blob: 79ab3bd2e06c5e40641eacf21020fe5a9501f66a [file] [log] [blame] [edit]
///////////////////////////////////////////////////////////////////////////////
// //
// DxilValidation.cpp //
// Copyright (C) Microsoft Corporation. All rights reserved. //
// This file is distributed under the University of Illinois Open Source //
// License. See LICENSE.TXT for details. //
// //
// This file provides support for validating DXIL shaders. //
// //
///////////////////////////////////////////////////////////////////////////////
#include "dxc/Support/FileIOHelper.h"
#include "dxc/Support/Global.h"
#include "dxc/Support/WinIncludes.h"
#include "dxc/DXIL/DxilConstants.h"
#include "dxc/DXIL/DxilEntryProps.h"
#include "dxc/DXIL/DxilFunctionProps.h"
#include "dxc/DXIL/DxilInstructions.h"
#include "dxc/DXIL/DxilModule.h"
#include "dxc/DXIL/DxilOperations.h"
#include "dxc/DXIL/DxilResourceProperties.h"
#include "dxc/DXIL/DxilShaderModel.h"
#include "dxc/DXIL/DxilUtil.h"
#include "dxc/DxilContainer/DxilContainer.h"
#include "dxc/DxilContainer/DxilContainerAssembler.h"
#include "dxc/DxilContainer/DxilPipelineStateValidation.h"
#include "dxc/DxilContainer/DxilRuntimeReflection.h"
#include "dxc/HLSL/DxilGenerationPass.h"
#include "dxc/HLSL/DxilValidation.h"
#include "llvm/Analysis/ReducibilityAnalysis.h"
#include "dxc/DxilRootSignature/DxilRootSignature.h"
#include "dxc/HLSL/DxilPackSignatureElement.h"
#include "dxc/HLSL/DxilSignatureAllocator.h"
#include "dxc/HLSL/DxilSpanAllocator.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <deque>
#include <unordered_set>
using namespace llvm;
using std::unique_ptr;
using std::unordered_set;
using std::vector;
///////////////////////////////////////////////////////////////////////////////
// Error messages.
#include "DxilValidationImpl.inc"
namespace {
// Utility class for setting and restoring the diagnostic context so we may
// capture errors/warnings
struct DiagRestore {
LLVMContext &Ctx;
void *OrigDiagContext;
LLVMContext::DiagnosticHandlerTy OrigHandler;
DiagRestore(llvm::LLVMContext &Ctx, void *DiagContext) : Ctx(Ctx) {
OrigHandler = Ctx.getDiagnosticHandler();
OrigDiagContext = Ctx.getDiagnosticContext();
Ctx.setDiagnosticHandler(
hlsl::PrintDiagnosticContext::PrintDiagnosticHandler, DiagContext);
}
~DiagRestore() { Ctx.setDiagnosticHandler(OrigHandler, OrigDiagContext); }
};
static void emitDxilDiag(LLVMContext &Ctx, const char *str) {
hlsl::dxilutil::EmitErrorOnContext(Ctx, str);
}
} // namespace
namespace hlsl {
// PrintDiagnosticContext methods.
PrintDiagnosticContext::PrintDiagnosticContext(DiagnosticPrinter &printer)
: m_Printer(printer), m_errorsFound(false), m_warningsFound(false) {}
bool PrintDiagnosticContext::HasErrors() const { return m_errorsFound; }
bool PrintDiagnosticContext::HasWarnings() const { return m_warningsFound; }
void PrintDiagnosticContext::Handle(const DiagnosticInfo &DI) {
DI.print(m_Printer);
switch (DI.getSeverity()) {
case llvm::DiagnosticSeverity::DS_Error:
m_errorsFound = true;
break;
case llvm::DiagnosticSeverity::DS_Warning:
m_warningsFound = true;
break;
default:
break;
}
m_Printer << "\n";
}
void PrintDiagnosticContext::PrintDiagnosticHandler(const DiagnosticInfo &DI,
void *Context) {
reinterpret_cast<hlsl::PrintDiagnosticContext *>(Context)->Handle(DI);
}
struct PSExecutionInfo {
bool SuperSampling = false;
DXIL::SemanticKind OutputDepthKind = DXIL::SemanticKind::Invalid;
const InterpolationMode *PositionInterpolationMode = nullptr;
};
// Save status like output write for entries.
struct EntryStatus {
bool hasOutputPosition[DXIL::kNumOutputStreams];
unsigned OutputPositionMask[DXIL::kNumOutputStreams];
std::vector<unsigned> outputCols;
std::vector<unsigned> patchConstOrPrimCols;
bool m_bCoverageIn, m_bInnerCoverageIn;
bool hasViewID;
unsigned domainLocSize;
EntryStatus(DxilEntryProps &entryProps)
: m_bCoverageIn(false), m_bInnerCoverageIn(false), hasViewID(false) {
for (unsigned i = 0; i < DXIL::kNumOutputStreams; i++) {
hasOutputPosition[i] = false;
OutputPositionMask[i] = 0;
}
outputCols.resize(entryProps.sig.OutputSignature.GetElements().size(), 0);
patchConstOrPrimCols.resize(
entryProps.sig.PatchConstOrPrimSignature.GetElements().size(), 0);
}
};
struct ValidationContext {
bool Failed = false;
Module &M;
Module *pDebugModule;
DxilModule &DxilMod;
const Type *HandleTy;
const Type *WaveMatrixTy;
const DataLayout &DL;
DebugLoc LastDebugLocEmit;
ValidationRule LastRuleEmit;
std::unordered_set<Function *> entryFuncCallSet;
std::unordered_set<Function *> patchConstFuncCallSet;
std::unordered_map<unsigned, bool> UavCounterIncMap;
std::unordered_map<Value *, unsigned> HandleResIndexMap;
// TODO: save resource map for each createHandle/createHandleForLib.
std::unordered_map<Value *, DxilResourceProperties> ResPropMap;
std::unordered_map<Function *, std::vector<Function *>> PatchConstantFuncMap;
std::unordered_map<Function *, std::unique_ptr<EntryStatus>> entryStatusMap;
bool isLibProfile;
const unsigned kDxilControlFlowHintMDKind;
const unsigned kDxilPreciseMDKind;
const unsigned kDxilNonUniformMDKind;
const unsigned kLLVMLoopMDKind;
unsigned m_DxilMajor, m_DxilMinor;
ModuleSlotTracker slotTracker;
std::unique_ptr<CallGraph> pCallGraph;
ValidationContext(Module &llvmModule, Module *DebugModule,
DxilModule &dxilModule)
: M(llvmModule), pDebugModule(DebugModule), DxilMod(dxilModule),
DL(llvmModule.getDataLayout()), LastRuleEmit((ValidationRule)-1),
kDxilControlFlowHintMDKind(llvmModule.getContext().getMDKindID(
DxilMDHelper::kDxilControlFlowHintMDName)),
kDxilPreciseMDKind(llvmModule.getContext().getMDKindID(
DxilMDHelper::kDxilPreciseAttributeMDName)),
kDxilNonUniformMDKind(llvmModule.getContext().getMDKindID(
DxilMDHelper::kDxilNonUniformAttributeMDName)),
kLLVMLoopMDKind(llvmModule.getContext().getMDKindID("llvm.loop")),
slotTracker(&llvmModule, true) {
DxilMod.GetDxilVersion(m_DxilMajor, m_DxilMinor);
HandleTy = DxilMod.GetOP()->GetHandleType();
WaveMatrixTy =
DxilMod.GetOP()->GetWaveMatPtrType()->getPointerElementType();
for (Function &F : llvmModule.functions()) {
if (DxilMod.HasDxilEntryProps(&F)) {
DxilEntryProps &entryProps = DxilMod.GetDxilEntryProps(&F);
entryStatusMap[&F] = llvm::make_unique<EntryStatus>(entryProps);
}
}
isLibProfile = dxilModule.GetShaderModel()->IsLib();
BuildResMap();
// Collect patch constant map.
if (isLibProfile) {
for (Function &F : dxilModule.GetModule()->functions()) {
if (dxilModule.HasDxilEntryProps(&F)) {
DxilEntryProps &entryProps = dxilModule.GetDxilEntryProps(&F);
DxilFunctionProps &props = entryProps.props;
if (props.IsHS()) {
PatchConstantFuncMap[props.ShaderProps.HS.patchConstantFunc]
.emplace_back(&F);
}
}
}
} else {
Function *Entry = dxilModule.GetEntryFunction();
if (!dxilModule.HasDxilEntryProps(Entry)) {
// must have props.
EmitFnError(Entry, ValidationRule::MetaNoEntryPropsForEntry);
return;
}
DxilEntryProps &entryProps = dxilModule.GetDxilEntryProps(Entry);
DxilFunctionProps &props = entryProps.props;
if (props.IsHS()) {
PatchConstantFuncMap[props.ShaderProps.HS.patchConstantFunc]
.emplace_back(Entry);
}
}
}
void PropagateResMap(Value *V, DxilResourceBase *Res) {
auto it = ResPropMap.find(V);
if (it != ResPropMap.end()) {
DxilResourceProperties RP =
resource_helper::loadPropsFromResourceBase(Res);
DxilResourceProperties itRP = it->second;
if (itRP != RP) {
EmitResourceError(Res, ValidationRule::InstrResourceMapToSingleEntry);
}
} else {
DxilResourceProperties RP =
resource_helper::loadPropsFromResourceBase(Res);
ResPropMap[V] = RP;
for (User *U : V->users()) {
if (isa<GEPOperator>(U)) {
PropagateResMap(U, Res);
} else if (CallInst *CI = dyn_cast<CallInst>(U)) {
// Stop propagate on function call.
DxilInst_CreateHandleForLib hdl(CI);
if (hdl) {
DxilResourceProperties RP =
resource_helper::loadPropsFromResourceBase(Res);
ResPropMap[CI] = RP;
}
} else if (isa<LoadInst>(U)) {
PropagateResMap(U, Res);
} else if (isa<BitCastOperator>(U) && U->user_empty()) {
// For hlsl type.
continue;
} else {
EmitResourceError(Res, ValidationRule::InstrResourceUser);
}
}
}
}
void BuildResMap() {
hlsl::OP *hlslOP = DxilMod.GetOP();
if (isLibProfile) {
std::unordered_set<Value *> ResSet;
// Start from all global variable in resTab.
for (auto &Res : DxilMod.GetCBuffers())
PropagateResMap(Res->GetGlobalSymbol(), Res.get());
for (auto &Res : DxilMod.GetUAVs())
PropagateResMap(Res->GetGlobalSymbol(), Res.get());
for (auto &Res : DxilMod.GetSRVs())
PropagateResMap(Res->GetGlobalSymbol(), Res.get());
for (auto &Res : DxilMod.GetSamplers())
PropagateResMap(Res->GetGlobalSymbol(), Res.get());
} else {
// Scan all createHandle.
for (auto &it : hlslOP->GetOpFuncList(DXIL::OpCode::CreateHandle)) {
Function *F = it.second;
if (!F)
continue;
for (User *U : F->users()) {
CallInst *CI = cast<CallInst>(U);
DxilInst_CreateHandle hdl(CI);
// Validate Class/RangeID/Index.
Value *resClass = hdl.get_resourceClass();
if (!isa<ConstantInt>(resClass)) {
EmitInstrError(CI, ValidationRule::InstrOpConstRange);
continue;
}
Value *rangeIndex = hdl.get_rangeId();
if (!isa<ConstantInt>(rangeIndex)) {
EmitInstrError(CI, ValidationRule::InstrOpConstRange);
continue;
}
DxilResourceBase *Res = nullptr;
unsigned rangeId = hdl.get_rangeId_val();
switch (
static_cast<DXIL::ResourceClass>(hdl.get_resourceClass_val())) {
default:
EmitInstrError(CI, ValidationRule::InstrOpConstRange);
continue;
break;
case DXIL::ResourceClass::CBuffer:
if (DxilMod.GetCBuffers().size() > rangeId) {
Res = &DxilMod.GetCBuffer(rangeId);
} else {
// Emit Error.
EmitInstrError(CI, ValidationRule::InstrOpConstRange);
continue;
}
break;
case DXIL::ResourceClass::Sampler:
if (DxilMod.GetSamplers().size() > rangeId) {
Res = &DxilMod.GetSampler(rangeId);
} else {
// Emit Error.
EmitInstrError(CI, ValidationRule::InstrOpConstRange);
continue;
}
break;
case DXIL::ResourceClass::SRV:
if (DxilMod.GetSRVs().size() > rangeId) {
Res = &DxilMod.GetSRV(rangeId);
} else {
// Emit Error.
EmitInstrError(CI, ValidationRule::InstrOpConstRange);
continue;
}
break;
case DXIL::ResourceClass::UAV:
if (DxilMod.GetUAVs().size() > rangeId) {
Res = &DxilMod.GetUAV(rangeId);
} else {
// Emit Error.
EmitInstrError(CI, ValidationRule::InstrOpConstRange);
continue;
}
break;
}
ConstantInt *cIndex = dyn_cast<ConstantInt>(hdl.get_index());
if (!Res->GetHLSLType()->getPointerElementType()->isArrayTy()) {
if (!cIndex) {
// index must be 0 for none array resource.
EmitInstrError(CI, ValidationRule::InstrOpConstRange);
continue;
}
}
if (cIndex) {
unsigned index = cIndex->getLimitedValue();
if (index < Res->GetLowerBound() || index > Res->GetUpperBound()) {
// index out of range.
EmitInstrError(CI, ValidationRule::InstrOpConstRange);
continue;
}
}
HandleResIndexMap[CI] = rangeId;
DxilResourceProperties RP =
resource_helper::loadPropsFromResourceBase(Res);
ResPropMap[CI] = RP;
}
}
}
const ShaderModel &SM = *DxilMod.GetShaderModel();
for (auto &it : hlslOP->GetOpFuncList(DXIL::OpCode::AnnotateHandle)) {
Function *F = it.second;
if (!F)
continue;
for (User *U : F->users()) {
CallInst *CI = cast<CallInst>(U);
DxilInst_AnnotateHandle hdl(CI);
DxilResourceProperties RP =
resource_helper::loadPropsFromAnnotateHandle(hdl, SM);
if (RP.getResourceKind() == DXIL::ResourceKind::Invalid) {
EmitInstrError(CI, ValidationRule::InstrOpConstRange);
continue;
}
ResPropMap[CI] = RP;
}
}
}
bool HasEntryStatus(Function *F) {
return entryStatusMap.find(F) != entryStatusMap.end();
}
EntryStatus &GetEntryStatus(Function *F) { return *entryStatusMap[F]; }
CallGraph &GetCallGraph() {
if (!pCallGraph)
pCallGraph = llvm::make_unique<CallGraph>(M);
return *pCallGraph.get();
}
DxilResourceProperties GetResourceFromVal(Value *resVal);
void EmitGlobalVariableFormatError(GlobalVariable *GV, ValidationRule rule,
ArrayRef<StringRef> args) {
std::string ruleText = GetValidationRuleText(rule);
FormatRuleText(ruleText, args);
if (pDebugModule)
GV = pDebugModule->getGlobalVariable(GV->getName());
dxilutil::EmitErrorOnGlobalVariable(M.getContext(), GV, ruleText);
Failed = true;
}
// This is the least desirable mechanism, as it has no context.
void EmitError(ValidationRule rule) {
dxilutil::EmitErrorOnContext(M.getContext(), GetValidationRuleText(rule));
Failed = true;
}
void FormatRuleText(std::string &ruleText, ArrayRef<StringRef> args) {
std::string escapedArg;
// Consider changing const char * to StringRef
for (unsigned i = 0; i < args.size(); i++) {
std::string argIdx = "%" + std::to_string(i);
StringRef pArg = args[i];
if (pArg == "")
pArg = "<null>";
if (pArg[0] == 1) {
escapedArg = "";
raw_string_ostream os(escapedArg);
dxilutil::PrintEscapedString(pArg, os);
os.flush();
pArg = escapedArg;
}
std::string::size_type offset = ruleText.find(argIdx);
if (offset == std::string::npos)
continue;
unsigned size = argIdx.size();
ruleText.replace(offset, size, pArg);
}
}
void EmitFormatError(ValidationRule rule, ArrayRef<StringRef> args) {
std::string ruleText = GetValidationRuleText(rule);
FormatRuleText(ruleText, args);
dxilutil::EmitErrorOnContext(M.getContext(), ruleText);
Failed = true;
}
void EmitMetaError(Metadata *Meta, ValidationRule rule) {
std::string O;
raw_string_ostream OSS(O);
Meta->print(OSS, &M);
dxilutil::EmitErrorOnContext(M.getContext(),
GetValidationRuleText(rule) + O);
Failed = true;
}
// Use this instead of DxilResourceBase::GetGlobalName
std::string GetResourceName(const hlsl::DxilResourceBase *Res) {
if (!Res)
return "nullptr";
std::string resName = Res->GetGlobalName();
if (!resName.empty())
return resName;
if (pDebugModule) {
DxilModule &DM = pDebugModule->GetOrCreateDxilModule();
switch (Res->GetClass()) {
case DXIL::ResourceClass::CBuffer:
return DM.GetCBuffer(Res->GetID()).GetGlobalName();
case DXIL::ResourceClass::Sampler:
return DM.GetSampler(Res->GetID()).GetGlobalName();
case DXIL::ResourceClass::SRV:
return DM.GetSRV(Res->GetID()).GetGlobalName();
case DXIL::ResourceClass::UAV:
return DM.GetUAV(Res->GetID()).GetGlobalName();
default:
return "Invalid Resource";
}
}
// When names have been stripped, use class and binding location to
// identify the resource. Format is roughly:
// Allocated: (CB|T|U|S)<ID>: <ResourceKind> ((cb|t|u|s)<LB>[<RangeSize>]
// space<SpaceID>) Unallocated: (CB|T|U|S)<ID>: <ResourceKind> (no bind
// location) Example: U0: TypedBuffer (u5[2] space1)
// [<RangeSize>] and space<SpaceID> skipped if 1 and 0 respectively.
return (Twine(Res->GetResIDPrefix()) + Twine(Res->GetID()) + ": " +
Twine(Res->GetResKindName()) +
(Res->IsAllocated() ? (" (" + Twine(Res->GetResBindPrefix()) +
Twine(Res->GetLowerBound()) +
(Res->IsUnbounded() ? Twine("[unbounded]")
: (Res->GetRangeSize() != 1)
? "[" + Twine(Res->GetRangeSize()) + "]"
: Twine()) +
((Res->GetSpaceID() != 0)
? " space" + Twine(Res->GetSpaceID())
: Twine()) +
")")
: Twine(" (no bind location)")))
.str();
}
void EmitResourceError(const hlsl::DxilResourceBase *Res,
ValidationRule rule) {
std::string QuotedRes = " '" + GetResourceName(Res) + "'";
dxilutil::EmitErrorOnContext(M.getContext(),
GetValidationRuleText(rule) + QuotedRes);
Failed = true;
}
void EmitResourceFormatError(const hlsl::DxilResourceBase *Res,
ValidationRule rule, ArrayRef<StringRef> args) {
std::string QuotedRes = " '" + GetResourceName(Res) + "'";
std::string ruleText = GetValidationRuleText(rule);
FormatRuleText(ruleText, args);
dxilutil::EmitErrorOnContext(M.getContext(), ruleText + QuotedRes);
Failed = true;
}
bool IsDebugFunctionCall(Instruction *I) { return isa<DbgInfoIntrinsic>(I); }
Instruction *GetDebugInstr(Instruction *I) {
DXASSERT_NOMSG(I);
if (pDebugModule) {
// Look up the matching instruction in the debug module.
llvm::Function *Fn = I->getParent()->getParent();
llvm::Function *DbgFn = pDebugModule->getFunction(Fn->getName());
if (DbgFn) {
// Linear lookup, but then again, failing validation is rare.
inst_iterator it = inst_begin(Fn);
inst_iterator dbg_it = inst_begin(DbgFn);
while (IsDebugFunctionCall(&*dbg_it))
++dbg_it;
while (&*it != I) {
++it;
++dbg_it;
while (IsDebugFunctionCall(&*dbg_it))
++dbg_it;
}
return &*dbg_it;
}
}
return I;
}
// Emit Error or note on instruction `I` with `Msg`.
// If `isError` is true, `Rule` may omit repeated errors
void EmitInstrDiagMsg(Instruction *I, ValidationRule Rule, std::string Msg,
bool isError = true) {
BasicBlock *BB = I->getParent();
Function *F = BB->getParent();
Instruction *DbgI = GetDebugInstr(I);
if (isError) {
if (const DebugLoc L = DbgI->getDebugLoc()) {
// Instructions that get scalarized will likely hit
// this case. Avoid redundant diagnostic messages.
if (Rule == LastRuleEmit && L == LastDebugLocEmit) {
return;
}
LastRuleEmit = Rule;
LastDebugLocEmit = L;
}
dxilutil::EmitErrorOnInstruction(DbgI, Msg);
} else {
dxilutil::EmitNoteOnContext(DbgI->getContext(), Msg);
}
// Add llvm information as a note to instruction string
std::string InstrStr;
raw_string_ostream InstrStream(InstrStr);
I->print(InstrStream, slotTracker);
InstrStream.flush();
StringRef InstrStrRef = InstrStr;
InstrStrRef = InstrStrRef.ltrim(); // Ignore indentation
Msg = "at '" + InstrStrRef.str() + "'";
// Print the parent block name
Msg += " in block '";
if (!BB->getName().empty()) {
Msg += BB->getName();
} else {
unsigned idx = 0;
for (auto i = F->getBasicBlockList().begin(),
e = F->getBasicBlockList().end();
i != e; ++i) {
if (BB == &(*i)) {
break;
}
idx++;
}
Msg += "#" + std::to_string(idx);
}
Msg += "'";
// Print the function name
Msg += " of function '" + F->getName().str() + "'.";
dxilutil::EmitNoteOnContext(DbgI->getContext(), Msg);
Failed = true;
}
void EmitInstrError(Instruction *I, ValidationRule rule) {
EmitInstrDiagMsg(I, rule, GetValidationRuleText(rule));
}
void EmitInstrNote(Instruction *I, std::string Msg) {
EmitInstrDiagMsg(I, LastRuleEmit, Msg, false);
}
void EmitInstrFormatError(Instruction *I, ValidationRule rule,
ArrayRef<StringRef> args) {
std::string ruleText = GetValidationRuleText(rule);
FormatRuleText(ruleText, args);
EmitInstrDiagMsg(I, rule, ruleText);
}
void EmitSignatureError(DxilSignatureElement *SE, ValidationRule rule) {
EmitFormatError(rule, {SE->GetName()});
}
void EmitTypeError(Type *Ty, ValidationRule rule) {
std::string O;
raw_string_ostream OSS(O);
Ty->print(OSS);
EmitFormatError(rule, {OSS.str()});
}
void EmitFnError(Function *F, ValidationRule rule) {
if (pDebugModule)
if (Function *dbgF = pDebugModule->getFunction(F->getName()))
F = dbgF;
dxilutil::EmitErrorOnFunction(M.getContext(), F,
GetValidationRuleText(rule));
Failed = true;
}
void EmitFnFormatError(Function *F, ValidationRule rule,
ArrayRef<StringRef> args) {
std::string ruleText = GetValidationRuleText(rule);
FormatRuleText(ruleText, args);
if (pDebugModule)
if (Function *dbgF = pDebugModule->getFunction(F->getName()))
F = dbgF;
dxilutil::EmitErrorOnFunction(M.getContext(), F, ruleText);
Failed = true;
}
void EmitFnAttributeError(Function *F, StringRef Kind, StringRef Value) {
EmitFnFormatError(F, ValidationRule::DeclFnAttribute,
{F->getName(), Kind, Value});
}
};
static unsigned ValidateSignatureRowCol(Instruction *I,
DxilSignatureElement &SE, Value *rowVal,
Value *colVal, EntryStatus &Status,
ValidationContext &ValCtx) {
if (ConstantInt *constRow = dyn_cast<ConstantInt>(rowVal)) {
unsigned row = constRow->getLimitedValue();
if (row >= SE.GetRows()) {
std::string range = std::string("0~") + std::to_string(SE.GetRows());
ValCtx.EmitInstrFormatError(I, ValidationRule::InstrOperandRange,
{"Row", range, std::to_string(row)});
}
}
if (!isa<ConstantInt>(colVal)) {
// col must be const
ValCtx.EmitInstrFormatError(I, ValidationRule::InstrOpConst,
{"Col", "LoadInput/StoreOutput"});
return 0;
}
unsigned col = cast<ConstantInt>(colVal)->getLimitedValue();
if (col > SE.GetCols()) {
std::string range = std::string("0~") + std::to_string(SE.GetCols());
ValCtx.EmitInstrFormatError(I, ValidationRule::InstrOperandRange,
{"Col", range, std::to_string(col)});
} else {
if (SE.IsOutput())
Status.outputCols[SE.GetID()] |= 1 << col;
if (SE.IsPatchConstOrPrim())
Status.patchConstOrPrimCols[SE.GetID()] |= 1 << col;
}
return col;
}
static DxilSignatureElement *
ValidateSignatureAccess(Instruction *I, DxilSignature &sig, Value *sigID,
Value *rowVal, Value *colVal, EntryStatus &Status,
ValidationContext &ValCtx) {
if (!isa<ConstantInt>(sigID)) {
// inputID must be const
ValCtx.EmitInstrFormatError(I, ValidationRule::InstrOpConst,
{"SignatureID", "LoadInput/StoreOutput"});
return nullptr;
}
unsigned SEIdx = cast<ConstantInt>(sigID)->getLimitedValue();
if (sig.GetElements().size() <= SEIdx) {
ValCtx.EmitInstrError(I, ValidationRule::InstrOpConstRange);
return nullptr;
}
DxilSignatureElement &SE = sig.GetElement(SEIdx);
bool isOutput = sig.IsOutput();
unsigned col = ValidateSignatureRowCol(I, SE, rowVal, colVal, Status, ValCtx);
if (isOutput && SE.GetSemantic()->GetKind() == DXIL::SemanticKind::Position) {
unsigned mask = Status.OutputPositionMask[SE.GetOutputStream()];
mask |= 1 << col;
if (SE.GetOutputStream() < DXIL::kNumOutputStreams)
Status.OutputPositionMask[SE.GetOutputStream()] = mask;
}
return &SE;
}
static DxilResourceProperties GetResourceFromHandle(Value *Handle,
ValidationContext &ValCtx) {
if (!isa<CallInst>(Handle)) {
if (Instruction *I = dyn_cast<Instruction>(Handle))
ValCtx.EmitInstrError(I, ValidationRule::InstrHandleNotFromCreateHandle);
else
ValCtx.EmitError(ValidationRule::InstrHandleNotFromCreateHandle);
DxilResourceProperties RP;
return RP;
}
DxilResourceProperties RP = ValCtx.GetResourceFromVal(Handle);
if (RP.getResourceClass() == DXIL::ResourceClass::Invalid) {
ValCtx.EmitInstrError(cast<CallInst>(Handle),
ValidationRule::InstrHandleNotFromCreateHandle);
}
return RP;
}
static DXIL::SamplerKind GetSamplerKind(Value *samplerHandle,
ValidationContext &ValCtx) {
DxilResourceProperties RP = GetResourceFromHandle(samplerHandle, ValCtx);
if (RP.getResourceClass() != DXIL::ResourceClass::Sampler) {
// must be sampler.
return DXIL::SamplerKind::Invalid;
}
if (RP.Basic.SamplerCmpOrHasCounter)
return DXIL::SamplerKind::Comparison;
else if (RP.getResourceKind() == DXIL::ResourceKind::Invalid)
return DXIL::SamplerKind::Invalid;
else
return DXIL::SamplerKind::Default;
}
static DXIL::ResourceKind
GetResourceKindAndCompTy(Value *handle, DXIL::ComponentType &CompTy,
DXIL::ResourceClass &ResClass,
ValidationContext &ValCtx) {
CompTy = DXIL::ComponentType::Invalid;
ResClass = DXIL::ResourceClass::Invalid;
// TODO: validate ROV is used only in PS.
DxilResourceProperties RP = GetResourceFromHandle(handle, ValCtx);
ResClass = RP.getResourceClass();
switch (ResClass) {
case DXIL::ResourceClass::SRV:
case DXIL::ResourceClass::UAV:
break;
case DXIL::ResourceClass::CBuffer:
return DXIL::ResourceKind::CBuffer;
case DXIL::ResourceClass::Sampler:
return DXIL::ResourceKind::Sampler;
default:
// Emit invalid res class
return DXIL::ResourceKind::Invalid;
}
if (!DXIL::IsStructuredBuffer(RP.getResourceKind()))
CompTy = static_cast<DXIL::ComponentType>(RP.Typed.CompType);
else
CompTy = DXIL::ComponentType::Invalid;
return RP.getResourceKind();
}
DxilFieldAnnotation *GetFieldAnnotation(Type *Ty, DxilTypeSystem &typeSys,
std::deque<unsigned> &offsets) {
unsigned CurIdx = 1;
unsigned LastIdx = offsets.size() - 1;
DxilStructAnnotation *StructAnnot = nullptr;
for (; CurIdx < offsets.size(); ++CurIdx) {
if (const StructType *EltST = dyn_cast<StructType>(Ty)) {
if (DxilStructAnnotation *EltAnnot = typeSys.GetStructAnnotation(EltST)) {
StructAnnot = EltAnnot;
Ty = EltST->getElementType(offsets[CurIdx]);
if (CurIdx == LastIdx) {
return &StructAnnot->GetFieldAnnotation(offsets[CurIdx]);
}
} else {
return nullptr;
}
} else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Ty = AT->getElementType();
StructAnnot = nullptr;
} else {
if (StructAnnot)
return &StructAnnot->GetFieldAnnotation(offsets[CurIdx]);
}
}
return nullptr;
}
DxilResourceProperties ValidationContext::GetResourceFromVal(Value *resVal) {
auto it = ResPropMap.find(resVal);
if (it != ResPropMap.end()) {
return it->second;
} else {
DxilResourceProperties RP;
return RP;
}
}
struct ResRetUsage {
bool x;
bool y;
bool z;
bool w;
bool status;
ResRetUsage() : x(false), y(false), z(false), w(false), status(false) {}
};
static void CollectGetDimResRetUsage(ResRetUsage &usage, Instruction *ResRet,
ValidationContext &ValCtx) {
for (User *U : ResRet->users()) {
if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U)) {
for (unsigned idx : EVI->getIndices()) {
switch (idx) {
case 0:
usage.x = true;
break;
case 1:
usage.y = true;
break;
case 2:
usage.z = true;
break;
case 3:
usage.w = true;
break;
case DXIL::kResRetStatusIndex:
usage.status = true;
break;
default:
// Emit index out of bound.
