| /////////////////////////////////////////////////////////////////////////////// |
| // // |
| // DxilValidation.cpp // |
| // Copyright (C) Microsoft Corporation. All rights reserved. // |
| // This file is distributed under the University of Illinois Open Source // |
| // License. See LICENSE.TXT for details. // |
| // // |
| // This file provides support for validating DXIL shaders. // |
| // // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "dxc/Support/FileIOHelper.h" |
| #include "dxc/Support/Global.h" |
| #include "dxc/Support/WinIncludes.h" |
| |
| #include "dxc/DXIL/DxilConstants.h" |
| #include "dxc/DXIL/DxilEntryProps.h" |
| #include "dxc/DXIL/DxilFunctionProps.h" |
| #include "dxc/DXIL/DxilInstructions.h" |
| #include "dxc/DXIL/DxilModule.h" |
| #include "dxc/DXIL/DxilOperations.h" |
| #include "dxc/DXIL/DxilResourceProperties.h" |
| #include "dxc/DXIL/DxilShaderModel.h" |
| #include "dxc/DXIL/DxilUtil.h" |
| #include "dxc/DxilContainer/DxilContainer.h" |
| #include "dxc/DxilContainer/DxilContainerAssembler.h" |
| #include "dxc/DxilContainer/DxilPipelineStateValidation.h" |
| #include "dxc/DxilContainer/DxilRuntimeReflection.h" |
| #include "dxc/HLSL/DxilGenerationPass.h" |
| #include "dxc/HLSL/DxilValidation.h" |
| #include "llvm/Analysis/ReducibilityAnalysis.h" |
| |
| #include "dxc/DxilRootSignature/DxilRootSignature.h" |
| #include "dxc/HLSL/DxilPackSignatureElement.h" |
| #include "dxc/HLSL/DxilSignatureAllocator.h" |
| #include "dxc/HLSL/DxilSpanAllocator.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/PostDominators.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Bitcode/ReaderWriter.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/DiagnosticPrinter.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ModuleSlotTracker.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <deque> |
| #include <unordered_set> |
| |
| using namespace llvm; |
| using std::unique_ptr; |
| using std::unordered_set; |
| using std::vector; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Error messages. |
| |
| #include "DxilValidationImpl.inc" |
| |
| namespace { |
| |
| // Utility class for setting and restoring the diagnostic context so we may |
| // capture errors/warnings |
| struct DiagRestore { |
| LLVMContext &Ctx; |
| void *OrigDiagContext; |
| LLVMContext::DiagnosticHandlerTy OrigHandler; |
| |
| DiagRestore(llvm::LLVMContext &Ctx, void *DiagContext) : Ctx(Ctx) { |
| OrigHandler = Ctx.getDiagnosticHandler(); |
| OrigDiagContext = Ctx.getDiagnosticContext(); |
| Ctx.setDiagnosticHandler( |
| hlsl::PrintDiagnosticContext::PrintDiagnosticHandler, DiagContext); |
| } |
| ~DiagRestore() { Ctx.setDiagnosticHandler(OrigHandler, OrigDiagContext); } |
| }; |
| |
| static void emitDxilDiag(LLVMContext &Ctx, const char *str) { |
| hlsl::dxilutil::EmitErrorOnContext(Ctx, str); |
| } |
| |
| } // namespace |
| |
| namespace hlsl { |
| |
| // PrintDiagnosticContext methods. |
| PrintDiagnosticContext::PrintDiagnosticContext(DiagnosticPrinter &printer) |
| : m_Printer(printer), m_errorsFound(false), m_warningsFound(false) {} |
| |
| bool PrintDiagnosticContext::HasErrors() const { return m_errorsFound; } |
| bool PrintDiagnosticContext::HasWarnings() const { return m_warningsFound; } |
| void PrintDiagnosticContext::Handle(const DiagnosticInfo &DI) { |
| DI.print(m_Printer); |
| switch (DI.getSeverity()) { |
| case llvm::DiagnosticSeverity::DS_Error: |
| m_errorsFound = true; |
| break; |
| case llvm::DiagnosticSeverity::DS_Warning: |
| m_warningsFound = true; |
| break; |
| default: |
| break; |
| } |
| m_Printer << "\n"; |
| } |
| |
| void PrintDiagnosticContext::PrintDiagnosticHandler(const DiagnosticInfo &DI, |
| void *Context) { |
| reinterpret_cast<hlsl::PrintDiagnosticContext *>(Context)->Handle(DI); |
| } |
| |
| struct PSExecutionInfo { |
| bool SuperSampling = false; |
| DXIL::SemanticKind OutputDepthKind = DXIL::SemanticKind::Invalid; |
| const InterpolationMode *PositionInterpolationMode = nullptr; |
| }; |
| // Save status like output write for entries. |
| struct EntryStatus { |
| bool hasOutputPosition[DXIL::kNumOutputStreams]; |
| unsigned OutputPositionMask[DXIL::kNumOutputStreams]; |
| std::vector<unsigned> outputCols; |
| std::vector<unsigned> patchConstOrPrimCols; |
| bool m_bCoverageIn, m_bInnerCoverageIn; |
| bool hasViewID; |
| unsigned domainLocSize; |
| EntryStatus(DxilEntryProps &entryProps) |
| : m_bCoverageIn(false), m_bInnerCoverageIn(false), hasViewID(false) { |
| for (unsigned i = 0; i < DXIL::kNumOutputStreams; i++) { |
| hasOutputPosition[i] = false; |
| OutputPositionMask[i] = 0; |
| } |
| |
| outputCols.resize(entryProps.sig.OutputSignature.GetElements().size(), 0); |
| patchConstOrPrimCols.resize( |
| entryProps.sig.PatchConstOrPrimSignature.GetElements().size(), 0); |
| } |
| }; |
| |
| struct ValidationContext { |
| bool Failed = false; |
| Module &M; |
| Module *pDebugModule; |
| DxilModule &DxilMod; |
| const Type *HandleTy; |
| const Type *WaveMatrixTy; |
| const DataLayout &DL; |
| DebugLoc LastDebugLocEmit; |
| ValidationRule LastRuleEmit; |
| std::unordered_set<Function *> entryFuncCallSet; |
| std::unordered_set<Function *> patchConstFuncCallSet; |
| std::unordered_map<unsigned, bool> UavCounterIncMap; |
| std::unordered_map<Value *, unsigned> HandleResIndexMap; |
| // TODO: save resource map for each createHandle/createHandleForLib. |
| std::unordered_map<Value *, DxilResourceProperties> ResPropMap; |
| std::unordered_map<Function *, std::vector<Function *>> PatchConstantFuncMap; |
| std::unordered_map<Function *, std::unique_ptr<EntryStatus>> entryStatusMap; |
| bool isLibProfile; |
| const unsigned kDxilControlFlowHintMDKind; |
| const unsigned kDxilPreciseMDKind; |
| const unsigned kDxilNonUniformMDKind; |
| const unsigned kLLVMLoopMDKind; |
| unsigned m_DxilMajor, m_DxilMinor; |
| ModuleSlotTracker slotTracker; |
| std::unique_ptr<CallGraph> pCallGraph; |
| |
| ValidationContext(Module &llvmModule, Module *DebugModule, |
| DxilModule &dxilModule) |
| : M(llvmModule), pDebugModule(DebugModule), DxilMod(dxilModule), |
| DL(llvmModule.getDataLayout()), LastRuleEmit((ValidationRule)-1), |
| kDxilControlFlowHintMDKind(llvmModule.getContext().getMDKindID( |
| DxilMDHelper::kDxilControlFlowHintMDName)), |
| kDxilPreciseMDKind(llvmModule.getContext().getMDKindID( |
| DxilMDHelper::kDxilPreciseAttributeMDName)), |
| kDxilNonUniformMDKind(llvmModule.getContext().getMDKindID( |
| DxilMDHelper::kDxilNonUniformAttributeMDName)), |
| kLLVMLoopMDKind(llvmModule.getContext().getMDKindID("llvm.loop")), |
| slotTracker(&llvmModule, true) { |
| DxilMod.GetDxilVersion(m_DxilMajor, m_DxilMinor); |
| HandleTy = DxilMod.GetOP()->GetHandleType(); |
| WaveMatrixTy = |
| DxilMod.GetOP()->GetWaveMatPtrType()->getPointerElementType(); |
| |
| for (Function &F : llvmModule.functions()) { |
| if (DxilMod.HasDxilEntryProps(&F)) { |
| DxilEntryProps &entryProps = DxilMod.GetDxilEntryProps(&F); |
| entryStatusMap[&F] = llvm::make_unique<EntryStatus>(entryProps); |
| } |
| } |
| |
| isLibProfile = dxilModule.GetShaderModel()->IsLib(); |
| BuildResMap(); |
| // Collect patch constant map. |
| if (isLibProfile) { |
| for (Function &F : dxilModule.GetModule()->functions()) { |
| if (dxilModule.HasDxilEntryProps(&F)) { |
