blob: f4abdd15aa86ef13f159dd5b679f850d8ee2b1d3 [file] [log] [blame] [edit]
///////////////////////////////////////////////////////////////////////////////
// //
// DxilModule.cpp //
// Copyright (C) Microsoft Corporation. All rights reserved. //
// This file is distributed under the University of Illinois Open Source //
// License. See LICENSE.TXT for details. //
// //
///////////////////////////////////////////////////////////////////////////////
#include "dxc/DXIL/DxilModule.h"
#include "dxc/DXIL/DxilConstants.h"
#include "dxc/DXIL/DxilCounters.h"
#include "dxc/DXIL/DxilEntryProps.h"
#include "dxc/DXIL/DxilFunctionProps.h"
#include "dxc/DXIL/DxilInstructions.h"
#include "dxc/DXIL/DxilOperations.h"
#include "dxc/DXIL/DxilShaderModel.h"
#include "dxc/DXIL/DxilSignatureElement.h"
#include "dxc/DXIL/DxilSubobject.h"
#include "dxc/Support/Global.h"
#include "dxc/WinAdapter.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/raw_ostream.h"
#include <unordered_set>
using std::make_unique;
using namespace llvm;
using std::string;
using std::unique_ptr;
using std::vector;
namespace {
class DxilErrorDiagnosticInfo : public DiagnosticInfo {
private:
const char *m_message;
public:
DxilErrorDiagnosticInfo(const char *str)
: DiagnosticInfo(DK_FirstPluginKind, DiagnosticSeverity::DS_Error),
m_message(str) {}
void print(DiagnosticPrinter &DP) const override { DP << m_message; }
};
} // namespace
namespace hlsl {
namespace DXIL {
// Define constant variables exposed in DxilConstants.h
// TODO: revisit data layout descriptions for the following:
// - x64 pointers?
// - Keep elf manging(m:e)?
// For legacy data layout, everything less than 32 align to 32.
const char *kLegacyLayoutString = "e-m:e-p:32:32-i1:32-i8:32-i16:32-i32:32-i64:"
"64-f16:32-f32:32-f64:64-n8:16:32:64";
// New data layout with native low precision types
const char *kNewLayoutString = "e-m:e-p:32:32-i1:32-i8:8-i16:16-i32:32-i64:64-"
"f16:16-f32:32-f64:64-n8:16:32:64";
// Function Attributes
// TODO: consider generating attributes from hctdb
const char *kFP32DenormKindString = "fp32-denorm-mode";
const char *kFP32DenormValueAnyString = "any";
const char *kFP32DenormValuePreserveString = "preserve";
const char *kFP32DenormValueFtzString = "ftz";
const char *kDxBreakFuncName = "dx.break";
const char *kDxBreakCondName = "dx.break.cond";
const char *kDxBreakMDName = "dx.break.br";
const char *kDxIsHelperGlobalName = "dx.ishelper";
const char *kHostLayoutTypePrefix = "hostlayout.";
const char *kWaveOpsIncludeHelperLanesString = "waveops-include-helper-lanes";
} // namespace DXIL
void SetDxilHook(Module &M);
void ClearDxilHook(Module &M);
//------------------------------------------------------------------------------
//
// DxilModule methods.
//
DxilModule::DxilModule(Module *pModule)
: m_Ctx(pModule->getContext()), m_pModule(pModule),
m_pMDHelper(make_unique<DxilMDHelper>(
pModule, make_unique<DxilExtraPropertyHelper>(pModule))),
m_pOP(make_unique<OP>(pModule->getContext(), pModule)),
m_pTypeSystem(make_unique<DxilTypeSystem>(pModule)) {
DXASSERT_NOMSG(m_pModule != nullptr);
SetDxilHook(*m_pModule);
}
DxilModule::~DxilModule() { ClearDxilHook(*m_pModule); }
LLVMContext &DxilModule::GetCtx() const { return m_Ctx; }
Module *DxilModule::GetModule() const { return m_pModule; }
OP *DxilModule::GetOP() const { return m_pOP.get(); }
void DxilModule::SetShaderModel(const ShaderModel *pSM, bool bUseMinPrecision) {
DXASSERT(m_pSM == nullptr || (pSM != nullptr && *m_pSM == *pSM),
"shader model must not change for the module");
DXASSERT(pSM != nullptr && pSM->IsValidForDxil(),
"shader model must be valid");
m_pSM = pSM;
m_pSM->GetDxilVersion(m_DxilMajor, m_DxilMinor);
m_pMDHelper->SetShaderModel(m_pSM);
m_bUseMinPrecision = bUseMinPrecision;
m_pOP->InitWithMinPrecision(m_bUseMinPrecision);
m_pTypeSystem->SetMinPrecision(m_bUseMinPrecision);
if (!m_pSM->IsLib()) {
// Always have valid entry props for non-lib case from this point on.
DxilFunctionProps props;
props.shaderKind = m_pSM->GetKind();
m_DxilEntryPropsMap[nullptr] =
make_unique<DxilEntryProps>(props, m_bUseMinPrecision);
}
m_SerializedRootSignature.clear();
}
const ShaderModel *DxilModule::GetShaderModel() const { return m_pSM; }
void DxilModule::GetDxilVersion(unsigned &DxilMajor,
unsigned &DxilMinor) const {
DxilMajor = m_DxilMajor;
DxilMinor = m_DxilMinor;
}
void DxilModule::SetValidatorVersion(unsigned ValMajor, unsigned ValMinor) {
m_ValMajor = ValMajor;
m_ValMinor = ValMinor;
}
void DxilModule::SetForceZeroStoreLifetimes(bool ForceZeroStoreLifetimes) {
m_ForceZeroStoreLifetimes = ForceZeroStoreLifetimes;
}
bool DxilModule::UpgradeValidatorVersion(unsigned ValMajor, unsigned ValMinor) {
// Don't upgrade if validation was disabled.
if (m_ValMajor == 0 && m_ValMinor == 0) {
return false;
}
if (ValMajor > m_ValMajor ||
(ValMajor == m_ValMajor && ValMinor > m_ValMinor)) {
// Module requires higher validator version than previously set
SetValidatorVersion(ValMajor, ValMinor);
return true;
}
return false;
}
void DxilModule::GetValidatorVersion(unsigned &ValMajor,
unsigned &ValMinor) const {
ValMajor = m_ValMajor;
ValMinor = m_ValMinor;
}
bool DxilModule::GetForceZeroStoreLifetimes() const {
return m_ForceZeroStoreLifetimes;
}
bool DxilModule::GetMinValidatorVersion(unsigned &ValMajor,
unsigned &ValMinor) const {
if (!m_pSM)
return false;
m_pSM->GetMinValidatorVersion(ValMajor, ValMinor);
if (DXIL::CompareVersions(ValMajor, ValMinor, 1, 5) < 0 &&
m_ShaderFlags.GetRaytracingTier1_1())
ValMinor = 5;
else if (DXIL::CompareVersions(ValMajor, ValMinor, 1, 4) < 0 &&
GetSubobjects() && !GetSubobjects()->GetSubobjects().empty())
ValMinor = 4;
else if (DXIL::CompareVersions(ValMajor, ValMinor, 1, 1) < 0 &&
(m_ShaderFlags.GetFeatureInfo() &
hlsl::DXIL::ShaderFeatureInfo_ViewID))
ValMinor = 1;
return true;
}
bool DxilModule::UpgradeToMinValidatorVersion() {
unsigned ValMajor = 1, ValMinor = 0;
if (GetMinValidatorVersion(ValMajor, ValMinor)) {
return UpgradeValidatorVersion(ValMajor, ValMinor);
}
return false;
}
Function *DxilModule::GetEntryFunction() { return m_pEntryFunc; }
const Function *DxilModule::GetEntryFunction() const { return m_pEntryFunc; }
llvm::SmallVector<llvm::Function *, 64> DxilModule::GetExportedFunctions() {
llvm::SmallVector<llvm::Function *, 64> ret;
for (auto const &fn : m_DxilEntryPropsMap) {
if (fn.first != nullptr) {
ret.push_back(const_cast<llvm::Function *>(fn.first));
}
}
if (ret.empty()) {
auto *entryFunction = m_pEntryFunc;
if (entryFunction == nullptr) {
entryFunction = GetPatchConstantFunction();
}
ret.push_back(entryFunction);
}
return ret;
}
void DxilModule::SetEntryFunction(Function *pEntryFunc) {
if (m_pSM->IsLib()) {
DXASSERT(pEntryFunc == nullptr,
"Otherwise, trying to set an entry function on library");
m_pEntryFunc = nullptr;
return;
}
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
m_pEntryFunc = pEntryFunc;
// Move entry props to new function in order to preserve them.
std::unique_ptr<DxilEntryProps> Props =
std::move(m_DxilEntryPropsMap.begin()->second);
m_DxilEntryPropsMap.clear();
m_DxilEntryPropsMap[m_pEntryFunc] = std::move(Props);
}
const string &DxilModule::GetEntryFunctionName() const { return m_EntryName; }
void DxilModule::SetEntryFunctionName(const string &name) {
m_EntryName = name;
}
llvm::Function *DxilModule::GetPatchConstantFunction() {
if (!m_pSM->IsHS())
return nullptr;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS(), "Must be HS profile");
return props.ShaderProps.HS.patchConstantFunc;
}
const llvm::Function *DxilModule::GetPatchConstantFunction() const {
if (!m_pSM->IsHS())
return nullptr;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
const DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS(), "Must be HS profile");
return props.ShaderProps.HS.patchConstantFunc;
}
void DxilModule::SetPatchConstantFunction(llvm::Function *patchConstantFunc) {
if (!m_pSM->IsHS())
return;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS(), "Must be HS profile");
auto &HS = props.ShaderProps.HS;
if (HS.patchConstantFunc != patchConstantFunc) {
if (HS.patchConstantFunc)
m_PatchConstantFunctions.erase(HS.patchConstantFunc);
HS.patchConstantFunc = patchConstantFunc;
if (patchConstantFunc)
m_PatchConstantFunctions.insert(patchConstantFunc);
}
}
bool DxilModule::IsEntryOrPatchConstantFunction(
const llvm::Function *pFunc) const {
return pFunc == GetEntryFunction() || pFunc == GetPatchConstantFunction();
}
unsigned DxilModule::GetGlobalFlags() const {
unsigned Flags = m_ShaderFlags.GetGlobalFlags();
return Flags;
}
void DxilModule::CollectShaderFlagsForModule(ShaderFlags &Flags) {
ComputeShaderCompatInfo();
for (auto &itInfo : m_FuncToShaderCompat)
Flags.CombineShaderFlags(itInfo.second.shaderFlags);
const ShaderModel *SM = GetShaderModel();
// Set DerivativesInMeshAndAmpShaders if necessary for MS/AS.
if (Flags.GetUsesDerivatives()) {
if (SM->IsMS() || SM->IsAS())
Flags.SetDerivativesInMeshAndAmpShaders(true);
}
// Clear function-local flags not intended for the module.