ValCtx.EmitInstrError(EVI,
ValidationRule::InstrDxilStructUserOutOfBound);
break;
}
}
} else if (PHINode *PHI = dyn_cast<PHINode>(U)) {
CollectGetDimResRetUsage(usage, PHI, ValCtx);
} else {
Instruction *User = cast<Instruction>(U);
ValCtx.EmitInstrError(User, ValidationRule::InstrDxilStructUser);
}
}
}
static void ValidateResourceCoord(CallInst *CI, DXIL::ResourceKind resKind,
ArrayRef<Value *> coords,
ValidationContext &ValCtx) {
const unsigned kMaxNumCoords = 4;
unsigned numCoords = DxilResource::GetNumCoords(resKind);
for (unsigned i = 0; i < kMaxNumCoords; i++) {
if (i < numCoords) {
if (isa<UndefValue>(coords[i])) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceCoordinateMiss);
}
} else {
if (!isa<UndefValue>(coords[i])) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrResourceCoordinateTooMany);
}
}
}
}
static void ValidateCalcLODResourceDimensionCoord(CallInst *CI,
DXIL::ResourceKind resKind,
ArrayRef<Value *> coords,
ValidationContext &ValCtx) {
const unsigned kMaxNumDimCoords = 3;
unsigned numCoords = DxilResource::GetNumDimensionsForCalcLOD(resKind);
for (unsigned i = 0; i < kMaxNumDimCoords; i++) {
if (i < numCoords) {
if (isa<UndefValue>(coords[i])) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceCoordinateMiss);
}
} else {
if (!isa<UndefValue>(coords[i])) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrResourceCoordinateTooMany);
}
}
}
}
static void ValidateResourceOffset(CallInst *CI, DXIL::ResourceKind resKind,
ArrayRef<Value *> offsets,
ValidationContext &ValCtx) {
const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel();
unsigned numOffsets = DxilResource::GetNumOffsets(resKind);
bool hasOffset = !isa<UndefValue>(offsets[0]);
auto validateOffset = [&](Value *offset) {
// 6.7 Advanced Textures allow programmable offsets
if (pSM->IsSM67Plus())
return;
if (ConstantInt *cOffset = dyn_cast<ConstantInt>(offset)) {
int offset = cOffset->getValue().getSExtValue();
if (offset > 7 || offset < -8) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrTextureOffset);
}
} else {
ValCtx.EmitInstrError(CI, ValidationRule::InstrTextureOffset);
}
};
if (hasOffset) {
validateOffset(offsets[0]);
}
for (unsigned i = 1; i < offsets.size(); i++) {
if (i < numOffsets) {
if (hasOffset) {
if (isa<UndefValue>(offsets[i]))
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceOffsetMiss);
else
validateOffset(offsets[i]);
}
} else {
if (!isa<UndefValue>(offsets[i])) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceOffsetTooMany);
}
}
}
}
// Validate derivative and derivative dependent ops in CS/MS/AS
static void ValidateDerivativeOp(CallInst *CI, ValidationContext &ValCtx) {
const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel();
if (pSM && (pSM->IsMS() || pSM->IsAS() || pSM->IsCS()) && !pSM->IsSM66Plus())
ValCtx.EmitInstrFormatError(
CI, ValidationRule::SmOpcodeInInvalidFunction,
{"Derivatives in CS/MS/AS", "Shader Model 6.6+"});
}
static void ValidateSampleInst(CallInst *CI, Value *srvHandle,
Value *samplerHandle, ArrayRef<Value *> coords,
ArrayRef<Value *> offsets, bool IsSampleC,
ValidationContext &ValCtx) {
if (!IsSampleC) {
if (GetSamplerKind(samplerHandle, ValCtx) != DXIL::SamplerKind::Default) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrSamplerModeForSample);
}
} else {
if (GetSamplerKind(samplerHandle, ValCtx) !=
DXIL::SamplerKind::Comparison) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrSamplerModeForSampleC);
}
}
DXIL::ComponentType compTy;
DXIL::ResourceClass resClass;
DXIL::ResourceKind resKind =
GetResourceKindAndCompTy(srvHandle, compTy, resClass, ValCtx);
bool isSampleCompTy = compTy == DXIL::ComponentType::F32;
isSampleCompTy |= compTy == DXIL::ComponentType::SNormF32;
isSampleCompTy |= compTy == DXIL::ComponentType::UNormF32;
isSampleCompTy |= compTy == DXIL::ComponentType::F16;
isSampleCompTy |= compTy == DXIL::ComponentType::SNormF16;
isSampleCompTy |= compTy == DXIL::ComponentType::UNormF16;
const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel();
if (pSM->IsSM67Plus() && !IsSampleC) {
isSampleCompTy |= compTy == DXIL::ComponentType::I16;
isSampleCompTy |= compTy == DXIL::ComponentType::U16;
isSampleCompTy |= compTy == DXIL::ComponentType::I32;
isSampleCompTy |= compTy == DXIL::ComponentType::U32;
}
if (!isSampleCompTy) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrSampleCompType);
}
if (resClass != DXIL::ResourceClass::SRV) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrResourceClassForSamplerGather);
}
ValidationRule rule = ValidationRule::InstrResourceKindForSample;
if (IsSampleC) {
rule = ValidationRule::InstrResourceKindForSampleC;
}
switch (resKind) {
case DXIL::ResourceKind::Texture1D:
case DXIL::ResourceKind::Texture1DArray:
case DXIL::ResourceKind::Texture2D:
case DXIL::ResourceKind::Texture2DArray:
case DXIL::ResourceKind::TextureCube:
case DXIL::ResourceKind::TextureCubeArray:
break;
case DXIL::ResourceKind::Texture3D:
if (IsSampleC) {
ValCtx.EmitInstrError(CI, rule);
}
break;
default:
ValCtx.EmitInstrError(CI, rule);
return;
}
// Coord match resource kind.
ValidateResourceCoord(CI, resKind, coords, ValCtx);
// Offset match resource kind.
ValidateResourceOffset(CI, resKind, offsets, ValCtx);
}
static void ValidateGather(CallInst *CI, Value *srvHandle, Value *samplerHandle,
ArrayRef<Value *> coords, ArrayRef<Value *> offsets,
bool IsSampleC, ValidationContext &ValCtx) {
if (!IsSampleC) {
if (GetSamplerKind(samplerHandle, ValCtx) != DXIL::SamplerKind::Default) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrSamplerModeForSample);
}
} else {
if (GetSamplerKind(samplerHandle, ValCtx) !=
DXIL::SamplerKind::Comparison) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrSamplerModeForSampleC);
}
}
DXIL::ComponentType compTy;
DXIL::ResourceClass resClass;
DXIL::ResourceKind resKind =
GetResourceKindAndCompTy(srvHandle, compTy, resClass, ValCtx);
if (resClass != DXIL::ResourceClass::SRV) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrResourceClassForSamplerGather);
return;
}
// Coord match resource kind.
ValidateResourceCoord(CI, resKind, coords, ValCtx);
// Offset match resource kind.
switch (resKind) {
case DXIL::ResourceKind::Texture2D:
case DXIL::ResourceKind::Texture2DArray: {
bool hasOffset = !isa<UndefValue>(offsets[0]);
if (hasOffset) {
if (isa<UndefValue>(offsets[1])) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceOffsetMiss);
}
}
} break;
case DXIL::ResourceKind::TextureCube:
case DXIL::ResourceKind::TextureCubeArray: {
if (!isa<UndefValue>(offsets[0])) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceOffsetTooMany);
}
if (!isa<UndefValue>(offsets[1])) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceOffsetTooMany);
}
} break;
default:
// Invalid resource type for gather.
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceKindForGather);
return;
}
}
static unsigned StoreValueToMask(ArrayRef<Value *> vals) {
unsigned mask = 0;
for (unsigned i = 0; i < 4; i++) {
if (!isa<UndefValue>(vals[i])) {
mask |= 1 << i;
}
}
return mask;
}
static int GetCBufSize(Value *cbHandle, ValidationContext &ValCtx) {
DxilResourceProperties RP = GetResourceFromHandle(cbHandle, ValCtx);
if (RP.getResourceClass() != DXIL::ResourceClass::CBuffer) {
ValCtx.EmitInstrError(cast<CallInst>(cbHandle),
ValidationRule::InstrCBufferClassForCBufferHandle);
return -1;
}
return RP.CBufferSizeInBytes;
}
// Make sure none of the handle arguments are undef / zero-initializer,
// Also, do not accept any resource handles with invalid dxil resource
// properties
void ValidateHandleArgsForInstruction(CallInst *CI, DXIL::OpCode opcode,
ValidationContext &ValCtx) {
for (Value *op : CI->operands()) {
const Type *pHandleTy = ValCtx.HandleTy; // This is a resource handle
const Type *pNodeHandleTy = ValCtx.DxilMod.GetOP()->GetNodeHandleType();
const Type *pNodeRecordHandleTy =
ValCtx.DxilMod.GetOP()->GetNodeRecordHandleType();
const Type *argTy = op->getType();
if (argTy == pNodeHandleTy || argTy == pNodeRecordHandleTy ||
argTy == pHandleTy) {
if (isa<UndefValue>(op) || isa<ConstantAggregateZero>(op)) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrNoReadingUninitialized);
} else if (argTy == pHandleTy) {
// GetResourceFromHandle will emit an error on an invalid handle
GetResourceFromHandle(op, ValCtx);
}
}
}
}
void ValidateHandleArgs(CallInst *CI, DXIL::OpCode opcode,
ValidationContext &ValCtx) {
switch (opcode) {
// TODO: add case DXIL::OpCode::IndexNodeRecordHandle:
case DXIL::OpCode::AnnotateHandle:
case DXIL::OpCode::AnnotateNodeHandle:
case DXIL::OpCode::AnnotateNodeRecordHandle:
case DXIL::OpCode::CreateHandleForLib:
// TODO: add custom validation for these intrinsics
break;
default:
ValidateHandleArgsForInstruction(CI, opcode, ValCtx);
break;
}
}
static unsigned GetNumVertices(DXIL::InputPrimitive inputPrimitive) {
const unsigned InputPrimitiveVertexTab[] = {
0, // Undefined = 0,
1, // Point = 1,
2, // Line = 2,
3, // Triangle = 3,
0, // Reserved4 = 4,
0, // Reserved5 = 5,
4, // LineWithAdjacency = 6,
6, // TriangleWithAdjacency = 7,
1, // ControlPointPatch1 = 8,
2, // ControlPointPatch2 = 9,
3, // ControlPointPatch3 = 10,
4, // ControlPointPatch4 = 11,
5, // ControlPointPatch5 = 12,
6, // ControlPointPatch6 = 13,
7, // ControlPointPatch7 = 14,
8, // ControlPointPatch8 = 15,
9, // ControlPointPatch9 = 16,
10, // ControlPointPatch10 = 17,
11, // ControlPointPatch11 = 18,
12, // ControlPointPatch12 = 19,
13, // ControlPointPatch13 = 20,
14, // ControlPointPatch14 = 21,
15, // ControlPointPatch15 = 22,
16, // ControlPointPatch16 = 23,
17, // ControlPointPatch17 = 24,
18, // ControlPointPatch18 = 25,
19, // ControlPointPatch19 = 26,
20, // ControlPointPatch20 = 27,
21, // ControlPointPatch21 = 28,
22, // ControlPointPatch22 = 29,
23, // ControlPointPatch23 = 30,
24, // ControlPointPatch24 = 31,
25, // ControlPointPatch25 = 32,
26, // ControlPointPatch26 = 33,
27, // ControlPointPatch27 = 34,
28, // ControlPointPatch28 = 35,
29, // ControlPointPatch29 = 36,
30, // ControlPointPatch30 = 37,
31, // ControlPointPatch31 = 38,
32, // ControlPointPatch32 = 39,
0, // LastEntry,
};
unsigned primitiveIdx = static_cast<unsigned>(inputPrimitive);
return InputPrimitiveVertexTab[primitiveIdx];
}
static void ValidateSignatureDxilOp(CallInst *CI, DXIL::OpCode opcode,
ValidationContext &ValCtx) {
Function *F = CI->getParent()->getParent();
DxilModule &DM = ValCtx.DxilMod;
bool bIsPatchConstantFunc = false;
if (!DM.HasDxilEntryProps(F)) {
auto it = ValCtx.PatchConstantFuncMap.find(F);
if (it == ValCtx.PatchConstantFuncMap.end()) {
// Missing entry props.
ValCtx.EmitInstrError(CI,
ValidationRule::InstrSignatureOperationNotInEntry);
return;
}
// Use hull entry instead of patch constant function.
F = it->second.front();
bIsPatchConstantFunc = true;
}
if (!ValCtx.HasEntryStatus(F)) {
return;
}
EntryStatus &Status = ValCtx.GetEntryStatus(F);
DxilEntryProps &EntryProps = DM.GetDxilEntryProps(F);
DxilFunctionProps &props = EntryProps.props;
DxilEntrySignature &S = EntryProps.sig;
switch (opcode) {
case DXIL::OpCode::LoadInput: {
Value *inputID = CI->getArgOperand(DXIL::OperandIndex::kLoadInputIDOpIdx);
DxilSignature &inputSig = S.InputSignature;
Value *row = CI->getArgOperand(DXIL::OperandIndex::kLoadInputRowOpIdx);
Value *col = CI->getArgOperand(DXIL::OperandIndex::kLoadInputColOpIdx);
ValidateSignatureAccess(CI, inputSig, inputID, row, col, Status, ValCtx);
// Check vertexID in ps/vs. and none array input.
Value *vertexID =
CI->getArgOperand(DXIL::OperandIndex::kLoadInputVertexIDOpIdx);
bool usedVertexID = vertexID && !isa<UndefValue>(vertexID);
if (props.IsVS() || props.IsPS()) {
if (usedVertexID) {
// use vertexID in VS/PS input.
ValCtx.EmitInstrError(CI, ValidationRule::SmOperand);
return;
}
} else {
if (ConstantInt *cVertexID = dyn_cast<ConstantInt>(vertexID)) {
int immVertexID = cVertexID->getValue().getLimitedValue();
if (cVertexID->getValue().isNegative()) {
immVertexID = cVertexID->getValue().getSExtValue();
}
const int low = 0;
int high = 0;
if (props.IsGS()) {
DXIL::InputPrimitive inputPrimitive =
props.ShaderProps.GS.inputPrimitive;
high = GetNumVertices(inputPrimitive);
} else if (props.IsDS()) {
high = props.ShaderProps.DS.inputControlPoints;
} else if (props.IsHS()) {
high = props.ShaderProps.HS.inputControlPoints;
} else {
ValCtx.EmitInstrFormatError(CI,
ValidationRule::SmOpcodeInInvalidFunction,
{"LoadInput", "VS/HS/DS/GS/PS"});
}
if (immVertexID < low || immVertexID >= high) {
std::string range = std::to_string(low) + "~" + std::to_string(high);
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrOperandRange,
{"VertexID", range, std::to_string(immVertexID)});
}
}
}
} break;
case DXIL::OpCode::DomainLocation: {
Value *colValue =
CI->getArgOperand(DXIL::OperandIndex::kDomainLocationColOpIdx);
if (!isa<ConstantInt>(colValue)) {
// col must be const
ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrOpConst,
{"Col", "DomainLocation"});
} else {
unsigned col = cast<ConstantInt>(colValue)->getLimitedValue();
if (col >= Status.domainLocSize) {
ValCtx.EmitInstrError(CI, ValidationRule::SmDomainLocationIdxOOB);
}
}
} break;
case DXIL::OpCode::StoreOutput:
case DXIL::OpCode::StoreVertexOutput:
case DXIL::OpCode::StorePrimitiveOutput: {
Value *outputID =
CI->getArgOperand(DXIL::OperandIndex::kStoreOutputIDOpIdx);
DxilSignature &outputSig = opcode == DXIL::OpCode::StorePrimitiveOutput
? S.PatchConstOrPrimSignature
: S.OutputSignature;
Value *row = CI->getArgOperand(DXIL::OperandIndex::kStoreOutputRowOpIdx);
Value *col = CI->getArgOperand(DXIL::OperandIndex::kStoreOutputColOpIdx);
ValidateSignatureAccess(CI, outputSig, outputID, row, col, Status, ValCtx);
} break;
case DXIL::OpCode::OutputControlPointID: {
// Only used in hull shader.
Function *func = CI->getParent()->getParent();
// Make sure this is inside hs shader entry function.
if (!(props.IsHS() && F == func)) {
ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction,
{"OutputControlPointID", "hull function"});
}
} break;
case DXIL::OpCode::LoadOutputControlPoint: {
// Only used in patch constant function.
Function *func = CI->getParent()->getParent();
if (ValCtx.entryFuncCallSet.count(func) > 0) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::SmOpcodeInInvalidFunction,
{"LoadOutputControlPoint", "PatchConstant function"});
}
Value *outputID =
CI->getArgOperand(DXIL::OperandIndex::kStoreOutputIDOpIdx);
DxilSignature &outputSig = S.OutputSignature;
Value *row = CI->getArgOperand(DXIL::OperandIndex::kStoreOutputRowOpIdx);
Value *col = CI->getArgOperand(DXIL::OperandIndex::kStoreOutputColOpIdx);
ValidateSignatureAccess(CI, outputSig, outputID, row, col, Status, ValCtx);
} break;
case DXIL::OpCode::StorePatchConstant: {
// Only used in patch constant function.
Function *func = CI->getParent()->getParent();
if (!bIsPatchConstantFunc) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::SmOpcodeInInvalidFunction,
{"StorePatchConstant", "PatchConstant function"});
} else {
auto &hullShaders = ValCtx.PatchConstantFuncMap[func];
for (Function *F : hullShaders) {
EntryStatus &Status = ValCtx.GetEntryStatus(F);
DxilEntryProps &EntryProps = DM.GetDxilEntryProps(F);
DxilEntrySignature &S = EntryProps.sig;
Value *outputID =
CI->getArgOperand(DXIL::OperandIndex::kStoreOutputIDOpIdx);
DxilSignature &outputSig = S.PatchConstOrPrimSignature;
Value *row =
CI->getArgOperand(DXIL::OperandIndex::kStoreOutputRowOpIdx);
Value *col =
CI->getArgOperand(DXIL::OperandIndex::kStoreOutputColOpIdx);
ValidateSignatureAccess(CI, outputSig, outputID, row, col, Status,
ValCtx);
}
}
} break;
case DXIL::OpCode::Coverage:
Status.m_bCoverageIn = true;
break;
case DXIL::OpCode::InnerCoverage:
Status.m_bInnerCoverageIn = true;
break;
case DXIL::OpCode::ViewID:
Status.hasViewID = true;
break;
case DXIL::OpCode::EvalCentroid:
case DXIL::OpCode::EvalSampleIndex:
case DXIL::OpCode::EvalSnapped: {
// Eval* share same operand index with load input.
Value *inputID = CI->getArgOperand(DXIL::OperandIndex::kLoadInputIDOpIdx);
DxilSignature &inputSig = S.InputSignature;
Value *row = CI->getArgOperand(DXIL::OperandIndex::kLoadInputRowOpIdx);
Value *col = CI->getArgOperand(DXIL::OperandIndex::kLoadInputColOpIdx);
DxilSignatureElement *pSE = ValidateSignatureAccess(
CI, inputSig, inputID, row, col, Status, ValCtx);
if (pSE) {
switch (pSE->GetInterpolationMode()->GetKind()) {
case DXIL::InterpolationMode::Linear:
case DXIL::InterpolationMode::LinearNoperspective:
case DXIL::InterpolationMode::LinearCentroid:
case DXIL::InterpolationMode::LinearNoperspectiveCentroid:
case DXIL::InterpolationMode::LinearSample:
case DXIL::InterpolationMode::LinearNoperspectiveSample:
break;
default:
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrEvalInterpolationMode, {pSE->GetName()});
break;
}
if (pSE->GetSemantic()->GetKind() == DXIL::SemanticKind::Position) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrCannotPullPosition,
{ValCtx.DxilMod.GetShaderModel()->GetName()});
}
}
} break;
case DXIL::OpCode::AttributeAtVertex: {
Value *Attribute = CI->getArgOperand(DXIL::OperandIndex::kBinarySrc0OpIdx);
DxilSignature &inputSig = S.InputSignature;
Value *row = CI->getArgOperand(DXIL::OperandIndex::kLoadInputRowOpIdx);
Value *col = CI->getArgOperand(DXIL::OperandIndex::kLoadInputColOpIdx);
DxilSignatureElement *pSE = ValidateSignatureAccess(
CI, inputSig, Attribute, row, col, Status, ValCtx);
if (pSE && pSE->GetInterpolationMode()->GetKind() !=
hlsl::InterpolationMode::Kind::Constant) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrAttributeAtVertexNoInterpolation,
{pSE->GetName()});
}
} break;
case DXIL::OpCode::CutStream:
case DXIL::OpCode::EmitThenCutStream:
case DXIL::OpCode::EmitStream: {
if (props.IsGS()) {
auto &GS = props.ShaderProps.GS;
unsigned streamMask = 0;
for (size_t i = 0; i < _countof(GS.streamPrimitiveTopologies); ++i) {
if (GS.streamPrimitiveTopologies[i] !=
DXIL::PrimitiveTopology::Undefined) {
streamMask |= 1 << i;
}
}
Value *streamID =
CI->getArgOperand(DXIL::OperandIndex::kStreamEmitCutIDOpIdx);
if (ConstantInt *cStreamID = dyn_cast<ConstantInt>(streamID)) {
int immStreamID = cStreamID->getValue().getLimitedValue();
if (cStreamID->getValue().isNegative() || immStreamID >= 4) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrOperandRange,
{"StreamID", "0~4", std::to_string(immStreamID)});
} else {
unsigned immMask = 1 << immStreamID;
if ((streamMask & immMask) == 0) {
std::string range;
for (unsigned i = 0; i < 4; i++) {
if (streamMask & (1 << i)) {
range += std::to_string(i) + " ";
}
}
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrOperandRange,
{"StreamID", range, std::to_string(immStreamID)});
}
}
} else {
ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrOpConst,
{"StreamID", "Emit/CutStream"});
}
} else {
ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction,
{"Emit/CutStream", "Geometry shader"});
}
} break;
case DXIL::OpCode::EmitIndices: {
if (!props.IsMS()) {
ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction,
{"EmitIndices", "Mesh shader"});
}
} break;
case DXIL::OpCode::SetMeshOutputCounts: {
if (!props.IsMS()) {
ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction,
{"SetMeshOutputCounts", "Mesh shader"});
}
} break;
case DXIL::OpCode::GetMeshPayload: {
if (!props.IsMS()) {
ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction,
{"GetMeshPayload", "Mesh shader"});
}
} break;
case DXIL::OpCode::DispatchMesh: {
if (!props.IsAS()) {
ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction,
{"DispatchMesh", "Amplification shader"});
}
} break;
default:
break;
}
if (Status.m_bCoverageIn && Status.m_bInnerCoverageIn) {
ValCtx.EmitInstrError(CI, ValidationRule::SmPSCoverageAndInnerCoverage);
}
}
static void ValidateImmOperandForMathDxilOp(CallInst *CI, DXIL::OpCode opcode,
ValidationContext &ValCtx) {
switch (opcode) {
// Imm input value validation.
case DXIL::OpCode::Asin: {
DxilInst_Asin I(CI);
if (ConstantFP *imm = dyn_cast<ConstantFP>(I.get_value())) {
if (imm->getValueAPF().isInfinity()) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrNoIndefiniteAsin);
}
}
} break;
case DXIL::OpCode::Acos: {
DxilInst_Acos I(CI);
if (ConstantFP *imm = dyn_cast<ConstantFP>(I.get_value())) {
if (imm->getValueAPF().isInfinity()) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrNoIndefiniteAcos);
}
}
} break;
case DXIL::OpCode::Log: {
DxilInst_Log I(CI);
if (ConstantFP *imm = dyn_cast<ConstantFP>(I.get_value())) {
if (imm->getValueAPF().isInfinity()) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrNoIndefiniteLog);
}
}
} break;
case DXIL::OpCode::DerivFineX:
case DXIL::OpCode::DerivFineY:
case DXIL::OpCode::DerivCoarseX:
case DXIL::OpCode::DerivCoarseY: {
Value *V = CI->getArgOperand(DXIL::OperandIndex::kUnarySrc0OpIdx);
if (ConstantFP *imm = dyn_cast<ConstantFP>(V)) {
if (imm->getValueAPF().isInfinity()) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrNoIndefiniteDsxy);
}
}
ValidateDerivativeOp(CI, ValCtx);
} break;
default:
break;
}
}
// Validate the type-defined mask compared to the store value mask which
// indicates which parts were defined returns true if caller should continue
// validation
static bool ValidateStorageMasks(Instruction *I, DXIL::OpCode opcode,
ConstantInt *mask, unsigned stValMask,
bool isTyped, ValidationContext &ValCtx) {
if (!mask) {
// Mask for buffer store should be immediate.
ValCtx.EmitInstrFormatError(I, ValidationRule::InstrOpConst,
{"Mask", hlsl::OP::GetOpCodeName(opcode)});
return false;
}
unsigned uMask = mask->getLimitedValue();
if (isTyped && uMask != 0xf) {
ValCtx.EmitInstrError(I, ValidationRule::InstrWriteMaskForTypedUAVStore);
}
// write mask must be contiguous (.x .xy .xyz or .xyzw)
if (!((uMask == 0xf) || (uMask == 0x7) || (uMask == 0x3) || (uMask == 0x1))) {
ValCtx.EmitInstrError(I, ValidationRule::InstrWriteMaskGapForUAV);
}
// If a bit is set in the uMask (expected values) that isn't set in stValMask
// (user provided values) then the user failed to define some of the output
// values.
if (uMask & ~stValMask)
ValCtx.EmitInstrError(I, ValidationRule::InstrUndefinedValueForUAVStore);
else if (uMask != stValMask)
ValCtx.EmitInstrFormatError(
I, ValidationRule::InstrWriteMaskMatchValueForUAVStore,
{std::to_string(uMask), std::to_string(stValMask)});
return true;
}
static void ValidateResourceDxilOp(CallInst *CI, DXIL::OpCode opcode,
ValidationContext &ValCtx) {
switch (opcode) {
case DXIL::OpCode::GetDimensions: {
DxilInst_GetDimensions getDim(CI);
Value *handle = getDim.get_handle();
DXIL::ComponentType compTy;
DXIL::ResourceClass resClass;
DXIL::ResourceKind resKind =
GetResourceKindAndCompTy(handle, compTy, resClass, ValCtx);
// Check the result component use.
ResRetUsage usage;
CollectGetDimResRetUsage(usage, CI, ValCtx);
// Mip level only for texture.
switch (resKind) {
case DXIL::ResourceKind::Texture1D:
if (usage.y) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrUndefResultForGetDimension,
{"y", "Texture1D"});
}
if (usage.z) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrUndefResultForGetDimension,
{"z", "Texture1D"});
}
break;
case DXIL::ResourceKind::Texture1DArray:
if (usage.z) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrUndefResultForGetDimension,
{"z", "Texture1DArray"});
}
break;
case DXIL::ResourceKind::Texture2D:
if (usage.z) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrUndefResultForGetDimension,
{"z", "Texture2D"});
}
break;
case DXIL::ResourceKind::Texture2DArray:
break;
case DXIL::ResourceKind::Texture2DMS:
if (usage.z) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrUndefResultForGetDimension,
{"z", "Texture2DMS"});
}
break;
case DXIL::ResourceKind::Texture2DMSArray:
break;
case DXIL::ResourceKind::Texture3D:
break;
case DXIL::ResourceKind::TextureCube:
if (usage.z) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrUndefResultForGetDimension,
{"z", "TextureCube"});
}
break;
case DXIL::ResourceKind::TextureCubeArray:
break;
case DXIL::ResourceKind::StructuredBuffer:
case DXIL::ResourceKind::RawBuffer:
case DXIL::ResourceKind::TypedBuffer:
case DXIL::ResourceKind::TBuffer: {
Value *mip = getDim.get_mipLevel();
if (!isa<UndefValue>(mip)) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrMipLevelForGetDimension);
}
if (resKind != DXIL::ResourceKind::Invalid) {
if (usage.y || usage.z || usage.w) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrUndefResultForGetDimension,
{"invalid", "resource"});
}
}
} break;
default: {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceKindForGetDim);
} break;
}
if (usage.status) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrUndefResultForGetDimension,
{"invalid", "resource"});
}
} break;
case DXIL::OpCode::CalculateLOD: {
DxilInst_CalculateLOD lod(CI);
Value *samplerHandle = lod.get_sampler();
DXIL::SamplerKind samplerKind = GetSamplerKind(samplerHandle, ValCtx);
if (samplerKind != DXIL::SamplerKind::Default) {
// After SM68, Comparison is supported.
if (!ValCtx.DxilMod.GetShaderModel()->IsSM68Plus() ||
samplerKind != DXIL::SamplerKind::Comparison)
ValCtx.EmitInstrError(CI, ValidationRule::InstrSamplerModeForLOD);
}
Value *handle = lod.get_handle();
DXIL::ComponentType compTy;
DXIL::ResourceClass resClass;
DXIL::ResourceKind resKind =
GetResourceKindAndCompTy(handle, compTy, resClass, ValCtx);
if (resClass != DXIL::ResourceClass::SRV) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrResourceClassForSamplerGather);
return;
}
// Coord match resource.
ValidateCalcLODResourceDimensionCoord(
CI, resKind, {lod.get_coord0(), lod.get_coord1(), lod.get_coord2()},
ValCtx);
switch (resKind) {
case DXIL::ResourceKind::Texture1D:
case DXIL::ResourceKind::Texture1DArray:
case DXIL::ResourceKind::Texture2D:
case DXIL::ResourceKind::Texture2DArray:
case DXIL::ResourceKind::Texture3D:
case DXIL::ResourceKind::TextureCube:
case DXIL::ResourceKind::TextureCubeArray:
break;
default:
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceKindForCalcLOD);
break;
}
ValidateDerivativeOp(CI, ValCtx);
} break;
case DXIL::OpCode::TextureGather: {
DxilInst_TextureGather gather(CI);
ValidateGather(CI, gather.get_srv(), gather.get_sampler(),
{gather.get_coord0(), gather.get_coord1(),
gather.get_coord2(), gather.get_coord3()},
{gather.get_offset0(), gather.get_offset1()},
/*IsSampleC*/ false, ValCtx);
} break;
case DXIL::OpCode::TextureGatherCmp: {
DxilInst_TextureGatherCmp gather(CI);
ValidateGather(CI, gather.get_srv(), gather.get_sampler(),
{gather.get_coord0(), gather.get_coord1(),
gather.get_coord2(), gather.get_coord3()},
{gather.get_offset0(), gather.get_offset1()},
/*IsSampleC*/ true, ValCtx);
} break;
case DXIL::OpCode::Sample: {
DxilInst_Sample sample(CI);
ValidateSampleInst(
CI, sample.get_srv(), sample.get_sampler(),
{sample.get_coord0(), sample.get_coord1(), sample.get_coord2(),
sample.get_coord3()},
{sample.get_offset0(), sample.get_offset1(), sample.get_offset2()},
/*IsSampleC*/ false, ValCtx);
ValidateDerivativeOp(CI, ValCtx);
} break;
case DXIL::OpCode::SampleCmp: {
DxilInst_SampleCmp sample(CI);
ValidateSampleInst(
CI, sample.get_srv(), sample.get_sampler(),
{sample.get_coord0(), sample.get_coord1(), sample.get_coord2(),
sample.get_coord3()},
{sample.get_offset0(), sample.get_offset1(), sample.get_offset2()},
/*IsSampleC*/ true, ValCtx);
ValidateDerivativeOp(CI, ValCtx);
} break;
case DXIL::OpCode::SampleCmpLevel: {
// sampler must be comparison mode.
DxilInst_SampleCmpLevel sample(CI);
ValidateSampleInst(
CI, sample.get_srv(), sample.get_sampler(),
{sample.get_coord0(), sample.get_coord1(), sample.get_coord2(),
sample.get_coord3()},
{sample.get_offset0(), sample.get_offset1(), sample.get_offset2()},
/*IsSampleC*/ true, ValCtx);
} break;
case DXIL::OpCode::SampleCmpLevelZero: {
// sampler must be comparison mode.