| DxilEntryProps &entryProps = dxilModule.GetDxilEntryProps(&F); |
| DxilFunctionProps &props = entryProps.props; |
| if (props.IsHS()) { |
| PatchConstantFuncMap[props.ShaderProps.HS.patchConstantFunc] |
| .emplace_back(&F); |
| } |
| } |
| } |
| } else { |
| Function *Entry = dxilModule.GetEntryFunction(); |
| if (!dxilModule.HasDxilEntryProps(Entry)) { |
| // must have props. |
| EmitFnError(Entry, ValidationRule::MetaNoEntryPropsForEntry); |
| return; |
| } |
| DxilEntryProps &entryProps = dxilModule.GetDxilEntryProps(Entry); |
| DxilFunctionProps &props = entryProps.props; |
| if (props.IsHS()) { |
| PatchConstantFuncMap[props.ShaderProps.HS.patchConstantFunc] |
| .emplace_back(Entry); |
| } |
| } |
| } |
| |
| void PropagateResMap(Value *V, DxilResourceBase *Res) { |
| auto it = ResPropMap.find(V); |
| if (it != ResPropMap.end()) { |
| DxilResourceProperties RP = |
| resource_helper::loadPropsFromResourceBase(Res); |
| DxilResourceProperties itRP = it->second; |
| if (itRP != RP) { |
| EmitResourceError(Res, ValidationRule::InstrResourceMapToSingleEntry); |
| } |
| } else { |
| DxilResourceProperties RP = |
| resource_helper::loadPropsFromResourceBase(Res); |
| ResPropMap[V] = RP; |
| for (User *U : V->users()) { |
| if (isa<GEPOperator>(U)) { |
| PropagateResMap(U, Res); |
| } else if (CallInst *CI = dyn_cast<CallInst>(U)) { |
| // Stop propagate on function call. |
| DxilInst_CreateHandleForLib hdl(CI); |
| if (hdl) { |
| DxilResourceProperties RP = |
| resource_helper::loadPropsFromResourceBase(Res); |
| ResPropMap[CI] = RP; |
| } |
| } else if (isa<LoadInst>(U)) { |
| PropagateResMap(U, Res); |
| } else if (isa<BitCastOperator>(U) && U->user_empty()) { |
| // For hlsl type. |
| continue; |
| } else { |
| EmitResourceError(Res, ValidationRule::InstrResourceUser); |
| } |
| } |
| } |
| } |
| |
| void BuildResMap() { |
| hlsl::OP *hlslOP = DxilMod.GetOP(); |
| |
| if (isLibProfile) { |
| std::unordered_set<Value *> ResSet; |
| // Start from all global variable in resTab. |
| for (auto &Res : DxilMod.GetCBuffers()) |
| PropagateResMap(Res->GetGlobalSymbol(), Res.get()); |
| for (auto &Res : DxilMod.GetUAVs()) |
| PropagateResMap(Res->GetGlobalSymbol(), Res.get()); |
| for (auto &Res : DxilMod.GetSRVs()) |
| PropagateResMap(Res->GetGlobalSymbol(), Res.get()); |
| for (auto &Res : DxilMod.GetSamplers()) |
| PropagateResMap(Res->GetGlobalSymbol(), Res.get()); |
| } else { |
| // Scan all createHandle. |
| for (auto &it : hlslOP->GetOpFuncList(DXIL::OpCode::CreateHandle)) { |
| Function *F = it.second; |
| if (!F) |
| continue; |
| for (User *U : F->users()) { |
| CallInst *CI = cast<CallInst>(U); |
| DxilInst_CreateHandle hdl(CI); |
| // Validate Class/RangeID/Index. |
| Value *resClass = hdl.get_resourceClass(); |
| if (!isa<ConstantInt>(resClass)) { |
| EmitInstrError(CI, ValidationRule::InstrOpConstRange); |
| continue; |
| } |
| Value *rangeIndex = hdl.get_rangeId(); |
| if (!isa<ConstantInt>(rangeIndex)) { |
| EmitInstrError(CI, ValidationRule::InstrOpConstRange); |
| continue; |
| } |
| |
| DxilResourceBase *Res = nullptr; |
| unsigned rangeId = hdl.get_rangeId_val(); |
| switch ( |
| static_cast<DXIL::ResourceClass>(hdl.get_resourceClass_val())) { |
| default: |
| EmitInstrError(CI, ValidationRule::InstrOpConstRange); |
| continue; |
| break; |
| case DXIL::ResourceClass::CBuffer: |
| if (DxilMod.GetCBuffers().size() > rangeId) { |
| Res = &DxilMod.GetCBuffer(rangeId); |
| } else { |
| // Emit Error. |
| EmitInstrError(CI, ValidationRule::InstrOpConstRange); |
| continue; |
| } |
| break; |
| case DXIL::ResourceClass::Sampler: |
| if (DxilMod.GetSamplers().size() > rangeId) { |
| Res = &DxilMod.GetSampler(rangeId); |
| } else { |
| // Emit Error. |
| EmitInstrError(CI, ValidationRule::InstrOpConstRange); |
| continue; |
| } |
| break; |
| case DXIL::ResourceClass::SRV: |
| if (DxilMod.GetSRVs().size() > rangeId) { |
| Res = &DxilMod.GetSRV(rangeId); |
| } else { |
| // Emit Error. |
| EmitInstrError(CI, ValidationRule::InstrOpConstRange); |
| continue; |
| } |
| break; |
| case DXIL::ResourceClass::UAV: |
| if (DxilMod.GetUAVs().size() > rangeId) { |
| Res = &DxilMod.GetUAV(rangeId); |
| } else { |
| // Emit Error. |
| EmitInstrError(CI, ValidationRule::InstrOpConstRange); |
| continue; |
| } |
| break; |
| } |
| |
| ConstantInt *cIndex = dyn_cast<ConstantInt>(hdl.get_index()); |
| if (!Res->GetHLSLType()->getPointerElementType()->isArrayTy()) { |
| if (!cIndex) { |
| // index must be 0 for none array resource. |
| EmitInstrError(CI, ValidationRule::InstrOpConstRange); |
| continue; |
| } |
| } |
| if (cIndex) { |
| unsigned index = cIndex->getLimitedValue(); |
| if (index < Res->GetLowerBound() || index > Res->GetUpperBound()) { |
| // index out of range. |
| EmitInstrError(CI, ValidationRule::InstrOpConstRange); |
| continue; |
| } |
| } |
| HandleResIndexMap[CI] = rangeId; |
| DxilResourceProperties RP = |
| resource_helper::loadPropsFromResourceBase(Res); |
| ResPropMap[CI] = RP; |
| } |
| } |
| } |
| const ShaderModel &SM = *DxilMod.GetShaderModel(); |
| |
| for (auto &it : hlslOP->GetOpFuncList(DXIL::OpCode::AnnotateHandle)) { |
| Function *F = it.second; |
| if (!F) |
| continue; |
| |
| for (User *U : F->users()) { |
| CallInst *CI = cast<CallInst>(U); |
| DxilInst_AnnotateHandle hdl(CI); |
| DxilResourceProperties RP = |
| resource_helper::loadPropsFromAnnotateHandle(hdl, SM); |
| if (RP.getResourceKind() == DXIL::ResourceKind::Invalid) { |
| EmitInstrError(CI, ValidationRule::InstrOpConstRange); |
| continue; |
| } |
| |
| ResPropMap[CI] = RP; |
| } |
| } |
| } |
| |
| bool HasEntryStatus(Function *F) { |
| return entryStatusMap.find(F) != entryStatusMap.end(); |
| } |
| |
| EntryStatus &GetEntryStatus(Function *F) { return *entryStatusMap[F]; } |
| |
| CallGraph &GetCallGraph() { |
| if (!pCallGraph) |
| pCallGraph = llvm::make_unique<CallGraph>(M); |
| return *pCallGraph.get(); |
| } |
| |
| DxilResourceProperties GetResourceFromVal(Value *resVal); |
| |
| void EmitGlobalVariableFormatError(GlobalVariable *GV, ValidationRule rule, |
| ArrayRef<StringRef> args) { |
| std::string ruleText = GetValidationRuleText(rule); |
| FormatRuleText(ruleText, args); |
| if (pDebugModule) |
| GV = pDebugModule->getGlobalVariable(GV->getName()); |
| dxilutil::EmitErrorOnGlobalVariable(M.getContext(), GV, ruleText); |
| Failed = true; |
| } |
| |
| // This is the least desirable mechanism, as it has no context. |
| void EmitError(ValidationRule rule) { |
| dxilutil::EmitErrorOnContext(M.getContext(), GetValidationRuleText(rule)); |
| Failed = true; |
| } |
| |
| void FormatRuleText(std::string &ruleText, ArrayRef<StringRef> args) { |
| std::string escapedArg; |
| // Consider changing const char * to StringRef |
| for (unsigned i = 0; i < args.size(); i++) { |
| std::string argIdx = "%" + std::to_string(i); |
| StringRef pArg = args[i]; |
| if (pArg == "") |
| pArg = "<null>"; |
| if (pArg[0] == 1) { |
| escapedArg = ""; |
| raw_string_ostream os(escapedArg); |
| dxilutil::PrintEscapedString(pArg, os); |
| os.flush(); |
| pArg = escapedArg; |
| } |
| |
| std::string::size_type offset = ruleText.find(argIdx); |
| if (offset == std::string::npos) |
| continue; |
| |
| unsigned size = argIdx.size(); |
