("Array element type can't be an Array or a Blob");
#if 1 // HLSL Change
// Read all the elements a little faster.
{
BitCodeAbbrevOp::Encoding enc = EltEnc.getEncoding();
uint64_t encData = 0;
if (EltEnc.hasEncodingData())
encData = EltEnc.getEncodingData();
unsigned size = (unsigned)encData;
if (Uint8Vals) {
if (enc == BitCodeAbbrevOp::Fixed) {
assert((unsigned)encData <= MaxChunkSize);
assert((unsigned)encData == 8);
// Special optimization for fixed elements that are 8 bits
Uint8Vals->resize(NumElts);
uint8_t *ptr = Uint8Vals->data();
unsigned i = 0;
constexpr unsigned BytesInWord = sizeof(size_t);
// First, read word by word instead of byte by byte
for (; NumElts >= BytesInWord; NumElts -= BytesInWord) {
const size_t e = Read(BytesInWord * 8);
memcpy(ptr + i, &e, sizeof(e));
i += BytesInWord;
}
for (; NumElts; --NumElts)
Uint8Vals->operator[](i++) = (uint8_t)Read(8);
}
else {
AddRecordElements(enc, encData, NumElts, *Uint8Vals);
}
}
else {
if (enc == BitCodeAbbrevOp::Fixed) {
assert((unsigned)encData <= MaxChunkSize);
Vals.reserve(Vals.size() + NumElts);
for (; NumElts; --NumElts)
Vals.push_back(Read(size));
}
else {
AddRecordElements(enc, encData, NumElts, Vals);
}
}
}
#else // HLSL Change
// Read all the elements.
for (; NumElts; --NumElts)
Vals.push_back(readAbbreviatedField(*this, EltEnc));
#endif // HLSL Change
continue;
}
assert(Op.getEncoding() == BitCodeAbbrevOp::Blob);
// Blob case. Read the number of bytes as a vbr6.
unsigned NumElts = ReadVBR(6);
SkipToFourByteBoundary(); // 32-bit alignment
// Figure out where the end of this blob will be including tail padding.
size_t CurBitPos = GetCurrentBitNo();
size_t NewEnd = CurBitPos+((NumElts+3)&~3)*8;
// If this would read off the end of the bitcode file, just set the
// record to empty and return.
if (!canSkipToPos(NewEnd/8)) {
Vals.append(NumElts, 0);
NextChar = BitStream->getBitcodeBytes().getExtent();
break;
}
// Otherwise, inform the streamer that we need these bytes in memory.
const char *Ptr = (const char*)
BitStream->getBitcodeBytes().getPointer(CurBitPos/8, NumElts);
// If we can return a reference to the data, do so to avoid copying it.
if (Blob) {
*Blob = StringRef(Ptr, NumElts);
} else {
// Otherwise, unpack into Vals with zero extension.
for (; NumElts; --NumElts)
Vals.push_back((unsigned char)*Ptr++);
}
// Skip over tail padding.
JumpToBit(NewEnd);
}
return Code;
}
void BitstreamCursor::ReadAbbrevRecord() {
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
unsigned NumOpInfo = ReadVBR(5);
for (unsigned i = 0; i != NumOpInfo; ++i) {
bool IsLiteral = Read(1);
if (IsLiteral) {
Abbv->Add(BitCodeAbbrevOp(ReadVBR64(8)));
continue;
}
BitCodeAbbrevOp::Encoding E = (BitCodeAbbrevOp::Encoding)Read(3);
if (BitCodeAbbrevOp::hasEncodingData(E)) {
uint64_t Data = ReadVBR64(5);
// As a special case, handle fixed(0) (i.e., a fixed field with zero bits)
// and vbr(0) as a literal zero. This is decoded the same way, and avoids
// a slow path in Read() to have to handle reading zero bits.
if ((E == BitCodeAbbrevOp::Fixed || E == BitCodeAbbrevOp::VBR) &&
Data == 0) {
Abbv->Add(BitCodeAbbrevOp(0));
continue;
}
if ((E == BitCodeAbbrevOp::Fixed || E == BitCodeAbbrevOp::VBR) &&
Data > MaxChunkSize)
report_fatal_error(
"Fixed or VBR abbrev record with size > MaxChunkData");
Abbv->Add(BitCodeAbbrevOp(E, Data));
} else
Abbv->Add(BitCodeAbbrevOp(E));
}
if (Abbv->getNumOperandInfos() == 0)
report_fatal_error("Abbrev record with no operands");
CurAbbrevs.push_back(Abbv);
}
bool BitstreamCursor::ReadBlockInfoBlock(unsigned *pCount) {
// If this is the second stream to get to the block info block, skip it.