Flags.ClearLocalFlags();
unsigned NumUAVs = 0;
const unsigned kSmallUAVCount = 8;
bool hasRawAndStructuredBuffer = false;
for (auto &UAV : m_UAVs) {
unsigned uavSize = UAV->GetRangeSize();
NumUAVs += uavSize > 8U ? 9U : uavSize; // avoid overflow
if (UAV->IsROV())
Flags.SetROVs(true);
switch (UAV->GetKind()) {
case DXIL::ResourceKind::RawBuffer:
case DXIL::ResourceKind::StructuredBuffer:
hasRawAndStructuredBuffer = true;
break;
default:
// Not raw/structured.
break;
}
}
// Maintain earlier erroneous counting of UAVs for compatibility
if (DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 6) < 0)
Flags.Set64UAVs(m_UAVs.size() > kSmallUAVCount);
else
Flags.Set64UAVs(NumUAVs > kSmallUAVCount);
if (DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 8) < 0) {
// For 1.7 compatibility, set UAVsAtEveryStage if there are UAVs
// and the shader model is not CS or PS.
if (NumUAVs && !(SM->IsCS() || SM->IsPS()))
Flags.SetUAVsAtEveryStage(true);
} else {
// Starting with 1.8, UAVsAtEveryStage is only set when the shader model is
// a graphics stage where it mattered. It was unnecessary to set it for
// library profiles, or MS/AS profiles.
if (NumUAVs && (SM->IsVS() || SM->IsHS() || SM->IsDS() || SM->IsGS()))
Flags.SetUAVsAtEveryStage(true);
}
for (auto &SRV : m_SRVs) {
switch (SRV->GetKind()) {
case DXIL::ResourceKind::RawBuffer:
case DXIL::ResourceKind::StructuredBuffer:
hasRawAndStructuredBuffer = true;
break;
default:
// Not raw/structured.
break;
}
}
Flags.SetEnableRawAndStructuredBuffers(hasRawAndStructuredBuffer);
bool hasCSRawAndStructuredViaShader4X =
hasRawAndStructuredBuffer && m_pSM->GetMajor() == 4 && m_pSM->IsCS();
Flags.SetCSRawAndStructuredViaShader4X(hasCSRawAndStructuredViaShader4X);
}
void DxilModule::CollectShaderFlagsForModule() {
CollectShaderFlagsForModule(m_ShaderFlags);
// This is also where we record the size of the mesh payload for amplification
// shader output
for (Function &F : GetModule()->functions()) {
if (HasDxilEntryProps(&F)) {
DxilFunctionProps &props = GetDxilFunctionProps(&F);
if (props.shaderKind == DXIL::ShaderKind::Amplification) {
if (props.ShaderProps.AS.payloadSizeInBytes != 0)
continue;
for (const BasicBlock &BB : F.getBasicBlockList()) {
for (const Instruction &I : BB.getInstList()) {
const DxilInst_DispatchMesh dispatch(const_cast<Instruction *>(&I));
if (dispatch) {
Type *payloadTy =
dispatch.get_payload()->getType()->getPointerElementType();
const DataLayout &DL = m_pModule->getDataLayout();
props.ShaderProps.AS.payloadSizeInBytes =
DL.getTypeAllocSize(payloadTy);
}
}
}
}
}
}
}
void DxilModule::SetNumThreads(unsigned x, unsigned y, unsigned z) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 &&
(m_pSM->IsCS() || m_pSM->IsMS() || m_pSM->IsAS()),
"only works for CS/MS/AS profiles");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT_NOMSG(m_pSM->GetKind() == props.shaderKind);
props.numThreads[0] = x;
props.numThreads[1] = y;
props.numThreads[2] = z;
}
unsigned DxilModule::GetNumThreads(unsigned idx) const {
DXASSERT(m_DxilEntryPropsMap.size() == 1 &&
(m_pSM->IsCS() || m_pSM->IsMS() || m_pSM->IsAS()),
"only works for CS/MS/AS profiles");
DXASSERT(idx < 3, "Thread dimension index must be 0-2");
assert(idx < 3);
if (!(m_pSM->IsCS() || m_pSM->IsMS() || m_pSM->IsAS()))
return 0;
const DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT_NOMSG(m_pSM->GetKind() == props.shaderKind);
return props.numThreads[idx];
}
DxilWaveSize &DxilModule::GetWaveSize() {
return const_cast<DxilWaveSize &>(
static_cast<const DxilModule *>(this)->GetWaveSize());
}
const DxilWaveSize &DxilModule::GetWaveSize() const {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsCS(),
"only works for CS profile");
const DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT_NOMSG(m_pSM->GetKind() == props.shaderKind);
return props.WaveSize;
}
DXIL::InputPrimitive DxilModule::GetInputPrimitive() const {
if (!m_pSM->IsGS())
return DXIL::InputPrimitive::Undefined;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsGS(), "Must be GS profile");
return props.ShaderProps.GS.inputPrimitive;
}
void DxilModule::SetInputPrimitive(DXIL::InputPrimitive IP) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsGS(),
"only works for GS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsGS(), "Must be GS profile");
auto &GS = props.ShaderProps.GS;
DXASSERT_NOMSG(DXIL::InputPrimitive::Undefined < IP &&
IP < DXIL::InputPrimitive::LastEntry);
GS.inputPrimitive = IP;
}
unsigned DxilModule::GetMaxVertexCount() const {
if (!m_pSM->IsGS())
return 0;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsGS(), "Must be GS profile");
auto &GS = props.ShaderProps.GS;
DXASSERT_NOMSG(GS.maxVertexCount != 0);
return GS.maxVertexCount;
}
void DxilModule::SetMaxVertexCount(unsigned Count) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsGS(),
"only works for GS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsGS(), "Must be GS profile");
auto &GS = props.ShaderProps.GS;
GS.maxVertexCount = Count;
}
DXIL::PrimitiveTopology DxilModule::GetStreamPrimitiveTopology() const {
return m_StreamPrimitiveTopology;
}
void DxilModule::SetStreamPrimitiveTopology(DXIL::PrimitiveTopology Topology) {
m_StreamPrimitiveTopology = Topology;
SetActiveStreamMask(m_ActiveStreamMask); // Update props
}
bool DxilModule::HasMultipleOutputStreams() const {
if (!m_pSM->IsGS()) {
return false;
} else {
unsigned NumStreams =
(m_ActiveStreamMask & 0x1) + ((m_ActiveStreamMask & 0x2) >> 1) +
((m_ActiveStreamMask & 0x4) >> 2) + ((m_ActiveStreamMask & 0x8) >> 3);
DXASSERT_NOMSG(NumStreams <= DXIL::kNumOutputStreams);
return NumStreams > 1;
}
}
unsigned DxilModule::GetOutputStream() const {
if (!m_pSM->IsGS()) {
return 0;
} else {
DXASSERT_NOMSG(!HasMultipleOutputStreams());
switch (m_ActiveStreamMask) {
case 0x1:
return 0;
case 0x2:
return 1;
case 0x4:
return 2;
case 0x8:
return 3;
default:
DXASSERT_NOMSG(false);
}
return (unsigned)(-1);
}
}
unsigned DxilModule::GetGSInstanceCount() const {
if (!m_pSM->IsGS())
return 0;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsGS(), "Must be GS profile");
return props.ShaderProps.GS.instanceCount;
}
void DxilModule::SetGSInstanceCount(unsigned Count) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsGS(),
"only works for GS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsGS(), "Must be GS profile");
props.ShaderProps.GS.instanceCount = Count;
}
bool DxilModule::IsStreamActive(unsigned Stream) const {
return (m_ActiveStreamMask & (1 << Stream)) != 0;
}
void DxilModule::SetStreamActive(unsigned Stream, bool bActive) {
if (bActive) {
m_ActiveStreamMask |= (1 << Stream);
} else {
m_ActiveStreamMask &= ~(1 << Stream);
}
SetActiveStreamMask(m_ActiveStreamMask);
}
void DxilModule::SetActiveStreamMask(unsigned Mask) {
m_ActiveStreamMask = Mask;
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsGS(),
"only works for GS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsGS(), "Must be GS profile");
for (unsigned i = 0; i < 4; i++) {
if (IsStreamActive(i))
props.ShaderProps.GS.streamPrimitiveTopologies[i] =
m_StreamPrimitiveTopology;
else
props.ShaderProps.GS.streamPrimitiveTopologies[i] =
DXIL::PrimitiveTopology::Undefined;
}
}
unsigned DxilModule::GetActiveStreamMask() const { return m_ActiveStreamMask; }
bool DxilModule::GetUseMinPrecision() const { return m_bUseMinPrecision; }
void DxilModule::SetDisableOptimization(bool DisableOptimization) {
m_bDisableOptimizations = DisableOptimization;
}
bool DxilModule::GetDisableOptimization() const {
return m_bDisableOptimizations;
}
void DxilModule::SetAllResourcesBound(bool ResourcesBound) {
m_bAllResourcesBound = ResourcesBound;
}
bool DxilModule::GetAllResourcesBound() const { return m_bAllResourcesBound; }
void DxilModule::SetResMayAlias(bool resMayAlias) {
m_bResMayAlias = resMayAlias;
}
bool DxilModule::GetResMayAlias() const { return m_bResMayAlias; }
void DxilModule::SetLegacyResourceReservation(bool legacyResourceReservation) {
m_IntermediateFlags &= ~LegacyResourceReservation;
if (legacyResourceReservation)
m_IntermediateFlags |= LegacyResourceReservation;
}
bool DxilModule::GetLegacyResourceReservation() const {
return (m_IntermediateFlags & LegacyResourceReservation) != 0;
}
void DxilModule::ClearIntermediateOptions() { m_IntermediateFlags = 0; }
unsigned DxilModule::GetInputControlPointCount() const {
if (!(m_pSM->IsHS() || m_pSM->IsDS()))
return 0;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS() || props.IsDS(), "Must be HS or DS profile");
if (props.IsHS())
return props.ShaderProps.HS.inputControlPoints;
else
return props.ShaderProps.DS.inputControlPoints;
}
void DxilModule::SetInputControlPointCount(unsigned NumICPs) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && (m_pSM->IsHS() || m_pSM->IsDS()),
"only works for non-lib profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS() || props.IsDS(), "Must be HS or DS profile");
if (props.IsHS())
props.ShaderProps.HS.inputControlPoints = NumICPs;
else
props.ShaderProps.DS.inputControlPoints = NumICPs;
}
DXIL::TessellatorDomain DxilModule::GetTessellatorDomain() const {
if (!(m_pSM->IsHS() || m_pSM->IsDS()))
return DXIL::TessellatorDomain::Undefined;
DXASSERT_NOMSG(m_DxilEntryPropsMap.size() == 1);
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
if (props.IsHS())
return props.ShaderProps.HS.domain;
else
return props.ShaderProps.DS.domain;
}