| ruleText.replace(offset, size, pArg); |
| } |
| } |
| |
| void EmitFormatError(ValidationRule rule, ArrayRef<StringRef> args) { |
| std::string ruleText = GetValidationRuleText(rule); |
| FormatRuleText(ruleText, args); |
| dxilutil::EmitErrorOnContext(M.getContext(), ruleText); |
| Failed = true; |
| } |
| |
| void EmitMetaError(Metadata *Meta, ValidationRule rule) { |
| std::string O; |
| raw_string_ostream OSS(O); |
| Meta->print(OSS, &M); |
| dxilutil::EmitErrorOnContext(M.getContext(), |
| GetValidationRuleText(rule) + O); |
| Failed = true; |
| } |
| |
| // Use this instead of DxilResourceBase::GetGlobalName |
| std::string GetResourceName(const hlsl::DxilResourceBase *Res) { |
| if (!Res) |
| return "nullptr"; |
| std::string resName = Res->GetGlobalName(); |
| if (!resName.empty()) |
| return resName; |
| if (pDebugModule) { |
| DxilModule &DM = pDebugModule->GetOrCreateDxilModule(); |
| switch (Res->GetClass()) { |
| case DXIL::ResourceClass::CBuffer: |
| return DM.GetCBuffer(Res->GetID()).GetGlobalName(); |
| case DXIL::ResourceClass::Sampler: |
| return DM.GetSampler(Res->GetID()).GetGlobalName(); |
| case DXIL::ResourceClass::SRV: |
| return DM.GetSRV(Res->GetID()).GetGlobalName(); |
| case DXIL::ResourceClass::UAV: |
| return DM.GetUAV(Res->GetID()).GetGlobalName(); |
| default: |
| return "Invalid Resource"; |
| } |
| } |
| // When names have been stripped, use class and binding location to |
| // identify the resource. Format is roughly: |
| // Allocated: (CB|T|U|S)<ID>: <ResourceKind> ((cb|t|u|s)<LB>[<RangeSize>] |
| // space<SpaceID>) Unallocated: (CB|T|U|S)<ID>: <ResourceKind> (no bind |
| // location) Example: U0: TypedBuffer (u5[2] space1) |
| // [<RangeSize>] and space<SpaceID> skipped if 1 and 0 respectively. |
| return (Twine(Res->GetResIDPrefix()) + Twine(Res->GetID()) + ": " + |
| Twine(Res->GetResKindName()) + |
| (Res->IsAllocated() ? (" (" + Twine(Res->GetResBindPrefix()) + |
| Twine(Res->GetLowerBound()) + |
| (Res->IsUnbounded() ? Twine("[unbounded]") |
| : (Res->GetRangeSize() != 1) |
| ? "[" + Twine(Res->GetRangeSize()) + "]" |
| : Twine()) + |
| ((Res->GetSpaceID() != 0) |
| ? " space" + Twine(Res->GetSpaceID()) |
| : Twine()) + |
| ")") |
| : Twine(" (no bind location)"))) |
| .str(); |
| } |
| |
| void EmitResourceError(const hlsl::DxilResourceBase *Res, |
| ValidationRule rule) { |
| std::string QuotedRes = " '" + GetResourceName(Res) + "'"; |
| dxilutil::EmitErrorOnContext(M.getContext(), |
| GetValidationRuleText(rule) + QuotedRes); |
| Failed = true; |
| } |
| |
| void EmitResourceFormatError(const hlsl::DxilResourceBase *Res, |
| ValidationRule rule, ArrayRef<StringRef> args) { |
| std::string QuotedRes = " '" + GetResourceName(Res) + "'"; |
| std::string ruleText = GetValidationRuleText(rule); |
| FormatRuleText(ruleText, args); |
| dxilutil::EmitErrorOnContext(M.getContext(), ruleText + QuotedRes); |
| Failed = true; |
| } |
| |
| bool IsDebugFunctionCall(Instruction *I) { return isa<DbgInfoIntrinsic>(I); } |
| |
| Instruction *GetDebugInstr(Instruction *I) { |
| DXASSERT_NOMSG(I); |
| if (pDebugModule) { |
| // Look up the matching instruction in the debug module. |
| llvm::Function *Fn = I->getParent()->getParent(); |
| llvm::Function *DbgFn = pDebugModule->getFunction(Fn->getName()); |
| if (DbgFn) { |
| // Linear lookup, but then again, failing validation is rare. |
| inst_iterator it = inst_begin(Fn); |
| inst_iterator dbg_it = inst_begin(DbgFn); |
| while (IsDebugFunctionCall(&*dbg_it)) |
| ++dbg_it; |
| while (&*it != I) { |
| ++it; |
| ++dbg_it; |
| while (IsDebugFunctionCall(&*dbg_it)) |
| ++dbg_it; |
| } |
| return &*dbg_it; |
| } |
| } |
| return I; |
| } |
| |
| // Emit Error or note on instruction `I` with `Msg`. |
| // If `isError` is true, `Rule` may omit repeated errors |
| void EmitInstrDiagMsg(Instruction *I, ValidationRule Rule, std::string Msg, |
| bool isError = true) { |
| BasicBlock *BB = I->getParent(); |
| Function *F = BB->getParent(); |
| |
| Instruction *DbgI = GetDebugInstr(I); |
| if (isError) { |
| if (const DebugLoc L = DbgI->getDebugLoc()) { |
| // Instructions that get scalarized will likely hit |
| // this case. Avoid redundant diagnostic messages. |
| if (Rule == LastRuleEmit && L == LastDebugLocEmit) { |
| return; |
| } |
| LastRuleEmit = Rule; |
| LastDebugLocEmit = L; |
| } |
| dxilutil::EmitErrorOnInstruction(DbgI, Msg); |
| } else { |
| dxilutil::EmitNoteOnContext(DbgI->getContext(), Msg); |
| } |
| |
| // Add llvm information as a note to instruction string |
| std::string InstrStr; |
| raw_string_ostream InstrStream(InstrStr); |
| I->print(InstrStream, slotTracker); |
| InstrStream.flush(); |
| StringRef InstrStrRef = InstrStr; |
| InstrStrRef = InstrStrRef.ltrim(); // Ignore indentation |
| Msg = "at '" + InstrStrRef.str() + "'"; |
| |
| // Print the parent block name |
| Msg += " in block '"; |
| if (!BB->getName().empty()) { |
| Msg += BB->getName(); |
| } else { |
| unsigned idx = 0; |
| for (auto i = F->getBasicBlockList().begin(), |
| e = F->getBasicBlockList().end(); |
| i != e; ++i) { |
| if (BB == &(*i)) { |
| break; |
| } |
| idx++; |
| } |
| Msg += "#" + std::to_string(idx); |
| } |
| Msg += "'"; |
| |
| // Print the function name |
| Msg += " of function '" + F->getName().str() + "'."; |
| |
| dxilutil::EmitNoteOnContext(DbgI->getContext(), Msg); |
| |
| Failed = true; |
| } |
| |
| void EmitInstrError(Instruction *I, ValidationRule rule) { |
| EmitInstrDiagMsg(I, rule, GetValidationRuleText(rule)); |
| } |
| |
| void EmitInstrNote(Instruction *I, std::string Msg) { |
| EmitInstrDiagMsg(I, LastRuleEmit, Msg, false); |
| } |
| |
| void EmitInstrFormatError(Instruction *I, ValidationRule rule, |
| ArrayRef<StringRef> args) { |
| std::string ruleText = GetValidationRuleText(rule); |
| FormatRuleText(ruleText, args); |
| EmitInstrDiagMsg(I, rule, ruleText); |
| } |
| |
| void EmitSignatureError(DxilSignatureElement *SE, ValidationRule rule) { |
| EmitFormatError(rule, {SE->GetName()}); |
| } |
| |
| void EmitTypeError(Type *Ty, ValidationRule rule) { |
| std::string O; |
| raw_string_ostream OSS(O); |
| Ty->print(OSS); |
| EmitFormatError(rule, {OSS.str()}); |
| } |
| |
| void EmitFnError(Function *F, ValidationRule rule) { |
| if (pDebugModule) |
| if (Function *dbgF = pDebugModule->getFunction(F->getName())) |
| F = dbgF; |
| dxilutil::EmitErrorOnFunction(M.getContext(), F, |
| GetValidationRuleText(rule)); |
| Failed = true; |
| } |
| |
| void EmitFnFormatError(Function *F, ValidationRule rule, |
| ArrayRef<StringRef> args) { |
| std::string ruleText = GetValidationRuleText(rule); |
| FormatRuleText(ruleText, args); |
| if (pDebugModule) |
| if (Function *dbgF = pDebugModule->getFunction(F->getName())) |
| F = dbgF; |
| dxilutil::EmitErrorOnFunction(M.getContext(), F, ruleText); |
| Failed = true; |
| } |
| |
| void EmitFnAttributeError(Function *F, StringRef Kind, StringRef Value) { |
| EmitFnFormatError(F, ValidationRule::DeclFnAttribute, |
| {F->getName(), Kind, Value}); |
| } |
| }; |
| |
| static unsigned ValidateSignatureRowCol(Instruction *I, |
| DxilSignatureElement &SE, Value *rowVal, |
| Value *colVal, EntryStatus &Status, |
| ValidationContext &ValCtx) { |
| if (ConstantInt *constRow = dyn_cast<ConstantInt>(rowVal)) { |