DxilInst_SampleCmpLevelZero sample(CI);
ValidateSampleInst(
CI, sample.get_srv(), sample.get_sampler(),
{sample.get_coord0(), sample.get_coord1(), sample.get_coord2(),
sample.get_coord3()},
{sample.get_offset0(), sample.get_offset1(), sample.get_offset2()},
/*IsSampleC*/ true, ValCtx);
} break;
case DXIL::OpCode::SampleBias: {
DxilInst_SampleBias sample(CI);
Value *bias = sample.get_bias();
if (ConstantFP *cBias = dyn_cast<ConstantFP>(bias)) {
float fBias = cBias->getValueAPF().convertToFloat();
if (fBias < DXIL::kMinMipLodBias || fBias > DXIL::kMaxMipLodBias) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrImmBiasForSampleB,
{std::to_string(DXIL::kMinMipLodBias),
std::to_string(DXIL::kMaxMipLodBias),
std::to_string(cBias->getValueAPF().convertToFloat())});
}
}
ValidateSampleInst(
CI, sample.get_srv(), sample.get_sampler(),
{sample.get_coord0(), sample.get_coord1(), sample.get_coord2(),
sample.get_coord3()},
{sample.get_offset0(), sample.get_offset1(), sample.get_offset2()},
/*IsSampleC*/ false, ValCtx);
ValidateDerivativeOp(CI, ValCtx);
} break;
case DXIL::OpCode::SampleCmpBias: {
DxilInst_SampleCmpBias sample(CI);
Value *bias = sample.get_bias();
if (ConstantFP *cBias = dyn_cast<ConstantFP>(bias)) {
float fBias = cBias->getValueAPF().convertToFloat();
if (fBias < DXIL::kMinMipLodBias || fBias > DXIL::kMaxMipLodBias) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrImmBiasForSampleB,
{std::to_string(DXIL::kMinMipLodBias),
std::to_string(DXIL::kMaxMipLodBias),
std::to_string(cBias->getValueAPF().convertToFloat())});
}
}
ValidateSampleInst(
CI, sample.get_srv(), sample.get_sampler(),
{sample.get_coord0(), sample.get_coord1(), sample.get_coord2(),
sample.get_coord3()},
{sample.get_offset0(), sample.get_offset1(), sample.get_offset2()},
/*IsSampleC*/ true, ValCtx);
ValidateDerivativeOp(CI, ValCtx);
} break;
case DXIL::OpCode::SampleGrad: {
DxilInst_SampleGrad sample(CI);
ValidateSampleInst(
CI, sample.get_srv(), sample.get_sampler(),
{sample.get_coord0(), sample.get_coord1(), sample.get_coord2(),
sample.get_coord3()},
{sample.get_offset0(), sample.get_offset1(), sample.get_offset2()},
/*IsSampleC*/ false, ValCtx);
} break;
case DXIL::OpCode::SampleCmpGrad: {
DxilInst_SampleCmpGrad sample(CI);
ValidateSampleInst(
CI, sample.get_srv(), sample.get_sampler(),
{sample.get_coord0(), sample.get_coord1(), sample.get_coord2(),
sample.get_coord3()},
{sample.get_offset0(), sample.get_offset1(), sample.get_offset2()},
/*IsSampleC*/ true, ValCtx);
} break;
case DXIL::OpCode::SampleLevel: {
DxilInst_SampleLevel sample(CI);
ValidateSampleInst(
CI, sample.get_srv(), sample.get_sampler(),
{sample.get_coord0(), sample.get_coord1(), sample.get_coord2(),
sample.get_coord3()},
{sample.get_offset0(), sample.get_offset1(), sample.get_offset2()},
/*IsSampleC*/ false, ValCtx);
} break;
case DXIL::OpCode::CheckAccessFullyMapped: {
Value *Src = CI->getArgOperand(DXIL::OperandIndex::kUnarySrc0OpIdx);
ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Src);
if (!EVI) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrCheckAccessFullyMapped);
} else {
Value *V = EVI->getOperand(0);
bool isLegal = EVI->getNumIndices() == 1 &&
EVI->getIndices()[0] == DXIL::kResRetStatusIndex &&
ValCtx.DxilMod.GetOP()->IsResRetType(V->getType());
if (!isLegal) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrCheckAccessFullyMapped);
}
}
} break;
case DXIL::OpCode::BufferStore: {
DxilInst_BufferStore bufSt(CI);
DXIL::ComponentType compTy;
DXIL::ResourceClass resClass;
DXIL::ResourceKind resKind =
GetResourceKindAndCompTy(bufSt.get_uav(), compTy, resClass, ValCtx);
if (resClass != DXIL::ResourceClass::UAV) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForUAVStore);
}
ConstantInt *mask = dyn_cast<ConstantInt>(bufSt.get_mask());
unsigned stValMask =
StoreValueToMask({bufSt.get_value0(), bufSt.get_value1(),
bufSt.get_value2(), bufSt.get_value3()});
if (!ValidateStorageMasks(CI, opcode, mask, stValMask,
resKind == DXIL::ResourceKind::TypedBuffer ||
resKind == DXIL::ResourceKind::TBuffer,
ValCtx))
return;
Value *offset = bufSt.get_coord1();
switch (resKind) {
case DXIL::ResourceKind::RawBuffer:
if (!isa<UndefValue>(offset)) {
ValCtx.EmitInstrError(
CI, ValidationRule::InstrCoordinateCountForRawTypedBuf);
}
break;
case DXIL::ResourceKind::TypedBuffer:
case DXIL::ResourceKind::TBuffer:
if (!isa<UndefValue>(offset)) {
ValCtx.EmitInstrError(
CI, ValidationRule::InstrCoordinateCountForRawTypedBuf);
}
break;
case DXIL::ResourceKind::StructuredBuffer:
if (isa<UndefValue>(offset)) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrCoordinateCountForStructBuf);
}
break;
default:
ValCtx.EmitInstrError(
CI, ValidationRule::InstrResourceKindForBufferLoadStore);
break;
}
} break;
case DXIL::OpCode::TextureStore: {
DxilInst_TextureStore texSt(CI);
DXIL::ComponentType compTy;
DXIL::ResourceClass resClass;
DXIL::ResourceKind resKind =
GetResourceKindAndCompTy(texSt.get_srv(), compTy, resClass, ValCtx);
if (resClass != DXIL::ResourceClass::UAV) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForUAVStore);
}
ConstantInt *mask = dyn_cast<ConstantInt>(texSt.get_mask());
unsigned stValMask =
StoreValueToMask({texSt.get_value0(), texSt.get_value1(),
texSt.get_value2(), texSt.get_value3()});
if (!ValidateStorageMasks(CI, opcode, mask, stValMask, true /*isTyped*/,
ValCtx))
return;
switch (resKind) {
case DXIL::ResourceKind::Texture1D:
case DXIL::ResourceKind::Texture1DArray:
case DXIL::ResourceKind::Texture2D:
case DXIL::ResourceKind::Texture2DArray:
case DXIL::ResourceKind::Texture2DMS:
case DXIL::ResourceKind::Texture2DMSArray:
case DXIL::ResourceKind::Texture3D:
break;
default:
ValCtx.EmitInstrError(CI,
ValidationRule::InstrResourceKindForTextureStore);
break;
}
} break;
case DXIL::OpCode::BufferLoad: {
DxilInst_BufferLoad bufLd(CI);
DXIL::ComponentType compTy;
DXIL::ResourceClass resClass;
DXIL::ResourceKind resKind =
GetResourceKindAndCompTy(bufLd.get_srv(), compTy, resClass, ValCtx);
if (resClass != DXIL::ResourceClass::SRV &&
resClass != DXIL::ResourceClass::UAV) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForLoad);
}
Value *offset = bufLd.get_wot();
switch (resKind) {
case DXIL::ResourceKind::RawBuffer:
case DXIL::ResourceKind::TypedBuffer:
case DXIL::ResourceKind::TBuffer:
if (!isa<UndefValue>(offset)) {
ValCtx.EmitInstrError(
CI, ValidationRule::InstrCoordinateCountForRawTypedBuf);
}
break;
case DXIL::ResourceKind::StructuredBuffer:
if (isa<UndefValue>(offset)) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrCoordinateCountForStructBuf);
}
break;
default:
ValCtx.EmitInstrError(
CI, ValidationRule::InstrResourceKindForBufferLoadStore);
break;
}
} break;
case DXIL::OpCode::TextureLoad: {
DxilInst_TextureLoad texLd(CI);
DXIL::ComponentType compTy;
DXIL::ResourceClass resClass;
DXIL::ResourceKind resKind =
GetResourceKindAndCompTy(texLd.get_srv(), compTy, resClass, ValCtx);
Value *mipLevel = texLd.get_mipLevelOrSampleCount();
if (resClass == DXIL::ResourceClass::UAV) {
bool noOffset = isa<UndefValue>(texLd.get_offset0());
noOffset &= isa<UndefValue>(texLd.get_offset1());
noOffset &= isa<UndefValue>(texLd.get_offset2());
if (!noOffset) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrOffsetOnUAVLoad);
}
if (!isa<UndefValue>(mipLevel)) {
if (resKind != DXIL::ResourceKind::Texture2DMS &&
resKind != DXIL::ResourceKind::Texture2DMSArray)
ValCtx.EmitInstrError(CI, ValidationRule::InstrMipOnUAVLoad);
}
} else {
if (resClass != DXIL::ResourceClass::SRV) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForLoad);
}
}
switch (resKind) {
case DXIL::ResourceKind::Texture1D:
case DXIL::ResourceKind::Texture1DArray:
case DXIL::ResourceKind::Texture2D:
case DXIL::ResourceKind::Texture2DArray:
case DXIL::ResourceKind::Texture3D:
break;
case DXIL::ResourceKind::Texture2DMS:
case DXIL::ResourceKind::Texture2DMSArray: {
if (isa<UndefValue>(mipLevel)) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrSampleIndexForLoad2DMS);
}
} break;
default:
ValCtx.EmitInstrError(CI,
ValidationRule::InstrResourceKindForTextureLoad);
return;
}
ValidateResourceOffset(
CI, resKind,
{texLd.get_offset0(), texLd.get_offset1(), texLd.get_offset2()},
ValCtx);
} break;
case DXIL::OpCode::CBufferLoad: {
DxilInst_CBufferLoad CBLoad(CI);
Value *regIndex = CBLoad.get_byteOffset();
if (ConstantInt *cIndex = dyn_cast<ConstantInt>(regIndex)) {
int offset = cIndex->getLimitedValue();
int size = GetCBufSize(CBLoad.get_handle(), ValCtx);
if (size > 0 && offset >= size) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrCBufferOutOfBound);
}
}
} break;
case DXIL::OpCode::CBufferLoadLegacy: {
DxilInst_CBufferLoadLegacy CBLoad(CI);
Value *regIndex = CBLoad.get_regIndex();
if (ConstantInt *cIndex = dyn_cast<ConstantInt>(regIndex)) {
int offset = cIndex->getLimitedValue() * 16; // 16 bytes align
int size = GetCBufSize(CBLoad.get_handle(), ValCtx);
if (size > 0 && offset >= size) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrCBufferOutOfBound);
}
}
} break;
case DXIL::OpCode::RawBufferLoad: {
if (!ValCtx.DxilMod.GetShaderModel()->IsSM63Plus()) {
Type *Ty = OP::GetOverloadType(DXIL::OpCode::RawBufferLoad,
CI->getCalledFunction());
if (ValCtx.DL.getTypeAllocSizeInBits(Ty) > 32) {
ValCtx.EmitInstrError(CI, ValidationRule::Sm64bitRawBufferLoadStore);
}
}
DxilInst_RawBufferLoad bufLd(CI);
DXIL::ComponentType compTy;
DXIL::ResourceClass resClass;
DXIL::ResourceKind resKind =
GetResourceKindAndCompTy(bufLd.get_srv(), compTy, resClass, ValCtx);
if (resClass != DXIL::ResourceClass::SRV &&
resClass != DXIL::ResourceClass::UAV) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForLoad);
}
Value *offset = bufLd.get_elementOffset();
Value *align = bufLd.get_alignment();
unsigned alignSize = 0;
if (!isa<ConstantInt>(align)) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrCoordinateCountForRawTypedBuf);
} else {
alignSize = bufLd.get_alignment_val();
}
switch (resKind) {
case DXIL::ResourceKind::RawBuffer:
if (!isa<UndefValue>(offset)) {
ValCtx.EmitInstrError(
CI, ValidationRule::InstrCoordinateCountForRawTypedBuf);
}
break;
case DXIL::ResourceKind::StructuredBuffer:
if (isa<UndefValue>(offset)) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrCoordinateCountForStructBuf);
}
break;
default:
ValCtx.EmitInstrError(
CI, ValidationRule::InstrResourceKindForBufferLoadStore);
break;
}
} break;
case DXIL::OpCode::RawBufferStore: {
if (!ValCtx.DxilMod.GetShaderModel()->IsSM63Plus()) {
Type *Ty = OP::GetOverloadType(DXIL::OpCode::RawBufferStore,
CI->getCalledFunction());
if (ValCtx.DL.getTypeAllocSizeInBits(Ty) > 32) {
ValCtx.EmitInstrError(CI, ValidationRule::Sm64bitRawBufferLoadStore);
}
}
DxilInst_RawBufferStore bufSt(CI);
DXIL::ComponentType compTy;
DXIL::ResourceClass resClass;
DXIL::ResourceKind resKind =
GetResourceKindAndCompTy(bufSt.get_uav(), compTy, resClass, ValCtx);
if (resClass != DXIL::ResourceClass::UAV) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForUAVStore);
}
ConstantInt *mask = dyn_cast<ConstantInt>(bufSt.get_mask());
unsigned stValMask =
StoreValueToMask({bufSt.get_value0(), bufSt.get_value1(),
bufSt.get_value2(), bufSt.get_value3()});
if (!ValidateStorageMasks(CI, opcode, mask, stValMask, false /*isTyped*/,
ValCtx))
return;
Value *offset = bufSt.get_elementOffset();
Value *align = bufSt.get_alignment();
unsigned alignSize = 0;
if (!isa<ConstantInt>(align)) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrCoordinateCountForRawTypedBuf);
} else {
alignSize = bufSt.get_alignment_val();
}
switch (resKind) {
case DXIL::ResourceKind::RawBuffer:
if (!isa<UndefValue>(offset)) {
ValCtx.EmitInstrError(
CI, ValidationRule::InstrCoordinateCountForRawTypedBuf);
}
break;
case DXIL::ResourceKind::StructuredBuffer:
if (isa<UndefValue>(offset)) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrCoordinateCountForStructBuf);
}
break;
default:
ValCtx.EmitInstrError(
CI, ValidationRule::InstrResourceKindForBufferLoadStore);
break;
}
} break;
case DXIL::OpCode::TraceRay: {
DxilInst_TraceRay traceRay(CI);
Value *hdl = traceRay.get_AccelerationStructure();
DxilResourceProperties RP = ValCtx.GetResourceFromVal(hdl);
if (RP.getResourceClass() == DXIL::ResourceClass::Invalid) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceKindForTraceRay);
return;
}
if (RP.getResourceKind() != DXIL::ResourceKind::RTAccelerationStructure) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceKindForTraceRay);
}
} break;
default:
break;
}
}
static void ValidateBarrierFlagArg(ValidationContext &ValCtx, CallInst *CI,
Value *Arg, unsigned validMask,
StringRef flagName, StringRef opName) {
if (ConstantInt *CArg = dyn_cast<ConstantInt>(Arg)) {
if ((CArg->getLimitedValue() & (uint32_t)(~validMask)) != 0) {
ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrBarrierFlagInvalid,
{flagName, opName});
}
} else {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrBarrierNonConstantFlagArgument);
}
}
std::string GetLaunchTypeStr(DXIL::NodeLaunchType LT) {
switch (LT) {
case DXIL::NodeLaunchType::Broadcasting:
return "Broadcasting";
case DXIL::NodeLaunchType::Coalescing:
return "Coalescing";
case DXIL::NodeLaunchType::Thread:
return "Thread";
default:
return "Invalid";
}
}
static void ValidateDxilOperationCallInProfile(CallInst *CI,
DXIL::OpCode opcode,
const ShaderModel *pSM,
ValidationContext &ValCtx) {
DXIL::ShaderKind shaderKind =
pSM ? pSM->GetKind() : DXIL::ShaderKind::Invalid;
llvm::Function *F = CI->getParent()->getParent();
DXIL::NodeLaunchType nodeLaunchType = DXIL::NodeLaunchType::Invalid;
if (DXIL::ShaderKind::Library == shaderKind) {
if (ValCtx.DxilMod.HasDxilFunctionProps(F)) {
DxilEntryProps &entryProps = ValCtx.DxilMod.GetDxilEntryProps(F);
shaderKind = ValCtx.DxilMod.GetDxilFunctionProps(F).shaderKind;
if (shaderKind == DXIL::ShaderKind::Node)
nodeLaunchType = entryProps.props.Node.LaunchType;
} else if (ValCtx.DxilMod.IsPatchConstantShader(F))
shaderKind = DXIL::ShaderKind::Hull;
}
// These shader models are treted like compute
bool isCSLike = shaderKind == DXIL::ShaderKind::Compute ||
shaderKind == DXIL::ShaderKind::Mesh ||
shaderKind == DXIL::ShaderKind::Amplification ||
shaderKind == DXIL::ShaderKind::Node;
// Is called from a library function
bool isLibFunc = shaderKind == DXIL::ShaderKind::Library;
ValidateHandleArgs(CI, opcode, ValCtx);
switch (opcode) {
// Imm input value validation.
case DXIL::OpCode::Asin:
case DXIL::OpCode::Acos:
case DXIL::OpCode::Log:
case DXIL::OpCode::DerivFineX:
case DXIL::OpCode::DerivFineY:
case DXIL::OpCode::DerivCoarseX:
case DXIL::OpCode::DerivCoarseY:
ValidateImmOperandForMathDxilOp(CI, opcode, ValCtx);
break;
// Resource validation.
case DXIL::OpCode::GetDimensions:
case DXIL::OpCode::CalculateLOD:
case DXIL::OpCode::TextureGather:
case DXIL::OpCode::TextureGatherCmp:
case DXIL::OpCode::Sample:
case DXIL::OpCode::SampleCmp:
case DXIL::OpCode::SampleCmpLevel:
case DXIL::OpCode::SampleCmpLevelZero:
case DXIL::OpCode::SampleBias:
case DXIL::OpCode::SampleGrad:
case DXIL::OpCode::SampleCmpBias:
case DXIL::OpCode::SampleCmpGrad:
case DXIL::OpCode::SampleLevel:
case DXIL::OpCode::CheckAccessFullyMapped:
case DXIL::OpCode::BufferStore:
case DXIL::OpCode::TextureStore:
case DXIL::OpCode::BufferLoad:
case DXIL::OpCode::TextureLoad:
case DXIL::OpCode::CBufferLoad:
case DXIL::OpCode::CBufferLoadLegacy:
case DXIL::OpCode::RawBufferLoad:
case DXIL::OpCode::RawBufferStore:
ValidateResourceDxilOp(CI, opcode, ValCtx);
break;
// Input output.
case DXIL::OpCode::LoadInput:
case DXIL::OpCode::DomainLocation:
case DXIL::OpCode::StoreOutput:
case DXIL::OpCode::StoreVertexOutput:
case DXIL::OpCode::StorePrimitiveOutput:
case DXIL::OpCode::OutputControlPointID:
case DXIL::OpCode::LoadOutputControlPoint:
case DXIL::OpCode::StorePatchConstant:
case DXIL::OpCode::Coverage:
case DXIL::OpCode::InnerCoverage:
case DXIL::OpCode::ViewID:
case DXIL::OpCode::EvalCentroid:
case DXIL::OpCode::EvalSampleIndex:
case DXIL::OpCode::EvalSnapped:
case DXIL::OpCode::AttributeAtVertex:
case DXIL::OpCode::EmitStream:
case DXIL::OpCode::EmitThenCutStream:
case DXIL::OpCode::CutStream:
ValidateSignatureDxilOp(CI, opcode, ValCtx);
break;
// Special.
case DXIL::OpCode::BufferUpdateCounter: {
DxilInst_BufferUpdateCounter updateCounter(CI);
Value *handle = updateCounter.get_uav();
DxilResourceProperties RP = ValCtx.GetResourceFromVal(handle);
if (!RP.isUAV()) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrBufferUpdateCounterOnUAV);
}
if (!DXIL::IsStructuredBuffer(RP.getResourceKind())) {
ValCtx.EmitInstrError(CI, ValidationRule::SmCounterOnlyOnStructBuf);
}
if (!RP.Basic.SamplerCmpOrHasCounter) {
ValCtx.EmitInstrError(
CI, ValidationRule::InstrBufferUpdateCounterOnResHasCounter);
}
Value *inc = updateCounter.get_inc();
if (ConstantInt *cInc = dyn_cast<ConstantInt>(inc)) {
bool isInc = cInc->getLimitedValue() == 1;
if (!ValCtx.isLibProfile) {
auto it = ValCtx.HandleResIndexMap.find(handle);
if (it != ValCtx.HandleResIndexMap.end()) {
unsigned resIndex = it->second;
if (ValCtx.UavCounterIncMap.count(resIndex)) {
if (isInc != ValCtx.UavCounterIncMap[resIndex]) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrOnlyOneAllocConsume);
}
} else {
ValCtx.UavCounterIncMap[resIndex] = isInc;
}
}
} else {
// TODO: validate ValidationRule::InstrOnlyOneAllocConsume for lib
// profile.
}
} else {
ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrOpConst,
{"inc", "BufferUpdateCounter"});
}
} break;
case DXIL::OpCode::Barrier: {
DxilInst_Barrier barrier(CI);
Value *mode = barrier.get_barrierMode();
ConstantInt *cMode = dyn_cast<ConstantInt>(mode);
if (!cMode) {
ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrOpConst,
{"Mode", "Barrier"});
return;
}
const unsigned uglobal =
static_cast<unsigned>(DXIL::BarrierMode::UAVFenceGlobal);
const unsigned g = static_cast<unsigned>(DXIL::BarrierMode::TGSMFence);
const unsigned ut =
static_cast<unsigned>(DXIL::BarrierMode::UAVFenceThreadGroup);
unsigned barrierMode = cMode->getLimitedValue();
if (isCSLike || isLibFunc) {
bool bHasUGlobal = barrierMode & uglobal;
bool bHasGroup = barrierMode & g;
bool bHasUGroup = barrierMode & ut;
if (bHasUGlobal && bHasUGroup) {
ValCtx.EmitInstrError(CI,
ValidationRule::InstrBarrierModeUselessUGroup);
}
if (!bHasUGlobal && !bHasGroup && !bHasUGroup) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierModeNoMemory);
}
} else {
if (uglobal != barrierMode) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierModeForNonCS);
}
}
} break;
case DXIL::OpCode::BarrierByMemoryType: {
DxilInst_BarrierByMemoryType DI(CI);
ValidateBarrierFlagArg(ValCtx, CI, DI.get_MemoryTypeFlags(),
(unsigned)hlsl::DXIL::MemoryTypeFlag::ValidMask,
"memory type", "BarrierByMemoryType");
ValidateBarrierFlagArg(ValCtx, CI, DI.get_SemanticFlags(),
(unsigned)hlsl::DXIL::BarrierSemanticFlag::ValidMask,
"semantic", "BarrierByMemoryType");
if (!isLibFunc && shaderKind != DXIL::ShaderKind::Node &&
OP::BarrierRequiresNode(CI)) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierRequiresNode);
}
if (!isCSLike && !isLibFunc && OP::BarrierRequiresGroup(CI)) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierModeForNonCS);
}
} break;
case DXIL::OpCode::BarrierByNodeRecordHandle:
case DXIL::OpCode::BarrierByMemoryHandle: {
std::string opName = opcode == DXIL::OpCode::BarrierByNodeRecordHandle
? "barrierByNodeRecordHandle"
: "barrierByMemoryHandle";
DxilInst_BarrierByMemoryHandle DIMH(CI);
ValidateBarrierFlagArg(ValCtx, CI, DIMH.get_SemanticFlags(),
(unsigned)hlsl::DXIL::BarrierSemanticFlag::ValidMask,
"semantic", opName);
if (!isLibFunc && shaderKind != DXIL::ShaderKind::Node &&
OP::BarrierRequiresNode(CI)) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierRequiresNode);
}
if (!isCSLike && !isLibFunc && OP::BarrierRequiresGroup(CI)) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierModeForNonCS);
}
} break;
case DXIL::OpCode::CreateHandleForLib:
if (!ValCtx.isLibProfile) {
ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction,
{"CreateHandleForLib", "Library"});
}
break;
case DXIL::OpCode::AtomicBinOp:
case DXIL::OpCode::AtomicCompareExchange: {
Type *pOverloadType = OP::GetOverloadType(opcode, CI->getCalledFunction());
if ((pOverloadType->isIntegerTy(64)) && !pSM->IsSM66Plus())
ValCtx.EmitInstrFormatError(
CI, ValidationRule::SmOpcodeInInvalidFunction,
{"64-bit atomic operations", "Shader Model 6.6+"});
Value *Handle = CI->getOperand(DXIL::OperandIndex::kAtomicBinOpHandleOpIdx);
if (!isa<CallInst>(Handle) ||
ValCtx.GetResourceFromVal(Handle).getResourceClass() !=
DXIL::ResourceClass::UAV)
ValCtx.EmitInstrError(CI, ValidationRule::InstrAtomicIntrinNonUAV);
} break;
case DXIL::OpCode::CreateHandle:
if (ValCtx.isLibProfile) {
ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction,
{"CreateHandle", "non-library targets"});
}
// CreateHandle should not be used in SM 6.6 and above:
if (DXIL::CompareVersions(ValCtx.m_DxilMajor, ValCtx.m_DxilMinor, 1, 5) >
0) {
ValCtx.EmitInstrFormatError(
CI, ValidationRule::SmOpcodeInInvalidFunction,
{"CreateHandle", "Shader model 6.5 and below"});
}
break;
case DXIL::OpCode::ThreadId: // SV_DispatchThreadID
if (shaderKind != DXIL::ShaderKind::Node) {
break;
}
if (nodeLaunchType == DXIL::NodeLaunchType::Broadcasting)
break;
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrSVConflictingLaunchMode,
{"ThreadId", "SV_DispatchThreadID", GetLaunchTypeStr(nodeLaunchType)});
break;
case DXIL::OpCode::GroupId: // SV_GroupId
if (shaderKind != DXIL::ShaderKind::Node) {
break;
}
if (nodeLaunchType == DXIL::NodeLaunchType::Broadcasting)
break;
ValCtx.EmitInstrFormatError(
CI, ValidationRule::InstrSVConflictingLaunchMode,
{"GroupId", "SV_GroupId", GetLaunchTypeStr(nodeLaunchType)});
break;
case DXIL::OpCode::ThreadIdInGroup: // SV_GroupThreadID
if (shaderKind != DXIL::ShaderKind::Node) {
break;
}
if (nodeLaunchType == DXIL::NodeLaunchType::Broadcasting ||
nodeLaunchType == DXIL::NodeLaunchType::Coalescing)
break;
ValCtx.EmitInstrFormatError(CI,
ValidationRule::InstrSVConflictingLaunchMode,
{"ThreadIdInGroup", "SV_GroupThreadID",
GetLaunchTypeStr(nodeLaunchType)});
break;
case DXIL::OpCode::FlattenedThreadIdInGroup: // SV_GroupIndex
if (shaderKind != DXIL::ShaderKind::Node) {
break;
}
if (nodeLaunchType == DXIL::NodeLaunchType::Broadcasting ||
nodeLaunchType == DXIL::NodeLaunchType::Coalescing)
break;
ValCtx.EmitInstrFormatError(CI,
ValidationRule::InstrSVConflictingLaunchMode,
{"FlattenedThreadIdInGroup", "SV_GroupIndex",
GetLaunchTypeStr(nodeLaunchType)});
break;
default:
// TODO: make sure every opcode is checked.
// Skip opcodes don't need special check.
break;
}
}
static bool IsDxilFunction(llvm::Function *F) {
unsigned argSize = F->arg_size();
if (argSize < 1) {
// Cannot be a DXIL operation.
return false;
}
return OP::IsDxilOpFunc(F);
}
static bool IsLifetimeIntrinsic(llvm::Function *F) {
return (F->isIntrinsic() &&
(F->getIntrinsicID() == Intrinsic::lifetime_start ||
F->getIntrinsicID() == Intrinsic::lifetime_end));
}
static void ValidateExternalFunction(Function *F, ValidationContext &ValCtx) {
if (DXIL::CompareVersions(ValCtx.m_DxilMajor, ValCtx.m_DxilMinor, 1, 6) >=
0 &&
IsLifetimeIntrinsic(F)) {
// TODO: validate lifetime intrinsic users
return;
}
if (!IsDxilFunction(F) && !ValCtx.isLibProfile) {
ValCtx.EmitFnFormatError(F, ValidationRule::DeclDxilFnExtern,
{F->getName()});
return;
}
if (F->use_empty()) {
ValCtx.EmitFnFormatError(F, ValidationRule::DeclUsedExternalFunction,
{F->getName()});
return;
}
const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel();
OP *hlslOP = ValCtx.DxilMod.GetOP();
bool isDxilOp = OP::IsDxilOpFunc(F);
Type *voidTy = Type::getVoidTy(F->getContext());
for (User *user : F->users()) {
CallInst *CI = dyn_cast<CallInst>(user);
if (!CI) {
ValCtx.EmitFnFormatError(F, ValidationRule::DeclFnIsCalled,
{F->getName()});
continue;
}
// Skip call to external user defined function
if (!isDxilOp)
continue;
Value *argOpcode = CI->getArgOperand(0);
ConstantInt *constOpcode = dyn_cast<ConstantInt>(argOpcode);
if (!constOpcode) {
// opcode not immediate; function body will validate this error.
continue;
}
unsigned opcode = constOpcode->getLimitedValue();
if (opcode >= (unsigned)DXIL::OpCode::NumOpCodes) {
// invalid opcode; function body will validate this error.
continue;
}
DXIL::OpCode dxilOpcode = (DXIL::OpCode)opcode;
// In some cases, no overloads are provided (void is exclusive to others)
Function *dxilFunc;
if (hlslOP->IsOverloadLegal(dxilOpcode, voidTy)) {
dxilFunc = hlslOP->GetOpFunc(dxilOpcode, voidTy);
} else {
Type *Ty = OP::GetOverloadType(dxilOpcode, CI->getCalledFunction());
try {
if (!hlslOP->IsOverloadLegal(dxilOpcode, Ty)) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrOload);
continue;
}
} catch (...) {
ValCtx.EmitInstrError(CI, ValidationRule::InstrOload);
continue;
}
dxilFunc = hlslOP->GetOpFunc(dxilOpcode, Ty->getScalarType());
}
if (!dxilFunc) {
// Cannot find dxilFunction based on opcode and type.
ValCtx.EmitInstrError(CI, ValidationRule::InstrOload);
continue;
}
if (dxilFunc->getFunctionType() != F->getFunctionType()) {
ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrCallOload,
{dxilFunc->getName()});
continue;
}
unsigned major = pSM->GetMajor();
unsigned minor = pSM->GetMinor();
if (ValCtx.isLibProfile) {
Function *callingFunction = CI->getParent()->getParent();
DXIL::ShaderKind SK = DXIL::ShaderKind::Library;
if (ValCtx.DxilMod.HasDxilFunctionProps(callingFunction))
SK = ValCtx.DxilMod.GetDxilFunctionProps(callingFunction).shaderKind;
else if (ValCtx.DxilMod.IsPatchConstantShader(callingFunction))
SK = DXIL::ShaderKind::Hull;
if (!ValidateOpcodeInProfile(dxilOpcode, SK, major, minor)) {
// Opcode not available in profile.
// produces: "lib_6_3(ps)", or "lib_6_3(anyhit)" for shader types
// Or: "lib_6_3(lib)" for library function
std::string shaderModel = pSM->GetName();
shaderModel += std::string("(") + ShaderModel::GetKindName(SK) + ")";
ValCtx.EmitInstrFormatError(
CI, ValidationRule::SmOpcode,
{hlslOP->GetOpCodeName(dxilOpcode), shaderModel});
continue;
}
} else {
if (!ValidateOpcodeInProfile(dxilOpcode, pSM->GetKind(), major, minor)) {
// Opcode not available in profile.
ValCtx.EmitInstrFormatError(
CI, ValidationRule::SmOpcode,
{hlslOP->GetOpCodeName(dxilOpcode), pSM->GetName()});
continue;
}
}
// Check more detail.
ValidateDxilOperationCallInProfile(CI, dxilOpcode, pSM, ValCtx);
}
}
///////////////////////////////////////////////////////////////////////////////
// Instruction validation functions. //
static bool IsDxilBuiltinStructType(StructType *ST, hlsl::OP *hlslOP) {
if (ST == hlslOP->GetBinaryWithCarryType())
return true;
if (ST == hlslOP->GetBinaryWithTwoOutputsType())
return true;
if (ST == hlslOP->GetFourI32Type())
return true;
if (ST == hlslOP->GetFourI16Type())
return true;
if (ST == hlslOP->GetDimensionsType())
return true;
if (ST == hlslOP->GetHandleType())
return true;
if (ST == hlslOP->GetSamplePosType())
return true;
if (ST == hlslOP->GetSplitDoubleType())
return true;
unsigned EltNum = ST->getNumElements();
switch (EltNum) {
case 2:
case 4:
case 8: { // 2 for doubles, 8 for halfs.
Type *EltTy = ST->getElementType(0);
return ST == hlslOP->GetCBufferRetType(EltTy);
} break;
case 5: {
Type *EltTy = ST->getElementType(0);
return ST == hlslOP->GetResRetType(EltTy);
} break;
default:
return false;
}
}
// outer type may be: [ptr to][1 dim array of]( UDT struct | scalar )
// inner type (UDT struct member) may be: [N dim array of]( UDT struct | scalar
// ) scalar type may be: ( float(16|32|64) | int(16|32|64) )
static bool ValidateType(Type *Ty, ValidationContext &ValCtx,
bool bInner = false) {
DXASSERT_NOMSG(Ty != nullptr);
if (Ty->isPointerTy()) {
Type *EltTy = Ty->getPointerElementType();
if (bInner || EltTy->isPointerTy()) {
ValCtx.EmitTypeError(Ty, ValidationRule::TypesNoPtrToPtr);
return false;
}
Ty = EltTy;
}
if (Ty->isArrayTy()) {
Type *EltTy = Ty->getArrayElementType();
if (!bInner && isa<ArrayType>(EltTy)) {
// Outermost array should be converted to single-dim,
// but arrays inside struct are allowed to be multi-dim
ValCtx.EmitTypeError(Ty, ValidationRule::TypesNoMultiDim);
return false;
}
while (EltTy->isArrayTy())
EltTy = EltTy->getArrayElementType();
Ty = EltTy;
}
if (Ty->isStructTy()) {
bool result = true;
StructType *ST = cast<StructType>(Ty);
StringRef Name = ST->getName();
if (Name.startswith("dx.")) {
// Allow handle type.
if (ValCtx.HandleTy == Ty || ValCtx.WaveMatrixTy == Ty)
return true;
hlsl::OP *hlslOP = ValCtx.DxilMod.GetOP();
if (IsDxilBuiltinStructType(ST, hlslOP)) {
ValCtx.EmitTypeError(Ty, ValidationRule::InstrDxilStructUser);
result = false;
}
ValCtx.EmitTypeError(Ty, ValidationRule::DeclDxilNsReserved);
result = false;
}
for (auto e : ST->elements()) {
if (!ValidateType(e, ValCtx, /*bInner*/ true)) {
result = false;
}
}
return result;
}
if (Ty->isFloatTy() || Ty->isHalfTy() || Ty->isDoubleTy()) {
return true;
}
if (Ty->isIntegerTy()) {
unsigned width = Ty->getIntegerBitWidth();
if (width != 1 && width != 8 && width != 16 && width != 32 && width != 64) {
ValCtx.EmitTypeError(Ty, ValidationRule::TypesIntWidth);
return false;
}
return true;
}
// Lib profile allow all types except those hit
// ValidationRule::InstrDxilStructUser.
if (ValCtx.isLibProfile)
return true;
if (Ty->isVectorTy()) {
ValCtx.EmitTypeError(Ty, ValidationRule::TypesNoVector);
return false;
}
ValCtx.EmitTypeError(Ty, ValidationRule::TypesDefined);
return false;
}
static bool GetNodeOperandAsInt(ValidationContext &ValCtx, MDNode *pMD,
unsigned index, uint64_t *pValue) {
*pValue = 0;
if (pMD->getNumOperands() < index) {
ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed);
return false;
}
ConstantAsMetadata *C = dyn_cast<ConstantAsMetadata>(pMD->getOperand(index));
if (C == nullptr) {
ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed);
return false;
}
ConstantInt *CI = dyn_cast<ConstantInt>(C->getValue());
if (CI == nullptr) {
ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed);
return false;
}
*pValue = CI->getValue().getZExtValue();
return true;
}
static bool IsPrecise(Instruction &I, ValidationContext &ValCtx) {
MDNode *pMD = I.getMetadata(DxilMDHelper::kDxilPreciseAttributeMDName);
if (pMD == nullptr) {
return false;
}
if (pMD->getNumOperands() != 1) {
ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed);
return false;
}
uint64_t val;
if (!GetNodeOperandAsInt(ValCtx, pMD, 0, &val)) {
return false;
}
if (val == 1) {
return true;
}
if (val != 0) {
ValCtx.EmitMetaError(pMD, ValidationRule::MetaValueRange);
}
return false;
}
static bool IsValueMinPrec(DxilModule &DxilMod, Value *V) {
DXASSERT(DxilMod.GetGlobalFlags() & DXIL::kEnableMinPrecision,
"else caller didn't check - currently this path should never be hit "
"otherwise");
(void)(DxilMod);
Type *Ty = V->getType();
if (Ty->isIntegerTy()) {
return 16 == Ty->getIntegerBitWidth();
}
return Ty->isHalfTy();
}
static void ValidateMsIntrinsics(Function *F, ValidationContext &ValCtx,
CallInst *setMeshOutputCounts,
CallInst *getMeshPayload) {
if (ValCtx.DxilMod.HasDxilFunctionProps(F)) {
DXIL::ShaderKind shaderKind =
ValCtx.DxilMod.GetDxilFunctionProps(F).shaderKind;
if (shaderKind != DXIL::ShaderKind::Mesh)
return;
} else {
return;
}
DominatorTreeAnalysis DTA;
DominatorTree DT = DTA.run(*F);
for (auto b = F->begin(), bend = F->end(); b != bend; ++b) {
bool foundSetMeshOutputCountsInCurrentBB = false;
for (auto i = b->begin(), iend = b->end(); i != iend; ++i) {
llvm::Instruction &I = *i;
// Calls to external functions.