void DxilModule::SetTessellatorDomain(DXIL::TessellatorDomain TessDomain) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && (m_pSM->IsHS() || m_pSM->IsDS()),
"only works for HS or DS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS() || props.IsDS(), "Must be HS or DS profile");
if (props.IsHS())
props.ShaderProps.HS.domain = TessDomain;
else
props.ShaderProps.DS.domain = TessDomain;
}
unsigned DxilModule::GetOutputControlPointCount() const {
if (!m_pSM->IsHS())
return 0;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS(), "Must be HS profile");
return props.ShaderProps.HS.outputControlPoints;
}
void DxilModule::SetOutputControlPointCount(unsigned NumOCPs) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsHS(),
"only works for HS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS(), "Must be HS profile");
props.ShaderProps.HS.outputControlPoints = NumOCPs;
}
DXIL::TessellatorPartitioning DxilModule::GetTessellatorPartitioning() const {
if (!m_pSM->IsHS())
return DXIL::TessellatorPartitioning::Undefined;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS(), "Must be HS profile");
return props.ShaderProps.HS.partition;
}
void DxilModule::SetTessellatorPartitioning(
DXIL::TessellatorPartitioning TessPartitioning) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsHS(),
"only works for HS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS(), "Must be HS profile");
props.ShaderProps.HS.partition = TessPartitioning;
}
DXIL::TessellatorOutputPrimitive
DxilModule::GetTessellatorOutputPrimitive() const {
if (!m_pSM->IsHS())
return DXIL::TessellatorOutputPrimitive::Undefined;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS(), "Must be HS profile");
return props.ShaderProps.HS.outputPrimitive;
}
void DxilModule::SetTessellatorOutputPrimitive(
DXIL::TessellatorOutputPrimitive TessOutputPrimitive) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsHS(),
"only works for HS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS(), "Must be HS profile");
props.ShaderProps.HS.outputPrimitive = TessOutputPrimitive;
}
float DxilModule::GetMaxTessellationFactor() const {
if (!m_pSM->IsHS())
return 0.0F;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS(), "Must be HS profile");
return props.ShaderProps.HS.maxTessFactor;
}
void DxilModule::SetMaxTessellationFactor(float MaxTessellationFactor) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsHS(),
"only works for HS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsHS(), "Must be HS profile");
props.ShaderProps.HS.maxTessFactor = MaxTessellationFactor;
}
unsigned DxilModule::GetMaxOutputVertices() const {
if (!m_pSM->IsMS())
return 0;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsMS(), "Must be MS profile");
return props.ShaderProps.MS.maxVertexCount;
}
void DxilModule::SetMaxOutputVertices(unsigned NumOVs) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsMS(),
"only works for MS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsMS(), "Must be MS profile");
props.ShaderProps.MS.maxVertexCount = NumOVs;
}
unsigned DxilModule::GetMaxOutputPrimitives() const {
if (!m_pSM->IsMS())
return 0;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsMS(), "Must be MS profile");
return props.ShaderProps.MS.maxPrimitiveCount;
}
void DxilModule::SetMaxOutputPrimitives(unsigned NumOPs) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsMS(),
"only works for MS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsMS(), "Must be MS profile");
props.ShaderProps.MS.maxPrimitiveCount = NumOPs;
}
DXIL::MeshOutputTopology DxilModule::GetMeshOutputTopology() const {
if (!m_pSM->IsMS())
return DXIL::MeshOutputTopology::Undefined;
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsMS(), "Must be MS profile");
return props.ShaderProps.MS.outputTopology;
}
void DxilModule::SetMeshOutputTopology(
DXIL::MeshOutputTopology MeshOutputTopology) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsMS(),
"only works for MS profile");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsMS(), "Must be MS profile");
props.ShaderProps.MS.outputTopology = MeshOutputTopology;
}
unsigned DxilModule::GetPayloadSizeInBytes() const {
if (m_pSM->IsMS()) {
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsMS(), "Must be MS profile");
return props.ShaderProps.MS.payloadSizeInBytes;
} else if (m_pSM->IsAS()) {
DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop");
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsAS(), "Must be AS profile");
return props.ShaderProps.AS.payloadSizeInBytes;
} else {
return 0;
}
}
void DxilModule::SetPayloadSizeInBytes(unsigned Size) {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && (m_pSM->IsMS() || m_pSM->IsAS()),
"only works for MS or AS profile");
if (m_pSM->IsMS()) {
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsMS(), "Must be MS profile");
props.ShaderProps.MS.payloadSizeInBytes = Size;
} else if (m_pSM->IsAS()) {
DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props;
DXASSERT(props.IsAS(), "Must be AS profile");
props.ShaderProps.AS.payloadSizeInBytes = Size;
}
}
void DxilModule::SetAutoBindingSpace(uint32_t Space) {
m_AutoBindingSpace = Space;
}
uint32_t DxilModule::GetAutoBindingSpace() const { return m_AutoBindingSpace; }
void DxilModule::SetShaderProperties(DxilFunctionProps *props) {
if (!props)
return;
DxilFunctionProps &ourProps = GetDxilFunctionProps(GetEntryFunction());
if (props != &ourProps) {
ourProps.shaderKind = props->shaderKind;
ourProps.ShaderProps = props->ShaderProps;
}
switch (props->shaderKind) {
case DXIL::ShaderKind::Pixel: {
auto &PS = props->ShaderProps.PS;
m_ShaderFlags.SetForceEarlyDepthStencil(PS.EarlyDepthStencil);
} break;
case DXIL::ShaderKind::Compute:
case DXIL::ShaderKind::Domain:
case DXIL::ShaderKind::Hull:
case DXIL::ShaderKind::Vertex:
case DXIL::ShaderKind::Mesh:
case DXIL::ShaderKind::Amplification:
break;
default: {
DXASSERT(props->shaderKind == DXIL::ShaderKind::Geometry,
"else invalid shader kind");
auto &GS = props->ShaderProps.GS;
m_ActiveStreamMask = 0;
for (size_t i = 0; i < _countof(GS.streamPrimitiveTopologies); ++i) {
if (GS.streamPrimitiveTopologies[i] !=
DXIL::PrimitiveTopology::Undefined) {
m_ActiveStreamMask |= (1 << i);
DXASSERT_NOMSG(
m_StreamPrimitiveTopology == DXIL::PrimitiveTopology::Undefined ||
m_StreamPrimitiveTopology == GS.streamPrimitiveTopologies[i]);
m_StreamPrimitiveTopology = GS.streamPrimitiveTopologies[i];
}
}
// Refresh props:
SetActiveStreamMask(m_ActiveStreamMask);
} break;
}
}
template <typename T>
unsigned DxilModule::AddResource(vector<unique_ptr<T>> &Vec,
unique_ptr<T> pRes) {
DXASSERT_NOMSG((unsigned)Vec.size() < UINT_MAX);
unsigned Id = (unsigned)Vec.size();
Vec.emplace_back(std::move(pRes));
return Id;
}
unsigned DxilModule::AddCBuffer(unique_ptr<DxilCBuffer> pCB) {
return AddResource<DxilCBuffer>(m_CBuffers, std::move(pCB));
}
DxilCBuffer &DxilModule::GetCBuffer(unsigned idx) { return *m_CBuffers[idx]; }
const DxilCBuffer &DxilModule::GetCBuffer(unsigned idx) const {
return *m_CBuffers[idx];
}
const vector<unique_ptr<DxilCBuffer>> &DxilModule::GetCBuffers() const {
return m_CBuffers;
}
unsigned DxilModule::AddSampler(unique_ptr<DxilSampler> pSampler) {
return AddResource<DxilSampler>(m_Samplers, std::move(pSampler));
}
DxilSampler &DxilModule::GetSampler(unsigned idx) { return *m_Samplers[idx]; }
const DxilSampler &DxilModule::GetSampler(unsigned idx) const {
return *m_Samplers[idx];
}
const vector<unique_ptr<DxilSampler>> &DxilModule::GetSamplers() const {
return m_Samplers;
}
unsigned DxilModule::AddSRV(unique_ptr<DxilResource> pSRV) {
return AddResource<DxilResource>(m_SRVs, std::move(pSRV));
}
DxilResource &DxilModule::GetSRV(unsigned idx) { return *m_SRVs[idx]; }
const DxilResource &DxilModule::GetSRV(unsigned idx) const {
return *m_SRVs[idx];
}
const vector<unique_ptr<DxilResource>> &DxilModule::GetSRVs() const {
return m_SRVs;
}
unsigned DxilModule::AddUAV(unique_ptr<DxilResource> pUAV) {
return AddResource<DxilResource>(m_UAVs, std::move(pUAV));
}
DxilResource &DxilModule::GetUAV(unsigned idx) { return *m_UAVs[idx]; }
const DxilResource &DxilModule::GetUAV(unsigned idx) const {
return *m_UAVs[idx];
}
const vector<unique_ptr<DxilResource>> &DxilModule::GetUAVs() const {
return m_UAVs;
}
template <typename TResource>
static void RemoveResources(std::vector<std::unique_ptr<TResource>> &vec,
std::unordered_set<unsigned> &immResID) {
for (auto p = vec.begin(); p != vec.end();) {
auto c = p++;
if (immResID.count((*c)->GetID()) == 0) {
p = vec.erase(c);
}
}
}
static void CollectUsedResource(Value *resID,
std::unordered_set<Value *> &usedResID) {
if (usedResID.count(resID) > 0)
return;
usedResID.insert(resID);
if (dyn_cast<ConstantInt>(resID)) {
// Do nothing
} else if (ZExtInst *ZEI = dyn_cast<ZExtInst>(resID)) {
if (ZEI->getSrcTy()->isIntegerTy()) {
IntegerType *ITy = cast<IntegerType>(ZEI->getSrcTy());
if (ITy->getBitWidth() == 1) {
usedResID.insert(ConstantInt::get(ZEI->getDestTy(), 0));
usedResID.insert(ConstantInt::get(ZEI->getDestTy(), 1));
}
}
} else if (SelectInst *SI = dyn_cast<SelectInst>(resID)) {
CollectUsedResource(SI->getTrueValue(), usedResID);
CollectUsedResource(SI->getFalseValue(), usedResID);
} else if (PHINode *Phi = dyn_cast<PHINode>(resID)) {
for (Use &U : Phi->incoming_values()) {
CollectUsedResource(U.get(), usedResID);
}
}
// TODO: resID could be other types of instructions depending on the compiler
// optimization.