| unsigned row = constRow->getLimitedValue(); |
| if (row >= SE.GetRows()) { |
| std::string range = std::string("0~") + std::to_string(SE.GetRows()); |
| ValCtx.EmitInstrFormatError(I, ValidationRule::InstrOperandRange, |
| {"Row", range, std::to_string(row)}); |
| } |
| } |
| |
| if (!isa<ConstantInt>(colVal)) { |
| // col must be const |
| ValCtx.EmitInstrFormatError(I, ValidationRule::InstrOpConst, |
| {"Col", "LoadInput/StoreOutput"}); |
| return 0; |
| } |
| |
| unsigned col = cast<ConstantInt>(colVal)->getLimitedValue(); |
| |
| if (col > SE.GetCols()) { |
| std::string range = std::string("0~") + std::to_string(SE.GetCols()); |
| ValCtx.EmitInstrFormatError(I, ValidationRule::InstrOperandRange, |
| {"Col", range, std::to_string(col)}); |
| } else { |
| if (SE.IsOutput()) |
| Status.outputCols[SE.GetID()] |= 1 << col; |
| if (SE.IsPatchConstOrPrim()) |
| Status.patchConstOrPrimCols[SE.GetID()] |= 1 << col; |
| } |
| |
| return col; |
| } |
| |
| static DxilSignatureElement * |
| ValidateSignatureAccess(Instruction *I, DxilSignature &sig, Value *sigID, |
| Value *rowVal, Value *colVal, EntryStatus &Status, |
| ValidationContext &ValCtx) { |
| if (!isa<ConstantInt>(sigID)) { |
| // inputID must be const |
| ValCtx.EmitInstrFormatError(I, ValidationRule::InstrOpConst, |
| {"SignatureID", "LoadInput/StoreOutput"}); |
| return nullptr; |
| } |
| |
| unsigned SEIdx = cast<ConstantInt>(sigID)->getLimitedValue(); |
| if (sig.GetElements().size() <= SEIdx) { |
| ValCtx.EmitInstrError(I, ValidationRule::InstrOpConstRange); |
| return nullptr; |
| } |
| |
| DxilSignatureElement &SE = sig.GetElement(SEIdx); |
| bool isOutput = sig.IsOutput(); |
| |
| unsigned col = ValidateSignatureRowCol(I, SE, rowVal, colVal, Status, ValCtx); |
| |
| if (isOutput && SE.GetSemantic()->GetKind() == DXIL::SemanticKind::Position) { |
| unsigned mask = Status.OutputPositionMask[SE.GetOutputStream()]; |
| mask |= 1 << col; |
| if (SE.GetOutputStream() < DXIL::kNumOutputStreams) |
| Status.OutputPositionMask[SE.GetOutputStream()] = mask; |
| } |
| return &SE; |
| } |
| |
| static DxilResourceProperties GetResourceFromHandle(Value *Handle, |
| ValidationContext &ValCtx) { |
| if (!isa<CallInst>(Handle)) { |
| if (Instruction *I = dyn_cast<Instruction>(Handle)) |
| ValCtx.EmitInstrError(I, ValidationRule::InstrHandleNotFromCreateHandle); |
| else |
| ValCtx.EmitError(ValidationRule::InstrHandleNotFromCreateHandle); |
| DxilResourceProperties RP; |
| return RP; |
| } |
| |
| DxilResourceProperties RP = ValCtx.GetResourceFromVal(Handle); |
| if (RP.getResourceClass() == DXIL::ResourceClass::Invalid) { |
| ValCtx.EmitInstrError(cast<CallInst>(Handle), |
| ValidationRule::InstrHandleNotFromCreateHandle); |
| } |
| |
| return RP; |
| } |
| |
| static DXIL::SamplerKind GetSamplerKind(Value *samplerHandle, |
| ValidationContext &ValCtx) { |
| DxilResourceProperties RP = GetResourceFromHandle(samplerHandle, ValCtx); |
| |
| if (RP.getResourceClass() != DXIL::ResourceClass::Sampler) { |
| // must be sampler. |
| return DXIL::SamplerKind::Invalid; |
| } |
| if (RP.Basic.SamplerCmpOrHasCounter) |
| return DXIL::SamplerKind::Comparison; |
| else if (RP.getResourceKind() == DXIL::ResourceKind::Invalid) |
| return DXIL::SamplerKind::Invalid; |
| else |
| return DXIL::SamplerKind::Default; |
| } |
| |
| static DXIL::ResourceKind |
| GetResourceKindAndCompTy(Value *handle, DXIL::ComponentType &CompTy, |
| DXIL::ResourceClass &ResClass, |
| ValidationContext &ValCtx) { |
| CompTy = DXIL::ComponentType::Invalid; |
| ResClass = DXIL::ResourceClass::Invalid; |
| // TODO: validate ROV is used only in PS. |
| |
| DxilResourceProperties RP = GetResourceFromHandle(handle, ValCtx); |
| ResClass = RP.getResourceClass(); |
| |
| switch (ResClass) { |
| case DXIL::ResourceClass::SRV: |
| case DXIL::ResourceClass::UAV: |
| break; |
| case DXIL::ResourceClass::CBuffer: |
| return DXIL::ResourceKind::CBuffer; |
| case DXIL::ResourceClass::Sampler: |
| return DXIL::ResourceKind::Sampler; |
| default: |
| // Emit invalid res class |
| return DXIL::ResourceKind::Invalid; |
| } |
| if (!DXIL::IsStructuredBuffer(RP.getResourceKind())) |
| CompTy = static_cast<DXIL::ComponentType>(RP.Typed.CompType); |
| else |
| CompTy = DXIL::ComponentType::Invalid; |
| |
| return RP.getResourceKind(); |
| } |
| |
| DxilFieldAnnotation *GetFieldAnnotation(Type *Ty, DxilTypeSystem &typeSys, |
| std::deque<unsigned> &offsets) { |
| unsigned CurIdx = 1; |
| unsigned LastIdx = offsets.size() - 1; |
| DxilStructAnnotation *StructAnnot = nullptr; |
| |
| for (; CurIdx < offsets.size(); ++CurIdx) { |
| if (const StructType *EltST = dyn_cast<StructType>(Ty)) { |
| if (DxilStructAnnotation *EltAnnot = typeSys.GetStructAnnotation(EltST)) { |
| StructAnnot = EltAnnot; |
| Ty = EltST->getElementType(offsets[CurIdx]); |
| if (CurIdx == LastIdx) { |
| return &StructAnnot->GetFieldAnnotation(offsets[CurIdx]); |
| } |
| } else { |
| return nullptr; |
| } |
| } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { |
| Ty = AT->getElementType(); |
| StructAnnot = nullptr; |
| } else { |
| if (StructAnnot) |
| return &StructAnnot->GetFieldAnnotation(offsets[CurIdx]); |
| } |
| } |
| return nullptr; |
| } |
| |
| DxilResourceProperties ValidationContext::GetResourceFromVal(Value *resVal) { |
| auto it = ResPropMap.find(resVal); |
| if (it != ResPropMap.end()) { |
| return it->second; |
| } else { |
| DxilResourceProperties RP; |
| return RP; |
| } |
| } |
| |
| struct ResRetUsage { |
| bool x; |
| bool y; |
| bool z; |
| bool w; |
| bool status; |
| ResRetUsage() : x(false), y(false), z(false), w(false), status(false) {} |
| }; |
| |
| static void CollectGetDimResRetUsage(ResRetUsage &usage, Instruction *ResRet, |
| ValidationContext &ValCtx) { |
| for (User *U : ResRet->users()) { |
| if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U)) { |
| for (unsigned idx : EVI->getIndices()) { |
| switch (idx) { |
| case 0: |
| usage.x = true; |
| break; |
| case 1: |
| usage.y = true; |
| break; |
| case 2: |
| usage.z = true; |
| break; |
| case 3: |
| usage.w = true; |
| break; |
| case DXIL::kResRetStatusIndex: |
| usage.status = true; |
| break; |
| default: |
| // Emit index out of bound. |
| ValCtx.EmitInstrError(EVI, |
| ValidationRule::InstrDxilStructUserOutOfBound); |
| break; |
| } |
| } |
| } else if (PHINode *PHI = dyn_cast<PHINode>(U)) { |
| CollectGetDimResRetUsage(usage, PHI, ValCtx); |
| } else { |
| Instruction *User = cast<Instruction>(U); |
| ValCtx.EmitInstrError(User, ValidationRule::InstrDxilStructUser); |
| } |
| } |
| } |
| |
| static void ValidateResourceCoord(CallInst *CI, DXIL::ResourceKind resKind, |
| ArrayRef<Value *> coords, |
| ValidationContext &ValCtx) { |
| const unsigned kMaxNumCoords = 4; |
| unsigned numCoords = DxilResource::GetNumCoords(resKind); |
| for (unsigned i = 0; i < kMaxNumCoords; i++) { |
| if (i < numCoords) { |
| if (isa<UndefValue>(coords[i])) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceCoordinateMiss); |
| } |
| } else { |
| if (!isa<UndefValue>(coords[i])) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrResourceCoordinateTooMany); |
| } |
| } |
| } |
| } |
| |
| static void ValidateCalcLODResourceDimensionCoord(CallInst *CI, |
| DXIL::ResourceKind resKind, |