CallInst *CI = dyn_cast<CallInst>(&I);
if (CI) {
Function *FCalled = CI->getCalledFunction();
if (!FCalled) {
ValCtx.EmitInstrError(&I, ValidationRule::InstrAllowed);
continue;
}
if (FCalled->isDeclaration()) {
// External function validation will diagnose.
if (!IsDxilFunction(FCalled)) {
continue;
}
if (CI == setMeshOutputCounts) {
foundSetMeshOutputCountsInCurrentBB = true;
}
Value *opcodeVal = CI->getOperand(0);
ConstantInt *OpcodeConst = dyn_cast<ConstantInt>(opcodeVal);
unsigned opcode = OpcodeConst->getLimitedValue();
DXIL::OpCode dxilOpcode = (DXIL::OpCode)opcode;
if (dxilOpcode == DXIL::OpCode::StoreVertexOutput ||
dxilOpcode == DXIL::OpCode::StorePrimitiveOutput ||
dxilOpcode == DXIL::OpCode::EmitIndices) {
if (setMeshOutputCounts == nullptr) {
ValCtx.EmitInstrError(
&I, ValidationRule::InstrMissingSetMeshOutputCounts);
} else if (!foundSetMeshOutputCountsInCurrentBB &&
!DT.dominates(setMeshOutputCounts->getParent(),
I.getParent())) {
ValCtx.EmitInstrError(
&I, ValidationRule::InstrNonDominatingSetMeshOutputCounts);
}
}
}
}
}
}
if (getMeshPayload) {
PointerType *payloadPTy = cast<PointerType>(getMeshPayload->getType());
StructType *payloadTy =
cast<StructType>(payloadPTy->getPointerElementType());
const DataLayout &DL = F->getParent()->getDataLayout();
unsigned payloadSize = DL.getTypeAllocSize(payloadTy);
DxilFunctionProps &prop = ValCtx.DxilMod.GetDxilFunctionProps(F);
if (prop.ShaderProps.MS.payloadSizeInBytes < payloadSize) {
ValCtx.EmitFnFormatError(
F, ValidationRule::SmMeshShaderPayloadSizeDeclared,
{F->getName(), std::to_string(payloadSize),
std::to_string(prop.ShaderProps.MS.payloadSizeInBytes)});
}
if (prop.ShaderProps.MS.payloadSizeInBytes > DXIL::kMaxMSASPayloadBytes) {
ValCtx.EmitFnFormatError(
F, ValidationRule::SmMeshShaderPayloadSize,
{F->getName(), std::to_string(prop.ShaderProps.MS.payloadSizeInBytes),
std::to_string(DXIL::kMaxMSASPayloadBytes)});
}
}
}
static void ValidateAsIntrinsics(Function *F, ValidationContext &ValCtx,
CallInst *dispatchMesh) {
if (ValCtx.DxilMod.HasDxilFunctionProps(F)) {
DXIL::ShaderKind shaderKind =
ValCtx.DxilMod.GetDxilFunctionProps(F).shaderKind;
if (shaderKind != DXIL::ShaderKind::Amplification)
return;
if (dispatchMesh) {
DxilInst_DispatchMesh dispatchMeshCall(dispatchMesh);
Value *operandVal = dispatchMeshCall.get_payload();
Type *payloadTy = operandVal->getType();
const DataLayout &DL = F->getParent()->getDataLayout();
unsigned payloadSize = DL.getTypeAllocSize(payloadTy);
DxilFunctionProps &prop = ValCtx.DxilMod.GetDxilFunctionProps(F);
if (prop.ShaderProps.AS.payloadSizeInBytes < payloadSize) {
ValCtx.EmitInstrFormatError(
dispatchMesh,
ValidationRule::SmAmplificationShaderPayloadSizeDeclared,
{F->getName(), std::to_string(payloadSize),
std::to_string(prop.ShaderProps.AS.payloadSizeInBytes)});
}
if (prop.ShaderProps.AS.payloadSizeInBytes > DXIL::kMaxMSASPayloadBytes) {
ValCtx.EmitInstrFormatError(
dispatchMesh, ValidationRule::SmAmplificationShaderPayloadSize,
{F->getName(),
std::to_string(prop.ShaderProps.AS.payloadSizeInBytes),
std::to_string(DXIL::kMaxMSASPayloadBytes)});
}
}
} else {
return;
}
if (dispatchMesh == nullptr) {
ValCtx.EmitFnError(F, ValidationRule::InstrNotOnceDispatchMesh);
return;
}
PostDominatorTree PDT;
PDT.runOnFunction(*F);
if (!PDT.dominates(dispatchMesh->getParent(), &F->getEntryBlock())) {
ValCtx.EmitInstrError(dispatchMesh,
ValidationRule::InstrNonDominatingDispatchMesh);
}
Function *dispatchMeshFunc = dispatchMesh->getCalledFunction();
FunctionType *dispatchMeshFuncTy = dispatchMeshFunc->getFunctionType();
PointerType *payloadPTy =
cast<PointerType>(dispatchMeshFuncTy->getParamType(4));
StructType *payloadTy = cast<StructType>(payloadPTy->getPointerElementType());
const DataLayout &DL = F->getParent()->getDataLayout();
unsigned payloadSize = DL.getTypeAllocSize(payloadTy);
if (payloadSize > DXIL::kMaxMSASPayloadBytes) {
ValCtx.EmitInstrFormatError(
dispatchMesh, ValidationRule::SmAmplificationShaderPayloadSize,
{F->getName(), std::to_string(payloadSize),
std::to_string(DXIL::kMaxMSASPayloadBytes)});
}
}
static void ValidateControlFlowHint(BasicBlock &bb, ValidationContext &ValCtx) {
// Validate controlflow hint.
TerminatorInst *TI = bb.getTerminator();
if (!TI)
return;
MDNode *pNode = TI->getMetadata(DxilMDHelper::kDxilControlFlowHintMDName);
if (!pNode)
return;
if (pNode->getNumOperands() < 3)
return;
bool bHasBranch = false;
bool bHasFlatten = false;
bool bForceCase = false;
for (unsigned i = 2; i < pNode->getNumOperands(); i++) {
uint64_t value = 0;
if (GetNodeOperandAsInt(ValCtx, pNode, i, &value)) {
DXIL::ControlFlowHint hint = static_cast<DXIL::ControlFlowHint>(value);
switch (hint) {
case DXIL::ControlFlowHint::Flatten:
bHasFlatten = true;
break;
case DXIL::ControlFlowHint::Branch:
bHasBranch = true;
break;
case DXIL::ControlFlowHint::ForceCase:
bForceCase = true;
break;
default:
ValCtx.EmitMetaError(pNode, ValidationRule::MetaInvalidControlFlowHint);
}
}
}
if (bHasBranch && bHasFlatten) {
ValCtx.EmitMetaError(pNode, ValidationRule::MetaBranchFlatten);
}
if (bForceCase && !isa<SwitchInst>(TI)) {
ValCtx.EmitMetaError(pNode, ValidationRule::MetaForceCaseOnSwitch);
}
}
static void ValidateTBAAMetadata(MDNode *Node, ValidationContext &ValCtx) {
switch (Node->getNumOperands()) {
case 1: {
if (Node->getOperand(0)->getMetadataID() != Metadata::MDStringKind) {
ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed);
}
} break;
case 2: {
MDNode *rootNode = dyn_cast<MDNode>(Node->getOperand(1));
if (!rootNode) {
ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed);
} else {
ValidateTBAAMetadata(rootNode, ValCtx);
}
} break;
case 3: {
MDNode *rootNode = dyn_cast<MDNode>(Node->getOperand(1));
if (!rootNode) {
ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed);
} else {
ValidateTBAAMetadata(rootNode, ValCtx);
}
ConstantAsMetadata *pointsToConstMem =
dyn_cast<ConstantAsMetadata>(Node->getOperand(2));
if (!pointsToConstMem) {
ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed);
} else {
ConstantInt *isConst =
dyn_cast<ConstantInt>(pointsToConstMem->getValue());
if (!isConst) {
ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed);
} else if (isConst->getValue().getLimitedValue() > 1) {
ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed);
}
}
} break;
default:
ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed);
}
}
static void ValidateLoopMetadata(MDNode *Node, ValidationContext &ValCtx) {
if (Node->getNumOperands() == 0 || Node->getNumOperands() > 2) {
ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed);
return;
}
if (Node != Node->getOperand(0).get()) {
ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed);
return;
}
if (Node->getNumOperands() == 1) {
return;
}
MDNode *LoopNode = dyn_cast<MDNode>(Node->getOperand(1).get());
if (!LoopNode) {
ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed);
return;
}
if (LoopNode->getNumOperands() < 1 || LoopNode->getNumOperands() > 2) {
ValCtx.EmitMetaError(LoopNode, ValidationRule::MetaWellFormed);
return;
}
if (LoopNode->getOperand(0) == LoopNode) {
ValidateLoopMetadata(LoopNode, ValCtx);
return;
}
MDString *LoopStr = dyn_cast<MDString>(LoopNode->getOperand(0));
if (!LoopStr) {
ValCtx.EmitMetaError(LoopNode, ValidationRule::MetaWellFormed);
return;
}
StringRef Name = LoopStr->getString();
if (Name != "llvm.loop.unroll.full" && Name != "llvm.loop.unroll.disable" &&
Name != "llvm.loop.unroll.count") {
ValCtx.EmitMetaError(LoopNode, ValidationRule::MetaWellFormed);
return;
}
if (Name == "llvm.loop.unroll.count") {
if (LoopNode->getNumOperands() != 2) {
ValCtx.EmitMetaError(LoopNode, ValidationRule::MetaWellFormed);
return;
}
ConstantAsMetadata *CountNode =
dyn_cast<ConstantAsMetadata>(LoopNode->getOperand(1));
if (!CountNode) {
ValCtx.EmitMetaError(LoopNode, ValidationRule::MetaWellFormed);
} else {
ConstantInt *Count = dyn_cast<ConstantInt>(CountNode->getValue());
if (!Count) {
ValCtx.EmitMetaError(CountNode, ValidationRule::MetaWellFormed);
}
}
}
}
static void ValidateNonUniformMetadata(Instruction &I, MDNode *pMD,
ValidationContext &ValCtx) {
if (!ValCtx.isLibProfile) {
ValCtx.EmitMetaError(pMD, ValidationRule::MetaUsed);
}
if (!isa<GetElementPtrInst>(I)) {
ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed);
}
if (pMD->getNumOperands() != 1) {
ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed);
}
uint64_t val;
if (!GetNodeOperandAsInt(ValCtx, pMD, 0, &val)) {
ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed);
}
if (val != 1) {
ValCtx.EmitMetaError(pMD, ValidationRule::MetaValueRange);
}
}
static void ValidateInstructionMetadata(Instruction *I,
ValidationContext &ValCtx) {
SmallVector<std::pair<unsigned, MDNode *>, 2> MDNodes;
I->getAllMetadataOtherThanDebugLoc(MDNodes);
for (auto &MD : MDNodes) {
if (MD.first == ValCtx.kDxilControlFlowHintMDKind) {
if (!isa<TerminatorInst>(I)) {
ValCtx.EmitInstrError(
I, ValidationRule::MetaControlFlowHintNotOnControlFlow);
}
} else if (MD.first == ValCtx.kDxilPreciseMDKind) {
// Validated in IsPrecise.
} else if (MD.first == ValCtx.kLLVMLoopMDKind) {
ValidateLoopMetadata(MD.second, ValCtx);
} else if (MD.first == LLVMContext::MD_tbaa) {
ValidateTBAAMetadata(MD.second, ValCtx);
} else if (MD.first == LLVMContext::MD_range) {
// Validated in Verifier.cpp.
} else if (MD.first == LLVMContext::MD_noalias ||
MD.first == LLVMContext::MD_alias_scope) {
// noalias for DXIL validator >= 1.2
} else if (MD.first == ValCtx.kDxilNonUniformMDKind) {
ValidateNonUniformMetadata(*I, MD.second, ValCtx);
} else {
ValCtx.EmitMetaError(MD.second, ValidationRule::MetaUsed);
}
}
}
static void ValidateFunctionAttribute(Function *F, ValidationContext &ValCtx) {
AttributeSet attrSet = F->getAttributes().getFnAttributes();
// fp32-denorm-mode
if (attrSet.hasAttribute(AttributeSet::FunctionIndex,
DXIL::kFP32DenormKindString)) {
Attribute attr = attrSet.getAttribute(AttributeSet::FunctionIndex,
DXIL::kFP32DenormKindString);
StringRef value = attr.getValueAsString();
if (!value.equals(DXIL::kFP32DenormValueAnyString) &&
!value.equals(DXIL::kFP32DenormValueFtzString) &&
!value.equals(DXIL::kFP32DenormValuePreserveString)) {
ValCtx.EmitFnAttributeError(F, attr.getKindAsString(),
attr.getValueAsString());
}
}
// TODO: If validating libraries, we should remove all unknown function
// attributes. For each attribute, check if it is a known attribute
for (unsigned I = 0, E = attrSet.getNumSlots(); I != E; ++I) {
for (auto AttrIter = attrSet.begin(I), AttrEnd = attrSet.end(I);
AttrIter != AttrEnd; ++AttrIter) {
if (!AttrIter->isStringAttribute()) {
continue;
}
StringRef kind = AttrIter->getKindAsString();
if (!kind.equals(DXIL::kFP32DenormKindString) &&
!kind.equals(DXIL::kWaveOpsIncludeHelperLanesString)) {
ValCtx.EmitFnAttributeError(F, AttrIter->getKindAsString(),
AttrIter->getValueAsString());
}
}
}
}
static void ValidateFunctionMetadata(Function *F, ValidationContext &ValCtx) {
SmallVector<std::pair<unsigned, MDNode *>, 2> MDNodes;
F->getAllMetadata(MDNodes);
for (auto &MD : MDNodes) {
ValCtx.EmitMetaError(MD.second, ValidationRule::MetaUsed);
}
}
static bool IsLLVMInstructionAllowedForLib(Instruction &I,
ValidationContext &ValCtx) {
if (!(ValCtx.isLibProfile || ValCtx.DxilMod.GetShaderModel()->IsMS() ||
ValCtx.DxilMod.GetShaderModel()->IsAS()))
return false;
switch (I.getOpcode()) {
case Instruction::InsertElement:
case Instruction::ExtractElement:
case Instruction::ShuffleVector:
return true;
case Instruction::Unreachable:
if (Instruction *Prev = I.getPrevNode()) {
if (CallInst *CI = dyn_cast<CallInst>(Prev)) {
Function *F = CI->getCalledFunction();
if (IsDxilFunction(F) &&
F->hasFnAttribute(Attribute::AttrKind::NoReturn)) {
return true;
}
}
}
return false;
default:
return false;
}
}
static void ValidateFunctionBody(Function *F, ValidationContext &ValCtx) {
bool SupportsMinPrecision =
ValCtx.DxilMod.GetGlobalFlags() & DXIL::kEnableMinPrecision;
bool SupportsLifetimeIntrinsics =
ValCtx.DxilMod.GetShaderModel()->IsSM66Plus();
SmallVector<CallInst *, 16> gradientOps;
SmallVector<CallInst *, 16> barriers;
CallInst *setMeshOutputCounts = nullptr;
CallInst *getMeshPayload = nullptr;
CallInst *dispatchMesh = nullptr;
hlsl::OP *hlslOP = ValCtx.DxilMod.GetOP();
for (auto b = F->begin(), bend = F->end(); b != bend; ++b) {
for (auto i = b->begin(), iend = b->end(); i != iend; ++i) {
llvm::Instruction &I = *i;
if (I.hasMetadata()) {
ValidateInstructionMetadata(&I, ValCtx);
}
// Instructions must be allowed.
if (!IsLLVMInstructionAllowed(I)) {
if (!IsLLVMInstructionAllowedForLib(I, ValCtx)) {
ValCtx.EmitInstrError(&I, ValidationRule::InstrAllowed);
continue;
}
}
// Instructions marked precise may not have minprecision arguments.
if (SupportsMinPrecision) {
if (IsPrecise(I, ValCtx)) {
for (auto &O : I.operands()) {
if (IsValueMinPrec(ValCtx.DxilMod, O)) {
ValCtx.EmitInstrError(
&I, ValidationRule::InstrMinPrecisionNotPrecise);
break;
}
}
}
}
// Calls to external functions.
CallInst *CI = dyn_cast<CallInst>(&I);
if (CI) {
Function *FCalled = CI->getCalledFunction();
if (FCalled->isDeclaration()) {
// External function validation will diagnose.
if (!IsDxilFunction(FCalled)) {
continue;
}
Value *opcodeVal = CI->getOperand(0);
ConstantInt *OpcodeConst = dyn_cast<ConstantInt>(opcodeVal);
if (OpcodeConst == nullptr) {
ValCtx.EmitInstrFormatError(&I, ValidationRule::InstrOpConst,
{"Opcode", "DXIL operation"});
continue;
}
unsigned opcode = OpcodeConst->getLimitedValue();
if (opcode >= static_cast<unsigned>(DXIL::OpCode::NumOpCodes)) {
ValCtx.EmitInstrFormatError(
&I, ValidationRule::InstrIllegalDXILOpCode,
{std::to_string((unsigned)DXIL::OpCode::NumOpCodes),
std::to_string(opcode)});
continue;
}
DXIL::OpCode dxilOpcode = (DXIL::OpCode)opcode;
bool IllegalOpFunc = true;
for (auto &it : hlslOP->GetOpFuncList(dxilOpcode)) {
if (it.second == FCalled) {
IllegalOpFunc = false;
break;
}
}
if (IllegalOpFunc) {
ValCtx.EmitInstrFormatError(
&I, ValidationRule::InstrIllegalDXILOpFunction,
{FCalled->getName(), OP::GetOpCodeName(dxilOpcode)});
continue;
}
if (OP::IsDxilOpGradient(dxilOpcode)) {
gradientOps.push_back(CI);
}
if (dxilOpcode == DXIL::OpCode::Barrier) {
barriers.push_back(CI);
}
// External function validation will check the parameter
// list. This function will check that the call does not
// violate any rules.
if (dxilOpcode == DXIL::OpCode::SetMeshOutputCounts) {
// validate the call count of SetMeshOutputCounts
if (setMeshOutputCounts != nullptr) {
ValCtx.EmitInstrError(
&I, ValidationRule::InstrMultipleSetMeshOutputCounts);
}
setMeshOutputCounts = CI;
}
if (dxilOpcode == DXIL::OpCode::GetMeshPayload) {
// validate the call count of GetMeshPayload
if (getMeshPayload != nullptr) {
ValCtx.EmitInstrError(
&I, ValidationRule::InstrMultipleGetMeshPayload);
}
getMeshPayload = CI;
}
if (dxilOpcode == DXIL::OpCode::DispatchMesh) {
// validate the call count of DispatchMesh
if (dispatchMesh != nullptr) {
ValCtx.EmitInstrError(&I,
ValidationRule::InstrNotOnceDispatchMesh);
}
dispatchMesh = CI;
}
}
continue;
}
for (Value *op : I.operands()) {
if (isa<UndefValue>(op)) {
bool legalUndef = isa<PHINode>(&I);
if (isa<InsertElementInst>(&I)) {
legalUndef = op == I.getOperand(0);
}
if (isa<ShuffleVectorInst>(&I)) {
legalUndef = op == I.getOperand(1);
}
if (isa<StoreInst>(&I)) {
legalUndef = op == I.getOperand(0);
}
if (!legalUndef)
ValCtx.EmitInstrError(&I,
ValidationRule::InstrNoReadingUninitialized);
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(op)) {
for (Value *opCE : CE->operands()) {
if (isa<UndefValue>(opCE)) {
ValCtx.EmitInstrError(
&I, ValidationRule::InstrNoReadingUninitialized);
}
}
}
if (IntegerType *IT = dyn_cast<IntegerType>(op->getType())) {
if (IT->getBitWidth() == 8) {
// We always fail if we see i8 as operand type of a non-lifetime
// instruction.
ValCtx.EmitInstrError(&I, ValidationRule::TypesI8);
}
}
}
Type *Ty = I.getType();
if (isa<PointerType>(Ty))
Ty = Ty->getPointerElementType();
while (isa<ArrayType>(Ty))
Ty = Ty->getArrayElementType();
if (IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
if (IT->getBitWidth() == 8) {
// Allow i8* cast for llvm.lifetime.* intrinsics.
if (!SupportsLifetimeIntrinsics || !isa<BitCastInst>(I) ||
!onlyUsedByLifetimeMarkers(&I)) {
ValCtx.EmitInstrError(&I, ValidationRule::TypesI8);
}
}
}
unsigned opcode = I.getOpcode();
switch (opcode) {
case Instruction::Alloca: {
AllocaInst *AI = cast<AllocaInst>(&I);
// TODO: validate address space and alignment
Type *Ty = AI->getAllocatedType();
if (!ValidateType(Ty, ValCtx)) {
continue;
}
} break;
case Instruction::ExtractValue: {
ExtractValueInst *EV = cast<ExtractValueInst>(&I);
Type *Ty = EV->getAggregateOperand()->getType();
if (StructType *ST = dyn_cast<StructType>(Ty)) {
Value *Agg = EV->getAggregateOperand();
if (!isa<AtomicCmpXchgInst>(Agg) &&
!IsDxilBuiltinStructType(ST, ValCtx.DxilMod.GetOP())) {
ValCtx.EmitInstrError(EV, ValidationRule::InstrExtractValue);
}
} else {
ValCtx.EmitInstrError(EV, ValidationRule::InstrExtractValue);
}
} break;
case Instruction::Load: {
Type *Ty = I.getType();
if (!ValidateType(Ty, ValCtx)) {
continue;
}
} break;
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(&I);
Type *Ty = SI->getValueOperand()->getType();
if (!ValidateType(Ty, ValCtx)) {
continue;
}
} break;
case Instruction::GetElementPtr: {
Type *Ty = I.getType()->getPointerElementType();
if (!ValidateType(Ty, ValCtx)) {
continue;
}
GetElementPtrInst *GEP = cast<GetElementPtrInst>(&I);
bool allImmIndex = true;
for (auto Idx = GEP->idx_begin(), E = GEP->idx_end(); Idx != E; Idx++) {
if (!isa<ConstantInt>(Idx)) {
allImmIndex = false;
break;
}
}
if (allImmIndex) {
const DataLayout &DL = ValCtx.DL;
Value *Ptr = GEP->getPointerOperand();
unsigned size =
DL.getTypeAllocSize(Ptr->getType()->getPointerElementType());
unsigned valSize =
DL.getTypeAllocSize(GEP->getType()->getPointerElementType());
SmallVector<Value *, 8> Indices(GEP->idx_begin(), GEP->idx_end());
unsigned offset =
DL.getIndexedOffset(GEP->getPointerOperandType(), Indices);
if ((offset + valSize) > size) {
ValCtx.EmitInstrError(GEP, ValidationRule::InstrInBoundsAccess);
}
}
} break;
case Instruction::SDiv: {
BinaryOperator *BO = cast<BinaryOperator>(&I);
Value *V = BO->getOperand(1);
if (ConstantInt *imm = dyn_cast<ConstantInt>(V)) {
if (imm->getValue().getLimitedValue() == 0) {
ValCtx.EmitInstrError(BO, ValidationRule::InstrNoIDivByZero);
}
}
} break;
case Instruction::UDiv: {
BinaryOperator *BO = cast<BinaryOperator>(&I);
Value *V = BO->getOperand(1);
if (ConstantInt *imm = dyn_cast<ConstantInt>(V)) {
if (imm->getValue().getLimitedValue() == 0) {
ValCtx.EmitInstrError(BO, ValidationRule::InstrNoUDivByZero);
}
}
} break;
case Instruction::AddrSpaceCast: {
AddrSpaceCastInst *Cast = cast<AddrSpaceCastInst>(&I);
unsigned ToAddrSpace = Cast->getType()->getPointerAddressSpace();
unsigned FromAddrSpace =
Cast->getOperand(0)->getType()->getPointerAddressSpace();
if (ToAddrSpace != DXIL::kGenericPointerAddrSpace &&
FromAddrSpace != DXIL::kGenericPointerAddrSpace) {
ValCtx.EmitInstrError(Cast,
ValidationRule::InstrNoGenericPtrAddrSpaceCast);
}
} break;
case Instruction::BitCast: {
BitCastInst *Cast = cast<BitCastInst>(&I);
Type *FromTy = Cast->getOperand(0)->getType();
Type *ToTy = Cast->getType();
// Allow i8* cast for llvm.lifetime.* intrinsics.
if (SupportsLifetimeIntrinsics &&
ToTy == Type::getInt8PtrTy(ToTy->getContext()))
continue;
if (isa<PointerType>(FromTy)) {
FromTy = FromTy->getPointerElementType();
ToTy = ToTy->getPointerElementType();
unsigned FromSize = ValCtx.DL.getTypeAllocSize(FromTy);
unsigned ToSize = ValCtx.DL.getTypeAllocSize(ToTy);
if (FromSize != ToSize) {
ValCtx.EmitInstrError(Cast, ValidationRule::InstrPtrBitCast);
continue;
}
while (isa<ArrayType>(FromTy)) {
FromTy = FromTy->getArrayElementType();
}
while (isa<ArrayType>(ToTy)) {
ToTy = ToTy->getArrayElementType();
}
}
if ((isa<StructType>(FromTy) || isa<StructType>(ToTy)) &&
!ValCtx.isLibProfile) {
ValCtx.EmitInstrError(Cast, ValidationRule::InstrStructBitCast);
continue;
}
bool IsMinPrecisionTy = (ValCtx.DL.getTypeStoreSize(FromTy) < 4 ||
ValCtx.DL.getTypeStoreSize(ToTy) < 4) &&
ValCtx.DxilMod.GetUseMinPrecision();
if (IsMinPrecisionTy) {
ValCtx.EmitInstrError(Cast, ValidationRule::InstrMinPrecisonBitCast);
}
} break;
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW: {
Value *Ptr = I.getOperand(AtomicRMWInst::getPointerOperandIndex());
PointerType *ptrType = cast<PointerType>(Ptr->getType());
Type *elType = ptrType->getElementType();
const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel();
if ((elType->isIntegerTy(64)) && !pSM->IsSM66Plus())
ValCtx.EmitInstrFormatError(
&I, ValidationRule::SmOpcodeInInvalidFunction,
{"64-bit atomic operations", "Shader Model 6.6+"});
if (ptrType->getAddressSpace() != DXIL::kTGSMAddrSpace &&
ptrType->getAddressSpace() != DXIL::kNodeRecordAddrSpace)
ValCtx.EmitInstrError(
&I, ValidationRule::InstrAtomicOpNonGroupsharedOrRecord);
// Drill through GEP and bitcasts
while (true) {
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Ptr = GEP->getPointerOperand();
continue;
}
if (BitCastInst *BC = dyn_cast<BitCastInst>(Ptr)) {
Ptr = BC->getOperand(0);
continue;
}
break;
}
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
if (GV->isConstant())
ValCtx.EmitInstrError(&I, ValidationRule::InstrAtomicConst);
}
} break;
}
if (PointerType *PT = dyn_cast<PointerType>(I.getType())) {
if (PT->getAddressSpace() == DXIL::kTGSMAddrSpace) {
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
Value *Ptr = GEP->getPointerOperand();
// Allow inner constant GEP
if (isa<ConstantExpr>(Ptr) && isa<GEPOperator>(Ptr))
Ptr = cast<GEPOperator>(Ptr)->getPointerOperand();
if (!isa<GlobalVariable>(Ptr)) {
ValCtx.EmitInstrError(
&I, ValidationRule::InstrFailToResloveTGSMPointer);
}
} else if (BitCastInst *BCI = dyn_cast<BitCastInst>(&I)) {
Value *Ptr = BCI->getOperand(0);
// Allow inner constant GEP
if (isa<ConstantExpr>(Ptr) && isa<GEPOperator>(Ptr))
Ptr = cast<GEPOperator>(Ptr)->getPointerOperand();
if (!isa<GetElementPtrInst>(Ptr) && !isa<GlobalVariable>(Ptr)) {
ValCtx.EmitInstrError(
&I, ValidationRule::InstrFailToResloveTGSMPointer);
}
} else {
ValCtx.EmitInstrError(
&I, ValidationRule::InstrFailToResloveTGSMPointer);
}
}
}
}
ValidateControlFlowHint(*b, ValCtx);
}
ValidateMsIntrinsics(F, ValCtx, setMeshOutputCounts, getMeshPayload);
ValidateAsIntrinsics(F, ValCtx, dispatchMesh);
}
static void ValidateNodeInputRecord(Function *F, ValidationContext &ValCtx) {
// if there are no function props or LaunchType is Invalid, there is nothing
// to do here
if (!ValCtx.DxilMod.HasDxilFunctionProps(F))
return;
auto &props = ValCtx.DxilMod.GetDxilFunctionProps(F);
if (!props.IsNode())
return;
if (props.InputNodes.size() > 1) {
ValCtx.EmitFnFormatError(
F, ValidationRule::DeclMultipleNodeInputs,
{F->getName(), std::to_string(props.InputNodes.size())});
}
for (auto &input : props.InputNodes) {
if (!input.Flags.RecordTypeMatchesLaunchType(props.Node.LaunchType)) {
// We allow EmptyNodeInput here, as that may have been added implicitly
// if there was no input specified
if (input.Flags.IsEmptyInput())
continue;
llvm::StringRef validInputs = "";
switch (props.Node.LaunchType) {
case DXIL::NodeLaunchType::Broadcasting:
validInputs = "{RW}DispatchNodeInputRecord";
break;
case DXIL::NodeLaunchType::Coalescing:
validInputs = "{RW}GroupNodeInputRecords or EmptyNodeInput";
break;
case DXIL::NodeLaunchType::Thread:
validInputs = "{RW}ThreadNodeInputRecord";
break;
default:
llvm_unreachable("invalid launch type");
}
ValCtx.EmitFnFormatError(
F, ValidationRule::DeclNodeLaunchInputType,
{ShaderModel::GetNodeLaunchTypeName(props.Node.LaunchType),
F->getName(), validInputs});
}
}
}
static void ValidateFunction(Function &F, ValidationContext &ValCtx) {
if (F.isDeclaration()) {
ValidateExternalFunction(&F, ValCtx);
if (F.isIntrinsic() || IsDxilFunction(&F))
return;
} else {
DXIL::ShaderKind shaderKind = DXIL::ShaderKind::Library;
bool isShader = ValCtx.DxilMod.HasDxilFunctionProps(&F);
unsigned numUDTShaderArgs = 0;
if (isShader) {
shaderKind = ValCtx.DxilMod.GetDxilFunctionProps(&F).shaderKind;
switch (shaderKind) {
case DXIL::ShaderKind::AnyHit:
case DXIL::ShaderKind::ClosestHit:
numUDTShaderArgs = 2;
break;
case DXIL::ShaderKind::Miss:
case DXIL::ShaderKind::Callable:
numUDTShaderArgs = 1;
break;
case DXIL::ShaderKind::Compute: {
DxilModule &DM = ValCtx.DxilMod;
if (DM.HasDxilEntryProps(&F)) {
DxilEntryProps &entryProps = DM.GetDxilEntryProps(&F);
// Check that compute has no node metadata
if (entryProps.props.IsNode()) {
ValCtx.EmitFnFormatError(&F, ValidationRule::MetaComputeWithNode,
{F.getName()});
}
}
break;
}
default:
break;
}
} else {
isShader = ValCtx.DxilMod.IsPatchConstantShader(&F);
}
// Entry function should not have parameter.