}
static void ConvertUsedResource(std::unordered_set<unsigned> &immResID,
std::unordered_set<Value *> &usedResID) {
for (Value *V : usedResID) {
if (ConstantInt *cResID = dyn_cast<ConstantInt>(V)) {
immResID.insert(cResID->getLimitedValue());
}
}
}
void DxilModule::RemoveFunction(llvm::Function *F) {
DXASSERT_NOMSG(F != nullptr);
m_DxilEntryPropsMap.erase(F);
if (m_pTypeSystem.get()->GetFunctionAnnotation(F))
m_pTypeSystem.get()->EraseFunctionAnnotation(F);
m_pOP->RemoveFunction(F);
}
void DxilModule::RemoveUnusedResources() {
DXASSERT(!m_pSM->IsLib(), "this function does not work on libraries");
hlsl::OP *hlslOP = GetOP();
Function *createHandleFunc =
hlslOP->GetOpFunc(DXIL::OpCode::CreateHandle, Type::getVoidTy(GetCtx()));
if (createHandleFunc->user_empty()) {
m_CBuffers.clear();
m_UAVs.clear();
m_SRVs.clear();
m_Samplers.clear();
createHandleFunc->eraseFromParent();
return;
}
std::unordered_set<Value *> usedUAVID;
std::unordered_set<Value *> usedSRVID;
std::unordered_set<Value *> usedSamplerID;
std::unordered_set<Value *> usedCBufID;
// Collect used ID.
for (User *U : createHandleFunc->users()) {
CallInst *CI = cast<CallInst>(U);
Value *vResClass =
CI->getArgOperand(DXIL::OperandIndex::kCreateHandleResClassOpIdx);
ConstantInt *cResClass = cast<ConstantInt>(vResClass);
DXIL::ResourceClass resClass =
static_cast<DXIL::ResourceClass>(cResClass->getLimitedValue());
// Skip unused resource handle.
if (CI->user_empty())
continue;
Value *resID =
CI->getArgOperand(DXIL::OperandIndex::kCreateHandleResIDOpIdx);
switch (resClass) {
case DXIL::ResourceClass::CBuffer:
CollectUsedResource(resID, usedCBufID);
break;
case DXIL::ResourceClass::Sampler:
CollectUsedResource(resID, usedSamplerID);
break;
case DXIL::ResourceClass::SRV:
CollectUsedResource(resID, usedSRVID);
break;
case DXIL::ResourceClass::UAV:
CollectUsedResource(resID, usedUAVID);
break;
default:
DXASSERT(0, "invalid res class");
break;
}
}
std::unordered_set<unsigned> immUAVID;
std::unordered_set<unsigned> immSRVID;
std::unordered_set<unsigned> immSamplerID;
std::unordered_set<unsigned> immCBufID;
ConvertUsedResource(immUAVID, usedUAVID);
ConvertUsedResource(immSRVID, usedSRVID);
ConvertUsedResource(immSamplerID, usedSamplerID);
ConvertUsedResource(immCBufID, usedCBufID);
RemoveResources(m_UAVs, immUAVID);
RemoveResources(m_SRVs, immSRVID);
RemoveResources(m_Samplers, immSamplerID);
RemoveResources(m_CBuffers, immCBufID);
}
namespace {
template <typename TResource>
static void RemoveResourcesWithUnusedSymbolsHelper(
std::vector<std::unique_ptr<TResource>> &vec) {
unsigned resID = 0;
std::unordered_set<GlobalVariable *>
eraseList; // Need in case of duplicate defs of lib resources
for (auto p = vec.begin(); p != vec.end();) {
auto c = p++;
Constant *symbol = (*c)->GetGlobalSymbol();
symbol->removeDeadConstantUsers();
if (symbol->user_empty()) {
p = vec.erase(c);
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(symbol))
eraseList.insert(GV);
continue;
}
if ((*c)->GetID() != resID) {
(*c)->SetID(resID);
}
resID++;
}
for (auto gv : eraseList) {
gv->eraseFromParent();
}
}
} // namespace
void DxilModule::RemoveResourcesWithUnusedSymbols() {
RemoveResourcesWithUnusedSymbolsHelper(m_SRVs);
RemoveResourcesWithUnusedSymbolsHelper(m_UAVs);
RemoveResourcesWithUnusedSymbolsHelper(m_CBuffers);
RemoveResourcesWithUnusedSymbolsHelper(m_Samplers);
}
namespace {
template <typename TResource>
static bool RenameResources(std::vector<std::unique_ptr<TResource>> &vec,
const std::string &prefix) {
bool bChanged = false;
for (auto &res : vec) {
res->SetGlobalName(prefix + res->GetGlobalName());
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(res->GetGlobalSymbol())) {
GV->setName(prefix + GV->getName());
}
bChanged = true;
}
return bChanged;
}
} // namespace
bool DxilModule::RenameResourcesWithPrefix(const std::string &prefix) {
bool bChanged = false;
bChanged |= RenameResources(m_SRVs, prefix);
bChanged |= RenameResources(m_UAVs, prefix);
bChanged |= RenameResources(m_CBuffers, prefix);
bChanged |= RenameResources(m_Samplers, prefix);
return bChanged;
}
namespace {
template <typename TResource>
static bool
RenameGlobalsWithBinding(std::vector<std::unique_ptr<TResource>> &vec,
llvm::StringRef prefix, bool bKeepName) {
bool bChanged = false;
for (auto &res : vec) {
if (res->IsAllocated()) {
std::string newName;
if (bKeepName)
newName = (Twine(res->GetGlobalName()) + "." + Twine(prefix) +
Twine(res->GetLowerBound()) + "." + Twine(res->GetSpaceID()))
.str();
else
newName = (Twine(prefix) + Twine(res->GetLowerBound()) + "." +
Twine(res->GetSpaceID()))
.str();
res->SetGlobalName(newName);
if (GlobalVariable *GV =
dyn_cast<GlobalVariable>(res->GetGlobalSymbol())) {
GV->setName(newName);
}
bChanged = true;
}
}
return bChanged;
}
} // namespace
bool DxilModule::RenameResourceGlobalsWithBinding(bool bKeepName) {
bool bChanged = false;
bChanged |= RenameGlobalsWithBinding(m_SRVs, "t", bKeepName);
bChanged |= RenameGlobalsWithBinding(m_UAVs, "u", bKeepName);
bChanged |= RenameGlobalsWithBinding(m_CBuffers, "b", bKeepName);
bChanged |= RenameGlobalsWithBinding(m_Samplers, "s", bKeepName);
return bChanged;
}
DxilSignature &DxilModule::GetInputSignature() {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(),
"only works for non-lib profile");
return m_DxilEntryPropsMap.begin()->second->sig.InputSignature;
}
const DxilSignature &DxilModule::GetInputSignature() const {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(),
"only works for non-lib profile");
return m_DxilEntryPropsMap.begin()->second->sig.InputSignature;
}
DxilSignature &DxilModule::GetOutputSignature() {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(),
"only works for non-lib profile");
return m_DxilEntryPropsMap.begin()->second->sig.OutputSignature;
}
const DxilSignature &DxilModule::GetOutputSignature() const {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(),
"only works for non-lib profile");
return m_DxilEntryPropsMap.begin()->second->sig.OutputSignature;
}
DxilSignature &DxilModule::GetPatchConstOrPrimSignature() {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(),
"only works for non-lib profile");
return m_DxilEntryPropsMap.begin()->second->sig.PatchConstOrPrimSignature;
}
const DxilSignature &DxilModule::GetPatchConstOrPrimSignature() const {
DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(),
"only works for non-lib profile");
return m_DxilEntryPropsMap.begin()->second->sig.PatchConstOrPrimSignature;
}
const std::vector<uint8_t> &DxilModule::GetSerializedRootSignature() const {
return m_SerializedRootSignature;
}
std::vector<uint8_t> &DxilModule::GetSerializedRootSignature() {
return m_SerializedRootSignature;
}
// Entry props.
bool DxilModule::HasDxilEntrySignature(const llvm::Function *F) const {
return m_DxilEntryPropsMap.find(F) != m_DxilEntryPropsMap.end();
}
DxilEntrySignature &DxilModule::GetDxilEntrySignature(const llvm::Function *F) {
DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map");
return m_DxilEntryPropsMap[F].get()->sig;
}
void DxilModule::ReplaceDxilEntryProps(llvm::Function *F,
llvm::Function *NewF) {
DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map");
std::unique_ptr<DxilEntryProps> Props = std::move(m_DxilEntryPropsMap[F]);
m_DxilEntryPropsMap.erase(F);
m_DxilEntryPropsMap[NewF] = std::move(Props);
}
void DxilModule::CloneDxilEntryProps(llvm::Function *F, llvm::Function *NewF) {
DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map");
std::unique_ptr<DxilEntryProps> Props =
make_unique<DxilEntryProps>(*m_DxilEntryPropsMap[F]);
m_DxilEntryPropsMap[NewF] = std::move(Props);
}
bool DxilModule::HasDxilEntryProps(const llvm::Function *F) const {
return m_DxilEntryPropsMap.find(F) != m_DxilEntryPropsMap.end();
}
DxilEntryProps &DxilModule::GetDxilEntryProps(const llvm::Function *F) {
DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map");
return *m_DxilEntryPropsMap.find(F)->second.get();
}
const DxilEntryProps &
DxilModule::GetDxilEntryProps(const llvm::Function *F) const {
DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map");
return *m_DxilEntryPropsMap.find(F)->second.get();
}
bool DxilModule::HasDxilFunctionProps(const llvm::Function *F) const {
return m_DxilEntryPropsMap.find(F) != m_DxilEntryPropsMap.end();
}
DxilFunctionProps &DxilModule::GetDxilFunctionProps(const llvm::Function *F) {
return const_cast<DxilFunctionProps &>(
static_cast<const DxilModule *>(this)->GetDxilFunctionProps(F));
}
const DxilFunctionProps &
DxilModule::GetDxilFunctionProps(const llvm::Function *F) const {
DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map");
return m_DxilEntryPropsMap.find(F)->second.get()->props;
}
void DxilModule::SetPatchConstantFunctionForHS(
llvm::Function *hullShaderFunc, llvm::Function *patchConstantFunc) {
auto propIter = m_DxilEntryPropsMap.find(hullShaderFunc);
DXASSERT(propIter != m_DxilEntryPropsMap.end(),
"Hull shader must already have function props!");
DxilFunctionProps &props = propIter->second->props;
DXASSERT(props.IsHS(), "else hullShaderFunc is not a Hull Shader");
auto &HS = props.ShaderProps.HS;
if (HS.patchConstantFunc != patchConstantFunc) {
if (HS.patchConstantFunc)
m_PatchConstantFunctions.erase(HS.patchConstantFunc);
HS.patchConstantFunc = patchConstantFunc;
if (patchConstantFunc)
m_PatchConstantFunctions.insert(patchConstantFunc);
}
}
bool DxilModule::IsGraphicsShader(const llvm::Function *F) const {
return HasDxilFunctionProps(F) && GetDxilFunctionProps(F).IsGraphics();
}
bool DxilModule::IsPatchConstantShader(const llvm::Function *F) const {
return m_PatchConstantFunctions.count(F) != 0;
}
bool DxilModule::IsComputeShader(const llvm::Function *F) const {
return HasDxilFunctionProps(F) && GetDxilFunctionProps(F).IsCS();
}
bool DxilModule::IsEntryThatUsesSignatures(const llvm::Function *F) const {
auto propIter = m_DxilEntryPropsMap.find(F);
if (propIter != m_DxilEntryPropsMap.end()) {
DxilFunctionProps &props = propIter->second->props;
return props.IsGraphics() || props.IsCS() || props.IsNode();
}
// Otherwise, return true if patch constant function
return IsPatchConstantShader(F);
}
bool DxilModule::IsEntry(const llvm::Function *F) const {
auto propIter = m_DxilEntryPropsMap.find(F);
if (propIter != m_DxilEntryPropsMap.end()) {
DXASSERT(propIter->second->props.shaderKind != DXIL::ShaderKind::Invalid,
"invalid entry props");
return true;
}
// Otherwise, return true if patch constant function
return IsPatchConstantShader(F);
}
bool DxilModule::StripRootSignatureFromMetadata() {
NamedMDNode *pRootSignatureNamedMD =
GetModule()->getNamedMetadata(DxilMDHelper::kDxilRootSignatureMDName);
if (pRootSignatureNamedMD) {
GetModule()->eraseNamedMetadata(pRootSignatureNamedMD);
return true;
}
return false;
}
DxilSubobjects *DxilModule::GetSubobjects() { return m_pSubobjects.get(); }
const DxilSubobjects *DxilModule::GetSubobjects() const {
return m_pSubobjects.get();
}
DxilSubobjects *DxilModule::ReleaseSubobjects() {
return m_pSubobjects.release();
}
void DxilModule::ResetSubobjects(DxilSubobjects *subobjects) {
m_pSubobjects.reset(subobjects);
}
bool DxilModule::StripSubobjectsFromMetadata() {
NamedMDNode *pSubobjectsNamedMD =
GetModule()->getNamedMetadata(DxilMDHelper::kDxilSubobjectsMDName);
if (pSubobjectsNamedMD) {
GetModule()->eraseNamedMetadata(pSubobjectsNamedMD);
return true;
}
return false;
}
void DxilModule::UpdateValidatorVersionMetadata() {
m_pMDHelper->EmitValidatorVersion(m_ValMajor, m_ValMinor);
}
void DxilModule::ResetSerializedRootSignature(std::vector<uint8_t> &Value) {
m_SerializedRootSignature.assign(Value.begin(), Value.end());
}
DxilTypeSystem &DxilModule::GetTypeSystem() { return *m_pTypeSystem; }
const DxilTypeSystem &DxilModule::GetTypeSystem() const {
return *m_pTypeSystem;
}
std::vector<unsigned> &DxilModule::GetSerializedViewIdState() {
return m_SerializedState;
}
const std::vector<unsigned> &DxilModule::GetSerializedViewIdState() const {
return m_SerializedState;
}
void DxilModule::ResetTypeSystem(DxilTypeSystem *pValue) {
m_pTypeSystem.reset(pValue);
}
void DxilModule::ResetOP(hlsl::OP *hlslOP) { m_pOP.reset(hlslOP); }
void DxilModule::ResetEntryPropsMap(DxilEntryPropsMap &&PropMap) {
m_DxilEntryPropsMap.clear();
std::move(PropMap.begin(), PropMap.end(),
inserter(m_DxilEntryPropsMap, m_DxilEntryPropsMap.begin()));
}
static const StringRef llvmUsedName = "llvm.used";
void DxilModule::EmitLLVMUsed() {
if (GlobalVariable *oldGV = m_pModule->getGlobalVariable(llvmUsedName)) {
oldGV->eraseFromParent();
}
if (m_LLVMUsed.empty())
return;
vector<llvm::Constant *> GVs;
Type *pI8PtrType = Type::getInt8PtrTy(m_Ctx, DXIL::kDefaultAddrSpace);
GVs.resize(m_LLVMUsed.size());
for (size_t i = 0, e = m_LLVMUsed.size(); i != e; i++) {
Constant *pConst = cast<Constant>(&*m_LLVMUsed[i]);
PointerType *pPtrType = dyn_cast<PointerType>(pConst->getType());
if (pPtrType->getPointerAddressSpace() != DXIL::kDefaultAddrSpace) {
// Cast pointer to addrspace 0, as LLVMUsed elements must have the same
// type.