| ArrayRef<Value *> coords, |
| ValidationContext &ValCtx) { |
| const unsigned kMaxNumDimCoords = 3; |
| unsigned numCoords = DxilResource::GetNumDimensionsForCalcLOD(resKind); |
| for (unsigned i = 0; i < kMaxNumDimCoords; i++) { |
| if (i < numCoords) { |
| if (isa<UndefValue>(coords[i])) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceCoordinateMiss); |
| } |
| } else { |
| if (!isa<UndefValue>(coords[i])) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrResourceCoordinateTooMany); |
| } |
| } |
| } |
| } |
| |
| static void ValidateResourceOffset(CallInst *CI, DXIL::ResourceKind resKind, |
| ArrayRef<Value *> offsets, |
| ValidationContext &ValCtx) { |
| const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel(); |
| |
| unsigned numOffsets = DxilResource::GetNumOffsets(resKind); |
| bool hasOffset = !isa<UndefValue>(offsets[0]); |
| |
| auto validateOffset = [&](Value *offset) { |
| // 6.7 Advanced Textures allow programmable offsets |
| if (pSM->IsSM67Plus()) |
| return; |
| if (ConstantInt *cOffset = dyn_cast<ConstantInt>(offset)) { |
| int offset = cOffset->getValue().getSExtValue(); |
| if (offset > 7 || offset < -8) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrTextureOffset); |
| } |
| } else { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrTextureOffset); |
| } |
| }; |
| |
| if (hasOffset) { |
| validateOffset(offsets[0]); |
| } |
| |
| for (unsigned i = 1; i < offsets.size(); i++) { |
| if (i < numOffsets) { |
| if (hasOffset) { |
| if (isa<UndefValue>(offsets[i])) |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceOffsetMiss); |
| else |
| validateOffset(offsets[i]); |
| } |
| } else { |
| if (!isa<UndefValue>(offsets[i])) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceOffsetTooMany); |
| } |
| } |
| } |
| } |
| |
| // Validate derivative and derivative dependent ops in CS/MS/AS |
| static void ValidateDerivativeOp(CallInst *CI, ValidationContext &ValCtx) { |
| |
| const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel(); |
| if (pSM && (pSM->IsMS() || pSM->IsAS() || pSM->IsCS()) && !pSM->IsSM66Plus()) |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"Derivatives in CS/MS/AS", "Shader Model 6.6+"}); |
| } |
| |
| static void ValidateSampleInst(CallInst *CI, Value *srvHandle, |
| Value *samplerHandle, ArrayRef<Value *> coords, |
| ArrayRef<Value *> offsets, bool IsSampleC, |
| ValidationContext &ValCtx) { |
| if (!IsSampleC) { |
| if (GetSamplerKind(samplerHandle, ValCtx) != DXIL::SamplerKind::Default) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrSamplerModeForSample); |
| } |
| } else { |
| if (GetSamplerKind(samplerHandle, ValCtx) != |
| DXIL::SamplerKind::Comparison) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrSamplerModeForSampleC); |
| } |
| } |
| |
| DXIL::ComponentType compTy; |
| DXIL::ResourceClass resClass; |
| DXIL::ResourceKind resKind = |
| GetResourceKindAndCompTy(srvHandle, compTy, resClass, ValCtx); |
| bool isSampleCompTy = compTy == DXIL::ComponentType::F32; |
| isSampleCompTy |= compTy == DXIL::ComponentType::SNormF32; |
| isSampleCompTy |= compTy == DXIL::ComponentType::UNormF32; |
| isSampleCompTy |= compTy == DXIL::ComponentType::F16; |
| isSampleCompTy |= compTy == DXIL::ComponentType::SNormF16; |
| isSampleCompTy |= compTy == DXIL::ComponentType::UNormF16; |
| const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel(); |
| if (pSM->IsSM67Plus() && !IsSampleC) { |
| isSampleCompTy |= compTy == DXIL::ComponentType::I16; |
| isSampleCompTy |= compTy == DXIL::ComponentType::U16; |
| isSampleCompTy |= compTy == DXIL::ComponentType::I32; |
| isSampleCompTy |= compTy == DXIL::ComponentType::U32; |
| } |
| if (!isSampleCompTy) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrSampleCompType); |
| } |
| |
| if (resClass != DXIL::ResourceClass::SRV) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrResourceClassForSamplerGather); |
| } |
| |
| ValidationRule rule = ValidationRule::InstrResourceKindForSample; |
| if (IsSampleC) { |
| rule = ValidationRule::InstrResourceKindForSampleC; |
| } |
| |
| switch (resKind) { |
| case DXIL::ResourceKind::Texture1D: |
| case DXIL::ResourceKind::Texture1DArray: |
| case DXIL::ResourceKind::Texture2D: |
| case DXIL::ResourceKind::Texture2DArray: |
| case DXIL::ResourceKind::TextureCube: |
| case DXIL::ResourceKind::TextureCubeArray: |
| break; |
| case DXIL::ResourceKind::Texture3D: |
| if (IsSampleC) { |
| ValCtx.EmitInstrError(CI, rule); |
| } |
| break; |
| default: |
| ValCtx.EmitInstrError(CI, rule); |
| return; |
| } |
| |
| // Coord match resource kind. |
| ValidateResourceCoord(CI, resKind, coords, ValCtx); |
| // Offset match resource kind. |
| ValidateResourceOffset(CI, resKind, offsets, ValCtx); |
| } |
| |
| static void ValidateGather(CallInst *CI, Value *srvHandle, Value *samplerHandle, |
| ArrayRef<Value *> coords, ArrayRef<Value *> offsets, |
| bool IsSampleC, ValidationContext &ValCtx) { |
| if (!IsSampleC) { |
| if (GetSamplerKind(samplerHandle, ValCtx) != DXIL::SamplerKind::Default) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrSamplerModeForSample); |
| } |
| } else { |
| if (GetSamplerKind(samplerHandle, ValCtx) != |
| DXIL::SamplerKind::Comparison) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrSamplerModeForSampleC); |
| } |
| } |
| |
| DXIL::ComponentType compTy; |
| DXIL::ResourceClass resClass; |
| DXIL::ResourceKind resKind = |
| GetResourceKindAndCompTy(srvHandle, compTy, resClass, ValCtx); |
| |
| if (resClass != DXIL::ResourceClass::SRV) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrResourceClassForSamplerGather); |
| return; |
| } |
| |
| // Coord match resource kind. |
| ValidateResourceCoord(CI, resKind, coords, ValCtx); |
| // Offset match resource kind. |
| switch (resKind) { |
| case DXIL::ResourceKind::Texture2D: |
| case DXIL::ResourceKind::Texture2DArray: { |
| bool hasOffset = !isa<UndefValue>(offsets[0]); |
| if (hasOffset) { |
| if (isa<UndefValue>(offsets[1])) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceOffsetMiss); |
| } |
| } |
| } break; |
| case DXIL::ResourceKind::TextureCube: |
| case DXIL::ResourceKind::TextureCubeArray: { |
| if (!isa<UndefValue>(offsets[0])) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceOffsetTooMany); |
| } |
| if (!isa<UndefValue>(offsets[1])) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceOffsetTooMany); |
| } |
| } break; |
| default: |
| // Invalid resource type for gather. |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceKindForGather); |
| return; |
| } |
| } |
| |
| static unsigned StoreValueToMask(ArrayRef<Value *> vals) { |
| unsigned mask = 0; |
| for (unsigned i = 0; i < 4; i++) { |
| if (!isa<UndefValue>(vals[i])) { |
| mask |= 1 << i; |
| } |
| } |
| return mask; |
| } |
| |
| static int GetCBufSize(Value *cbHandle, ValidationContext &ValCtx) { |
| DxilResourceProperties RP = GetResourceFromHandle(cbHandle, ValCtx); |
| |
| if (RP.getResourceClass() != DXIL::ResourceClass::CBuffer) { |
| ValCtx.EmitInstrError(cast<CallInst>(cbHandle), |
| ValidationRule::InstrCBufferClassForCBufferHandle); |
| return -1; |
| } |
| |
| return RP.CBufferSizeInBytes; |
| } |
| |
| // Make sure none of the handle arguments are undef / zero-initializer, |