if (isShader && 0 == numUDTShaderArgs && !F.arg_empty())
ValCtx.EmitFnFormatError(&F, ValidationRule::FlowFunctionCall,
{F.getName()});
// Shader functions should return void.
if (isShader && !F.getReturnType()->isVoidTy())
ValCtx.EmitFnFormatError(&F, ValidationRule::DeclShaderReturnVoid,
{F.getName()});
auto ArgFormatError = [&](Function &F, Argument &arg, ValidationRule rule) {
if (arg.hasName())
ValCtx.EmitFnFormatError(&F, rule, {arg.getName().str(), F.getName()});
else
ValCtx.EmitFnFormatError(&F, rule,
{std::to_string(arg.getArgNo()), F.getName()});
};
unsigned numArgs = 0;
for (auto &arg : F.args()) {
Type *argTy = arg.getType();
if (argTy->isPointerTy())
argTy = argTy->getPointerElementType();
numArgs++;
if (numUDTShaderArgs) {
if (arg.getArgNo() >= numUDTShaderArgs) {
ArgFormatError(F, arg, ValidationRule::DeclExtraArgs);
} else if (!argTy->isStructTy()) {
switch (shaderKind) {
case DXIL::ShaderKind::Callable:
ArgFormatError(F, arg, ValidationRule::DeclParamStruct);
break;
default:
ArgFormatError(F, arg,
arg.getArgNo() == 0
? ValidationRule::DeclPayloadStruct
: ValidationRule::DeclAttrStruct);
}
}
continue;
}
while (argTy->isArrayTy()) {
argTy = argTy->getArrayElementType();
}
if (argTy->isStructTy() && !ValCtx.isLibProfile) {
ArgFormatError(F, arg, ValidationRule::DeclFnFlattenParam);
break;
}
}
if (numArgs < numUDTShaderArgs && shaderKind != DXIL::ShaderKind::Node) {
StringRef argType[2] = {
shaderKind == DXIL::ShaderKind::Callable ? "params" : "payload",
"attributes"};
for (unsigned i = numArgs; i < numUDTShaderArgs; i++) {
ValCtx.EmitFnFormatError(
&F, ValidationRule::DeclShaderMissingArg,
{ShaderModel::GetKindName(shaderKind), F.getName(), argType[i]});
}
}
if (ValCtx.DxilMod.HasDxilFunctionProps(&F) &&
ValCtx.DxilMod.GetDxilFunctionProps(&F).IsNode()) {
ValidateNodeInputRecord(&F, ValCtx);
}
ValidateFunctionBody(&F, ValCtx);
}
// function params & return type must not contain resources
if (dxilutil::ContainsHLSLObjectType(F.getReturnType())) {
ValCtx.EmitFnFormatError(&F, ValidationRule::DeclResourceInFnSig,
{F.getName()});
return;
}
for (auto &Arg : F.args()) {
if (dxilutil::ContainsHLSLObjectType(Arg.getType())) {
ValCtx.EmitFnFormatError(&F, ValidationRule::DeclResourceInFnSig,
{F.getName()});
return;
}
}
// TODO: Remove attribute for lib?
if (!ValCtx.isLibProfile)
ValidateFunctionAttribute(&F, ValCtx);
if (F.hasMetadata()) {
ValidateFunctionMetadata(&F, ValCtx);
}
}
static void ValidateGlobalVariable(GlobalVariable &GV,
ValidationContext &ValCtx) {
bool isInternalGV =
dxilutil::IsStaticGlobal(&GV) || dxilutil::IsSharedMemoryGlobal(&GV);
if (ValCtx.isLibProfile) {
auto isCBufferGlobal =
[&](const std::vector<std::unique_ptr<DxilCBuffer>> &ResTab) -> bool {
for (auto &Res : ResTab)
if (Res->GetGlobalSymbol() == &GV)
return true;
return false;
};
auto isResourceGlobal =
[&](const std::vector<std::unique_ptr<DxilResource>> &ResTab) -> bool {
for (auto &Res : ResTab)
if (Res->GetGlobalSymbol() == &GV)
return true;
return false;
};
auto isSamplerGlobal =
[&](const std::vector<std::unique_ptr<DxilSampler>> &ResTab) -> bool {
for (auto &Res : ResTab)
if (Res->GetGlobalSymbol() == &GV)
return true;
return false;
};
bool isRes = isCBufferGlobal(ValCtx.DxilMod.GetCBuffers());
isRes |= isResourceGlobal(ValCtx.DxilMod.GetUAVs());
isRes |= isResourceGlobal(ValCtx.DxilMod.GetSRVs());
isRes |= isSamplerGlobal(ValCtx.DxilMod.GetSamplers());
isInternalGV |= isRes;
// Allow special dx.ishelper for library target
if (GV.getName().compare(DXIL::kDxIsHelperGlobalName) == 0) {
Type *Ty = GV.getType()->getPointerElementType();
if (Ty->isIntegerTy() && Ty->getScalarSizeInBits() == 32) {
isInternalGV = true;
}
}
}
if (!isInternalGV) {
if (!GV.user_empty()) {
bool hasInstructionUser = false;
for (User *U : GV.users()) {
if (isa<Instruction>(U)) {
hasInstructionUser = true;
break;
}
}
// External GV should not have instruction user.
if (hasInstructionUser) {
ValCtx.EmitGlobalVariableFormatError(
&GV, ValidationRule::DeclNotUsedExternal, {GV.getName()});
}
}
// Must have metadata description for each variable.
} else {
// Internal GV must have user.
if (GV.user_empty()) {
ValCtx.EmitGlobalVariableFormatError(
&GV, ValidationRule::DeclUsedInternal, {GV.getName()});
}
// Validate type for internal globals.
if (dxilutil::IsStaticGlobal(&GV) || dxilutil::IsSharedMemoryGlobal(&GV)) {
Type *Ty = GV.getType()->getPointerElementType();
ValidateType(Ty, ValCtx);
}
}
}
static void CollectFixAddressAccess(Value *V,
std::vector<StoreInst *> &fixAddrTGSMList) {
for (User *U : V->users()) {
if (GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
if (isa<ConstantExpr>(GEP) || GEP->hasAllConstantIndices()) {
CollectFixAddressAccess(GEP, fixAddrTGSMList);
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
fixAddrTGSMList.emplace_back(SI);
}
}
}
static bool IsDivergent(Value *V) {
// TODO: return correct result.
return false;
}
static void ValidateTGSMRaceCondition(std::vector<StoreInst *> &fixAddrTGSMList,
ValidationContext &ValCtx) {
std::unordered_set<Function *> fixAddrTGSMFuncSet;
for (StoreInst *I : fixAddrTGSMList) {
BasicBlock *BB = I->getParent();
fixAddrTGSMFuncSet.insert(BB->getParent());
}
for (auto &F : ValCtx.DxilMod.GetModule()->functions()) {
if (F.isDeclaration() || !fixAddrTGSMFuncSet.count(&F))
continue;
PostDominatorTree PDT;
PDT.runOnFunction(F);
BasicBlock *Entry = &F.getEntryBlock();
for (StoreInst *SI : fixAddrTGSMList) {
BasicBlock *BB = SI->getParent();
if (BB->getParent() == &F) {
if (PDT.dominates(BB, Entry)) {
if (IsDivergent(SI->getValueOperand()))
ValCtx.EmitInstrError(SI, ValidationRule::InstrTGSMRaceCond);
}
}
}
}
}
static void ValidateGlobalVariables(ValidationContext &ValCtx) {
DxilModule &M = ValCtx.DxilMod;
const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel();
bool TGSMAllowed = pSM->IsCS() || pSM->IsAS() || pSM->IsMS() || pSM->IsLib();
unsigned TGSMSize = 0;
std::vector<StoreInst *> fixAddrTGSMList;
const DataLayout &DL = M.GetModule()->getDataLayout();
for (GlobalVariable &GV : M.GetModule()->globals()) {
ValidateGlobalVariable(GV, ValCtx);
if (GV.getType()->getAddressSpace() == DXIL::kTGSMAddrSpace) {
if (!TGSMAllowed)
ValCtx.EmitGlobalVariableFormatError(
&GV, ValidationRule::SmTGSMUnsupported,
{std::string("in Shader Model ") + M.GetShaderModel()->GetName()});
// Lib targets need to check the usage to know if it's allowed
if (pSM->IsLib()) {
for (User *U : GV.users()) {
if (Instruction *I = dyn_cast<Instruction>(U)) {
llvm::Function *F = I->getParent()->getParent();
if (M.HasDxilEntryProps(F)) {
DxilFunctionProps &props = M.GetDxilEntryProps(F).props;
if (!props.IsCS() && !props.IsAS() && !props.IsMS() &&
!props.IsNode()) {
ValCtx.EmitInstrFormatError(I,
ValidationRule::SmTGSMUnsupported,
{"from non-compute entry points"});
}
}
}
}
}
TGSMSize += DL.getTypeAllocSize(GV.getType()->getElementType());
CollectFixAddressAccess(&GV, fixAddrTGSMList);
}
}
ValidationRule Rule = ValidationRule::SmMaxTGSMSize;
unsigned MaxSize = DXIL::kMaxTGSMSize;
if (M.GetShaderModel()->IsMS()) {
Rule = ValidationRule::SmMaxMSSMSize;
MaxSize = DXIL::kMaxMSSMSize;
}
if (TGSMSize > MaxSize) {
Module::global_iterator GI = M.GetModule()->global_end();
GlobalVariable *GV = &*GI;
do {
GI--;
GV = &*GI;
if (GV->getType()->getAddressSpace() == hlsl::DXIL::kTGSMAddrSpace)
break;
} while (GI != M.GetModule()->global_begin());
ValCtx.EmitGlobalVariableFormatError(
GV, Rule, {std::to_string(TGSMSize), std::to_string(MaxSize)});
}
if (!fixAddrTGSMList.empty()) {
ValidateTGSMRaceCondition(fixAddrTGSMList, ValCtx);
}
}
static void ValidateValidatorVersion(ValidationContext &ValCtx) {
Module *pModule = &ValCtx.M;
NamedMDNode *pNode = pModule->getNamedMetadata("dx.valver");
if (pNode == nullptr) {
return;
}
if (pNode->getNumOperands() == 1) {
MDTuple *pVerValues = dyn_cast<MDTuple>(pNode->getOperand(0));
if (pVerValues != nullptr && pVerValues->getNumOperands() == 2) {
uint64_t majorVer, minorVer;
if (GetNodeOperandAsInt(ValCtx, pVerValues, 0, &majorVer) &&
GetNodeOperandAsInt(ValCtx, pVerValues, 1, &minorVer)) {
unsigned curMajor, curMinor;
GetValidationVersion(&curMajor, &curMinor);
// This will need to be updated as major/minor versions evolve,
// depending on the degree of compat across versions.
if (majorVer == curMajor && minorVer <= curMinor) {
return;
} else {
ValCtx.EmitFormatError(
ValidationRule::MetaVersionSupported,
{"Validator", std::to_string(majorVer), std::to_string(minorVer),
std::to_string(curMajor), std::to_string(curMinor)});
return;
}
}
}
}
ValCtx.EmitError(ValidationRule::MetaWellFormed);
}
static void ValidateDxilVersion(ValidationContext &ValCtx) {
Module *pModule = &ValCtx.M;
NamedMDNode *pNode = pModule->getNamedMetadata("dx.version");
if (pNode == nullptr) {
return;
}
if (pNode->getNumOperands() == 1) {
MDTuple *pVerValues = dyn_cast<MDTuple>(pNode->getOperand(0));
if (pVerValues != nullptr && pVerValues->getNumOperands() == 2) {
uint64_t majorVer, minorVer;
if (GetNodeOperandAsInt(ValCtx, pVerValues, 0, &majorVer) &&
GetNodeOperandAsInt(ValCtx, pVerValues, 1, &minorVer)) {
// This will need to be updated as dxil major/minor versions evolve,
// depending on the degree of compat across versions.
if ((majorVer == DXIL::kDxilMajor && minorVer <= DXIL::kDxilMinor) &&
(majorVer == ValCtx.m_DxilMajor &&
minorVer == ValCtx.m_DxilMinor)) {
return;
} else {
ValCtx.EmitFormatError(ValidationRule::MetaVersionSupported,
{"Dxil", std::to_string(majorVer),
std::to_string(minorVer),
std::to_string(DXIL::kDxilMajor),
std::to_string(DXIL::kDxilMinor)});
return;
}
}
}
}
// ValCtx.EmitMetaError(pNode, ValidationRule::MetaWellFormed);
ValCtx.EmitError(ValidationRule::MetaWellFormed);
}
static void ValidateTypeAnnotation(ValidationContext &ValCtx) {
if (ValCtx.m_DxilMajor == 1 && ValCtx.m_DxilMinor >= 2) {
Module *pModule = &ValCtx.M;
NamedMDNode *TA = pModule->getNamedMetadata("dx.typeAnnotations");
if (TA == nullptr)
return;
for (unsigned i = 0, end = TA->getNumOperands(); i < end; ++i) {
MDTuple *TANode = dyn_cast<MDTuple>(TA->getOperand(i));
if (TANode->getNumOperands() < 3) {
ValCtx.EmitMetaError(TANode, ValidationRule::MetaWellFormed);
return;
}
ConstantInt *tag = mdconst::extract<ConstantInt>(TANode->getOperand(0));
uint64_t tagValue = tag->getZExtValue();
if (tagValue != DxilMDHelper::kDxilTypeSystemStructTag &&
tagValue != DxilMDHelper::kDxilTypeSystemFunctionTag) {
ValCtx.EmitMetaError(TANode, ValidationRule::MetaWellFormed);
return;
}
}
}
}
static void ValidateBitcode(ValidationContext &ValCtx) {
std::string diagStr;
raw_string_ostream diagStream(diagStr);
if (llvm::verifyModule(ValCtx.M, &diagStream)) {
ValCtx.EmitError(ValidationRule::BitcodeValid);
dxilutil::EmitErrorOnContext(ValCtx.M.getContext(), diagStream.str());
}
}
static void ValidateWaveSize(ValidationContext &ValCtx,
const hlsl::ShaderModel *SM, Module *pModule) {
// Don't do this validation if the shader is non-compute
if (!(SM->IsCS() || SM->IsLib()))
return;
NamedMDNode *EPs = pModule->getNamedMetadata("dx.entryPoints");
if (!EPs)
return;
for (unsigned i = 0, end = EPs->getNumOperands(); i < end; ++i) {
MDTuple *EPNodeRef = dyn_cast<MDTuple>(EPs->getOperand(i));
if (EPNodeRef->getNumOperands() < 5) {
ValCtx.EmitMetaError(EPNodeRef, ValidationRule::MetaWellFormed);
return;
}
// get access to the digit that represents the metadata number that
// would store entry properties
const llvm::MDOperand &mOp =
EPNodeRef->getOperand(EPNodeRef->getNumOperands() - 1);
// the final operand to the entry points tuple should be a tuple.
if (mOp == nullptr || (mOp.get())->getMetadataID() != Metadata::MDTupleKind)
continue;
// get access to the node that stores entry properties
MDTuple *EPropNode = dyn_cast<MDTuple>(
EPNodeRef->getOperand(EPNodeRef->getNumOperands() - 1));
// find any incompatible tags inside the entry properties
// increment j by 2 to only analyze tags, not values
bool foundTag = false;
for (unsigned j = 0, end2 = EPropNode->getNumOperands(); j < end2; j += 2) {
const MDOperand &propertyTagOp = EPropNode->getOperand(j);
// note, we are only looking for tags, which will be a constant
// integer
DXASSERT(!(propertyTagOp == nullptr ||
(propertyTagOp.get())->getMetadataID() !=
Metadata::ConstantAsMetadataKind),
"tag operand should be a constant integer.");
ConstantInt *tag = mdconst::extract<ConstantInt>(propertyTagOp);
uint64_t tagValue = tag->getZExtValue();
// legacy wavesize is only supported between 6.6 and 6.7, so we
// should fail if we find the ranged wave size metadata tag
if (tagValue == DxilMDHelper::kDxilRangedWaveSizeTag) {
// if this tag is already present in the
// current entry point, emit an error
if (foundTag) {
ValCtx.EmitFormatError(ValidationRule::SmWaveSizeTagDuplicate, {});
return;
}
foundTag = true;
if (SM->IsSM66Plus() && !SM->IsSM68Plus()) {
ValCtx.EmitFormatError(ValidationRule::SmWaveSizeRangeNeedsSM68Plus,
{});
return;
}
// get the metadata that contains the
// parameters to the wavesize attribute
MDTuple *WaveTuple = dyn_cast<MDTuple>(EPropNode->getOperand(j + 1));
if (WaveTuple->getNumOperands() != 3) {
ValCtx.EmitFormatError(
ValidationRule::SmWaveSizeRangeExpectsThreeParams, {});
return;
}
for (int k = 0; k < 3; k++) {
const MDOperand &param = WaveTuple->getOperand(k);
if (param->getMetadataID() != Metadata::ConstantAsMetadataKind) {
ValCtx.EmitFormatError(
ValidationRule::SmWaveSizeNeedsConstantOperands, {});
return;
}
}
} else if (tagValue == DxilMDHelper::kDxilWaveSizeTag) {
// if this tag is already present in the
// current entry point, emit an error
if (foundTag) {
ValCtx.EmitFormatError(ValidationRule::SmWaveSizeTagDuplicate, {});
return;
}
foundTag = true;
MDTuple *WaveTuple = dyn_cast<MDTuple>(EPropNode->getOperand(j + 1));
if (WaveTuple->getNumOperands() != 1) {
ValCtx.EmitFormatError(ValidationRule::SmWaveSizeExpectsOneParam, {});
return;
}
const MDOperand &param = WaveTuple->getOperand(0);
if (param->getMetadataID() != Metadata::ConstantAsMetadataKind) {
ValCtx.EmitFormatError(
ValidationRule::SmWaveSizeNeedsConstantOperands, {});
return;
}
// if the shader model is anything but 6.6 or 6.7, then we do not
// expect to encounter the legacy wave size tag.
if (!(SM->IsSM66Plus() && !SM->IsSM68Plus())) {
ValCtx.EmitFormatError(ValidationRule::SmWaveSizeNeedsSM66or67, {});
return;
}
}
}
}
}
static void ValidateMetadata(ValidationContext &ValCtx) {
ValidateValidatorVersion(ValCtx);
ValidateDxilVersion(ValCtx);
Module *pModule = &ValCtx.M;
const std::string &target = pModule->getTargetTriple();
if (target != "dxil-ms-dx") {
ValCtx.EmitFormatError(ValidationRule::MetaTarget, {target});
}
// The llvm.dbg.(cu/contents/defines/mainFileName/arg) named metadata nodes
// are only available in debug modules, not in the validated ones.
// llvm.bitsets is also disallowed.
//
// These are verified in lib/IR/Verifier.cpp.
StringMap<bool> llvmNamedMeta;
llvmNamedMeta["llvm.ident"];
llvmNamedMeta["llvm.module.flags"];
for (auto &NamedMetaNode : pModule->named_metadata()) {
if (!DxilModule::IsKnownNamedMetaData(NamedMetaNode)) {
StringRef name = NamedMetaNode.getName();
if (!name.startswith_lower("llvm.")) {
ValCtx.EmitFormatError(ValidationRule::MetaKnown, {name.str()});
} else {
if (llvmNamedMeta.count(name) == 0) {
ValCtx.EmitFormatError(ValidationRule::MetaKnown, {name.str()});
}
}
}
}
const hlsl::ShaderModel *SM = ValCtx.DxilMod.GetShaderModel();
// validate that any wavesize tags don't appear outside their expected shader
// models. Validate only 1 tag exists per entry point.
ValidateWaveSize(ValCtx, SM, pModule);
if (!SM->IsValidForDxil()) {
ValCtx.EmitFormatError(ValidationRule::SmName,
{ValCtx.DxilMod.GetShaderModel()->GetName()});
}
if (SM->GetMajor() == 6) {
// Make sure DxilVersion matches the shader model.
unsigned SMDxilMajor, SMDxilMinor;
SM->GetDxilVersion(SMDxilMajor, SMDxilMinor);
if (ValCtx.m_DxilMajor != SMDxilMajor ||
ValCtx.m_DxilMinor != SMDxilMinor) {
ValCtx.EmitFormatError(
ValidationRule::SmDxilVersion,
{std::to_string(SMDxilMajor), std::to_string(SMDxilMinor)});
}
}
ValidateTypeAnnotation(ValCtx);
}
static void ValidateResourceOverlap(
hlsl::DxilResourceBase &res,
SpacesAllocator<unsigned, DxilResourceBase> &spaceAllocator,
ValidationContext &ValCtx) {
unsigned base = res.GetLowerBound();
if (ValCtx.isLibProfile && !res.IsAllocated()) {
// Skip unallocated resource for library.
return;
}
unsigned size = res.GetRangeSize();
unsigned space = res.GetSpaceID();
auto &allocator = spaceAllocator.Get(space);
unsigned end = base + size - 1;
// unbounded
if (end < base)
end = size;
const DxilResourceBase *conflictRes = allocator.Insert(&res, base, end);
if (conflictRes) {
ValCtx.EmitFormatError(
ValidationRule::SmResourceRangeOverlap,
{ValCtx.GetResourceName(&res), std::to_string(base),
std::to_string(size), std::to_string(conflictRes->GetLowerBound()),
std::to_string(conflictRes->GetRangeSize()), std::to_string(space)});
}
}
static void ValidateResource(hlsl::DxilResource &res,
ValidationContext &ValCtx) {
switch (res.GetKind()) {
case DXIL::ResourceKind::RawBuffer:
case DXIL::ResourceKind::TypedBuffer:
case DXIL::ResourceKind::TBuffer:
case DXIL::ResourceKind::StructuredBuffer:
case DXIL::ResourceKind::Texture1D:
case DXIL::ResourceKind::Texture1DArray:
case DXIL::ResourceKind::Texture2D:
case DXIL::ResourceKind::Texture2DArray:
case DXIL::ResourceKind::Texture3D:
case DXIL::ResourceKind::TextureCube:
case DXIL::ResourceKind::TextureCubeArray:
if (res.GetSampleCount() > 0) {
ValCtx.EmitResourceError(&res, ValidationRule::SmSampleCountOnlyOn2DMS);
}
break;
case DXIL::ResourceKind::Texture2DMS:
case DXIL::ResourceKind::Texture2DMSArray:
break;
case DXIL::ResourceKind::RTAccelerationStructure:
// TODO: check profile.
break;
case DXIL::ResourceKind::FeedbackTexture2D:
case DXIL::ResourceKind::FeedbackTexture2DArray:
if (res.GetSamplerFeedbackType() >= DXIL::SamplerFeedbackType::LastEntry)
ValCtx.EmitResourceError(&res,
ValidationRule::SmInvalidSamplerFeedbackType);
break;
default:
ValCtx.EmitResourceError(&res, ValidationRule::SmInvalidResourceKind);
break;
}
switch (res.GetCompType().GetKind()) {
case DXIL::ComponentType::F32:
case DXIL::ComponentType::SNormF32:
case DXIL::ComponentType::UNormF32:
case DXIL::ComponentType::F64:
case DXIL::ComponentType::I32:
case DXIL::ComponentType::I64:
case DXIL::ComponentType::U32:
case DXIL::ComponentType::U64:
case DXIL::ComponentType::F16:
case DXIL::ComponentType::I16:
case DXIL::ComponentType::U16:
break;
default:
if (!res.IsStructuredBuffer() && !res.IsRawBuffer() &&
!res.IsFeedbackTexture())
ValCtx.EmitResourceError(&res, ValidationRule::SmInvalidResourceCompType);
break;
}
if (res.IsStructuredBuffer()) {
unsigned stride = res.GetElementStride();
bool alignedTo4Bytes = (stride & 3) == 0;
if (!alignedTo4Bytes && ValCtx.M.GetDxilModule().GetUseMinPrecision()) {
ValCtx.EmitResourceFormatError(
&res, ValidationRule::MetaStructBufAlignment,
{std::to_string(4), std::to_string(stride)});
}
if (stride > DXIL::kMaxStructBufferStride) {
ValCtx.EmitResourceFormatError(
&res, ValidationRule::MetaStructBufAlignmentOutOfBound,
{std::to_string(DXIL::kMaxStructBufferStride),
std::to_string(stride)});
}
}
if (res.IsAnyTexture() || res.IsTypedBuffer()) {
Type *RetTy = res.GetRetType();
unsigned size =
ValCtx.DxilMod.GetModule()->getDataLayout().getTypeAllocSize(RetTy);
if (size > 4 * 4) {
ValCtx.EmitResourceError(&res, ValidationRule::MetaTextureType);
}
}
}
static void CollectCBufferRanges(
DxilStructAnnotation *annotation,
SpanAllocator<unsigned, DxilFieldAnnotation> &constAllocator, unsigned base,
DxilTypeSystem &typeSys, StringRef cbName, ValidationContext &ValCtx) {
DXASSERT(((base + 15) & ~(0xf)) == base,
"otherwise, base for struct is not aligned");
unsigned cbSize = annotation->GetCBufferSize();
const StructType *ST = annotation->GetStructType();
for (int i = annotation->GetNumFields() - 1; i >= 0; i--) {
DxilFieldAnnotation &fieldAnnotation = annotation->GetFieldAnnotation(i);
Type *EltTy = ST->getElementType(i);
unsigned offset = fieldAnnotation.GetCBufferOffset();
unsigned EltSize = dxilutil::GetLegacyCBufferFieldElementSize(
fieldAnnotation, EltTy, typeSys);
bool bOutOfBound = false;
if (!EltTy->isAggregateType()) {
bOutOfBound = (offset + EltSize) > cbSize;
if (!bOutOfBound) {
if (constAllocator.Insert(&fieldAnnotation, base + offset,
base + offset + EltSize - 1)) {
ValCtx.EmitFormatError(ValidationRule::SmCBufferOffsetOverlap,
{cbName, std::to_string(base + offset)});
}
}
} else if (isa<ArrayType>(EltTy)) {
if (((offset + 15) & ~(0xf)) != offset) {
ValCtx.EmitFormatError(ValidationRule::SmCBufferArrayOffsetAlignment,
{cbName, std::to_string(offset)});
continue;
}
unsigned arrayCount = 1;
while (isa<ArrayType>(EltTy)) {
arrayCount *= EltTy->getArrayNumElements();
EltTy = EltTy->getArrayElementType();
}
DxilStructAnnotation *EltAnnotation = nullptr;
if (StructType *EltST = dyn_cast<StructType>(EltTy))
EltAnnotation = typeSys.GetStructAnnotation(EltST);
unsigned alignedEltSize = ((EltSize + 15) & ~(0xf));
unsigned arraySize = ((arrayCount - 1) * alignedEltSize) + EltSize;
bOutOfBound = (offset + arraySize) > cbSize;
if (!bOutOfBound) {
// If we didn't care about gaps where elements could be placed with user
// offsets, we could: recurse once if EltAnnotation, then allocate the
// rest if arrayCount > 1
unsigned arrayBase = base + offset;
if (!EltAnnotation) {
if (EltSize > 0 &&
nullptr != constAllocator.Insert(&fieldAnnotation, arrayBase,
arrayBase + arraySize - 1)) {
ValCtx.EmitFormatError(ValidationRule::SmCBufferOffsetOverlap,
{cbName, std::to_string(arrayBase)});
}
} else {
for (unsigned idx = 0; idx < arrayCount; idx++) {
CollectCBufferRanges(EltAnnotation, constAllocator, arrayBase,
typeSys, cbName, ValCtx);
arrayBase += alignedEltSize;
}
}
}
} else {
StructType *EltST = cast<StructType>(EltTy);
unsigned structBase = base + offset;
bOutOfBound = (offset + EltSize) > cbSize;
if (!bOutOfBound) {
if (DxilStructAnnotation *EltAnnotation =
typeSys.GetStructAnnotation(EltST)) {
CollectCBufferRanges(EltAnnotation, constAllocator, structBase,
typeSys, cbName, ValCtx);
} else {
if (EltSize > 0 &&
nullptr != constAllocator.Insert(&fieldAnnotation, structBase,
structBase + EltSize - 1)) {
ValCtx.EmitFormatError(ValidationRule::SmCBufferOffsetOverlap,
{cbName, std::to_string(structBase)});
}
}
}
}
if (bOutOfBound) {
ValCtx.EmitFormatError(ValidationRule::SmCBufferElementOverflow,
{cbName, std::to_string(base + offset)});
}
}
}
static void ValidateCBuffer(DxilCBuffer &cb, ValidationContext &ValCtx) {
Type *Ty = cb.GetHLSLType()->getPointerElementType();
if (cb.GetRangeSize() != 1 || Ty->isArrayTy()) {
Ty = Ty->getArrayElementType();
}
if (!isa<StructType>(Ty)) {
ValCtx.EmitResourceError(&cb,
ValidationRule::SmCBufferTemplateTypeMustBeStruct);
return;
}
if (cb.GetSize() > (DXIL::kMaxCBufferSize << 4)) {
ValCtx.EmitResourceFormatError(&cb, ValidationRule::SmCBufferSize,
{std::to_string(cb.GetSize())});
return;
}
StructType *ST = cast<StructType>(Ty);
DxilTypeSystem &typeSys = ValCtx.DxilMod.GetTypeSystem();
DxilStructAnnotation *annotation = typeSys.GetStructAnnotation(ST);
if (!annotation)
return;
// Collect constant ranges.
std::vector<std::pair<unsigned, unsigned>> constRanges;
SpanAllocator<unsigned, DxilFieldAnnotation> constAllocator(
0,
// 4096 * 16 bytes.
DXIL::kMaxCBufferSize << 4);
CollectCBufferRanges(annotation, constAllocator, 0, typeSys,
ValCtx.GetResourceName(&cb), ValCtx);
}
static void ValidateResources(ValidationContext &ValCtx) {
const vector<unique_ptr<DxilResource>> &uavs = ValCtx.DxilMod.GetUAVs();
SpacesAllocator<unsigned, DxilResourceBase> uavAllocator;
for (auto &uav : uavs) {
if (uav->IsROV()) {
if (!ValCtx.DxilMod.GetShaderModel()->IsPS() && !ValCtx.isLibProfile) {
ValCtx.EmitResourceError(uav.get(), ValidationRule::SmROVOnlyInPS);
}
}
switch (uav->GetKind()) {
case DXIL::ResourceKind::TextureCube:
case DXIL::ResourceKind::TextureCubeArray:
ValCtx.EmitResourceError(uav.get(),
ValidationRule::SmInvalidTextureKindOnUAV);
break;
default:
break;
}
if (uav->HasCounter() && !uav->IsStructuredBuffer()) {
ValCtx.EmitResourceError(uav.get(),
ValidationRule::SmCounterOnlyOnStructBuf);
}
if (uav->HasCounter() && uav->IsGloballyCoherent())
ValCtx.EmitResourceFormatError(uav.get(),
ValidationRule::MetaGlcNotOnAppendConsume,
{ValCtx.GetResourceName(uav.get())});
ValidateResource(*uav, ValCtx);
ValidateResourceOverlap(*uav, uavAllocator, ValCtx);
}
SpacesAllocator<unsigned, DxilResourceBase> srvAllocator;
const vector<unique_ptr<DxilResource>> &srvs = ValCtx.DxilMod.GetSRVs();
for (auto &srv : srvs) {
ValidateResource(*srv, ValCtx);
ValidateResourceOverlap(*srv, srvAllocator, ValCtx);
}
hlsl::DxilResourceBase *pNonDense;
if (!AreDxilResourcesDense(&ValCtx.M, &pNonDense)) {
ValCtx.EmitResourceError(pNonDense, ValidationRule::MetaDenseResIDs);
}
SpacesAllocator<unsigned, DxilResourceBase> samplerAllocator;
for (auto &sampler : ValCtx.DxilMod.GetSamplers()) {
if (sampler->GetSamplerKind() == DXIL::SamplerKind::Invalid) {
ValCtx.EmitResourceError(sampler.get(),
ValidationRule::MetaValidSamplerMode);
}
ValidateResourceOverlap(*sampler, samplerAllocator, ValCtx);
}
SpacesAllocator<unsigned, DxilResourceBase> cbufferAllocator;
for (auto &cbuffer : ValCtx.DxilMod.GetCBuffers()) {
ValidateCBuffer(*cbuffer, ValCtx);
ValidateResourceOverlap(*cbuffer, cbufferAllocator, ValCtx);
}
}
static void ValidateShaderFlags(ValidationContext &ValCtx) {
ShaderFlags calcFlags;
ValCtx.DxilMod.CollectShaderFlagsForModule(calcFlags);
// Special case for validator version prior to 1.8.