GVs[i] = ConstantExpr::getAddrSpaceCast(pConst, pI8PtrType);
} else {
GVs[i] = ConstantExpr::getPointerCast(pConst, pI8PtrType);
}
}
ArrayType *pATy = ArrayType::get(pI8PtrType, GVs.size());
GlobalVariable *pGV =
new GlobalVariable(*m_pModule, pATy, false, GlobalValue::AppendingLinkage,
ConstantArray::get(pATy, GVs), llvmUsedName);
pGV->setSection("llvm.metadata");
}
void DxilModule::ClearLLVMUsed() {
if (GlobalVariable *oldGV = m_pModule->getGlobalVariable(llvmUsedName)) {
oldGV->eraseFromParent();
}
if (m_LLVMUsed.empty())
return;
for (size_t i = 0, e = m_LLVMUsed.size(); i != e; i++) {
Constant *pConst = cast<Constant>(&*m_LLVMUsed[i]);
pConst->removeDeadConstantUsers();
}
m_LLVMUsed.clear();
}
vector<GlobalVariable *> &DxilModule::GetLLVMUsed() { return m_LLVMUsed; }
// DXIL metadata serialization/deserialization.
void DxilModule::ClearDxilMetadata(Module &M) {
// Delete: DXIL version, validator version, DXIL shader model,
// entry point tuples (shader properties, signatures, resources)
// type system, view ID state, LLVM used, entry point tuples,
// root signature, function properties.
// Other cases for libs pending.
// LLVM used is a global variable - handle separately.
SmallVector<NamedMDNode *, 8> nodes;
for (NamedMDNode &b : M.named_metadata()) {
StringRef name = b.getName();
if (name == DxilMDHelper::kDxilVersionMDName ||
name == DxilMDHelper::kDxilValidatorVersionMDName ||
name == DxilMDHelper::kDxilShaderModelMDName ||
name == DxilMDHelper::kDxilEntryPointsMDName ||
name == DxilMDHelper::kDxilRootSignatureMDName ||
name == DxilMDHelper::kDxilIntermediateOptionsMDName ||
name == DxilMDHelper::kDxilResourcesMDName ||
name == DxilMDHelper::kDxilTypeSystemMDName ||
name == DxilMDHelper::kDxilViewIdStateMDName ||
name == DxilMDHelper::kDxilSubobjectsMDName ||
name == DxilMDHelper::kDxilCountersMDName ||
name.startswith(DxilMDHelper::kDxilTypeSystemHelperVariablePrefix)) {
nodes.push_back(&b);
}
}
for (size_t i = 0; i < nodes.size(); ++i) {
M.eraseNamedMetadata(nodes[i]);
}
}
void DxilModule::EmitDxilMetadata() {
m_pMDHelper->EmitDxilVersion(m_DxilMajor, m_DxilMinor);
m_pMDHelper->EmitValidatorVersion(m_ValMajor, m_ValMinor);
m_pMDHelper->EmitDxilShaderModel(m_pSM);
m_pMDHelper->EmitDxilIntermediateOptions(m_IntermediateFlags);
MDTuple *pMDProperties = nullptr;
uint64_t flag = m_ShaderFlags.GetShaderFlagsRaw();
if (m_pSM->IsLib()) {
DxilFunctionProps props;
props.shaderKind = DXIL::ShaderKind::Library;
pMDProperties = m_pMDHelper->EmitDxilEntryProperties(flag, props,
GetAutoBindingSpace());
} else {
pMDProperties = m_pMDHelper->EmitDxilEntryProperties(
flag, m_DxilEntryPropsMap.begin()->second->props,
GetAutoBindingSpace());
}
MDTuple *pMDSignatures = nullptr;
if (!m_pSM->IsLib()) {
pMDSignatures = m_pMDHelper->EmitDxilSignatures(
m_DxilEntryPropsMap.begin()->second->sig);
}
MDTuple *pMDResources = EmitDxilResources();
if (pMDResources)
m_pMDHelper->EmitDxilResources(pMDResources);
m_pMDHelper->EmitDxilTypeSystem(GetTypeSystem(), m_LLVMUsed);
if (!m_pSM->IsLib() && !m_pSM->IsCS() &&
((m_ValMajor == 0 && m_ValMinor == 0) ||
(m_ValMajor > 1 || (m_ValMajor == 1 && m_ValMinor >= 1)))) {
m_pMDHelper->EmitDxilViewIdState(m_SerializedState);
}
// Emit the DXR Payload Annotations only for library Dxil 1.6 and above.
if (m_pSM->IsLib()) {
if (DXIL::CompareVersions(m_DxilMajor, m_DxilMinor, 1, 6) >= 0) {
m_pMDHelper->EmitDxrPayloadAnnotations(GetTypeSystem());
}
}
EmitLLVMUsed();
MDTuple *pEntry = m_pMDHelper->EmitDxilEntryPointTuple(
GetEntryFunction(), m_EntryName, pMDSignatures, pMDResources,
pMDProperties);
vector<MDNode *> Entries;
Entries.emplace_back(pEntry);
if (m_pSM->IsLib()) {
// Sort functions by name to keep metadata deterministic
vector<const Function *> funcOrder;
funcOrder.reserve(m_DxilEntryPropsMap.size());
std::transform(m_DxilEntryPropsMap.begin(), m_DxilEntryPropsMap.end(),
std::back_inserter(funcOrder),
[](const std::pair<const llvm::Function *const,
std::unique_ptr<DxilEntryProps>> &p)
-> const Function * { return p.first; });
std::sort(funcOrder.begin(), funcOrder.end(),
[](const Function *F1, const Function *F2) {
return F1->getName() < F2->getName();
});
for (auto F : funcOrder) {
auto &entryProps = m_DxilEntryPropsMap[F];
MDTuple *pProps =
m_pMDHelper->EmitDxilEntryProperties(0, entryProps->props, 0);
MDTuple *pSig = m_pMDHelper->EmitDxilSignatures(entryProps->sig);
MDTuple *pSubEntry = m_pMDHelper->EmitDxilEntryPointTuple(
const_cast<Function *>(F), F->getName().str(), pSig, nullptr, pProps);
Entries.emplace_back(pSubEntry);
}
funcOrder.clear();
// Save Subobjects
if (GetSubobjects()) {
m_pMDHelper->EmitSubobjects(*GetSubobjects());
}
}
m_pMDHelper->EmitDxilEntryPoints(Entries);
if (!m_SerializedRootSignature.empty()) {
m_pMDHelper->EmitRootSignature(m_SerializedRootSignature);
}
}
bool DxilModule::IsKnownNamedMetaData(llvm::NamedMDNode &Node) {
return DxilMDHelper::IsKnownNamedMetaData(Node);
}
bool DxilModule::HasMetadataErrors() { return m_bMetadataErrors; }
void DxilModule::LoadDxilMetadata() {
m_bMetadataErrors = false;
m_pMDHelper->LoadValidatorVersion(m_ValMajor, m_ValMinor);
const ShaderModel *loadedSM;
m_pMDHelper->LoadDxilShaderModel(loadedSM);
m_pMDHelper->LoadDxilIntermediateOptions(m_IntermediateFlags);
// This must be set before LoadDxilEntryProperties
m_pMDHelper->SetShaderModel(loadedSM);
// Setting module shader model requires UseMinPrecision flag,
// which requires loading m_ShaderFlags,
// which requires global entry properties,
// so load entry properties first, then set the shader model
const llvm::NamedMDNode *pEntries = m_pMDHelper->GetDxilEntryPoints();
if (!loadedSM->IsLib()) {
IFTBOOL(pEntries->getNumOperands() == 1, DXC_E_INCORRECT_DXIL_METADATA);
}
Function *pEntryFunc;
string EntryName;
const llvm::MDOperand *pEntrySignatures, *pEntryResources, *pEntryProperties;
m_pMDHelper->GetDxilEntryPoint(pEntries->getOperand(0), pEntryFunc, EntryName,
pEntrySignatures, pEntryResources,
pEntryProperties);
uint64_t rawShaderFlags = 0;
DxilFunctionProps entryFuncProps;
entryFuncProps.shaderKind = loadedSM->GetKind();
m_pMDHelper->LoadDxilEntryProperties(*pEntryProperties, rawShaderFlags,
entryFuncProps, m_AutoBindingSpace);
m_bUseMinPrecision = true;
if (rawShaderFlags) {
m_ShaderFlags.SetShaderFlagsRaw(rawShaderFlags);
m_bUseMinPrecision = !m_ShaderFlags.GetUseNativeLowPrecision();
m_bDisableOptimizations = m_ShaderFlags.GetDisableOptimizations();
m_bAllResourcesBound = m_ShaderFlags.GetAllResourcesBound();
m_bResMayAlias = !m_ShaderFlags.GetResMayNotAlias();
}
// Now that we have the UseMinPrecision flag, set shader model:
SetShaderModel(loadedSM, m_bUseMinPrecision);
// SetShaderModel will initialize m_DxilMajor/m_DxilMinor to min for SM,
// so, load here after shader model so it matches the metadata.