| // Also, do not accept any resource handles with invalid dxil resource |
| // properties |
| void ValidateHandleArgsForInstruction(CallInst *CI, DXIL::OpCode opcode, |
| ValidationContext &ValCtx) { |
| |
| for (Value *op : CI->operands()) { |
| const Type *pHandleTy = ValCtx.HandleTy; // This is a resource handle |
| const Type *pNodeHandleTy = ValCtx.DxilMod.GetOP()->GetNodeHandleType(); |
| const Type *pNodeRecordHandleTy = |
| ValCtx.DxilMod.GetOP()->GetNodeRecordHandleType(); |
| |
| const Type *argTy = op->getType(); |
| if (argTy == pNodeHandleTy || argTy == pNodeRecordHandleTy || |
| argTy == pHandleTy) { |
| |
| if (isa<UndefValue>(op) || isa<ConstantAggregateZero>(op)) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrNoReadingUninitialized); |
| } else if (argTy == pHandleTy) { |
| // GetResourceFromHandle will emit an error on an invalid handle |
| GetResourceFromHandle(op, ValCtx); |
| } |
| } |
| } |
| } |
| |
| void ValidateHandleArgs(CallInst *CI, DXIL::OpCode opcode, |
| ValidationContext &ValCtx) { |
| |
| switch (opcode) { |
| // TODO: add case DXIL::OpCode::IndexNodeRecordHandle: |
| |
| case DXIL::OpCode::AnnotateHandle: |
| case DXIL::OpCode::AnnotateNodeHandle: |
| case DXIL::OpCode::AnnotateNodeRecordHandle: |
| case DXIL::OpCode::CreateHandleForLib: |
| // TODO: add custom validation for these intrinsics |
| break; |
| |
| default: |
| ValidateHandleArgsForInstruction(CI, opcode, ValCtx); |
| break; |
| } |
| } |
| |
| static unsigned GetNumVertices(DXIL::InputPrimitive inputPrimitive) { |
| const unsigned InputPrimitiveVertexTab[] = { |
| 0, // Undefined = 0, |
| 1, // Point = 1, |
| 2, // Line = 2, |
| 3, // Triangle = 3, |
| 0, // Reserved4 = 4, |
| 0, // Reserved5 = 5, |
| 4, // LineWithAdjacency = 6, |
| 6, // TriangleWithAdjacency = 7, |
| 1, // ControlPointPatch1 = 8, |
| 2, // ControlPointPatch2 = 9, |
| 3, // ControlPointPatch3 = 10, |
| 4, // ControlPointPatch4 = 11, |
| 5, // ControlPointPatch5 = 12, |
| 6, // ControlPointPatch6 = 13, |
| 7, // ControlPointPatch7 = 14, |
| 8, // ControlPointPatch8 = 15, |
| 9, // ControlPointPatch9 = 16, |
| 10, // ControlPointPatch10 = 17, |
| 11, // ControlPointPatch11 = 18, |
| 12, // ControlPointPatch12 = 19, |
| 13, // ControlPointPatch13 = 20, |
| 14, // ControlPointPatch14 = 21, |
| 15, // ControlPointPatch15 = 22, |
| 16, // ControlPointPatch16 = 23, |
| 17, // ControlPointPatch17 = 24, |
| 18, // ControlPointPatch18 = 25, |
| 19, // ControlPointPatch19 = 26, |
| 20, // ControlPointPatch20 = 27, |
| 21, // ControlPointPatch21 = 28, |
| 22, // ControlPointPatch22 = 29, |
| 23, // ControlPointPatch23 = 30, |
| 24, // ControlPointPatch24 = 31, |
| 25, // ControlPointPatch25 = 32, |
| 26, // ControlPointPatch26 = 33, |
| 27, // ControlPointPatch27 = 34, |
| 28, // ControlPointPatch28 = 35, |
| 29, // ControlPointPatch29 = 36, |
| 30, // ControlPointPatch30 = 37, |
| 31, // ControlPointPatch31 = 38, |
| 32, // ControlPointPatch32 = 39, |
| 0, // LastEntry, |
| }; |
| |
| unsigned primitiveIdx = static_cast<unsigned>(inputPrimitive); |
| return InputPrimitiveVertexTab[primitiveIdx]; |
| } |
| |
| static void ValidateSignatureDxilOp(CallInst *CI, DXIL::OpCode opcode, |
| ValidationContext &ValCtx) { |
| Function *F = CI->getParent()->getParent(); |
| DxilModule &DM = ValCtx.DxilMod; |
| bool bIsPatchConstantFunc = false; |
| if (!DM.HasDxilEntryProps(F)) { |
| auto it = ValCtx.PatchConstantFuncMap.find(F); |
| if (it == ValCtx.PatchConstantFuncMap.end()) { |
| // Missing entry props. |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrSignatureOperationNotInEntry); |
| return; |
| } |
| // Use hull entry instead of patch constant function. |
| F = it->second.front(); |
| bIsPatchConstantFunc = true; |
| } |
| if (!ValCtx.HasEntryStatus(F)) { |
| return; |
| } |
| |
| EntryStatus &Status = ValCtx.GetEntryStatus(F); |
| DxilEntryProps &EntryProps = DM.GetDxilEntryProps(F); |
| DxilFunctionProps &props = EntryProps.props; |
| DxilEntrySignature &S = EntryProps.sig; |
| |
| switch (opcode) { |
| case DXIL::OpCode::LoadInput: { |
| Value *inputID = CI->getArgOperand(DXIL::OperandIndex::kLoadInputIDOpIdx); |
| DxilSignature &inputSig = S.InputSignature; |
| Value *row = CI->getArgOperand(DXIL::OperandIndex::kLoadInputRowOpIdx); |
| Value *col = CI->getArgOperand(DXIL::OperandIndex::kLoadInputColOpIdx); |
| ValidateSignatureAccess(CI, inputSig, inputID, row, col, Status, ValCtx); |
| |
| // Check vertexID in ps/vs. and none array input. |
| Value *vertexID = |
| CI->getArgOperand(DXIL::OperandIndex::kLoadInputVertexIDOpIdx); |
| bool usedVertexID = vertexID && !isa<UndefValue>(vertexID); |
| if (props.IsVS() || props.IsPS()) { |
| if (usedVertexID) { |
| // use vertexID in VS/PS input. |
| ValCtx.EmitInstrError(CI, ValidationRule::SmOperand); |
| return; |
| } |
| } else { |
| if (ConstantInt *cVertexID = dyn_cast<ConstantInt>(vertexID)) { |
| int immVertexID = cVertexID->getValue().getLimitedValue(); |
| if (cVertexID->getValue().isNegative()) { |
| immVertexID = cVertexID->getValue().getSExtValue(); |
| } |
| const int low = 0; |
| int high = 0; |
| if (props.IsGS()) { |
| DXIL::InputPrimitive inputPrimitive = |
| props.ShaderProps.GS.inputPrimitive; |
| high = GetNumVertices(inputPrimitive); |
| } else if (props.IsDS()) { |
| high = props.ShaderProps.DS.inputControlPoints; |
| } else if (props.IsHS()) { |
| high = props.ShaderProps.HS.inputControlPoints; |
| } else { |
| ValCtx.EmitInstrFormatError(CI, |
| ValidationRule::SmOpcodeInInvalidFunction, |
| {"LoadInput", "VS/HS/DS/GS/PS"}); |
| } |
| if (immVertexID < low || immVertexID >= high) { |
| std::string range = std::to_string(low) + "~" + std::to_string(high); |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrOperandRange, |
| {"VertexID", range, std::to_string(immVertexID)}); |
| } |
| } |
| } |
| } break; |
| case DXIL::OpCode::DomainLocation: { |
| Value *colValue = |
| CI->getArgOperand(DXIL::OperandIndex::kDomainLocationColOpIdx); |
| if (!isa<ConstantInt>(colValue)) { |
| // col must be const |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrOpConst, |
| {"Col", "DomainLocation"}); |
| } else { |
| unsigned col = cast<ConstantInt>(colValue)->getLimitedValue(); |
| if (col >= Status.domainLocSize) { |
| ValCtx.EmitInstrError(CI, ValidationRule::SmDomainLocationIdxOOB); |
| } |
| } |
| } break; |
| case DXIL::OpCode::StoreOutput: |
| case DXIL::OpCode::StoreVertexOutput: |
| case DXIL::OpCode::StorePrimitiveOutput: { |
| Value *outputID = |
| CI->getArgOperand(DXIL::OperandIndex::kStoreOutputIDOpIdx); |
| DxilSignature &outputSig = opcode == DXIL::OpCode::StorePrimitiveOutput |
| ? S.PatchConstOrPrimSignature |
| : S.OutputSignature; |
| Value *row = CI->getArgOperand(DXIL::OperandIndex::kStoreOutputRowOpIdx); |
| Value *col = CI->getArgOperand(DXIL::OperandIndex::kStoreOutputColOpIdx); |
| ValidateSignatureAccess(CI, outputSig, outputID, row, col, Status, ValCtx); |
| } break; |
| case DXIL::OpCode::OutputControlPointID: { |
| // Only used in hull shader. |
| Function *func = CI->getParent()->getParent(); |
| // Make sure this is inside hs shader entry function. |
| if (!(props.IsHS() && F == func)) { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"OutputControlPointID", "hull function"}); |
| } |
| } break; |