if (BitStream->hasBlockInfoRecords())
return SkipBlock();
if (EnterSubBlock(bitc::BLOCKINFO_BLOCK_ID)) return true;
SmallVector<uint64_t, 64> Record;
BitstreamReader::BlockInfo *CurBlockInfo = nullptr;
// Read all the records for this module.
while (1) {
BitstreamEntry Entry = advanceSkippingSubblocks(AF_DontAutoprocessAbbrevs, pCount);
switch (Entry.Kind) {
case llvm::BitstreamEntry::SubBlock: // Handled for us already.
case llvm::BitstreamEntry::Error:
return true;
case llvm::BitstreamEntry::EndBlock:
return false;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read abbrev records, associate them with CurBID.
if (Entry.ID == bitc::DEFINE_ABBREV) {
if (!CurBlockInfo) return true;
ReadAbbrevRecord();
// ReadAbbrevRecord installs the abbrev in CurAbbrevs. Move it to the
// appropriate BlockInfo.
CurBlockInfo->Abbrevs.push_back(std::move(CurAbbrevs.back()));
CurAbbrevs.pop_back();
continue;
}
// Read a record.
Record.clear();
switch (readRecord(Entry.ID, Record)) {
default: break; // Default behavior, ignore unknown content.
case bitc::BLOCKINFO_CODE_SETBID:
if (Record.size() < 1) return true;
CurBlockInfo = &BitStream->getOrCreateBlockInfo((unsigned)Record[0]);
break;
case bitc::BLOCKINFO_CODE_BLOCKNAME: {
if (!CurBlockInfo) return true;
if (BitStream->isIgnoringBlockInfoNames()) break; // Ignore name.
std::string Name;
for (unsigned i = 0, e = Record.size(); i != e; ++i)
Name += (char)Record[i];
CurBlockInfo->Name = Name;
break;
}
case bitc::BLOCKINFO_CODE_SETRECORDNAME: {
if (!CurBlockInfo) return true;
if (BitStream->isIgnoringBlockInfoNames()) break; // Ignore name.
std::string Name;
for (unsigned i = 1, e = Record.size(); i != e; ++i)
Name += (char)Record[i];
CurBlockInfo->RecordNames.push_back(std::make_pair((unsigned)Record[0],
Name));
break;
}
}
}
}
// HLSL Change Starts
void BitstreamUseTracker::track(BitstreamUseTracker *BT, uint64_t begin,
uint64_t end) {
if (BT)
BT->insert(begin, end);
}
BitstreamUseTracker::ExtendResult
BitstreamUseTracker::extendRange(UseRange &Curr, UseRange &NewRange) {
// Most likely case first.
if (Curr.first <= NewRange.first && Curr.second < NewRange.second) {
Curr.second = NewRange.second;
return ExtendedEnd;
}
if (Curr.first <= NewRange.first && NewRange.second <= Curr.second) {
return Included; // already included.
}
if (NewRange.first < Curr.first && NewRange.second <= Curr.second) {
return ExtendedBegin;
}
if (NewRange.first < Curr.first && Curr.second < NewRange.second) {
return ExtendedBoth;
}
return Exclusive;
}
bool BitstreamUseTracker::isDense(uint64_t endBitoffset) const {
return Ranges.size() == 1 && Ranges[0].first == 0 &&
Ranges[0].second == endBitoffset;
}
bool BitstreamUseTracker::considerMergeRight(size_t idx) {
bool changed = false;
while (idx < Ranges.size() - 1) {
if (Ranges[idx].second >= Ranges[idx + 1].first) {
Ranges[idx].second = Ranges[idx + 1].second;
Ranges.erase(&Ranges[idx + 1]);
changed = true;
}
}
return changed;
}
void BitstreamUseTracker::insert(uint64_t begin, uint64_t end) {
UseRange IR(begin, end);
for (size_t i = 0, E = Ranges.size(); i < E; ++i) {
ExtendResult ER = extendRange(Ranges[i], IR);
switch (ER) {
case Included:
return;
case ExtendedEnd:
considerMergeRight(i);
return;
case ExtendedBegin:
if (i > 0)
considerMergeRight(i - 1);
return;
case ExtendedBoth:
if (i > 0) {
if (!considerMergeRight(i - 1))
considerMergeRight(i);
} else
considerMergeRight(i);
return;
case Exclusive:
// If completely to the left, then insert there; otherwise,
// keep traversing in order.
if (end <= Ranges[i].first) {
Ranges.insert(&Ranges[i], IR);
return;
}
}
}
// This range goes at the end.
Ranges.push_back(IR);
}
BitstreamUseTracker::ScopeTrack
BitstreamUseTracker::scope_track(BitstreamCursor *BC) {
ScopeTrack Result;
Result.BC = BC;
Result.begin = BC->GetCurrentBitNo();
return Result;
}
// HLSL Change Ends