m_pMDHelper->LoadDxilVersion(m_DxilMajor, m_DxilMinor);
if (loadedSM->IsLib()) {
for (unsigned i = 1; i < pEntries->getNumOperands(); i++) {
Function *pFunc;
string Name;
const llvm::MDOperand *pSignatures, *pResources, *pProperties;
m_pMDHelper->GetDxilEntryPoint(pEntries->getOperand(i), pFunc, Name,
pSignatures, pResources, pProperties);
DxilFunctionProps props;
uint64_t rawShaderFlags = 0;
unsigned autoBindingSpace = 0;
m_pMDHelper->LoadDxilEntryProperties(*pProperties, rawShaderFlags, props,
autoBindingSpace);
if (props.IsHS() && props.ShaderProps.HS.patchConstantFunc) {
// Add patch constant function to m_PatchConstantFunctions
m_PatchConstantFunctions.insert(props.ShaderProps.HS.patchConstantFunc);
}
std::unique_ptr<DxilEntryProps> pEntryProps =
make_unique<DxilEntryProps>(props, m_bUseMinPrecision);
m_pMDHelper->LoadDxilSignatures(*pSignatures, pEntryProps->sig);
m_DxilEntryPropsMap[pFunc] = std::move(pEntryProps);
}
// Load Subobjects
std::unique_ptr<DxilSubobjects> pSubobjects(new DxilSubobjects());
m_pMDHelper->LoadSubobjects(*pSubobjects);
if (pSubobjects->GetSubobjects().size()) {
ResetSubobjects(pSubobjects.release());
}
} else {
std::unique_ptr<DxilEntryProps> pEntryProps =
make_unique<DxilEntryProps>(entryFuncProps, m_bUseMinPrecision);
DxilFunctionProps *pFuncProps = &pEntryProps->props;
m_pMDHelper->LoadDxilSignatures(*pEntrySignatures, pEntryProps->sig);
m_DxilEntryPropsMap.clear();
m_DxilEntryPropsMap[pEntryFunc] = std::move(pEntryProps);
SetEntryFunction(pEntryFunc);
SetEntryFunctionName(EntryName);
SetShaderProperties(pFuncProps);
}
LoadDxilResources(*pEntryResources);
// Type system is not required for consumption of dxil.
try {
m_pMDHelper->LoadDxilTypeSystem(*m_pTypeSystem.get());
} catch (hlsl::Exception &) {
m_bMetadataErrors = true;
#ifndef NDEBUG
throw;
#endif
m_pTypeSystem->GetStructAnnotationMap().clear();
m_pTypeSystem->GetFunctionAnnotationMap().clear();
}
// Payload annotations not required for consumption of dxil.
try {
m_pMDHelper->LoadDxrPayloadAnnotations(*m_pTypeSystem.get());
} catch (hlsl::Exception &) {
m_bMetadataErrors = true;
#ifndef NDEBUG
throw;
#endif
m_pTypeSystem->GetPayloadAnnotationMap().clear();
}
m_pMDHelper->LoadRootSignature(m_SerializedRootSignature);
m_pMDHelper->LoadDxilViewIdState(m_SerializedState);
m_bMetadataErrors |= m_pMDHelper->HasExtraMetadata();
}
MDTuple *DxilModule::EmitDxilResources() {
// Emit SRV records.
MDTuple *pTupleSRVs = nullptr;
if (!m_SRVs.empty()) {
vector<Metadata *> MDVals;
for (size_t i = 0; i < m_SRVs.size(); i++) {
MDVals.emplace_back(m_pMDHelper->EmitDxilSRV(*m_SRVs[i]));
}
pTupleSRVs = MDNode::get(m_Ctx, MDVals);
}
// Emit UAV records.
MDTuple *pTupleUAVs = nullptr;
if (!m_UAVs.empty()) {
vector<Metadata *> MDVals;
for (size_t i = 0; i < m_UAVs.size(); i++) {
MDVals.emplace_back(m_pMDHelper->EmitDxilUAV(*m_UAVs[i]));
}
pTupleUAVs = MDNode::get(m_Ctx, MDVals);
}
// Emit CBuffer records.
MDTuple *pTupleCBuffers = nullptr;
if (!m_CBuffers.empty()) {
vector<Metadata *> MDVals;
for (size_t i = 0; i < m_CBuffers.size(); i++) {
MDVals.emplace_back(m_pMDHelper->EmitDxilCBuffer(*m_CBuffers[i]));
}
pTupleCBuffers = MDNode::get(m_Ctx, MDVals);
}
// Emit Sampler records.
MDTuple *pTupleSamplers = nullptr;
if (!m_Samplers.empty()) {
vector<Metadata *> MDVals;
for (size_t i = 0; i < m_Samplers.size(); i++) {
MDVals.emplace_back(m_pMDHelper->EmitDxilSampler(*m_Samplers[i]));
}
pTupleSamplers = MDNode::get(m_Ctx, MDVals);
}
if (pTupleSRVs != nullptr || pTupleUAVs != nullptr ||
pTupleCBuffers != nullptr || pTupleSamplers != nullptr) {
return m_pMDHelper->EmitDxilResourceTuple(pTupleSRVs, pTupleUAVs,
pTupleCBuffers, pTupleSamplers);
} else {
return nullptr;
}
}
void DxilModule::ReEmitDxilResources() {
ClearDxilMetadata(*m_pModule);
EmitDxilMetadata();
}
void DxilModule::EmitDxilCounters() {
DxilCounters counters = {};
hlsl::CountInstructions(*m_pModule, counters);
m_pMDHelper->EmitDxilCounters(counters);
}
void DxilModule::LoadDxilCounters(DxilCounters &counters) const {
m_pMDHelper->LoadDxilCounters(counters);
}
template <typename TResource>
static bool
StripResourcesReflection(std::vector<std::unique_ptr<TResource>> &vec) {
bool bChanged = false;
for (auto &p : vec) {
p->SetGlobalName("");
// Cannot remove global symbol which used by validation.
bChanged = true;
}
return bChanged;
}
bool isSequentialType(Type *Ty) {
return isa<ArrayType>(Ty) || isa<VectorType>(Ty) || isa<PointerType>(Ty);
}
// Return true if any members or components of struct <Ty> contain
// scalars of less than 32 bits or are matrices, in which case translation is
// required
typedef llvm::SmallSetVector<const StructType *, 4> SmallStructSetVector;
static bool
ResourceTypeRequiresTranslation(const StructType *Ty,
SmallStructSetVector &containedStructs) {
if (Ty->getName().startswith("class.matrix."))
return true;
bool bResult = false;
containedStructs.insert(Ty);
for (auto eTy : Ty->elements()) {
// Skip past all levels of sequential types to test their elements
while ((isSequentialType(eTy))) {
eTy = eTy->getContainedType(0);
}
// Recursively call this function again to process internal structs
if (StructType *structTy = dyn_cast<StructType>(eTy)) {
if (ResourceTypeRequiresTranslation(structTy, containedStructs))
bResult = true;
} else if (eTy->getScalarSizeInBits() < 32) { // test scalar sizes
bResult = true;
}
}
return bResult;
}
bool DxilModule::StripReflection() {
bool bChanged = false;
bool bIsLib = GetShaderModel()->IsLib();
// Remove names.
for (Function &F : m_pModule->functions()) {
for (BasicBlock &BB : F) {
if (BB.hasName()) {
BB.setName("");
bChanged = true;
}
for (Instruction &I : BB) {
if (I.hasName()) {
I.setName("");
bChanged = true;
}
}
}
}
if (bIsLib && GetUseMinPrecision()) {
// We must preserve struct annotations for resources containing
// min-precision types, since they have not yet been converted for legacy
// layout. Keep all structs contained in any we must keep.
SmallStructSetVector structsToKeep;
SmallStructSetVector containedStructs;
for (auto &CBuf : GetCBuffers())
if (StructType *ST = dyn_cast<StructType>(CBuf->GetHLSLType()))
if (ResourceTypeRequiresTranslation(ST, containedStructs))
structsToKeep.insert(containedStructs.begin(),
containedStructs.end());
for (auto &UAV : GetUAVs()) {
if (DXIL::IsStructuredBuffer(UAV->GetKind()))
if (StructType *ST = dyn_cast<StructType>(UAV->GetHLSLType()))
if (ResourceTypeRequiresTranslation(ST, containedStructs))
structsToKeep.insert(containedStructs.begin(),
containedStructs.end());
}
for (auto &SRV : GetSRVs()) {
if (SRV->IsStructuredBuffer() || SRV->IsTBuffer())
if (StructType *ST = dyn_cast<StructType>(SRV->GetHLSLType()))
if (ResourceTypeRequiresTranslation(ST, containedStructs))
structsToKeep.insert(containedStructs.begin(),
containedStructs.end());
}
m_pTypeSystem->GetStructAnnotationMap().remove_if(
[structsToKeep](
const std::pair<const StructType *,
std::unique_ptr<DxilStructAnnotation>> &I) {
return !structsToKeep.count(I.first);
});
} else {
// Remove struct annotations.
if (!m_pTypeSystem->GetStructAnnotationMap().empty()) {
m_pTypeSystem->GetStructAnnotationMap().clear();
bChanged = true;
}
if (DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 5) >= 0) {
// Remove function annotations.
if (!m_pTypeSystem->GetFunctionAnnotationMap().empty()) {
m_pTypeSystem->GetFunctionAnnotationMap().clear();
bChanged = true;
}
}
}
// Resource
if (!bIsLib) {
bChanged |= StripResourcesReflection(m_CBuffers);
bChanged |= StripResourcesReflection(m_UAVs);
bChanged |= StripResourcesReflection(m_SRVs);
bChanged |= StripResourcesReflection(m_Samplers);
}
// Unused global.