// If DXR 1.1 flag is set, but our computed flags do not have this set, then
// this is due to prior versions setting the flag based on DXR 1.1 subobjects,
// which are gone by this point. Set the flag and the rest should match.
unsigned valMajor, valMinor;
ValCtx.DxilMod.GetValidatorVersion(valMajor, valMinor);
if (DXIL::CompareVersions(valMajor, valMinor, 1, 5) >= 0 &&
DXIL::CompareVersions(valMajor, valMinor, 1, 8) < 0 &&
ValCtx.DxilMod.m_ShaderFlags.GetRaytracingTier1_1() &&
!calcFlags.GetRaytracingTier1_1()) {
calcFlags.SetRaytracingTier1_1(true);
}
const uint64_t mask = ShaderFlags::GetShaderFlagsRawForCollection();
uint64_t declaredFlagsRaw = ValCtx.DxilMod.m_ShaderFlags.GetShaderFlagsRaw();
uint64_t calcFlagsRaw = calcFlags.GetShaderFlagsRaw();
declaredFlagsRaw &= mask;
calcFlagsRaw &= mask;
if (declaredFlagsRaw == calcFlagsRaw) {
return;
}
ValCtx.EmitError(ValidationRule::MetaFlagsUsage);
dxilutil::EmitNoteOnContext(ValCtx.M.getContext(),
Twine("Flags declared=") +
Twine(declaredFlagsRaw) + Twine(", actual=") +
Twine(calcFlagsRaw));
}
static void ValidateSignatureElement(DxilSignatureElement &SE,
ValidationContext &ValCtx) {
DXIL::SemanticKind semanticKind = SE.GetSemantic()->GetKind();
CompType::Kind compKind = SE.GetCompType().GetKind();
DXIL::InterpolationMode Mode = SE.GetInterpolationMode()->GetKind();
StringRef Name = SE.GetName();
if (Name.size() < 1 || Name.size() > 64) {
ValCtx.EmitSignatureError(&SE, ValidationRule::MetaSemanticLen);
}
if (semanticKind > DXIL::SemanticKind::Arbitrary &&
semanticKind < DXIL::SemanticKind::Invalid) {
if (semanticKind != Semantic::GetByName(SE.GetName())->GetKind()) {
ValCtx.EmitFormatError(ValidationRule::MetaSemaKindMatchesName,
{SE.GetName(), SE.GetSemantic()->GetName()});
}
}
unsigned compWidth = 0;
bool compFloat = false;
bool compInt = false;
bool compBool = false;
switch (compKind) {
case CompType::Kind::U64:
compWidth = 64;
compInt = true;
break;
case CompType::Kind::I64:
compWidth = 64;
compInt = true;
break;
// These should be translated for signatures:
// case CompType::Kind::PackedS8x32:
// case CompType::Kind::PackedU8x32:
case CompType::Kind::U32:
compWidth = 32;
compInt = true;
break;
case CompType::Kind::I32:
compWidth = 32;
compInt = true;
break;
case CompType::Kind::U16:
compWidth = 16;
compInt = true;
break;
case CompType::Kind::I16:
compWidth = 16;
compInt = true;
break;
case CompType::Kind::I1:
compWidth = 1;
compBool = true;
break;
case CompType::Kind::F64:
compWidth = 64;
compFloat = true;
break;
case CompType::Kind::F32:
compWidth = 32;
compFloat = true;
break;
case CompType::Kind::F16:
compWidth = 16;
compFloat = true;
break;
case CompType::Kind::SNormF64:
compWidth = 64;
compFloat = true;
break;
case CompType::Kind::SNormF32:
compWidth = 32;
compFloat = true;
break;
case CompType::Kind::SNormF16:
compWidth = 16;
compFloat = true;
break;
case CompType::Kind::UNormF64:
compWidth = 64;
compFloat = true;
break;
case CompType::Kind::UNormF32:
compWidth = 32;
compFloat = true;
break;
case CompType::Kind::UNormF16:
compWidth = 16;
compFloat = true;
break;
case CompType::Kind::Invalid:
default:
ValCtx.EmitFormatError(ValidationRule::MetaSignatureCompType,
{SE.GetName()});
break;
}
if (compInt || compBool) {
switch (Mode) {
case DXIL::InterpolationMode::Linear:
case DXIL::InterpolationMode::LinearCentroid:
case DXIL::InterpolationMode::LinearNoperspective:
case DXIL::InterpolationMode::LinearNoperspectiveCentroid:
case DXIL::InterpolationMode::LinearSample:
case DXIL::InterpolationMode::LinearNoperspectiveSample: {
ValCtx.EmitFormatError(ValidationRule::MetaIntegerInterpMode,
{SE.GetName()});
} break;
default:
break;
}
}
// Elements that should not appear in the Dxil signature:
bool bAllowedInSig = true;
bool bShouldBeAllocated = true;
switch (SE.GetInterpretation()) {
case DXIL::SemanticInterpretationKind::NA:
case DXIL::SemanticInterpretationKind::NotInSig:
case DXIL::SemanticInterpretationKind::Invalid:
bAllowedInSig = false;
LLVM_FALLTHROUGH;
case DXIL::SemanticInterpretationKind::NotPacked:
case DXIL::SemanticInterpretationKind::Shadow:
bShouldBeAllocated = false;
break;
default:
break;
}
const char *inputOutput = nullptr;
if (SE.IsInput())
inputOutput = "Input";
else if (SE.IsOutput())
inputOutput = "Output";
else
inputOutput = "PatchConstant";
if (!bAllowedInSig) {
ValCtx.EmitFormatError(ValidationRule::SmSemantic,
{SE.GetName(),
ValCtx.DxilMod.GetShaderModel()->GetKindName(),
inputOutput});
} else if (bShouldBeAllocated && !SE.IsAllocated()) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticShouldBeAllocated,
{inputOutput, SE.GetName()});
} else if (!bShouldBeAllocated && SE.IsAllocated()) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticShouldNotBeAllocated,
{inputOutput, SE.GetName()});
}
bool bIsClipCull = false;
bool bIsTessfactor = false;
bool bIsBarycentric = false;
switch (semanticKind) {
case DXIL::SemanticKind::Depth:
case DXIL::SemanticKind::DepthGreaterEqual:
case DXIL::SemanticKind::DepthLessEqual:
if (!compFloat || compWidth > 32 || SE.GetCols() != 1) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType,
{SE.GetSemantic()->GetName(), "float"});
}
break;
case DXIL::SemanticKind::Coverage:
DXASSERT(!SE.IsInput() || !bAllowedInSig,
"else internal inconsistency between semantic interpretation "
"table and validation code");
LLVM_FALLTHROUGH;
case DXIL::SemanticKind::InnerCoverage:
case DXIL::SemanticKind::OutputControlPointID:
if (compKind != CompType::Kind::U32 || SE.GetCols() != 1) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType,
{SE.GetSemantic()->GetName(), "uint"});
}
break;
case DXIL::SemanticKind::Position:
if (!compFloat || compWidth > 32 || SE.GetCols() != 4) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType,
{SE.GetSemantic()->GetName(), "float4"});
}
break;
case DXIL::SemanticKind::Target:
if (compWidth > 32) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType,
{SE.GetSemantic()->GetName(), "float/int/uint"});
}
break;
case DXIL::SemanticKind::ClipDistance:
case DXIL::SemanticKind::CullDistance:
bIsClipCull = true;
if (!compFloat || compWidth > 32) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType,
{SE.GetSemantic()->GetName(), "float"});
}
// NOTE: clip cull distance size is checked at ValidateSignature.
break;
case DXIL::SemanticKind::IsFrontFace: {
if (!(compInt && compWidth == 32) || SE.GetCols() != 1) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType,
{SE.GetSemantic()->GetName(), "uint"});
}
} break;
case DXIL::SemanticKind::RenderTargetArrayIndex:
case DXIL::SemanticKind::ViewPortArrayIndex:
case DXIL::SemanticKind::VertexID:
case DXIL::SemanticKind::PrimitiveID:
case DXIL::SemanticKind::InstanceID:
case DXIL::SemanticKind::GSInstanceID:
case DXIL::SemanticKind::SampleIndex:
case DXIL::SemanticKind::StencilRef:
case DXIL::SemanticKind::ShadingRate:
if ((compKind != CompType::Kind::U32 && compKind != CompType::Kind::U16) ||
SE.GetCols() != 1) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType,
{SE.GetSemantic()->GetName(), "uint"});
}
break;
case DXIL::SemanticKind::CullPrimitive: {
if (!(compBool && compWidth == 1) || SE.GetCols() != 1) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType,
{SE.GetSemantic()->GetName(), "bool"});
}
} break;
case DXIL::SemanticKind::TessFactor:
case DXIL::SemanticKind::InsideTessFactor:
// NOTE: the size check is at CheckPatchConstantSemantic.
bIsTessfactor = true;
if (!compFloat || compWidth > 32) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType,
{SE.GetSemantic()->GetName(), "float"});
}
break;
case DXIL::SemanticKind::Arbitrary:
break;
case DXIL::SemanticKind::DomainLocation:
case DXIL::SemanticKind::Invalid:
DXASSERT(!bAllowedInSig, "else internal inconsistency between semantic "
"interpretation table and validation code");
break;
case DXIL::SemanticKind::Barycentrics:
bIsBarycentric = true;
if (!compFloat || compWidth > 32) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType,
{SE.GetSemantic()->GetName(), "float"});
}
if (Mode != InterpolationMode::Kind::Linear &&
Mode != InterpolationMode::Kind::LinearCentroid &&
Mode != InterpolationMode::Kind::LinearNoperspective &&
Mode != InterpolationMode::Kind::LinearNoperspectiveCentroid &&
Mode != InterpolationMode::Kind::LinearNoperspectiveSample &&
Mode != InterpolationMode::Kind::LinearSample) {
ValCtx.EmitSignatureError(&SE,
ValidationRule::MetaBarycentricsInterpolation);
}
if (SE.GetCols() != 3) {
ValCtx.EmitSignatureError(&SE, ValidationRule::MetaBarycentricsFloat3);
}
break;
default:
ValCtx.EmitSignatureError(&SE, ValidationRule::MetaSemaKindValid);
break;
}
if (ValCtx.DxilMod.GetShaderModel()->IsGS() && SE.IsOutput()) {
if (SE.GetOutputStream() >= DXIL::kNumOutputStreams) {
ValCtx.EmitFormatError(ValidationRule::SmStreamIndexRange,
{std::to_string(SE.GetOutputStream()),
std::to_string(DXIL::kNumOutputStreams - 1)});
}
} else {
if (SE.GetOutputStream() > 0) {
ValCtx.EmitFormatError(ValidationRule::SmStreamIndexRange,
{std::to_string(SE.GetOutputStream()), "0"});
}
}
if (ValCtx.DxilMod.GetShaderModel()->IsGS()) {
if (SE.GetOutputStream() != 0) {
if (ValCtx.DxilMod.GetStreamPrimitiveTopology() !=
DXIL::PrimitiveTopology::PointList) {
ValCtx.EmitSignatureError(&SE,
ValidationRule::SmMultiStreamMustBePoint);
}
}
}
if (semanticKind == DXIL::SemanticKind::Target) {
// Verify packed row == semantic index
unsigned row = SE.GetStartRow();
for (unsigned i : SE.GetSemanticIndexVec()) {
if (row != i) {
ValCtx.EmitSignatureError(&SE,
ValidationRule::SmPSTargetIndexMatchesRow);
}
++row;
}
// Verify packed col is 0
if (SE.GetStartCol() != 0) {
ValCtx.EmitSignatureError(&SE, ValidationRule::SmPSTargetCol0);
}
// Verify max row used < 8
if (SE.GetStartRow() + SE.GetRows() > 8) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticIndexMax,
{"SV_Target", "7"});
}
} else if (bAllowedInSig && semanticKind != DXIL::SemanticKind::Arbitrary) {
if (bIsBarycentric) {
if (SE.GetSemanticStartIndex() > 1) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticIndexMax,
{SE.GetSemantic()->GetName(), "1"});
}
} else if (!bIsClipCull && SE.GetSemanticStartIndex() > 0) {
ValCtx.EmitFormatError(ValidationRule::MetaSemanticIndexMax,
{SE.GetSemantic()->GetName(), "0"});
}
// Maximum rows is 1 for system values other than Target
// with the exception of tessfactors, which are validated in
// CheckPatchConstantSemantic and ClipDistance/CullDistance, which have
// other custom constraints.
if (!bIsTessfactor && !bIsClipCull && SE.GetRows() > 1) {
ValCtx.EmitSignatureError(&SE, ValidationRule::MetaSystemValueRows);
}
}
if (SE.GetCols() + (SE.IsAllocated() ? SE.GetStartCol() : 0) > 4) {
unsigned size = (SE.GetRows() - 1) * 4 + SE.GetCols();
ValCtx.EmitFormatError(ValidationRule::MetaSignatureOutOfRange,
{SE.GetName(), std::to_string(SE.GetStartRow()),
std::to_string(SE.GetStartCol()),
std::to_string(size)});
}
if (!SE.GetInterpolationMode()->IsValid()) {
ValCtx.EmitSignatureError(&SE, ValidationRule::MetaInterpModeValid);
}
}
static void ValidateSignatureOverlap(DxilSignatureElement &E,
unsigned maxScalars,
DxilSignatureAllocator &allocator,
ValidationContext &ValCtx) {
// Skip entries that are not or should not be allocated. Validation occurs in
// ValidateSignatureElement.
if (!E.IsAllocated())
return;
switch (E.GetInterpretation()) {
case DXIL::SemanticInterpretationKind::NA:
case DXIL::SemanticInterpretationKind::NotInSig:
case DXIL::SemanticInterpretationKind::Invalid:
case DXIL::SemanticInterpretationKind::NotPacked:
case DXIL::SemanticInterpretationKind::Shadow:
return;
default:
break;
}
DxilPackElement PE(&E, allocator.UseMinPrecision());
DxilSignatureAllocator::ConflictType conflict =
allocator.DetectRowConflict(&PE, E.GetStartRow());
if (conflict == DxilSignatureAllocator::kNoConflict ||
conflict == DxilSignatureAllocator::kInsufficientFreeComponents)
conflict =
allocator.DetectColConflict(&PE, E.GetStartRow(), E.GetStartCol());
switch (conflict) {
case DxilSignatureAllocator::kNoConflict:
allocator.PlaceElement(&PE, E.GetStartRow(), E.GetStartCol());
break;
case DxilSignatureAllocator::kConflictsWithIndexed:
ValCtx.EmitFormatError(ValidationRule::MetaSignatureIndexConflict,
{E.GetName(), std::to_string(E.GetStartRow()),
std::to_string(E.GetStartCol()),
std::to_string(E.GetRows()),
std::to_string(E.GetCols())});
break;
case DxilSignatureAllocator::kConflictsWithIndexedTessFactor:
ValCtx.EmitFormatError(ValidationRule::MetaSignatureIndexConflict,
{E.GetName(), std::to_string(E.GetStartRow()),
std::to_string(E.GetStartCol()),
std::to_string(E.GetRows()),
std::to_string(E.GetCols())});
break;
case DxilSignatureAllocator::kConflictsWithInterpolationMode:
ValCtx.EmitFormatError(ValidationRule::MetaInterpModeInOneRow,
{E.GetName(), std::to_string(E.GetStartRow()),
std::to_string(E.GetStartCol()),
std::to_string(E.GetRows()),
std::to_string(E.GetCols())});
break;
case DxilSignatureAllocator::kInsufficientFreeComponents:
DXASSERT(false, "otherwise, conflict not translated");
break;
case DxilSignatureAllocator::kOverlapElement:
ValCtx.EmitFormatError(ValidationRule::MetaSignatureOverlap,
{E.GetName(), std::to_string(E.GetStartRow()),
std::to_string(E.GetStartCol()),
std::to_string(E.GetRows()),
std::to_string(E.GetCols())});
break;
case DxilSignatureAllocator::kIllegalComponentOrder:
ValCtx.EmitFormatError(ValidationRule::MetaSignatureIllegalComponentOrder,
{E.GetName(), std::to_string(E.GetStartRow()),
std::to_string(E.GetStartCol()),
std::to_string(E.GetRows()),
std::to_string(E.GetCols())});
break;
case DxilSignatureAllocator::kConflictFit:
ValCtx.EmitFormatError(ValidationRule::MetaSignatureOutOfRange,
{E.GetName(), std::to_string(E.GetStartRow()),
std::to_string(E.GetStartCol()),
std::to_string(E.GetRows()),
std::to_string(E.GetCols())});
break;
case DxilSignatureAllocator::kConflictDataWidth:
ValCtx.EmitFormatError(ValidationRule::MetaSignatureDataWidth,
{E.GetName(), std::to_string(E.GetStartRow()),
std::to_string(E.GetStartCol()),
std::to_string(E.GetRows()),
std::to_string(E.GetCols())});
break;
default:
DXASSERT(
false,
"otherwise, unrecognized conflict type from DxilSignatureAllocator");
}
}
static void ValidateSignature(ValidationContext &ValCtx, const DxilSignature &S,
EntryStatus &Status, unsigned maxScalars) {
DxilSignatureAllocator allocator[DXIL::kNumOutputStreams] = {
{32, ValCtx.DxilMod.GetUseMinPrecision()},
{32, ValCtx.DxilMod.GetUseMinPrecision()},
{32, ValCtx.DxilMod.GetUseMinPrecision()},
{32, ValCtx.DxilMod.GetUseMinPrecision()}};
unordered_set<unsigned> semanticUsageSet[DXIL::kNumOutputStreams];
StringMap<unordered_set<unsigned>> semanticIndexMap[DXIL::kNumOutputStreams];
unordered_set<unsigned> clipcullRowSet[DXIL::kNumOutputStreams];
unsigned clipcullComponents[DXIL::kNumOutputStreams] = {0, 0, 0, 0};
bool isOutput = S.IsOutput();
unsigned TargetMask = 0;
DXIL::SemanticKind DepthKind = DXIL::SemanticKind::Invalid;
const InterpolationMode *prevBaryInterpMode = nullptr;
unsigned numBarycentrics = 0;
for (auto &E : S.GetElements()) {
DXIL::SemanticKind semanticKind = E->GetSemantic()->GetKind();
ValidateSignatureElement(*E, ValCtx);
// Avoid OOB indexing on streamId.
unsigned streamId = E->GetOutputStream();
if (streamId >= DXIL::kNumOutputStreams || !isOutput ||
!ValCtx.DxilMod.GetShaderModel()->IsGS()) {
streamId = 0;
}
// Semantic index overlap check, keyed by name.
std::string nameUpper(E->GetName());
std::transform(nameUpper.begin(), nameUpper.end(), nameUpper.begin(),
::toupper);
unordered_set<unsigned> &semIdxSet = semanticIndexMap[streamId][nameUpper];
for (unsigned semIdx : E->GetSemanticIndexVec()) {
if (semIdxSet.count(semIdx) > 0) {
ValCtx.EmitFormatError(ValidationRule::MetaNoSemanticOverlap,
{E->GetName(), std::to_string(semIdx)});
return;
} else
semIdxSet.insert(semIdx);
}
// SV_Target has special rules
if (semanticKind == DXIL::SemanticKind::Target) {
// Validate target overlap
if (E->GetStartRow() + E->GetRows() <= 8) {
unsigned mask = ((1 << E->GetRows()) - 1) << E->GetStartRow();
if (TargetMask & mask) {
ValCtx.EmitFormatError(
ValidationRule::MetaNoSemanticOverlap,
{"SV_Target", std::to_string(E->GetStartRow())});
}
TargetMask = TargetMask | mask;
}
if (E->GetRows() > 1) {
ValCtx.EmitSignatureError(E.get(), ValidationRule::SmNoPSOutputIdx);
}
continue;
}
if (E->GetSemantic()->IsInvalid())
continue;
// validate system value semantic rules
switch (semanticKind) {
case DXIL::SemanticKind::Arbitrary:
break;
case DXIL::SemanticKind::ClipDistance:
case DXIL::SemanticKind::CullDistance:
// Validate max 8 components across 2 rows (registers)
for (unsigned rowIdx = 0; rowIdx < E->GetRows(); rowIdx++)
clipcullRowSet[streamId].insert(E->GetStartRow() + rowIdx);
if (clipcullRowSet[streamId].size() > 2) {
ValCtx.EmitSignatureError(E.get(), ValidationRule::MetaClipCullMaxRows);
}
clipcullComponents[streamId] += E->GetCols();
if (clipcullComponents[streamId] > 8) {
ValCtx.EmitSignatureError(E.get(),
ValidationRule::MetaClipCullMaxComponents);
}
break;
case DXIL::SemanticKind::Depth:
case DXIL::SemanticKind::DepthGreaterEqual:
case DXIL::SemanticKind::DepthLessEqual:
if (DepthKind != DXIL::SemanticKind::Invalid) {
ValCtx.EmitSignatureError(E.get(),
ValidationRule::SmPSMultipleDepthSemantic);
}
DepthKind = semanticKind;
break;
case DXIL::SemanticKind::Barycentrics: {
// There can only be up to two SV_Barycentrics
// with differeent perspective interpolation modes.
if (numBarycentrics++ > 1) {
ValCtx.EmitSignatureError(
E.get(), ValidationRule::MetaBarycentricsTwoPerspectives);
break;
}
const InterpolationMode *mode = E->GetInterpolationMode();
if (prevBaryInterpMode) {
if ((mode->IsAnyNoPerspective() &&
prevBaryInterpMode->IsAnyNoPerspective()) ||
(!mode->IsAnyNoPerspective() &&
!prevBaryInterpMode->IsAnyNoPerspective())) {
ValCtx.EmitSignatureError(
E.get(), ValidationRule::MetaBarycentricsTwoPerspectives);
}
}
prevBaryInterpMode = mode;
break;
}
default:
if (semanticUsageSet[streamId].count(
static_cast<unsigned>(semanticKind)) > 0) {
ValCtx.EmitFormatError(ValidationRule::MetaDuplicateSysValue,
{E->GetSemantic()->GetName()});
}
semanticUsageSet[streamId].insert(static_cast<unsigned>(semanticKind));
break;
}
// Packed element overlap check.
ValidateSignatureOverlap(*E.get(), maxScalars, allocator[streamId], ValCtx);
if (isOutput && semanticKind == DXIL::SemanticKind::Position) {
Status.hasOutputPosition[E->GetOutputStream()] = true;
}
}
if (Status.hasViewID && S.IsInput() &&
ValCtx.DxilMod.GetShaderModel()->GetKind() == DXIL::ShaderKind::Pixel) {
// Ensure sufficient space for ViewID:
DxilSignatureAllocator::DummyElement viewID;
viewID.rows = 1;
viewID.cols = 1;
viewID.kind = DXIL::SemanticKind::Arbitrary;
viewID.interpolation = DXIL::InterpolationMode::Constant;
viewID.interpretation = DXIL::SemanticInterpretationKind::SGV;
allocator[0].PackNext(&viewID, 0, 32);
if (!viewID.IsAllocated()) {
ValCtx.EmitError(ValidationRule::SmViewIDNeedsSlot);
}
}
}
static void ValidateNoInterpModeSignature(ValidationContext &ValCtx,
const DxilSignature &S) {
for (auto &E : S.GetElements()) {
if (!E->GetInterpolationMode()->IsUndefined()) {
ValCtx.EmitSignatureError(E.get(), ValidationRule::SmNoInterpMode);
}
}
}
static void ValidateConstantInterpModeSignature(ValidationContext &ValCtx,
const DxilSignature &S) {
for (auto &E : S.GetElements()) {
if (!E->GetInterpolationMode()->IsConstant()) {
ValCtx.EmitSignatureError(E.get(), ValidationRule::SmConstantInterpMode);
}
}
}
static void ValidateEntrySignatures(ValidationContext &ValCtx,
const DxilEntryProps &entryProps,
EntryStatus &Status, Function &F) {
const DxilFunctionProps &props = entryProps.props;
const DxilEntrySignature &S = entryProps.sig;
if (props.IsRay()) {
// No signatures allowed
if (!S.InputSignature.GetElements().empty() ||
!S.OutputSignature.GetElements().empty() ||
!S.PatchConstOrPrimSignature.GetElements().empty()) {
ValCtx.EmitFnFormatError(&F, ValidationRule::SmRayShaderSignatures,
{F.getName()});
}
// Validate payload/attribute/params sizes
unsigned payloadSize = 0;
unsigned attrSize = 0;
auto itPayload = F.arg_begin();
auto itAttr = itPayload;
if (itAttr != F.arg_end())
itAttr++;
DataLayout DL(F.getParent());
switch (props.shaderKind) {
case DXIL::ShaderKind::AnyHit:
case DXIL::ShaderKind::ClosestHit:
if (itAttr != F.arg_end()) {
Type *Ty = itAttr->getType();
if (Ty->isPointerTy())
Ty = Ty->getPointerElementType();
attrSize =
(unsigned)std::min(DL.getTypeAllocSize(Ty), (uint64_t)UINT_MAX);
}
LLVM_FALLTHROUGH;
case DXIL::ShaderKind::Miss:
case DXIL::ShaderKind::Callable:
if (itPayload != F.arg_end()) {
Type *Ty = itPayload->getType();
if (Ty->isPointerTy())
Ty = Ty->getPointerElementType();
payloadSize =
(unsigned)std::min(DL.getTypeAllocSize(Ty), (uint64_t)UINT_MAX);
}
break;
}
if (props.ShaderProps.Ray.payloadSizeInBytes < payloadSize) {
ValCtx.EmitFnFormatError(
&F, ValidationRule::SmRayShaderPayloadSize,
{F.getName(), props.IsCallable() ? "params" : "payload"});
}
if (props.ShaderProps.Ray.attributeSizeInBytes < attrSize) {
ValCtx.EmitFnFormatError(&F, ValidationRule::SmRayShaderPayloadSize,
{F.getName(), "attribute"});
}
return;
}
bool isPS = props.IsPS();
bool isVS = props.IsVS();
bool isGS = props.IsGS();
bool isCS = props.IsCS();
bool isMS = props.IsMS();
if (isPS) {
// PS output no interp mode.
ValidateNoInterpModeSignature(ValCtx, S.OutputSignature);
} else if (isVS) {
// VS input no interp mode.
ValidateNoInterpModeSignature(ValCtx, S.InputSignature);
}
if (isMS) {
// primitive output constant interp mode.
ValidateConstantInterpModeSignature(ValCtx, S.PatchConstOrPrimSignature);
} else {
// patch constant no interp mode.
ValidateNoInterpModeSignature(ValCtx, S.PatchConstOrPrimSignature);
}
unsigned maxInputScalars = DXIL::kMaxInputTotalScalars;
unsigned maxOutputScalars = 0;
unsigned maxPatchConstantScalars = 0;
switch (props.shaderKind) {
case DXIL::ShaderKind::Compute:
break;
case DXIL::ShaderKind::Vertex:
case DXIL::ShaderKind::Geometry:
case DXIL::ShaderKind::Pixel:
maxOutputScalars = DXIL::kMaxOutputTotalScalars;
break;
case DXIL::ShaderKind::Hull:
case DXIL::ShaderKind::Domain:
maxOutputScalars = DXIL::kMaxOutputTotalScalars;
maxPatchConstantScalars = DXIL::kMaxHSOutputPatchConstantTotalScalars;
break;
case DXIL::ShaderKind::Mesh:
maxOutputScalars = DXIL::kMaxOutputTotalScalars;
maxPatchConstantScalars = DXIL::kMaxOutputTotalScalars;
break;
case DXIL::ShaderKind::Amplification:
default:
break;
}
ValidateSignature(ValCtx, S.InputSignature, Status, maxInputScalars);
ValidateSignature(ValCtx, S.OutputSignature, Status, maxOutputScalars);
ValidateSignature(ValCtx, S.PatchConstOrPrimSignature, Status,
maxPatchConstantScalars);
if (isPS) {
// Gather execution information.
hlsl::PSExecutionInfo PSExec;
DxilSignatureElement *PosInterpSE = nullptr;
for (auto &E : S.InputSignature.GetElements()) {
if (E->GetKind() == DXIL::SemanticKind::SampleIndex) {
PSExec.SuperSampling = true;
continue;
}
const InterpolationMode *IM = E->GetInterpolationMode();
if (IM->IsLinearSample() || IM->IsLinearNoperspectiveSample()) {
PSExec.SuperSampling = true;
}
if (E->GetKind() == DXIL::SemanticKind::Position) {
PSExec.PositionInterpolationMode = IM;
PosInterpSE = E.get();
}
}
for (auto &E : S.OutputSignature.GetElements()) {
if (E->IsAnyDepth()) {
PSExec.OutputDepthKind = E->GetKind();
break;
}
}
if (!PSExec.SuperSampling &&
PSExec.OutputDepthKind != DXIL::SemanticKind::Invalid &&
PSExec.OutputDepthKind != DXIL::SemanticKind::Depth) {
if (PSExec.PositionInterpolationMode != nullptr) {
if (!PSExec.PositionInterpolationMode->IsUndefined() &&
!PSExec.PositionInterpolationMode
->IsLinearNoperspectiveCentroid() &&
!PSExec.PositionInterpolationMode->IsLinearNoperspectiveSample()) {
ValCtx.EmitFnFormatError(&F, ValidationRule::SmPSConsistentInterp,
{PosInterpSE->GetName()});
}
}
}
// Validate PS output semantic.
const DxilSignature &outputSig = S.OutputSignature;
for (auto &SE : outputSig.GetElements()) {
Semantic::Kind semanticKind = SE->GetSemantic()->GetKind();
switch (semanticKind) {
case Semantic::Kind::Target:
case Semantic::Kind::Coverage:
case Semantic::Kind::Depth:
case Semantic::Kind::DepthGreaterEqual:
case Semantic::Kind::DepthLessEqual:
case Semantic::Kind::StencilRef:
break;
default: {
ValCtx.EmitFnFormatError(&F, ValidationRule::SmPSOutputSemantic,
{SE->GetName()});
} break;
}
}
}
if (isGS) {
unsigned maxVertexCount = props.ShaderProps.GS.maxVertexCount;
unsigned outputScalarCount = 0;
const DxilSignature &outSig = S.OutputSignature;
for (auto &SE : outSig.GetElements()) {
outputScalarCount += SE->GetRows() * SE->GetCols();
}
unsigned totalOutputScalars = maxVertexCount * outputScalarCount;
if (totalOutputScalars > DXIL::kMaxGSOutputTotalScalars) {
ValCtx.EmitFnFormatError(
&F, ValidationRule::SmGSTotalOutputVertexDataRange,
{std::to_string(maxVertexCount), std::to_string(outputScalarCount),
std::to_string(totalOutputScalars),
std::to_string(DXIL::kMaxGSOutputTotalScalars)});
}
}
if (isCS) {
if (!S.InputSignature.GetElements().empty() ||
!S.OutputSignature.GetElements().empty() ||
!S.PatchConstOrPrimSignature.GetElements().empty()) {
ValCtx.EmitFnError(&F, ValidationRule::SmCSNoSignatures);
}
}
if (isMS) {
unsigned VertexSignatureRows = S.OutputSignature.GetRowCount();
if (VertexSignatureRows > DXIL::kMaxMSVSigRows) {
ValCtx.EmitFnFormatError(
&F, ValidationRule::SmMeshVSigRowCount,
{F.getName(), std::to_string(DXIL::kMaxMSVSigRows)});
}
unsigned PrimitiveSignatureRows = S.PatchConstOrPrimSignature.GetRowCount();
if (PrimitiveSignatureRows > DXIL::kMaxMSPSigRows) {
ValCtx.EmitFnFormatError(
&F, ValidationRule::SmMeshPSigRowCount,
{F.getName(), std::to_string(DXIL::kMaxMSPSigRows)});
}
if (VertexSignatureRows + PrimitiveSignatureRows >
DXIL::kMaxMSTotalSigRows) {
ValCtx.EmitFnFormatError(
&F, ValidationRule::SmMeshTotalSigRowCount,
{F.getName(), std::to_string(DXIL::kMaxMSTotalSigRows)});
}
const unsigned kScalarSizeForMSAttributes = 4;
#define ALIGN32(n) (((n) + 31) & ~31)
unsigned maxAlign32VertexCount =
ALIGN32(props.ShaderProps.MS.maxVertexCount);
unsigned maxAlign32PrimitiveCount =
ALIGN32(props.ShaderProps.MS.maxPrimitiveCount);
unsigned totalOutputScalars = 0;
for (auto &SE : S.OutputSignature.GetElements()) {
totalOutputScalars +=
SE->GetRows() * SE->GetCols() * maxAlign32VertexCount;
}
for (auto &SE : S.PatchConstOrPrimSignature.GetElements()) {
totalOutputScalars +=
SE->GetRows() * SE->GetCols() * maxAlign32PrimitiveCount;
}
if (totalOutputScalars * kScalarSizeForMSAttributes >
DXIL::kMaxMSOutputTotalBytes) {
ValCtx.EmitFnFormatError(
&F, ValidationRule::SmMeshShaderOutputSize,
{F.getName(), std::to_string(DXIL::kMaxMSOutputTotalBytes)});
}
unsigned totalInputOutputBytes =
totalOutputScalars * kScalarSizeForMSAttributes +
props.ShaderProps.MS.payloadSizeInBytes;
if (totalInputOutputBytes > DXIL::kMaxMSInputOutputTotalBytes) {
ValCtx.EmitFnFormatError(
&F, ValidationRule::SmMeshShaderInOutSize,
{F.getName(), std::to_string(DXIL::kMaxMSInputOutputTotalBytes)});
}
}
}
static void ValidateEntrySignatures(ValidationContext &ValCtx) {
DxilModule &DM = ValCtx.DxilMod;
if (ValCtx.isLibProfile) {
for (Function &F : DM.GetModule()->functions()) {
if (DM.HasDxilEntryProps(&F)) {
DxilEntryProps &entryProps = DM.GetDxilEntryProps(&F);
EntryStatus &Status = ValCtx.GetEntryStatus(&F);
ValidateEntrySignatures(ValCtx, entryProps, Status, F);
}
}
} else {
Function *Entry = DM.GetEntryFunction();
if (!DM.HasDxilEntryProps(Entry)) {
// must have props.