| case DXIL::OpCode::LoadOutputControlPoint: { |
| // Only used in patch constant function. |
| Function *func = CI->getParent()->getParent(); |
| if (ValCtx.entryFuncCallSet.count(func) > 0) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"LoadOutputControlPoint", "PatchConstant function"}); |
| } |
| Value *outputID = |
| CI->getArgOperand(DXIL::OperandIndex::kStoreOutputIDOpIdx); |
| DxilSignature &outputSig = S.OutputSignature; |
| Value *row = CI->getArgOperand(DXIL::OperandIndex::kStoreOutputRowOpIdx); |
| Value *col = CI->getArgOperand(DXIL::OperandIndex::kStoreOutputColOpIdx); |
| ValidateSignatureAccess(CI, outputSig, outputID, row, col, Status, ValCtx); |
| } break; |
| case DXIL::OpCode::StorePatchConstant: { |
| // Only used in patch constant function. |
| Function *func = CI->getParent()->getParent(); |
| if (!bIsPatchConstantFunc) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"StorePatchConstant", "PatchConstant function"}); |
| } else { |
| auto &hullShaders = ValCtx.PatchConstantFuncMap[func]; |
| for (Function *F : hullShaders) { |
| EntryStatus &Status = ValCtx.GetEntryStatus(F); |
| DxilEntryProps &EntryProps = DM.GetDxilEntryProps(F); |
| DxilEntrySignature &S = EntryProps.sig; |
| Value *outputID = |
| CI->getArgOperand(DXIL::OperandIndex::kStoreOutputIDOpIdx); |
| DxilSignature &outputSig = S.PatchConstOrPrimSignature; |
| Value *row = |
| CI->getArgOperand(DXIL::OperandIndex::kStoreOutputRowOpIdx); |
| Value *col = |
| CI->getArgOperand(DXIL::OperandIndex::kStoreOutputColOpIdx); |
| ValidateSignatureAccess(CI, outputSig, outputID, row, col, Status, |
| ValCtx); |
| } |
| } |
| } break; |
| case DXIL::OpCode::Coverage: |
| Status.m_bCoverageIn = true; |
| break; |
| case DXIL::OpCode::InnerCoverage: |
| Status.m_bInnerCoverageIn = true; |
| break; |
| case DXIL::OpCode::ViewID: |
| Status.hasViewID = true; |
| break; |
| case DXIL::OpCode::EvalCentroid: |
| case DXIL::OpCode::EvalSampleIndex: |
| case DXIL::OpCode::EvalSnapped: { |
| // Eval* share same operand index with load input. |
| Value *inputID = CI->getArgOperand(DXIL::OperandIndex::kLoadInputIDOpIdx); |
| DxilSignature &inputSig = S.InputSignature; |
| Value *row = CI->getArgOperand(DXIL::OperandIndex::kLoadInputRowOpIdx); |
| Value *col = CI->getArgOperand(DXIL::OperandIndex::kLoadInputColOpIdx); |
| DxilSignatureElement *pSE = ValidateSignatureAccess( |
| CI, inputSig, inputID, row, col, Status, ValCtx); |
| if (pSE) { |
| switch (pSE->GetInterpolationMode()->GetKind()) { |
| case DXIL::InterpolationMode::Linear: |
| case DXIL::InterpolationMode::LinearNoperspective: |
| case DXIL::InterpolationMode::LinearCentroid: |
| case DXIL::InterpolationMode::LinearNoperspectiveCentroid: |
| case DXIL::InterpolationMode::LinearSample: |
| case DXIL::InterpolationMode::LinearNoperspectiveSample: |
| break; |
| default: |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrEvalInterpolationMode, {pSE->GetName()}); |
| break; |
| } |
| if (pSE->GetSemantic()->GetKind() == DXIL::SemanticKind::Position) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrCannotPullPosition, |
| {ValCtx.DxilMod.GetShaderModel()->GetName()}); |
| } |
| } |
| } break; |
| case DXIL::OpCode::AttributeAtVertex: { |
| Value *Attribute = CI->getArgOperand(DXIL::OperandIndex::kBinarySrc0OpIdx); |
| DxilSignature &inputSig = S.InputSignature; |
| Value *row = CI->getArgOperand(DXIL::OperandIndex::kLoadInputRowOpIdx); |
| Value *col = CI->getArgOperand(DXIL::OperandIndex::kLoadInputColOpIdx); |
| DxilSignatureElement *pSE = ValidateSignatureAccess( |
| CI, inputSig, Attribute, row, col, Status, ValCtx); |
| if (pSE && pSE->GetInterpolationMode()->GetKind() != |
| hlsl::InterpolationMode::Kind::Constant) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrAttributeAtVertexNoInterpolation, |
| {pSE->GetName()}); |
| } |
| } break; |
| case DXIL::OpCode::CutStream: |
| case DXIL::OpCode::EmitThenCutStream: |
| case DXIL::OpCode::EmitStream: { |
| if (props.IsGS()) { |
| auto &GS = props.ShaderProps.GS; |
| unsigned streamMask = 0; |
| for (size_t i = 0; i < _countof(GS.streamPrimitiveTopologies); ++i) { |
| if (GS.streamPrimitiveTopologies[i] != |
| DXIL::PrimitiveTopology::Undefined) { |
| streamMask |= 1 << i; |
| } |
| } |
| Value *streamID = |
| CI->getArgOperand(DXIL::OperandIndex::kStreamEmitCutIDOpIdx); |
| if (ConstantInt *cStreamID = dyn_cast<ConstantInt>(streamID)) { |
| int immStreamID = cStreamID->getValue().getLimitedValue(); |
| if (cStreamID->getValue().isNegative() || immStreamID >= 4) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrOperandRange, |
| {"StreamID", "0~4", std::to_string(immStreamID)}); |
| } else { |
| unsigned immMask = 1 << immStreamID; |
| if ((streamMask & immMask) == 0) { |
| std::string range; |
| for (unsigned i = 0; i < 4; i++) { |
| if (streamMask & (1 << i)) { |
| range += std::to_string(i) + " "; |
| } |
| } |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrOperandRange, |
| {"StreamID", range, std::to_string(immStreamID)}); |
| } |
| } |
| |
| } else { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrOpConst, |
| {"StreamID", "Emit/CutStream"}); |
| } |
| } else { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"Emit/CutStream", "Geometry shader"}); |
| } |
| } break; |
| case DXIL::OpCode::EmitIndices: { |
| if (!props.IsMS()) { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"EmitIndices", "Mesh shader"}); |
| } |
| } break; |
| case DXIL::OpCode::SetMeshOutputCounts: { |
| if (!props.IsMS()) { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"SetMeshOutputCounts", "Mesh shader"}); |
| } |
| } break; |
| case DXIL::OpCode::GetMeshPayload: { |
| if (!props.IsMS()) { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"GetMeshPayload", "Mesh shader"}); |
| } |
| } break; |
| case DXIL::OpCode::DispatchMesh: { |
| if (!props.IsAS()) { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"DispatchMesh", "Amplification shader"}); |
| } |
| } break; |
| default: |
| break; |
| } |
| |
| if (Status.m_bCoverageIn && Status.m_bInnerCoverageIn) { |
| ValCtx.EmitInstrError(CI, ValidationRule::SmPSCoverageAndInnerCoverage); |
| } |
| } |
| |
| static void ValidateImmOperandForMathDxilOp(CallInst *CI, DXIL::OpCode opcode, |
| ValidationContext &ValCtx) { |
| switch (opcode) { |
| // Imm input value validation. |
| case DXIL::OpCode::Asin: { |
| DxilInst_Asin I(CI); |
| if (ConstantFP *imm = dyn_cast<ConstantFP>(I.get_value())) { |
| if (imm->getValueAPF().isInfinity()) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrNoIndefiniteAsin); |
| } |
| } |
| } break; |
| case DXIL::OpCode::Acos: { |
| DxilInst_Acos I(CI); |
| if (ConstantFP *imm = dyn_cast<ConstantFP>(I.get_value())) { |
| if (imm->getValueAPF().isInfinity()) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrNoIndefiniteAcos); |
| } |
| } |
| } break; |
| case DXIL::OpCode::Log: { |
| DxilInst_Log I(CI); |
| if (ConstantFP *imm = dyn_cast<ConstantFP>(I.get_value())) { |
| if (imm->getValueAPF().isInfinity()) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrNoIndefiniteLog); |
| } |
| } |
| } break; |
| case DXIL::OpCode::DerivFineX: |
| case DXIL::OpCode::DerivFineY: |
| case DXIL::OpCode::DerivCoarseX: |
| case DXIL::OpCode::DerivCoarseY: { |