SmallVector<GlobalVariable *, 2> UnusedGlobals;
for (GlobalVariable &GV : m_pModule->globals()) {
if (GV.use_empty()) {
// Need to preserve this global, otherwise we drop constructors
// for static globals.
if (!bIsLib || GV.getName().compare("llvm.global_ctors") != 0)
UnusedGlobals.emplace_back(&GV);
}
}
bChanged |= !UnusedGlobals.empty();
for (GlobalVariable *GV : UnusedGlobals) {
GV->eraseFromParent();
}
// ReEmit meta.
if (bChanged)
ReEmitDxilResources();
return bChanged;
}
static void RemoveTypesFromSet(Type *Ty,
SetVector<const StructType *> &typeSet) {
if (Ty->isPointerTy())
Ty = Ty->getPointerElementType();
while (Ty->isArrayTy())
Ty = Ty->getArrayElementType();
if (StructType *ST = dyn_cast<StructType>(Ty)) {
if (typeSet.count(ST)) {
typeSet.remove(ST);
for (unsigned i = 0; i < ST->getNumElements(); i++) {
RemoveTypesFromSet(ST->getElementType(i), typeSet);
}
}
}
}
template <typename TResource>
static void RemoveUsedTypesFromSet(std::vector<std::unique_ptr<TResource>> &vec,
SetVector<const StructType *> &typeSet) {
for (auto &p : vec) {
RemoveTypesFromSet(p->GetHLSLType(), typeSet);
}
}
void DxilModule::RemoveUnusedTypeAnnotations() {
// Collect annotated types
const DxilTypeSystem::StructAnnotationMap &SAMap =
m_pTypeSystem->GetStructAnnotationMap();
SetVector<const StructType *> types;
for (const auto &it : SAMap)
types.insert(it.first);
// Iterate resource types and remove any HLSL types from set
RemoveUsedTypesFromSet(m_CBuffers, types);
RemoveUsedTypesFromSet(m_UAVs, types);
RemoveUsedTypesFromSet(m_SRVs, types);
// Iterate Function parameters and return types, removing any HLSL types found
// from set
for (Function &F : m_pModule->functions()) {
FunctionType *FT = F.getFunctionType();
RemoveTypesFromSet(FT->getReturnType(), types);
for (Type *PTy : FT->params())
RemoveTypesFromSet(PTy, types);
}
// Remove remaining set of types
for (const StructType *ST : types)
m_pTypeSystem->EraseStructAnnotation(ST);
}
template <typename _T>
static void CopyResourceInfo(_T &TargetRes, const _T &SourceRes,
DxilTypeSystem &TargetTypeSys,
const DxilTypeSystem &SourceTypeSys) {
if (TargetRes.GetKind() != SourceRes.GetKind() ||
TargetRes.GetLowerBound() != SourceRes.GetLowerBound() ||
TargetRes.GetRangeSize() != SourceRes.GetRangeSize() ||
TargetRes.GetSpaceID() != SourceRes.GetSpaceID()) {
DXASSERT(false, "otherwise, resource details don't match");
return;
}
if (TargetRes.GetGlobalName().empty() && !SourceRes.GetGlobalName().empty()) {
TargetRes.SetGlobalName(SourceRes.GetGlobalName());
}
if (TargetRes.GetGlobalSymbol() && SourceRes.GetGlobalSymbol() &&
SourceRes.GetGlobalSymbol()->hasName()) {
TargetRes.GetGlobalSymbol()->setName(
SourceRes.GetGlobalSymbol()->getName());
}
Type *Ty = SourceRes.GetHLSLType();
TargetRes.SetHLSLType(Ty);
TargetTypeSys.CopyTypeAnnotation(Ty, SourceTypeSys);
}
void DxilModule::RestoreResourceReflection(const DxilModule &SourceDM) {
DxilTypeSystem &TargetTypeSys = GetTypeSystem();
const DxilTypeSystem &SourceTypeSys = SourceDM.GetTypeSystem();
if (GetCBuffers().size() != SourceDM.GetCBuffers().size() ||
GetSRVs().size() != SourceDM.GetSRVs().size() ||
GetUAVs().size() != SourceDM.GetUAVs().size() ||
GetSamplers().size() != SourceDM.GetSamplers().size()) {
DXASSERT(false, "otherwise, resource lists don't match");
return;
}
for (unsigned i = 0; i < GetCBuffers().size(); ++i) {
CopyResourceInfo(GetCBuffer(i), SourceDM.GetCBuffer(i), TargetTypeSys,
SourceTypeSys);
}
for (unsigned i = 0; i < GetSRVs().size(); ++i) {
CopyResourceInfo(GetSRV(i), SourceDM.GetSRV(i), TargetTypeSys,
SourceTypeSys);
}
for (unsigned i = 0; i < GetUAVs().size(); ++i) {
CopyResourceInfo(GetUAV(i), SourceDM.GetUAV(i), TargetTypeSys,
SourceTypeSys);
}
for (unsigned i = 0; i < GetSamplers().size(); ++i) {
CopyResourceInfo(GetSampler(i), SourceDM.GetSampler(i), TargetTypeSys,
SourceTypeSys);
}
}
void DxilModule::LoadDxilResources(const llvm::MDOperand &MDO) {
if (MDO.get() == nullptr)
return;
const llvm::MDTuple *pSRVs, *pUAVs, *pCBuffers, *pSamplers;
m_pMDHelper->GetDxilResources(MDO, pSRVs, pUAVs, pCBuffers, pSamplers);
// Load SRV records.
if (pSRVs != nullptr) {
for (unsigned i = 0; i < pSRVs->getNumOperands(); i++) {
unique_ptr<DxilResource> pSRV(new DxilResource);
m_pMDHelper->LoadDxilSRV(pSRVs->getOperand(i), *pSRV);
AddSRV(std::move(pSRV));
}
}
// Load UAV records.
if (pUAVs != nullptr) {
for (unsigned i = 0; i < pUAVs->getNumOperands(); i++) {
unique_ptr<DxilResource> pUAV(new DxilResource);
m_pMDHelper->LoadDxilUAV(pUAVs->getOperand(i), *pUAV);
AddUAV(std::move(pUAV));
}
}
// Load CBuffer records.
if (pCBuffers != nullptr) {
for (unsigned i = 0; i < pCBuffers->getNumOperands(); i++) {
unique_ptr<DxilCBuffer> pCB(new DxilCBuffer);
m_pMDHelper->LoadDxilCBuffer(pCBuffers->getOperand(i), *pCB);
AddCBuffer(std::move(pCB));
}
}
// Load Sampler records.
if (pSamplers != nullptr) {
for (unsigned i = 0; i < pSamplers->getNumOperands(); i++) {
unique_ptr<DxilSampler> pSampler(new DxilSampler);
m_pMDHelper->LoadDxilSampler(pSamplers->getOperand(i), *pSampler);
AddSampler(std::move(pSampler));
}
}
}
void DxilModule::StripShaderSourcesAndCompileOptions(
bool bReplaceWithDummyData) {
// Remove dx.source metadata.
if (NamedMDNode *contents = m_pModule->getNamedMetadata(
DxilMDHelper::kDxilSourceContentsMDName)) {
contents->eraseFromParent();
if (bReplaceWithDummyData) {
// Insert an empty source and content
llvm::LLVMContext &context = m_pModule->getContext();
llvm::NamedMDNode *newNamedMD = m_pModule->getOrInsertNamedMetadata(
DxilMDHelper::kDxilSourceContentsMDName);
llvm::Metadata *operands[2] = {llvm::MDString::get(context, ""),
llvm::MDString::get(context, "")};
newNamedMD->addOperand(llvm::MDTuple::get(context, operands));
}
}
if (NamedMDNode *defines =
m_pModule->getNamedMetadata(DxilMDHelper::kDxilSourceDefinesMDName)) {
defines->eraseFromParent();
if (bReplaceWithDummyData) {
llvm::LLVMContext &context = m_pModule->getContext();
llvm::NamedMDNode *newNamedMD = m_pModule->getOrInsertNamedMetadata(
DxilMDHelper::kDxilSourceDefinesMDName);
newNamedMD->addOperand(
llvm::MDTuple::get(context, llvm::ArrayRef<llvm::Metadata *>()));
}
}
if (NamedMDNode *mainFileName = m_pModule->getNamedMetadata(
DxilMDHelper::kDxilSourceMainFileNameMDName)) {
mainFileName->eraseFromParent();
if (bReplaceWithDummyData) {
// Insert an empty file name
llvm::LLVMContext &context = m_pModule->getContext();
llvm::NamedMDNode *newNamedMD = m_pModule->getOrInsertNamedMetadata(
DxilMDHelper::kDxilSourceMainFileNameMDName);
llvm::Metadata *operands[1] = {llvm::MDString::get(context, "")};
newNamedMD->addOperand(llvm::MDTuple::get(context, operands));
}
}
if (NamedMDNode *arguments =
m_pModule->getNamedMetadata(DxilMDHelper::kDxilSourceArgsMDName)) {
arguments->eraseFromParent();
if (bReplaceWithDummyData) {
llvm::LLVMContext &context = m_pModule->getContext();
llvm::NamedMDNode *newNamedMD = m_pModule->getOrInsertNamedMetadata(
DxilMDHelper::kDxilSourceArgsMDName);
newNamedMD->addOperand(
llvm::MDTuple::get(context, llvm::ArrayRef<llvm::Metadata *>()));
}
}
if (NamedMDNode *binding = m_pModule->getNamedMetadata(
DxilMDHelper::kDxilDxcBindingTableMDName)) {
binding->eraseFromParent();
}
}
void DxilModule::StripDebugRelatedCode() {
StripShaderSourcesAndCompileOptions();
if (NamedMDNode *flags = m_pModule->getModuleFlagsMetadata()) {
SmallVector<llvm::Module::ModuleFlagEntry, 4> flagEntries;
m_pModule->getModuleFlagsMetadata(flagEntries);
flags->eraseFromParent();
for (unsigned i = 0; i < flagEntries.size(); i++) {
llvm::Module::ModuleFlagEntry &entry = flagEntries[i];
if (entry.Key->getString() == "Dwarf Version" ||
entry.Key->getString() == "Debug Info Version") {
continue;
}
m_pModule->addModuleFlag(entry.Behavior, entry.Key->getString(),
cast<ConstantAsMetadata>(entry.Val)->getValue());
}
}
}
DebugInfoFinder &DxilModule::GetOrCreateDebugInfoFinder() {
if (m_pDebugInfoFinder == nullptr) {
m_pDebugInfoFinder = make_unique<llvm::DebugInfoFinder>();
m_pDebugInfoFinder->processModule(*m_pModule);
}
return *m_pDebugInfoFinder;
}
// Check if the instruction has fast math flags configured to indicate
// the instruction is precise.
// Precise fast math flags means none of the fast math flags are set.
bool DxilModule::HasPreciseFastMathFlags(const Instruction *inst) {
return isa<FPMathOperator>(inst) && !inst->getFastMathFlags().any();
}
// Set fast math flags configured to indicate the instruction is precise.
void DxilModule::SetPreciseFastMathFlags(llvm::Instruction *inst) {
assert(isa<FPMathOperator>(inst));
inst->copyFastMathFlags(FastMathFlags());
}
// True if fast math flags are preserved across serialization/deserialization
// of the dxil module.
//
// We need to check for this when querying fast math flags for preciseness
// otherwise we will be overly conservative by reporting instructions precise
// because their fast math flags were not preserved.