ValCtx.EmitFnError(Entry, ValidationRule::MetaNoEntryPropsForEntry);
return;
}
EntryStatus &Status = ValCtx.GetEntryStatus(Entry);
DxilEntryProps &entryProps = DM.GetDxilEntryProps(Entry);
ValidateEntrySignatures(ValCtx, entryProps, Status, *Entry);
}
}
// CompatibilityChecker is used to identify incompatibilities in an entry
// function and any functions called by that entry function.
struct CompatibilityChecker {
ValidationContext &ValCtx;
Function *EntryFn;
const DxilFunctionProps &props;
DXIL::ShaderKind shaderKind;
// These masks identify the potential conflict flags based on the entry
// function's shader kind and properties when either UsesDerivatives or
// RequiresGroup flags are set in ShaderCompatInfo.
uint32_t maskForDeriv = 0;
uint32_t maskForGroup = 0;
enum class ConflictKind : uint32_t {
Stage,
ShaderModel,
DerivLaunch,
DerivThreadGroupDim,
DerivInComputeShaderModel,
RequiresGroup,
};
enum class ConflictFlags : uint32_t {
Stage = 1 << (uint32_t)ConflictKind::Stage,
ShaderModel = 1 << (uint32_t)ConflictKind::ShaderModel,
DerivLaunch = 1 << (uint32_t)ConflictKind::DerivLaunch,
DerivThreadGroupDim = 1 << (uint32_t)ConflictKind::DerivThreadGroupDim,
DerivInComputeShaderModel =
1 << (uint32_t)ConflictKind::DerivInComputeShaderModel,
RequiresGroup = 1 << (uint32_t)ConflictKind::RequiresGroup,
};
CompatibilityChecker(ValidationContext &ValCtx, Function *EntryFn)
: ValCtx(ValCtx), EntryFn(EntryFn),
props(ValCtx.DxilMod.GetDxilEntryProps(EntryFn).props),
shaderKind(props.shaderKind) {
// Precompute potential incompatibilities based on shader stage, shader kind
// and entry attributes. These will turn into full conflicts if the entry
// point's shader flags indicate that they use relevant features.
if (!ValCtx.DxilMod.GetShaderModel()->IsSM66Plus() &&
(shaderKind == DXIL::ShaderKind::Mesh ||
shaderKind == DXIL::ShaderKind::Amplification ||
shaderKind == DXIL::ShaderKind::Compute)) {
maskForDeriv |=
static_cast<uint32_t>(ConflictFlags::DerivInComputeShaderModel);
} else if (shaderKind == DXIL::ShaderKind::Node) {
// Only broadcasting launch supports derivatives.
if (props.Node.LaunchType != DXIL::NodeLaunchType::Broadcasting)
maskForDeriv |= static_cast<uint32_t>(ConflictFlags::DerivLaunch);
// Thread launch node has no group.
if (props.Node.LaunchType == DXIL::NodeLaunchType::Thread)
maskForGroup |= static_cast<uint32_t>(ConflictFlags::RequiresGroup);
}
if (shaderKind == DXIL::ShaderKind::Mesh ||
shaderKind == DXIL::ShaderKind::Amplification ||
shaderKind == DXIL::ShaderKind::Compute ||
shaderKind == DXIL::ShaderKind::Node) {
// All compute-like stages
// Thread dimensions must be either 1D and X is multiple of 4, or 2D
// and X and Y must be multiples of 2.
if (props.numThreads[1] == 1 && props.numThreads[2] == 1) {
if ((props.numThreads[0] & 0x3) != 0)
maskForDeriv |=
static_cast<uint32_t>(ConflictFlags::DerivThreadGroupDim);
} else if ((props.numThreads[0] & 0x1) || (props.numThreads[1] & 0x1))
maskForDeriv |=
static_cast<uint32_t>(ConflictFlags::DerivThreadGroupDim);
} else {
// other stages have no group
maskForGroup |= static_cast<uint32_t>(ConflictFlags::RequiresGroup);
}
}
uint32_t
IdentifyConflict(const DxilModule::ShaderCompatInfo &compatInfo) const {
uint32_t conflictMask = 0;
// Compatibility check said this shader kind is not compatible.
if (0 == ((1 << (uint32_t)shaderKind) & compatInfo.mask))
conflictMask |= (uint32_t)ConflictFlags::Stage;
// Compatibility check said this shader model is not compatible.
if (DXIL::CompareVersions(ValCtx.DxilMod.GetShaderModel()->GetMajor(),
ValCtx.DxilMod.GetShaderModel()->GetMinor(),
compatInfo.minMajor, compatInfo.minMinor) < 0)
conflictMask |= (uint32_t)ConflictFlags::ShaderModel;
if (compatInfo.shaderFlags.GetUsesDerivatives())
conflictMask |= maskForDeriv;
if (compatInfo.shaderFlags.GetRequiresGroup())
conflictMask |= maskForGroup;
return conflictMask;
}
void Diagnose(Function *F, uint32_t conflictMask, ConflictKind conflict,
ValidationRule rule, ArrayRef<StringRef> args = {}) {
if (conflictMask & (1 << (unsigned)conflict))
ValCtx.EmitFnFormatError(F, rule, args);
}
void DiagnoseConflicts(Function *F, uint32_t conflictMask) {
// Emit a diagnostic indicating that either the entry function or a function
// called by the entry function contains a disallowed operation.
if (F == EntryFn)
ValCtx.EmitFnError(EntryFn, ValidationRule::SmIncompatibleOperation);
else
ValCtx.EmitFnError(EntryFn, ValidationRule::SmIncompatibleCallInEntry);
// Emit diagnostics for each conflict found in this function.
Diagnose(F, conflictMask, ConflictKind::Stage,
ValidationRule::SmIncompatibleStage,
{ShaderModel::GetKindName(props.shaderKind)});
Diagnose(F, conflictMask, ConflictKind::ShaderModel,
ValidationRule::SmIncompatibleShaderModel);
Diagnose(F, conflictMask, ConflictKind::DerivLaunch,
ValidationRule::SmIncompatibleDerivLaunch,
{GetLaunchTypeStr(props.Node.LaunchType)});
Diagnose(F, conflictMask, ConflictKind::DerivThreadGroupDim,
ValidationRule::SmIncompatibleThreadGroupDim,
{std::to_string(props.numThreads[0]),
std::to_string(props.numThreads[1]),
std::to_string(props.numThreads[2])});
Diagnose(F, conflictMask, ConflictKind::DerivInComputeShaderModel,
ValidationRule::SmIncompatibleDerivInComputeShaderModel);
Diagnose(F, conflictMask, ConflictKind::RequiresGroup,
ValidationRule::SmIncompatibleRequiresGroup);
}
// Visit function and all functions called by it.
// Emit diagnostics for incompatibilities found in a function when no
// functions called by that function introduced the conflict.
// In those cases, the called functions themselves will emit the diagnostic.
// Return conflict mask for this function.
uint32_t Visit(Function *F, uint32_t &remainingMask,
llvm::SmallPtrSet<Function *, 8> &visited, CallGraph &CG) {
// Recursive check looks for where a conflict is found and not present
// in functions called by the current function.
// - When a source is found, emit diagnostics and clear the conflict
// flags introduced by this function from the working mask so we don't
// report this conflict again.
// - When the remainingMask is 0, we are done.
if (remainingMask == 0)
return 0; // Nothing left to search for.
if (!visited.insert(F).second)
return 0; // Already visited.
const DxilModule::ShaderCompatInfo *compatInfo =
ValCtx.DxilMod.GetCompatInfoForFunction(F);
DXASSERT(compatInfo, "otherwise, compat info not computed in module");
if (!compatInfo)
return 0;
uint32_t maskForThisFunction = IdentifyConflict(*compatInfo);
uint32_t maskForCalls = 0;
if (CallGraphNode *CGNode = CG[F]) {
for (auto &Call : *CGNode) {
Function *called = Call.second->getFunction();
if (called->isDeclaration())
continue;
maskForCalls |= Visit(called, remainingMask, visited, CG);
if (remainingMask == 0)
return 0; // Nothing left to search for.
}
}
// Mask of incompatibilities introduced by this function.
uint32_t conflictsIntroduced =
remainingMask & maskForThisFunction & ~maskForCalls;
if (conflictsIntroduced) {
// This function introduces at least one conflict.
DiagnoseConflicts(F, conflictsIntroduced);
// Mask off diagnosed incompatibilities.
remainingMask &= ~conflictsIntroduced;
}
return maskForThisFunction;
}
void FindIncompatibleCall(const DxilModule::ShaderCompatInfo &compatInfo) {
uint32_t conflictMask = IdentifyConflict(compatInfo);
if (conflictMask == 0)
return;
CallGraph &CG = ValCtx.GetCallGraph();
llvm::SmallPtrSet<Function *, 8> visited;
Visit(EntryFn, conflictMask, visited, CG);
}
};
static void ValidateEntryCompatibility(ValidationContext &ValCtx) {
// Make sure functions called from each entry are compatible with that entry.
DxilModule &DM = ValCtx.DxilMod;
for (Function &F : DM.GetModule()->functions()) {
if (DM.HasDxilEntryProps(&F)) {
const DxilModule::ShaderCompatInfo *compatInfo =
DM.GetCompatInfoForFunction(&F);
DXASSERT(compatInfo, "otherwise, compat info not computed in module");
if (!compatInfo)
continue;
CompatibilityChecker checker(ValCtx, &F);
checker.FindIncompatibleCall(*compatInfo);
}
}
}
static void CheckPatchConstantSemantic(ValidationContext &ValCtx,
const DxilEntryProps &EntryProps,
EntryStatus &Status, Function *F) {
const DxilFunctionProps &props = EntryProps.props;
bool isHS = props.IsHS();
DXIL::TessellatorDomain domain =
isHS ? props.ShaderProps.HS.domain : props.ShaderProps.DS.domain;
const DxilSignature &patchConstantSig =
EntryProps.sig.PatchConstOrPrimSignature;
const unsigned kQuadEdgeSize = 4;
const unsigned kQuadInsideSize = 2;
const unsigned kQuadDomainLocSize = 2;
const unsigned kTriEdgeSize = 3;
const unsigned kTriInsideSize = 1;
const unsigned kTriDomainLocSize = 3;
const unsigned kIsolineEdgeSize = 2;
const unsigned kIsolineInsideSize = 0;
const unsigned kIsolineDomainLocSize = 3;
const char *domainName = "";
DXIL::SemanticKind kEdgeSemantic = DXIL::SemanticKind::TessFactor;
unsigned edgeSize = 0;
DXIL::SemanticKind kInsideSemantic = DXIL::SemanticKind::InsideTessFactor;
unsigned insideSize = 0;
Status.domainLocSize = 0;
switch (domain) {
case DXIL::TessellatorDomain::IsoLine:
domainName = "IsoLine";
edgeSize = kIsolineEdgeSize;
insideSize = kIsolineInsideSize;
Status.domainLocSize = kIsolineDomainLocSize;
break;
case DXIL::TessellatorDomain::Tri:
domainName = "Tri";
edgeSize = kTriEdgeSize;
insideSize = kTriInsideSize;
Status.domainLocSize = kTriDomainLocSize;
break;
case DXIL::TessellatorDomain::Quad:
domainName = "Quad";
edgeSize = kQuadEdgeSize;
insideSize = kQuadInsideSize;
Status.domainLocSize = kQuadDomainLocSize;
break;
default:
// Don't bother with other tests if domain is invalid
return;
}
bool bFoundEdgeSemantic = false;
bool bFoundInsideSemantic = false;
for (auto &SE : patchConstantSig.GetElements()) {
Semantic::Kind kind = SE->GetSemantic()->GetKind();
if (kind == kEdgeSemantic) {
bFoundEdgeSemantic = true;
if (SE->GetRows() != edgeSize || SE->GetCols() > 1) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmTessFactorSizeMatchDomain,
{std::to_string(SE->GetRows()),
std::to_string(SE->GetCols()), domainName,
std::to_string(edgeSize)});
}
} else if (kind == kInsideSemantic) {
bFoundInsideSemantic = true;
if (SE->GetRows() != insideSize || SE->GetCols() > 1) {
ValCtx.EmitFnFormatError(
F, ValidationRule::SmInsideTessFactorSizeMatchDomain,
{std::to_string(SE->GetRows()), std::to_string(SE->GetCols()),
domainName, std::to_string(insideSize)});
}
}
}
if (isHS) {
if (!bFoundEdgeSemantic) {
ValCtx.EmitFnError(F, ValidationRule::SmTessFactorForDomain);
}
if (!bFoundInsideSemantic && domain != DXIL::TessellatorDomain::IsoLine) {
ValCtx.EmitFnError(F, ValidationRule::SmTessFactorForDomain);
}
}
}
static void ValidatePassThruHS(ValidationContext &ValCtx,
const DxilEntryProps &entryProps, Function *F) {
// Check pass thru HS.
if (F->isDeclaration()) {
const auto &props = entryProps.props;
if (props.IsHS()) {
const auto &HS = props.ShaderProps.HS;
if (HS.inputControlPoints < HS.outputControlPoints) {
ValCtx.EmitFnError(
F, ValidationRule::SmHullPassThruControlPointCountMatch);
}
// Check declared control point outputs storage amounts are ok to pass
// through (less output storage than input for control points).
const DxilSignature &outSig = entryProps.sig.OutputSignature;
unsigned totalOutputCPScalars = 0;
for (auto &SE : outSig.GetElements()) {
totalOutputCPScalars += SE->GetRows() * SE->GetCols();
}
if (totalOutputCPScalars * HS.outputControlPoints >
DXIL::kMaxHSOutputControlPointsTotalScalars) {
ValCtx.EmitFnError(F,
ValidationRule::SmOutputControlPointsTotalScalars);
// TODO: add number at end. need format fn error?
}
} else {
ValCtx.EmitFnError(F, ValidationRule::MetaEntryFunction);
}
}
}
// validate wave size (currently allowed only on CS and node shaders but might
// be supported on other shader types in the future)
static void ValidateWaveSize(ValidationContext &ValCtx,
const DxilEntryProps &entryProps, Function *F) {
const DxilFunctionProps &props = entryProps.props;
const hlsl::DxilWaveSize &waveSize = props.WaveSize;
switch (waveSize.Validate()) {
case hlsl::DxilWaveSize::ValidationResult::Success:
break;
case hlsl::DxilWaveSize::ValidationResult::InvalidMin:
ValCtx.EmitFnFormatError(F, ValidationRule::SmWaveSizeValue,
{"Min", std::to_string(waveSize.Min),
std::to_string(DXIL::kMinWaveSize),
std::to_string(DXIL::kMaxWaveSize)});
break;
case hlsl::DxilWaveSize::ValidationResult::InvalidMax:
ValCtx.EmitFnFormatError(F, ValidationRule::SmWaveSizeValue,
{"Max", std::to_string(waveSize.Max),
std::to_string(DXIL::kMinWaveSize),
std::to_string(DXIL::kMaxWaveSize)});
break;
case hlsl::DxilWaveSize::ValidationResult::InvalidPreferred:
ValCtx.EmitFnFormatError(F, ValidationRule::SmWaveSizeValue,
{"Preferred", std::to_string(waveSize.Preferred),
std::to_string(DXIL::kMinWaveSize),
std::to_string(DXIL::kMaxWaveSize)});
break;
case hlsl::DxilWaveSize::ValidationResult::MaxOrPreferredWhenUndefined:
ValCtx.EmitFnFormatError(
F, ValidationRule::SmWaveSizeAllZeroWhenUndefined,
{std::to_string(waveSize.Max), std::to_string(waveSize.Preferred)});
break;
case hlsl::DxilWaveSize::ValidationResult::MaxEqualsMin:
// This case is allowed because users may disable the ErrorDefault warning.
break;
case hlsl::DxilWaveSize::ValidationResult::PreferredWhenNoRange:
ValCtx.EmitFnFormatError(
F, ValidationRule::SmWaveSizeMaxAndPreferredZeroWhenNoRange,
{std::to_string(waveSize.Max), std::to_string(waveSize.Preferred)});
break;
case hlsl::DxilWaveSize::ValidationResult::MaxLessThanMin:
ValCtx.EmitFnFormatError(
F, ValidationRule::SmWaveSizeMaxGreaterThanMin,
{std::to_string(waveSize.Max), std::to_string(waveSize.Min)});
break;
case hlsl::DxilWaveSize::ValidationResult::PreferredOutOfRange:
ValCtx.EmitFnFormatError(F, ValidationRule::SmWaveSizePreferredInRange,
{std::to_string(waveSize.Preferred),
std::to_string(waveSize.Min),
std::to_string(waveSize.Max)});
break;
}
// Check shader model and kind.
if (waveSize.IsDefined()) {
if (!props.IsCS() && !props.IsNode()) {
ValCtx.EmitFnError(F, ValidationRule::SmWaveSizeOnComputeOrNode);
}
}
}
static void ValidateEntryProps(ValidationContext &ValCtx,
const DxilEntryProps &entryProps,
EntryStatus &Status, Function *F) {
const DxilFunctionProps &props = entryProps.props;
DXIL::ShaderKind ShaderType = props.shaderKind;
ValidateWaveSize(ValCtx, entryProps, F);
if (ShaderType == DXIL::ShaderKind::Compute || props.IsNode()) {
unsigned x = props.numThreads[0];
unsigned y = props.numThreads[1];
unsigned z = props.numThreads[2];
unsigned threadsInGroup = x * y * z;
if ((x < DXIL::kMinCSThreadGroupX) || (x > DXIL::kMaxCSThreadGroupX)) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange,
{"X", std::to_string(x),
std::to_string(DXIL::kMinCSThreadGroupX),
std::to_string(DXIL::kMaxCSThreadGroupX)});
}
if ((y < DXIL::kMinCSThreadGroupY) || (y > DXIL::kMaxCSThreadGroupY)) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange,
{"Y", std::to_string(y),
std::to_string(DXIL::kMinCSThreadGroupY),
std::to_string(DXIL::kMaxCSThreadGroupY)});
}
if ((z < DXIL::kMinCSThreadGroupZ) || (z > DXIL::kMaxCSThreadGroupZ)) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange,
{"Z", std::to_string(z),
std::to_string(DXIL::kMinCSThreadGroupZ),
std::to_string(DXIL::kMaxCSThreadGroupZ)});
}
if (threadsInGroup > DXIL::kMaxCSThreadsPerGroup) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmMaxTheadGroup,
{std::to_string(threadsInGroup),
std::to_string(DXIL::kMaxCSThreadsPerGroup)});
}
// type of threadID, thread group ID take care by DXIL operation overload
// check.
} else if (ShaderType == DXIL::ShaderKind::Mesh) {
const auto &MS = props.ShaderProps.MS;
unsigned x = props.numThreads[0];
unsigned y = props.numThreads[1];
unsigned z = props.numThreads[2];
unsigned threadsInGroup = x * y * z;
if ((x < DXIL::kMinMSASThreadGroupX) || (x > DXIL::kMaxMSASThreadGroupX)) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange,
{"X", std::to_string(x),
std::to_string(DXIL::kMinMSASThreadGroupX),
std::to_string(DXIL::kMaxMSASThreadGroupX)});
}
if ((y < DXIL::kMinMSASThreadGroupY) || (y > DXIL::kMaxMSASThreadGroupY)) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange,
{"Y", std::to_string(y),
std::to_string(DXIL::kMinMSASThreadGroupY),
std::to_string(DXIL::kMaxMSASThreadGroupY)});
}
if ((z < DXIL::kMinMSASThreadGroupZ) || (z > DXIL::kMaxMSASThreadGroupZ)) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange,
{"Z", std::to_string(z),
std::to_string(DXIL::kMinMSASThreadGroupZ),
std::to_string(DXIL::kMaxMSASThreadGroupZ)});
}
if (threadsInGroup > DXIL::kMaxMSASThreadsPerGroup) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmMaxTheadGroup,
{std::to_string(threadsInGroup),
std::to_string(DXIL::kMaxMSASThreadsPerGroup)});
}
// type of threadID, thread group ID take care by DXIL operation overload
// check.
unsigned maxVertexCount = MS.maxVertexCount;
if (maxVertexCount > DXIL::kMaxMSOutputVertexCount) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmMeshShaderMaxVertexCount,
{std::to_string(DXIL::kMaxMSOutputVertexCount),
std::to_string(maxVertexCount)});
}
unsigned maxPrimitiveCount = MS.maxPrimitiveCount;
if (maxPrimitiveCount > DXIL::kMaxMSOutputPrimitiveCount) {
ValCtx.EmitFnFormatError(
F, ValidationRule::SmMeshShaderMaxPrimitiveCount,
{std::to_string(DXIL::kMaxMSOutputPrimitiveCount),
std::to_string(maxPrimitiveCount)});
}
} else if (ShaderType == DXIL::ShaderKind::Amplification) {
unsigned x = props.numThreads[0];
unsigned y = props.numThreads[1];
unsigned z = props.numThreads[2];
unsigned threadsInGroup = x * y * z;
if ((x < DXIL::kMinMSASThreadGroupX) || (x > DXIL::kMaxMSASThreadGroupX)) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange,
{"X", std::to_string(x),
std::to_string(DXIL::kMinMSASThreadGroupX),
std::to_string(DXIL::kMaxMSASThreadGroupX)});
}
if ((y < DXIL::kMinMSASThreadGroupY) || (y > DXIL::kMaxMSASThreadGroupY)) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange,
{"Y", std::to_string(y),
std::to_string(DXIL::kMinMSASThreadGroupY),
std::to_string(DXIL::kMaxMSASThreadGroupY)});
}
if ((z < DXIL::kMinMSASThreadGroupZ) || (z > DXIL::kMaxMSASThreadGroupZ)) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange,
{"Z", std::to_string(z),
std::to_string(DXIL::kMinMSASThreadGroupZ),
std::to_string(DXIL::kMaxMSASThreadGroupZ)});
}
if (threadsInGroup > DXIL::kMaxMSASThreadsPerGroup) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmMaxTheadGroup,
{std::to_string(threadsInGroup),
std::to_string(DXIL::kMaxMSASThreadsPerGroup)});
}
// type of threadID, thread group ID take care by DXIL operation overload
// check.
} else if (ShaderType == DXIL::ShaderKind::Domain) {
const auto &DS = props.ShaderProps.DS;
DXIL::TessellatorDomain domain = DS.domain;
if (domain >= DXIL::TessellatorDomain::LastEntry)
domain = DXIL::TessellatorDomain::Undefined;
unsigned inputControlPointCount = DS.inputControlPoints;
if (inputControlPointCount > DXIL::kMaxIAPatchControlPointCount) {
ValCtx.EmitFnFormatError(
F, ValidationRule::SmDSInputControlPointCountRange,
{std::to_string(DXIL::kMaxIAPatchControlPointCount),
std::to_string(inputControlPointCount)});
}
if (domain == DXIL::TessellatorDomain::Undefined) {
ValCtx.EmitFnError(F, ValidationRule::SmValidDomain);
}
CheckPatchConstantSemantic(ValCtx, entryProps, Status, F);
} else if (ShaderType == DXIL::ShaderKind::Hull) {
const auto &HS = props.ShaderProps.HS;
DXIL::TessellatorDomain domain = HS.domain;
if (domain >= DXIL::TessellatorDomain::LastEntry)
domain = DXIL::TessellatorDomain::Undefined;
unsigned inputControlPointCount = HS.inputControlPoints;
if (inputControlPointCount == 0) {
const DxilSignature &inputSig = entryProps.sig.InputSignature;
if (!inputSig.GetElements().empty()) {
ValCtx.EmitFnError(F,
ValidationRule::SmZeroHSInputControlPointWithInput);
}
} else if (inputControlPointCount > DXIL::kMaxIAPatchControlPointCount) {
ValCtx.EmitFnFormatError(
F, ValidationRule::SmHSInputControlPointCountRange,
{std::to_string(DXIL::kMaxIAPatchControlPointCount),
std::to_string(inputControlPointCount)});
}
unsigned outputControlPointCount = HS.outputControlPoints;
if (outputControlPointCount > DXIL::kMaxIAPatchControlPointCount) {
ValCtx.EmitFnFormatError(
F, ValidationRule::SmOutputControlPointCountRange,
{std::to_string(DXIL::kMaxIAPatchControlPointCount),
std::to_string(outputControlPointCount)});
}
if (domain == DXIL::TessellatorDomain::Undefined) {
ValCtx.EmitFnError(F, ValidationRule::SmValidDomain);
}
DXIL::TessellatorPartitioning partition = HS.partition;
if (partition == DXIL::TessellatorPartitioning::Undefined) {
ValCtx.EmitFnError(F, ValidationRule::MetaTessellatorPartition);
}
DXIL::TessellatorOutputPrimitive tessOutputPrimitive = HS.outputPrimitive;
if (tessOutputPrimitive == DXIL::TessellatorOutputPrimitive::Undefined ||
tessOutputPrimitive == DXIL::TessellatorOutputPrimitive::LastEntry) {
ValCtx.EmitFnError(F, ValidationRule::MetaTessellatorOutputPrimitive);
}
float maxTessFactor = HS.maxTessFactor;
if (maxTessFactor < DXIL::kHSMaxTessFactorLowerBound ||
maxTessFactor > DXIL::kHSMaxTessFactorUpperBound) {
ValCtx.EmitFnFormatError(
F, ValidationRule::MetaMaxTessFactor,
{std::to_string(DXIL::kHSMaxTessFactorLowerBound),
std::to_string(DXIL::kHSMaxTessFactorUpperBound),
std::to_string(maxTessFactor)});
}
// Domain and OutPrimivtive match.
switch (domain) {
case DXIL::TessellatorDomain::IsoLine:
switch (tessOutputPrimitive) {
case DXIL::TessellatorOutputPrimitive::TriangleCW:
case DXIL::TessellatorOutputPrimitive::TriangleCCW:
ValCtx.EmitFnError(F, ValidationRule::SmIsoLineOutputPrimitiveMismatch);
break;
default:
break;
}
break;
case DXIL::TessellatorDomain::Tri:
switch (tessOutputPrimitive) {
case DXIL::TessellatorOutputPrimitive::Line:
ValCtx.EmitFnError(F, ValidationRule::SmTriOutputPrimitiveMismatch);
break;
default:
break;
}
break;
case DXIL::TessellatorDomain::Quad:
switch (tessOutputPrimitive) {
case DXIL::TessellatorOutputPrimitive::Line:
ValCtx.EmitFnError(F, ValidationRule::SmTriOutputPrimitiveMismatch);
break;
default:
break;
}
break;
default:
ValCtx.EmitFnError(F, ValidationRule::SmValidDomain);
break;
}
CheckPatchConstantSemantic(ValCtx, entryProps, Status, F);
} else if (ShaderType == DXIL::ShaderKind::Geometry) {
const auto &GS = props.ShaderProps.GS;
unsigned maxVertexCount = GS.maxVertexCount;
if (maxVertexCount > DXIL::kMaxGSOutputVertexCount) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmGSOutputVertexCountRange,
{std::to_string(DXIL::kMaxGSOutputVertexCount),
std::to_string(maxVertexCount)});
}
unsigned instanceCount = GS.instanceCount;
if (instanceCount > DXIL::kMaxGSInstanceCount || instanceCount < 1) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmGSInstanceCountRange,
{std::to_string(DXIL::kMaxGSInstanceCount),
std::to_string(instanceCount)});
}
DXIL::PrimitiveTopology topo = DXIL::PrimitiveTopology::Undefined;
bool bTopoMismatch = false;
for (size_t i = 0; i < _countof(GS.streamPrimitiveTopologies); ++i) {
if (GS.streamPrimitiveTopologies[i] !=
DXIL::PrimitiveTopology::Undefined) {
if (topo == DXIL::PrimitiveTopology::Undefined)
topo = GS.streamPrimitiveTopologies[i];
else if (topo != GS.streamPrimitiveTopologies[i]) {
bTopoMismatch = true;
break;
}
}
}
if (bTopoMismatch)
topo = DXIL::PrimitiveTopology::Undefined;
switch (topo) {
case DXIL::PrimitiveTopology::PointList:
case DXIL::PrimitiveTopology::LineStrip:
case DXIL::PrimitiveTopology::TriangleStrip:
break;
default: {
ValCtx.EmitFnError(F, ValidationRule::SmGSValidOutputPrimitiveTopology);
} break;
}
DXIL::InputPrimitive inputPrimitive = GS.inputPrimitive;
unsigned VertexCount = GetNumVertices(inputPrimitive);
if (VertexCount == 0 && inputPrimitive != DXIL::InputPrimitive::Undefined) {
ValCtx.EmitFnError(F, ValidationRule::SmGSValidInputPrimitive);
}
}
}
static void ValidateShaderState(ValidationContext &ValCtx) {
DxilModule &DM = ValCtx.DxilMod;
if (ValCtx.isLibProfile) {
for (Function &F : DM.GetModule()->functions()) {
if (DM.HasDxilEntryProps(&F)) {
DxilEntryProps &entryProps = DM.GetDxilEntryProps(&F);
EntryStatus &Status = ValCtx.GetEntryStatus(&F);
ValidateEntryProps(ValCtx, entryProps, Status, &F);
ValidatePassThruHS(ValCtx, entryProps, &F);
}
}
} else {
Function *Entry = DM.GetEntryFunction();
if (!DM.HasDxilEntryProps(Entry)) {
// must have props.
ValCtx.EmitFnError(Entry, ValidationRule::MetaNoEntryPropsForEntry);
return;
}
EntryStatus &Status = ValCtx.GetEntryStatus(Entry);
DxilEntryProps &entryProps = DM.GetDxilEntryProps(Entry);
ValidateEntryProps(ValCtx, entryProps, Status, Entry);
ValidatePassThruHS(ValCtx, entryProps, Entry);
}
}
static CallGraphNode *
CalculateCallDepth(CallGraphNode *node,
std::unordered_map<CallGraphNode *, unsigned> &depthMap,
std::unordered_set<CallGraphNode *> &callStack,
std::unordered_set<Function *> &funcSet) {
unsigned depth = callStack.size();
funcSet.insert(node->getFunction());
for (auto it = node->begin(), ei = node->end(); it != ei; it++) {
CallGraphNode *toNode = it->second;
if (callStack.insert(toNode).second == false) {
// Recursive.
return toNode;
}
if (depthMap[toNode] < depth)
depthMap[toNode] = depth;
if (CallGraphNode *N =
CalculateCallDepth(toNode, depthMap, callStack, funcSet)) {
// Recursive
return N;
}
callStack.erase(toNode);
}
return nullptr;
}
static void ValidateCallGraph(ValidationContext &ValCtx) {
// Build CallGraph.