//
// Currently we restrict it to the instruction types that have fast math
// preserved in the bitcode. We can expand this by converting fast math
// flags to dx.precise metadata during serialization and back to fast
// math flags during deserialization.
bool DxilModule::PreservesFastMathFlags(const llvm::Instruction *inst) {
return isa<FPMathOperator>(inst) &&
(isa<BinaryOperator>(inst) || isa<FCmpInst>(inst));
}
bool DxilModule::IsPrecise(const Instruction *inst) const {
if (m_ShaderFlags.GetDisableMathRefactoring())
return true;
else if (DxilMDHelper::IsMarkedPrecise(inst))
return true;
else if (PreservesFastMathFlags(inst))
return HasPreciseFastMathFlags(inst);
else
return false;
}
bool DxilModule::ShaderCompatInfo::Merge(ShaderCompatInfo &other) {
bool changed = DXIL::UpdateToMaxOfVersions(minMajor, minMinor, other.minMajor,
other.minMinor);
if ((mask & other.mask) != mask) {
mask &= other.mask;
changed = true;
}
uint64_t rawBefore = shaderFlags.GetShaderFlagsRaw();
shaderFlags.CombineShaderFlags(other.shaderFlags);
if (rawBefore != shaderFlags.GetShaderFlagsRaw())
changed = true;
return changed;
}
// Use the function properties `props` to determine the minimum shader model and
// flag requirements based on shader stage and feature usage.
// Compare that minimum required version to the values passed in with
// `minMajor` and `minMinor` and pass the maximum of those back through those
// same variables.
// Adjusts `ShaderFlags` argument according to `props` set.
static void AdjustMinimumShaderModelAndFlags(const DxilFunctionProps *props,
ShaderFlags &flags,
unsigned &minMajor,
unsigned &minMinor) {
// Adjust flags based on DxilFunctionProps and compute minimum shader model.
// Library functions use flags to capture properties that may or may not be
// used in the final shader, depending on that final shader's shader model.
// These flags will be combined up a call graph until we hit an entry,
// function, at which point, these flags and minimum shader model need to be
// adjusted.
// For instance: derivatives are allowed in CS/MS/AS in 6.6+, and for MS/AS,
// a feature bit is required. Libary functions will capture any derivative
// use into the UsesDerivatives feature bit, which is used to calculate the
// final requirements once we reach an entry function.
// Adjust things based on known shader entry point once we have one.
// This must be done after combining flags from called functions.
if (props) {
// This flag doesn't impact min shader model until we know what kind of
// entry point we have. Then, we may need to clear the flag, when it doesn't
// apply.
if (flags.GetUsesDerivatives()) {
if (props->IsCS()) {
// Always supported if SM 6.6+.
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 6);
} else if (props->IsMS() || props->IsAS()) {
// Requires flag for support on SM 6.6+.
flags.SetDerivativesInMeshAndAmpShaders(true);
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 6);
}
}
// If function has WaveSize, this also constrains the minimum shader model.
if (props->WaveSize.IsDefined()) {
if (props->WaveSize.IsRange())
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 8);
else
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 6);
}
// Adjust minimum shader model based on shader stage.
if (props->IsMS() || props->IsAS())
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 5);
else if (props->IsRay())
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 3);
else if (props->IsNode())
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 8);
}
// Adjust minimum shader model based on flags.
if (flags.GetSampleCmpGradientOrBias() || flags.GetExtendedCommandInfo())
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 8);
else if (flags.GetAdvancedTextureOps() || flags.GetWriteableMSAATextures())
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 7);
else if (flags.GetAtomicInt64OnTypedResource() ||
flags.GetAtomicInt64OnGroupShared() ||
flags.GetAtomicInt64OnHeapResource() ||
flags.GetResourceDescriptorHeapIndexing() ||
flags.GetSamplerDescriptorHeapIndexing())
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 6);
else if (flags.GetRaytracingTier1_1() || flags.GetSamplerFeedback())
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 5);
else if (flags.GetShadingRate())
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 4);
else if (flags.GetLowPrecisionPresent() && flags.GetUseNativeLowPrecision())
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 2);
else if (flags.GetViewID() || flags.GetBarycentrics())
DXIL::UpdateToMaxOfVersions(minMajor, minMinor, 6, 1);
}
static bool RequiresRaytracingTier1_1(const DxilSubobjects *pSubobjects) {
if (!pSubobjects)
return false;
for (const auto &it : pSubobjects->GetSubobjects()) {
switch (it.second->GetKind()) {
case DXIL::SubobjectKind::RaytracingPipelineConfig1:
return true;
case DXIL::SubobjectKind::StateObjectConfig: {
uint32_t configFlags;
if (it.second->GetStateObjectConfig(configFlags) &&
((configFlags &
(unsigned)DXIL::StateObjectFlags::AllowStateObjectAdditions) != 0))
return true;
} break;
default:
break;
}
}
return false;
}
void DxilModule::ComputeShaderCompatInfo() {
m_FuncToShaderCompat.clear();
bool dxil15Plus = DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 5) >= 0;
bool dxil18Plus = DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 8) >= 0;
bool dxil19Plus = DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 9) >= 0;
// Prior to validator version 1.8, DXR 1.1 flag was set on every function
// if subobjects contained any DXR 1.1 subobjects.
bool setDXR11OnAllFunctions =
dxil15Plus && !dxil18Plus && RequiresRaytracingTier1_1(GetSubobjects());
// Initialize worklist with functions that have callers
SmallSetVector<llvm::Function *, 8> worklist;
for (auto &function : GetModule()->getFunctionList()) {
if (!function.isDeclaration()) {
// Initialize worklist with functions with callers.
// only used for validator version 1.8+
if (dxil18Plus && !function.user_empty())
worklist.insert(&function);
// Collect shader flags for function.
// Insert or lookup info
ShaderCompatInfo &info = m_FuncToShaderCompat[&function];
info.shaderFlags = ShaderFlags::CollectShaderFlags(&function, this);
if (setDXR11OnAllFunctions)
info.shaderFlags.SetRaytracingTier1_1(true);
} else if (!function.isIntrinsic() &&
function.getLinkage() ==
llvm::GlobalValue::LinkageTypes::ExternalLinkage &&
OP::IsDxilOpFunc(&function)) {
// update min shader model and shader stage mask per function
UpdateFunctionToShaderCompat(&function);
}
}
// Propagate ShaderCompatInfo to callers, limit to 1.8+ for compatibility
if (dxil18Plus) {
while (!worklist.empty()) {
llvm::Function *F = worklist.pop_back_val();
ShaderCompatInfo &calleeInfo = m_FuncToShaderCompat[F];
// Update callers
for (auto U : F->users()) {
if (CallInst *CI = dyn_cast<CallInst>(U)) {
llvm::Function *caller = CI->getParent()->getParent();
// Merge info, if changed and called, add to worklist so we update
// any callers of caller as well.
// Insert or lookup info
if (m_FuncToShaderCompat[caller].Merge(calleeInfo) &&
!caller->user_empty())
worklist.insert(caller);
}
}
}
}
// We must select the appropriate shader mask for the validator version,
// so we don't set any bits the validator doesn't recognize.
unsigned ValidShaderMask =
(1 << ((unsigned)DXIL::ShaderKind::LastValid + 1)) - 1;
if (!dxil15Plus) {
ValidShaderMask = (1 << ((unsigned)DXIL::ShaderKind::Last_1_4 + 1)) - 1;
} else if (!dxil18Plus) {
ValidShaderMask = (1 << ((unsigned)DXIL::ShaderKind::Last_1_7 + 1)) - 1;
} else if (!dxil19Plus) {
ValidShaderMask = (1 << ((unsigned)DXIL::ShaderKind::Last_1_8 + 1)) - 1;
}
for (auto &function : GetModule()->getFunctionList()) {
if (function.isDeclaration())
continue;
DXASSERT(m_FuncToShaderCompat.count(&function) != 0,
"otherwise, function missed earlier somehow!");
ShaderCompatInfo &info = m_FuncToShaderCompat[&function];
DXIL::ShaderKind shaderKind = DXIL::ShaderKind::Library;
const DxilFunctionProps *props = nullptr;
if (HasDxilFunctionProps(&function)) {
props = &GetDxilFunctionProps(&function);
shaderKind = props->shaderKind;
}
if (shaderKind == DXIL::ShaderKind::Library)
info.mask &= ValidShaderMask;
else
info.mask &= (1U << static_cast<unsigned>(shaderKind));
// Increase min target based on features used:
ShaderFlags &flags = info.shaderFlags;
if (dxil18Plus) {
// This handles WaveSize requirement as well.
AdjustMinimumShaderModelAndFlags(props, flags, info.minMajor,
info.minMinor);
} else {
// Match prior versions that were missing some feature detection.
if (flags.GetUseNativeLowPrecision() && flags.GetLowPrecisionPresent())
DXIL::UpdateToMaxOfVersions(info.minMajor, info.minMinor, 6, 2);
else if (flags.GetBarycentrics() || flags.GetViewID())
DXIL::UpdateToMaxOfVersions(info.minMajor, info.minMinor, 6, 1);
}
}
}
void DxilModule::UpdateFunctionToShaderCompat(const llvm::Function *dxilFunc) {
const bool bWithTranslation = GetShaderModel()->IsLib();
#define SFLAG(stage) ((unsigned)1 << (unsigned)DXIL::ShaderKind::stage)
for (const llvm::User *user : dxilFunc->users()) {
if (const llvm::CallInst *CI = dyn_cast<const llvm::CallInst>(user)) {
// Find calling function
const llvm::Function *F =
cast<const llvm::Function>(CI->getParent()->getParent());
// Insert or lookup info
ShaderCompatInfo &info = m_FuncToShaderCompat[F];
unsigned major, minor, mask;
OP::GetMinShaderModelAndMask(CI, bWithTranslation, m_ValMajor, m_ValMinor,
major, minor, mask);
DXIL::UpdateToMaxOfVersions(info.minMajor, info.minMinor, major, minor);
info.mask &= mask;
} else if (const llvm::LoadInst *LI = dyn_cast<LoadInst>(user)) {
// If loading a groupshared variable, limit to CS/AS/MS/Node
if (LI->getPointerAddressSpace() == DXIL::kTGSMAddrSpace) {
const llvm::Function *F =
cast<const llvm::Function>(LI->getParent()->getParent());
// Insert or lookup info
ShaderCompatInfo &info = m_FuncToShaderCompat[F];
info.mask &=
(SFLAG(Compute) | SFLAG(Mesh) | SFLAG(Amplification) | SFLAG(Node));
}
} else if (const llvm::StoreInst *SI = dyn_cast<StoreInst>(user)) {
// If storing to a groupshared variable, limit to CS/AS/MS/Node
if (SI->getPointerAddressSpace() == DXIL::kTGSMAddrSpace) {
const llvm::Function *F =
cast<const llvm::Function>(SI->getParent()->getParent());
// Insert or lookup info
ShaderCompatInfo &info = m_FuncToShaderCompat[F];
info.mask &=
(SFLAG(Compute) | SFLAG(Mesh) | SFLAG(Amplification) | SFLAG(Node));
}
}
}
#undef SFLAG
}
const DxilModule::ShaderCompatInfo *
DxilModule::GetCompatInfoForFunction(const llvm::Function *F) const {
auto it = m_FuncToShaderCompat.find(F);
if (it != m_FuncToShaderCompat.end())
return &it->second;
return nullptr;
}
} // namespace hlsl