CallGraph &CG = ValCtx.GetCallGraph();
std::unordered_map<CallGraphNode *, unsigned> depthMap;
std::unordered_set<CallGraphNode *> callStack;
CallGraphNode *entryNode = CG[ValCtx.DxilMod.GetEntryFunction()];
depthMap[entryNode] = 0;
if (CallGraphNode *N = CalculateCallDepth(entryNode, depthMap, callStack,
ValCtx.entryFuncCallSet))
ValCtx.EmitFnError(N->getFunction(), ValidationRule::FlowNoRecursion);
if (ValCtx.DxilMod.GetShaderModel()->IsHS()) {
CallGraphNode *patchConstantNode =
CG[ValCtx.DxilMod.GetPatchConstantFunction()];
depthMap[patchConstantNode] = 0;
callStack.clear();
if (CallGraphNode *N =
CalculateCallDepth(patchConstantNode, depthMap, callStack,
ValCtx.patchConstFuncCallSet))
ValCtx.EmitFnError(N->getFunction(), ValidationRule::FlowNoRecursion);
}
}
static void ValidateFlowControl(ValidationContext &ValCtx) {
bool reducible =
IsReducible(*ValCtx.DxilMod.GetModule(), IrreducibilityAction::Ignore);
if (!reducible) {
ValCtx.EmitError(ValidationRule::FlowReducible);
return;
}
ValidateCallGraph(ValCtx);
for (llvm::Function &F : ValCtx.DxilMod.GetModule()->functions()) {
if (F.isDeclaration())
continue;
DominatorTreeAnalysis DTA;
DominatorTree DT = DTA.run(F);
LoopInfo LI;
LI.Analyze(DT);
for (auto loopIt = LI.begin(); loopIt != LI.end(); loopIt++) {
Loop *loop = *loopIt;
SmallVector<BasicBlock *, 4> exitBlocks;
loop->getExitBlocks(exitBlocks);
if (exitBlocks.empty())
ValCtx.EmitFnError(&F, ValidationRule::FlowDeadLoop);
}
// validate that there is no use of a value that has been output-completed
// for this function.
hlsl::OP *hlslOP = ValCtx.DxilMod.GetOP();
for (auto &it : hlslOP->GetOpFuncList(DXIL::OpCode::OutputComplete)) {
Function *pF = it.second;
if (!pF)
continue;
// first, collect all the output complete calls that are not dominated
// by another OutputComplete call for the same handle value
llvm::SmallMapVector<Value *, llvm::SmallPtrSet<CallInst *, 4>, 4>
handleToCI;
for (User *U : pF->users()) {
// all OutputComplete calls are instructions, and call instructions,
// so there shouldn't need to be a null check.
CallInst *CI = cast<CallInst>(U);
// verify that the function that contains this instruction is the same
// function that the DominatorTree was built on.
if (&F != CI->getParent()->getParent())
continue;
DxilInst_OutputComplete OutputComplete(CI);
Value *completedRecord = OutputComplete.get_output();
auto vIt = handleToCI.find(completedRecord);
if (vIt == handleToCI.end()) {
llvm::SmallPtrSet<CallInst *, 4> s;
s.insert(CI);
handleToCI.insert(std::make_pair(completedRecord, s));
} else {
// if the handle is already in the map, make sure the map's set of
// output complete calls that dominate the handle and do not dominate
// each other gets updated if necessary
bool CI_is_dominated = false;
for (auto ocIt = vIt->second.begin(); ocIt != vIt->second.end();) {
// if our new OC CI dominates an OC instruction in the set,
// then replace the instruction in the set with the new OC CI.
if (DT.dominates(CI, *ocIt)) {
auto cur_it = ocIt++;
vIt->second.erase(*cur_it);
continue;
}
// Remember if our new CI gets dominated by any CI in the set.
if (DT.dominates(*ocIt, CI)) {
CI_is_dominated = true;
break;
}
ocIt++;
}
// if no CI in the set dominates our new CI,
// the new CI should be added to the set
if (!CI_is_dominated)
vIt->second.insert(CI);
}
}
for (auto handle_iter = handleToCI.begin(), e = handleToCI.end();
handle_iter != e; handle_iter++) {
for (auto user_itr = handle_iter->first->user_begin();
user_itr != handle_iter->first->user_end(); user_itr++) {
User *pU = *user_itr;
Instruction *useInstr = cast<Instruction>(pU);
if (useInstr) {
if (CallInst *CI = dyn_cast<CallInst>(useInstr)) {
// if the user is an output complete call that is in the set of
// OutputComplete calls not dominated by another OutputComplete
// call for the same handle value, no diagnostics need to be
// emitted.
if (handle_iter->second.count(CI) == 1)
continue;
}
// make sure any output complete call in the set
// that dominates this use gets its diagnostic emitted.
for (auto ocIt = handle_iter->second.begin();
ocIt != handle_iter->second.end(); ocIt++) {
Instruction *ocInstr = cast<Instruction>(*ocIt);
if (DT.dominates(ocInstr, useInstr)) {
ValCtx.EmitInstrError(
useInstr,
ValidationRule::InstrNodeRecordHandleUseAfterComplete);
ValCtx.EmitInstrNote(
*ocIt, "record handle invalidated by OutputComplete");
break;
}
}
}
}
}
}
}
// fxc has ERR_CONTINUE_INSIDE_SWITCH to disallow continue in switch.
// Not do it for now.
}
static void ValidateUninitializedOutput(ValidationContext &ValCtx,
Function *F) {
DxilModule &DM = ValCtx.DxilMod;
DxilEntryProps &entryProps = DM.GetDxilEntryProps(F);
EntryStatus &Status = ValCtx.GetEntryStatus(F);
const DxilFunctionProps &props = entryProps.props;
// For HS only need to check Tessfactor which is in patch constant sig.
if (props.IsHS()) {
std::vector<unsigned> &patchConstOrPrimCols = Status.patchConstOrPrimCols;
const DxilSignature &patchConstSig =
entryProps.sig.PatchConstOrPrimSignature;
for (auto &E : patchConstSig.GetElements()) {
unsigned mask = patchConstOrPrimCols[E->GetID()];
unsigned requireMask = (1 << E->GetCols()) - 1;
// TODO: check other case uninitialized output is allowed.
if (mask != requireMask && !E->GetSemantic()->IsArbitrary()) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmUndefinedOutput,
{E->GetName()});
}
}
return;
}
const DxilSignature &outSig = entryProps.sig.OutputSignature;
std::vector<unsigned> &outputCols = Status.outputCols;
for (auto &E : outSig.GetElements()) {
unsigned mask = outputCols[E->GetID()];
unsigned requireMask = (1 << E->GetCols()) - 1;
// TODO: check other case uninitialized output is allowed.
if (mask != requireMask && !E->GetSemantic()->IsArbitrary() &&
E->GetSemantic()->GetKind() != Semantic::Kind::Target) {
ValCtx.EmitFnFormatError(F, ValidationRule::SmUndefinedOutput,
{E->GetName()});
}
}
if (!props.IsGS()) {
unsigned posMask = Status.OutputPositionMask[0];
if (posMask != 0xf && Status.hasOutputPosition[0]) {
ValCtx.EmitFnError(F, ValidationRule::SmCompletePosition);
}
} else {
const auto &GS = props.ShaderProps.GS;
unsigned streamMask = 0;
for (size_t i = 0; i < _countof(GS.streamPrimitiveTopologies); ++i) {
if (GS.streamPrimitiveTopologies[i] !=
DXIL::PrimitiveTopology::Undefined) {
streamMask |= 1 << i;
}
}
for (unsigned i = 0; i < DXIL::kNumOutputStreams; i++) {
if (streamMask & (1 << i)) {
unsigned posMask = Status.OutputPositionMask[i];
if (posMask != 0xf && Status.hasOutputPosition[i]) {
ValCtx.EmitFnError(F, ValidationRule::SmCompletePosition);
}
}
}
}
}
static void ValidateUninitializedOutput(ValidationContext &ValCtx) {
DxilModule &DM = ValCtx.DxilMod;
if (ValCtx.isLibProfile) {
for (Function &F : DM.GetModule()->functions()) {
if (DM.HasDxilEntryProps(&F)) {
ValidateUninitializedOutput(ValCtx, &F);
}
}
} else {
Function *Entry = DM.GetEntryFunction();
if (!DM.HasDxilEntryProps(Entry)) {
// must have props.
ValCtx.EmitFnError(Entry, ValidationRule::MetaNoEntryPropsForEntry);
return;
}
ValidateUninitializedOutput(ValCtx, Entry);
}
}
HRESULT ValidateDxilModule(llvm::Module *pModule, llvm::Module *pDebugModule) {
DxilModule *pDxilModule = DxilModule::TryGetDxilModule(pModule);
if (!pDxilModule) {
return DXC_E_IR_VERIFICATION_FAILED;
}
if (pDxilModule->HasMetadataErrors()) {
dxilutil::EmitErrorOnContext(pModule->getContext(),
"Metadata error encountered in non-critical "
"metadata (such as Type Annotations).");
return DXC_E_IR_VERIFICATION_FAILED;
}
ValidationContext ValCtx(*pModule, pDebugModule, *pDxilModule);
ValidateBitcode(ValCtx);
ValidateMetadata(ValCtx);
ValidateShaderState(ValCtx);
ValidateGlobalVariables(ValCtx);
ValidateResources(ValCtx);
// Validate control flow and collect function call info.
// If has recursive call, call info collection will not finish.
ValidateFlowControl(ValCtx);
// Validate functions.
for (Function &F : pModule->functions()) {
ValidateFunction(F, ValCtx);
}
ValidateShaderFlags(ValCtx);
ValidateEntryCompatibility(ValCtx);
ValidateEntrySignatures(ValCtx);
ValidateUninitializedOutput(ValCtx);
// Ensure error messages are flushed out on error.
if (ValCtx.Failed) {
return DXC_E_IR_VERIFICATION_FAILED;
}
return S_OK;
}
// DXIL Container Verification Functions
static void VerifyBlobPartMatches(ValidationContext &ValCtx, LPCSTR pName,
DxilPartWriter *pWriter, const void *pData,
uint32_t Size) {
if (!pData && pWriter->size()) {
// No blob part, but writer says non-zero size is expected.
ValCtx.EmitFormatError(ValidationRule::ContainerPartMissing, {pName});
return;
}
// Compare sizes
if (pWriter->size() != Size) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartMatches, {pName});
return;
}
if (Size == 0) {
return;
}
CComPtr<AbstractMemoryStream> pOutputStream;
IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pOutputStream));
pOutputStream->Reserve(Size);
pWriter->write(pOutputStream);
DXASSERT(pOutputStream->GetPtrSize() == Size,
"otherwise, DxilPartWriter misreported size");
if (memcmp(pData, pOutputStream->GetPtr(), Size)) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartMatches, {pName});
return;
}
return;
}
static void VerifySignatureMatches(ValidationContext &ValCtx,
DXIL::SignatureKind SigKind,
const void *pSigData, uint32_t SigSize) {
// Generate corresponding signature from module and memcmp
const char *pName = nullptr;
switch (SigKind) {
case hlsl::DXIL::SignatureKind::Input:
pName = "Program Input Signature";
break;
case hlsl::DXIL::SignatureKind::Output:
pName = "Program Output Signature";
break;
case hlsl::DXIL::SignatureKind::PatchConstOrPrim:
if (ValCtx.DxilMod.GetShaderModel()->GetKind() == DXIL::ShaderKind::Mesh)
pName = "Program Primitive Signature";
else
pName = "Program Patch Constant Signature";
break;
default:
break;
}
unique_ptr<DxilPartWriter> pWriter(
NewProgramSignatureWriter(ValCtx.DxilMod, SigKind));
VerifyBlobPartMatches(ValCtx, pName, pWriter.get(), pSigData, SigSize);
}
bool VerifySignatureMatches(llvm::Module *pModule, DXIL::SignatureKind SigKind,
const void *pSigData, uint32_t SigSize) {
ValidationContext ValCtx(*pModule, nullptr, pModule->GetOrCreateDxilModule());
VerifySignatureMatches(ValCtx, SigKind, pSigData, SigSize);
return !ValCtx.Failed;
}
static void VerifyPSVMatches(ValidationContext &ValCtx, const void *pPSVData,
uint32_t PSVSize) {
uint32_t PSVVersion =
MAX_PSV_VERSION; // This should be set to the newest version
unique_ptr<DxilPartWriter> pWriter(NewPSVWriter(ValCtx.DxilMod, PSVVersion));
// Try each version in case an earlier version matches module
while (PSVVersion && pWriter->size() != PSVSize) {
PSVVersion--;
pWriter.reset(NewPSVWriter(ValCtx.DxilMod, PSVVersion));
}
// generate PSV data from module and memcmp
VerifyBlobPartMatches(ValCtx, "Pipeline State Validation", pWriter.get(),
pPSVData, PSVSize);
}
bool VerifyPSVMatches(llvm::Module *pModule, const void *pPSVData,
uint32_t PSVSize) {
ValidationContext ValCtx(*pModule, nullptr, pModule->GetOrCreateDxilModule());
VerifyPSVMatches(ValCtx, pPSVData, PSVSize);
return !ValCtx.Failed;
}
static void VerifyFeatureInfoMatches(ValidationContext &ValCtx,
const void *pFeatureInfoData,
uint32_t FeatureInfoSize) {
// generate Feature Info data from module and memcmp
unique_ptr<DxilPartWriter> pWriter(NewFeatureInfoWriter(ValCtx.DxilMod));
VerifyBlobPartMatches(ValCtx, "Feature Info", pWriter.get(), pFeatureInfoData,
FeatureInfoSize);
}
// return true if the pBlob is a valid, well-formed CompilerVersion part, false
// otherwise
bool ValidateCompilerVersionPart(const void *pBlobPtr, UINT blobSize) {
// The hlsl::DxilCompilerVersion struct is always 16 bytes. (2 2-byte
// uint16's, 3 4-byte uint32's) The blob size should absolutely never be less
// than 16 bytes.
if (blobSize < sizeof(hlsl::DxilCompilerVersion)) {
return false;
}
const hlsl::DxilCompilerVersion *pDCV =
(const hlsl::DxilCompilerVersion *)pBlobPtr;
if (pDCV->VersionStringListSizeInBytes == 0) {
// No version strings, just make sure there is no extra space.
return blobSize == sizeof(hlsl::DxilCompilerVersion);
}
// after this point, we know VersionStringListSizeInBytes >= 1, because it is
// a UINT
UINT EndOfVersionStringIndex =
sizeof(hlsl::DxilCompilerVersion) + pDCV->VersionStringListSizeInBytes;
// Make sure that the buffer size is large enough to contain both the DCV
// struct and the version string but not any larger than necessary
if (PSVALIGN4(EndOfVersionStringIndex) != blobSize) {
return false;
}
const char *VersionStringsListData =
(const char *)pBlobPtr + sizeof(hlsl::DxilCompilerVersion);
UINT VersionStringListSizeInBytes = pDCV->VersionStringListSizeInBytes;
// now make sure that any pad bytes that were added are null-terminators.
for (UINT i = VersionStringListSizeInBytes;
i < blobSize - sizeof(hlsl::DxilCompilerVersion); i++) {
if (VersionStringsListData[i] != '\0') {
return false;
}
}
// Now, version string validation
// first, the final byte of the string should always be null-terminator so
// that the string ends
if (VersionStringsListData[VersionStringListSizeInBytes - 1] != '\0') {
return false;
}
// construct the first string
// data format for VersionString can be see in the definition for the
// DxilCompilerVersion struct. summary: 2 strings that each end with the null
// terminator, and [0-3] null terminators after the final null terminator
StringRef firstStr(VersionStringsListData);
// if the second string exists, attempt to construct it.
if (VersionStringListSizeInBytes > (firstStr.size() + 1)) {
StringRef secondStr(VersionStringsListData + firstStr.size() + 1);
// the VersionStringListSizeInBytes member should be exactly equal to the
// two string lengths, plus the 2 null terminator bytes.
if (VersionStringListSizeInBytes !=
firstStr.size() + secondStr.size() + 2) {
return false;
}
} else {
// the VersionStringListSizeInBytes member should be exactly equal to the
// first string length, plus the 1 null terminator byte.
if (VersionStringListSizeInBytes != firstStr.size() + 1) {
return false;
}
}
return true;
}
static void VerifyRDATMatches(ValidationContext &ValCtx, const void *pRDATData,
uint32_t RDATSize) {
const char *PartName = "Runtime Data (RDAT)";
RDAT::DxilRuntimeData rdat(pRDATData, RDATSize);
if (!rdat.Validate()) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartMatches, {PartName});
return;
}
// If DxilModule subobjects already loaded, validate these against the RDAT
// blob, otherwise, load subobject into DxilModule to generate reference RDAT.
if (!ValCtx.DxilMod.GetSubobjects()) {
auto table = rdat.GetSubobjectTable();
if (table && table.Count() > 0) {
ValCtx.DxilMod.ResetSubobjects(new DxilSubobjects());
if (!LoadSubobjectsFromRDAT(*ValCtx.DxilMod.GetSubobjects(), rdat)) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartMatches,
{PartName});
return;
}
}
}
unique_ptr<DxilPartWriter> pWriter(NewRDATWriter(ValCtx.DxilMod));
VerifyBlobPartMatches(ValCtx, PartName, pWriter.get(), pRDATData, RDATSize);
}
bool VerifyRDATMatches(llvm::Module *pModule, const void *pRDATData,
uint32_t RDATSize) {
ValidationContext ValCtx(*pModule, nullptr, pModule->GetOrCreateDxilModule());
VerifyRDATMatches(ValCtx, pRDATData, RDATSize);
return !ValCtx.Failed;
}
bool VerifyFeatureInfoMatches(llvm::Module *pModule,
const void *pFeatureInfoData,
uint32_t FeatureInfoSize) {
ValidationContext ValCtx(*pModule, nullptr, pModule->GetOrCreateDxilModule());
VerifyFeatureInfoMatches(ValCtx, pFeatureInfoData, FeatureInfoSize);
return !ValCtx.Failed;
}
HRESULT ValidateDxilContainerParts(llvm::Module *pModule,
llvm::Module *pDebugModule,
const DxilContainerHeader *pContainer,
uint32_t ContainerSize) {
DXASSERT_NOMSG(pModule);
if (!pContainer || !IsValidDxilContainer(pContainer, ContainerSize)) {
return DXC_E_CONTAINER_INVALID;
}
DxilModule *pDxilModule = DxilModule::TryGetDxilModule(pModule);
if (!pDxilModule) {
return DXC_E_IR_VERIFICATION_FAILED;
}
ValidationContext ValCtx(*pModule, pDebugModule, *pDxilModule);
DXIL::ShaderKind ShaderKind = pDxilModule->GetShaderModel()->GetKind();
bool bTessOrMesh = ShaderKind == DXIL::ShaderKind::Hull ||
ShaderKind == DXIL::ShaderKind::Domain ||
ShaderKind == DXIL::ShaderKind::Mesh;
std::unordered_set<uint32_t> FourCCFound;
const DxilPartHeader *pRootSignaturePart = nullptr;
const DxilPartHeader *pPSVPart = nullptr;
for (auto it = begin(pContainer), itEnd = end(pContainer); it != itEnd;
++it) {
const DxilPartHeader *pPart = *it;
char szFourCC[5];
PartKindToCharArray(pPart->PartFourCC, szFourCC);
if (FourCCFound.find(pPart->PartFourCC) != FourCCFound.end()) {
// Two parts with same FourCC found
ValCtx.EmitFormatError(ValidationRule::ContainerPartRepeated, {szFourCC});
continue;
}
FourCCFound.insert(pPart->PartFourCC);
switch (pPart->PartFourCC) {
case DFCC_InputSignature:
if (ValCtx.isLibProfile) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid,
{szFourCC});
} else {
VerifySignatureMatches(ValCtx, DXIL::SignatureKind::Input,
GetDxilPartData(pPart), pPart->PartSize);
}
break;
case DFCC_OutputSignature:
if (ValCtx.isLibProfile) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid,
{szFourCC});
} else {
VerifySignatureMatches(ValCtx, DXIL::SignatureKind::Output,
GetDxilPartData(pPart), pPart->PartSize);
}
break;
case DFCC_PatchConstantSignature:
if (ValCtx.isLibProfile) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid,
{szFourCC});
} else {
if (bTessOrMesh) {
VerifySignatureMatches(ValCtx, DXIL::SignatureKind::PatchConstOrPrim,
GetDxilPartData(pPart), pPart->PartSize);
} else {
ValCtx.EmitFormatError(ValidationRule::ContainerPartMatches,
{"Program Patch Constant Signature"});
}
}
break;
case DFCC_FeatureInfo:
VerifyFeatureInfoMatches(ValCtx, GetDxilPartData(pPart), pPart->PartSize);
break;
case DFCC_CompilerVersion:
// This blob is either a PDB, or a library profile
if (ValCtx.isLibProfile) {
if (!ValidateCompilerVersionPart((void *)GetDxilPartData(pPart),
pPart->PartSize)) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid,
{szFourCC});
}
} else {
ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid,
{szFourCC});
}
break;
case DFCC_RootSignature:
pRootSignaturePart = pPart;
if (ValCtx.isLibProfile) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid,
{szFourCC});
}
break;
case DFCC_PipelineStateValidation:
pPSVPart = pPart;
if (ValCtx.isLibProfile) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid,
{szFourCC});
} else {
VerifyPSVMatches(ValCtx, GetDxilPartData(pPart), pPart->PartSize);
}
break;
// Skip these
case DFCC_ResourceDef:
case DFCC_ShaderStatistics:
case DFCC_PrivateData:
case DFCC_DXIL:
case DFCC_ShaderDebugInfoDXIL:
case DFCC_ShaderDebugName:
continue;
case DFCC_ShaderHash:
if (pPart->PartSize != sizeof(DxilShaderHash)) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid,
{szFourCC});
}
break;
// Runtime Data (RDAT) for libraries
case DFCC_RuntimeData:
if (ValCtx.isLibProfile) {
// TODO: validate without exact binary comparison of serialized data
// - support earlier versions
// - verify no newer record versions than known here (size no larger
// than newest version)
// - verify all data makes sense and matches expectations based on
// module
VerifyRDATMatches(ValCtx, GetDxilPartData(pPart), pPart->PartSize);
} else {
ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid,
{szFourCC});
}
break;
case DFCC_Container:
default:
ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid, {szFourCC});
break;
}
}
// Verify required parts found
if (ValCtx.isLibProfile) {
if (FourCCFound.find(DFCC_RuntimeData) == FourCCFound.end()) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartMissing,
{"Runtime Data (RDAT)"});
}
} else {
if (FourCCFound.find(DFCC_InputSignature) == FourCCFound.end()) {
VerifySignatureMatches(ValCtx, DXIL::SignatureKind::Input, nullptr, 0);
}
if (FourCCFound.find(DFCC_OutputSignature) == FourCCFound.end()) {
VerifySignatureMatches(ValCtx, DXIL::SignatureKind::Output, nullptr, 0);
}
if (bTessOrMesh &&
FourCCFound.find(DFCC_PatchConstantSignature) == FourCCFound.end() &&
pDxilModule->GetPatchConstOrPrimSignature().GetElements().size()) {
ValCtx.EmitFormatError(ValidationRule::ContainerPartMissing,
{"Program Patch Constant Signature"});
}
if (FourCCFound.find(DFCC_FeatureInfo) == FourCCFound.end()) {
// Could be optional, but RS1 runtime doesn't handle this case properly.
ValCtx.EmitFormatError(ValidationRule::ContainerPartMissing,
{"Feature Info"});
}
// Validate Root Signature
if (pPSVPart) {
if (pRootSignaturePart) {
std::string diagStr;
raw_string_ostream DiagStream(diagStr);
try {
RootSignatureHandle RS;
RS.LoadSerialized(
(const uint8_t *)GetDxilPartData(pRootSignaturePart),
pRootSignaturePart->PartSize);
RS.Deserialize();
IFTBOOL(VerifyRootSignatureWithShaderPSV(
RS.GetDesc(), pDxilModule->GetShaderModel()->GetKind(),
GetDxilPartData(pPSVPart), pPSVPart->PartSize,
DiagStream),
DXC_E_INCORRECT_ROOT_SIGNATURE);
} catch (...) {
ValCtx.EmitError(ValidationRule::ContainerRootSignatureIncompatible);
emitDxilDiag(pModule->getContext(), DiagStream.str().c_str());
}
}
} else {
ValCtx.EmitFormatError(ValidationRule::ContainerPartMissing,
{"Pipeline State Validation"});
}
}
if (ValCtx.Failed) {
return DXC_E_MALFORMED_CONTAINER;
}
return S_OK;
}
static HRESULT FindDxilPart(const void *pContainerBytes, uint32_t ContainerSize,
DxilFourCC FourCC, const DxilPartHeader **ppPart) {
const DxilContainerHeader *pContainer =
IsDxilContainerLike(pContainerBytes, ContainerSize);
if (!pContainer) {
IFR(DXC_E_CONTAINER_INVALID);
}
if (!IsValidDxilContainer(pContainer, ContainerSize)) {
IFR(DXC_E_CONTAINER_INVALID);
}
DxilPartIterator it =
std::find_if(begin(pContainer), end(pContainer), DxilPartIsType(FourCC));
if (it == end(pContainer)) {
IFR(DXC_E_CONTAINER_MISSING_DXIL);
}
const DxilProgramHeader *pProgramHeader =
reinterpret_cast<const DxilProgramHeader *>(GetDxilPartData(*it));
if (!IsValidDxilProgramHeader(pProgramHeader, (*it)->PartSize)) {
IFR(DXC_E_CONTAINER_INVALID);
}
*ppPart = *it;
return S_OK;
}
HRESULT ValidateLoadModule(const char *pIL, uint32_t ILLength,
unique_ptr<llvm::Module> &pModule, LLVMContext &Ctx,
llvm::raw_ostream &DiagStream, unsigned bLazyLoad) {
llvm::DiagnosticPrinterRawOStream DiagPrinter(DiagStream);
PrintDiagnosticContext DiagContext(DiagPrinter);
DiagRestore DR(Ctx, &DiagContext);
std::unique_ptr<llvm::MemoryBuffer> pBitcodeBuf;
pBitcodeBuf.reset(llvm::MemoryBuffer::getMemBuffer(
llvm::StringRef(pIL, ILLength), "", false)
.release());
ErrorOr<std::unique_ptr<Module>> loadedModuleResult =
bLazyLoad == 0
? llvm::parseBitcodeFile(pBitcodeBuf->getMemBufferRef(), Ctx, nullptr,
true /*Track Bitstream*/)
: llvm::getLazyBitcodeModule(std::move(pBitcodeBuf), Ctx, nullptr,
false, true /*Track Bitstream*/);
// DXIL disallows some LLVM bitcode constructs, like unaccounted-for
// sub-blocks. These appear as warnings, which the validator should reject.
if (DiagContext.HasErrors() || DiagContext.HasWarnings() ||
loadedModuleResult.getError())
return DXC_E_IR_VERIFICATION_FAILED;
pModule = std::move(loadedModuleResult.get());
return S_OK;
}
HRESULT ValidateDxilBitcode(const char *pIL, uint32_t ILLength,
llvm::raw_ostream &DiagStream) {
LLVMContext Ctx;
std::unique_ptr<llvm::Module> pModule;
llvm::DiagnosticPrinterRawOStream DiagPrinter(DiagStream);
PrintDiagnosticContext DiagContext(DiagPrinter);
Ctx.setDiagnosticHandler(PrintDiagnosticContext::PrintDiagnosticHandler,
&DiagContext, true);
HRESULT hr;
if (FAILED(hr = ValidateLoadModule(pIL, ILLength, pModule, Ctx, DiagStream,
/*bLazyLoad*/ false)))
return hr;
if (FAILED(hr = ValidateDxilModule(pModule.get(), nullptr)))
return hr;
DxilModule &dxilModule = pModule->GetDxilModule();
auto &SerializedRootSig = dxilModule.GetSerializedRootSignature();
if (!SerializedRootSig.empty()) {
unique_ptr<DxilPartWriter> pWriter(NewPSVWriter(dxilModule));
DXASSERT_NOMSG(pWriter->size());
CComPtr<AbstractMemoryStream> pOutputStream;
IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pOutputStream));
pOutputStream->Reserve(pWriter->size());
pWriter->write(pOutputStream);
DxilVersionedRootSignature desc;
try {
DeserializeRootSignature(SerializedRootSig.data(),
SerializedRootSig.size(), desc.get_address_of());
if (!desc.get()) {
return DXC_E_INCORRECT_ROOT_SIGNATURE;
}
IFTBOOL(VerifyRootSignatureWithShaderPSV(
desc.get(), dxilModule.GetShaderModel()->GetKind(),
pOutputStream->GetPtr(), pWriter->size(), DiagStream),
DXC_E_INCORRECT_ROOT_SIGNATURE);
} catch (...) {
return DXC_E_INCORRECT_ROOT_SIGNATURE;
}
}
if (DiagContext.HasErrors() || DiagContext.HasWarnings()) {
return DXC_E_IR_VERIFICATION_FAILED;
}
return S_OK;
}
static HRESULT ValidateLoadModuleFromContainer(
const void *pContainer, uint32_t ContainerSize,
std::unique_ptr<llvm::Module> &pModule,
std::unique_ptr<llvm::Module> &pDebugModule, llvm::LLVMContext &Ctx,
LLVMContext &DbgCtx, llvm::raw_ostream &DiagStream, unsigned bLazyLoad) {
llvm::DiagnosticPrinterRawOStream DiagPrinter(DiagStream);
PrintDiagnosticContext DiagContext(DiagPrinter);
DiagRestore DR(Ctx, &DiagContext);
DiagRestore DR2(DbgCtx, &DiagContext);
const DxilPartHeader *pPart = nullptr;
IFR(FindDxilPart(pContainer, ContainerSize, DFCC_DXIL, &pPart));
const char *pIL = nullptr;
uint32_t ILLength = 0;
GetDxilProgramBitcode(
reinterpret_cast<const DxilProgramHeader *>(GetDxilPartData(pPart)), &pIL,
&ILLength);
IFR(ValidateLoadModule(pIL, ILLength, pModule, Ctx, DiagStream, bLazyLoad));
HRESULT hr;
const DxilPartHeader *pDbgPart = nullptr;
if (FAILED(hr = FindDxilPart(pContainer, ContainerSize,
DFCC_ShaderDebugInfoDXIL, &pDbgPart)) &&
hr != DXC_E_CONTAINER_MISSING_DXIL) {
return hr;
}
if (pDbgPart) {
GetDxilProgramBitcode(
reinterpret_cast<const DxilProgramHeader *>(GetDxilPartData(pDbgPart)),
&pIL, &ILLength);
if (FAILED(hr = ValidateLoadModule(pIL, ILLength, pDebugModule, DbgCtx,
DiagStream, bLazyLoad))) {
return hr;
}
}
return S_OK;
}
HRESULT ValidateLoadModuleFromContainer(
const void *pContainer, uint32_t ContainerSize,
std::unique_ptr<llvm::Module> &pModule,
std::unique_ptr<llvm::Module> &pDebugModule, llvm::LLVMContext &Ctx,
llvm::LLVMContext &DbgCtx, llvm::raw_ostream &DiagStream) {
return ValidateLoadModuleFromContainer(pContainer, ContainerSize, pModule,
pDebugModule, Ctx, DbgCtx, DiagStream,
/*bLazyLoad*/ false);
}
// Lazy loads module from container, validating load, but not module.
HRESULT ValidateLoadModuleFromContainerLazy(
const void *pContainer, uint32_t ContainerSize,
std::unique_ptr<llvm::Module> &pModule,
std::unique_ptr<llvm::Module> &pDebugModule, llvm::LLVMContext &Ctx,
llvm::LLVMContext &DbgCtx, llvm::raw_ostream &DiagStream) {
return ValidateLoadModuleFromContainer(pContainer, ContainerSize, pModule,
pDebugModule, Ctx, DbgCtx, DiagStream,
/*bLazyLoad*/ true);
}
HRESULT ValidateDxilContainer(const void *pContainer, uint32_t ContainerSize,
const void *pOptDebugBitcode,
uint32_t OptDebugBitcodeSize,
llvm::raw_ostream &DiagStream) {
LLVMContext Ctx, DbgCtx;
std::unique_ptr<llvm::Module> pModule, pDebugModule;
llvm::DiagnosticPrinterRawOStream DiagPrinter(DiagStream);
PrintDiagnosticContext DiagContext(DiagPrinter);
Ctx.setDiagnosticHandler(PrintDiagnosticContext::PrintDiagnosticHandler,
&DiagContext, true);
DbgCtx.setDiagnosticHandler(PrintDiagnosticContext::PrintDiagnosticHandler,
&DiagContext, true);
IFR(ValidateLoadModuleFromContainer(pContainer, ContainerSize, pModule,
pDebugModule, Ctx, DbgCtx, DiagStream));
if (!pDebugModule && pOptDebugBitcode) {
// TODO: lazy load for perf
IFR(ValidateLoadModule((const char *)pOptDebugBitcode, OptDebugBitcodeSize,
pDebugModule, DbgCtx, DiagStream,
/*bLazyLoad*/ false));
}
// Validate DXIL Module
IFR(ValidateDxilModule(pModule.get(), pDebugModule.get()));
if (DiagContext.HasErrors() || DiagContext.HasWarnings()) {
return DXC_E_IR_VERIFICATION_FAILED;
}
return ValidateDxilContainerParts(
pModule.get(), pDebugModule.get(),
IsDxilContainerLike(pContainer, ContainerSize), ContainerSize);
}
HRESULT ValidateDxilContainer(const void *pContainer, uint32_t ContainerSize,
llvm::raw_ostream &DiagStream) {
return ValidateDxilContainer(pContainer, ContainerSize, nullptr, 0,
DiagStream);
}
} // namespace hlsl