| Value *V = CI->getArgOperand(DXIL::OperandIndex::kUnarySrc0OpIdx); |
| if (ConstantFP *imm = dyn_cast<ConstantFP>(V)) { |
| if (imm->getValueAPF().isInfinity()) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrNoIndefiniteDsxy); |
| } |
| } |
| ValidateDerivativeOp(CI, ValCtx); |
| } break; |
| default: |
| break; |
| } |
| } |
| |
| // Validate the type-defined mask compared to the store value mask which |
| // indicates which parts were defined returns true if caller should continue |
| // validation |
| static bool ValidateStorageMasks(Instruction *I, DXIL::OpCode opcode, |
| ConstantInt *mask, unsigned stValMask, |
| bool isTyped, ValidationContext &ValCtx) { |
| if (!mask) { |
| // Mask for buffer store should be immediate. |
| ValCtx.EmitInstrFormatError(I, ValidationRule::InstrOpConst, |
| {"Mask", hlsl::OP::GetOpCodeName(opcode)}); |
| return false; |
| } |
| |
| unsigned uMask = mask->getLimitedValue(); |
| if (isTyped && uMask != 0xf) { |
| ValCtx.EmitInstrError(I, ValidationRule::InstrWriteMaskForTypedUAVStore); |
| } |
| |
| // write mask must be contiguous (.x .xy .xyz or .xyzw) |
| if (!((uMask == 0xf) || (uMask == 0x7) || (uMask == 0x3) || (uMask == 0x1))) { |
| ValCtx.EmitInstrError(I, ValidationRule::InstrWriteMaskGapForUAV); |
| } |
| |
| // If a bit is set in the uMask (expected values) that isn't set in stValMask |
| // (user provided values) then the user failed to define some of the output |
| // values. |
| if (uMask & ~stValMask) |
| ValCtx.EmitInstrError(I, ValidationRule::InstrUndefinedValueForUAVStore); |
| else if (uMask != stValMask) |
| ValCtx.EmitInstrFormatError( |
| I, ValidationRule::InstrWriteMaskMatchValueForUAVStore, |
| {std::to_string(uMask), std::to_string(stValMask)}); |
| |
| return true; |
| } |
| |
| static void ValidateResourceDxilOp(CallInst *CI, DXIL::OpCode opcode, |
| ValidationContext &ValCtx) { |
| switch (opcode) { |
| case DXIL::OpCode::GetDimensions: { |
| DxilInst_GetDimensions getDim(CI); |
| Value *handle = getDim.get_handle(); |
| DXIL::ComponentType compTy; |
| DXIL::ResourceClass resClass; |
| DXIL::ResourceKind resKind = |
| GetResourceKindAndCompTy(handle, compTy, resClass, ValCtx); |
| |
| // Check the result component use. |
| ResRetUsage usage; |
| CollectGetDimResRetUsage(usage, CI, ValCtx); |
| |
| // Mip level only for texture. |
| switch (resKind) { |
| case DXIL::ResourceKind::Texture1D: |
| if (usage.y) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrUndefResultForGetDimension, |
| {"y", "Texture1D"}); |
| } |
| if (usage.z) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrUndefResultForGetDimension, |
| {"z", "Texture1D"}); |
| } |
| break; |
| case DXIL::ResourceKind::Texture1DArray: |
| if (usage.z) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrUndefResultForGetDimension, |
| {"z", "Texture1DArray"}); |
| } |
| break; |
| case DXIL::ResourceKind::Texture2D: |
| if (usage.z) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrUndefResultForGetDimension, |
| {"z", "Texture2D"}); |
| } |
| break; |
| case DXIL::ResourceKind::Texture2DArray: |
| break; |
| case DXIL::ResourceKind::Texture2DMS: |
| if (usage.z) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrUndefResultForGetDimension, |
| {"z", "Texture2DMS"}); |
| } |
| break; |
| case DXIL::ResourceKind::Texture2DMSArray: |
| break; |
| case DXIL::ResourceKind::Texture3D: |
| break; |
| case DXIL::ResourceKind::TextureCube: |
| if (usage.z) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrUndefResultForGetDimension, |
| {"z", "TextureCube"}); |
| } |
| break; |
| case DXIL::ResourceKind::TextureCubeArray: |
| break; |
| case DXIL::ResourceKind::StructuredBuffer: |
| case DXIL::ResourceKind::RawBuffer: |
| case DXIL::ResourceKind::TypedBuffer: |
| case DXIL::ResourceKind::TBuffer: { |
| Value *mip = getDim.get_mipLevel(); |
| if (!isa<UndefValue>(mip)) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrMipLevelForGetDimension); |
| } |
| if (resKind != DXIL::ResourceKind::Invalid) { |
| if (usage.y || usage.z || usage.w) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrUndefResultForGetDimension, |
| {"invalid", "resource"}); |
| } |
| } |
| } break; |
| default: { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceKindForGetDim); |
| } break; |
| } |
| |
| if (usage.status) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrUndefResultForGetDimension, |
| {"invalid", "resource"}); |
| } |
| } break; |
| case DXIL::OpCode::CalculateLOD: { |
| DxilInst_CalculateLOD lod(CI); |
| Value *samplerHandle = lod.get_sampler(); |
| DXIL::SamplerKind samplerKind = GetSamplerKind(samplerHandle, ValCtx); |
| if (samplerKind != DXIL::SamplerKind::Default) { |
| // After SM68, Comparison is supported. |
| if (!ValCtx.DxilMod.GetShaderModel()->IsSM68Plus() || |
| samplerKind != DXIL::SamplerKind::Comparison) |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrSamplerModeForLOD); |
| } |
| Value *handle = lod.get_handle(); |
| DXIL::ComponentType compTy; |
| DXIL::ResourceClass resClass; |
| DXIL::ResourceKind resKind = |
| GetResourceKindAndCompTy(handle, compTy, resClass, ValCtx); |
| if (resClass != DXIL::ResourceClass::SRV) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrResourceClassForSamplerGather); |
| return; |
| } |
| // Coord match resource. |
| ValidateCalcLODResourceDimensionCoord( |
| CI, resKind, {lod.get_coord0(), lod.get_coord1(), lod.get_coord2()}, |
| ValCtx); |
| |
| switch (resKind) { |
| case DXIL::ResourceKind::Texture1D: |
| case DXIL::ResourceKind::Texture1DArray: |
| case DXIL::ResourceKind::Texture2D: |
| case DXIL::ResourceKind::Texture2DArray: |
| case DXIL::ResourceKind::Texture3D: |
| case DXIL::ResourceKind::TextureCube: |
| case DXIL::ResourceKind::TextureCubeArray: |
| break; |
| default: |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceKindForCalcLOD); |
| break; |
| } |
| |
| ValidateDerivativeOp(CI, ValCtx); |
| } break; |
| case DXIL::OpCode::TextureGather: { |
| DxilInst_TextureGather gather(CI); |
| ValidateGather(CI, gather.get_srv(), gather.get_sampler(), |
| {gather.get_coord0(), gather.get_coord1(), |
| gather.get_coord2(), gather.get_coord3()}, |
| {gather.get_offset0(), gather.get_offset1()}, |
| /*IsSampleC*/ false, ValCtx); |
| } break; |
| case DXIL::OpCode::TextureGatherCmp: { |
| DxilInst_TextureGatherCmp gather(CI); |
| ValidateGather(CI, gather.get_srv(), gather.get_sampler(), |
| {gather.get_coord0(), gather.get_coord1(), |
| gather.get_coord2(), gather.get_coord3()}, |
| {gather.get_offset0(), gather.get_offset1()}, |
| /*IsSampleC*/ true, ValCtx); |
| } break; |
| case DXIL::OpCode::Sample: { |
| DxilInst_Sample sample(CI); |
| ValidateSampleInst( |
| CI, sample.get_srv(), sample.get_sampler(), |
| {sample.get_coord0(), sample.get_coord1(), sample.get_coord2(), |
| sample.get_coord3()}, |
| {sample.get_offset0(), sample.get_offset1(), sample.get_offset2()}, |
| /*IsSampleC*/ false, ValCtx); |
| ValidateDerivativeOp(CI, ValCtx); |
| } break; |
| case DXIL::OpCode::SampleCmp: { |
| DxilInst_SampleCmp sample(CI); |
| ValidateSampleInst( |
| CI, sample.get_srv(), sample.get_sampler(), |
| {sample.get_coord0(), sample.get_coord1(), sample.get_coord2(), |
| sample.get_coord3()}, |
| {sample.get_offset0(), sample.get_offset1(), sample.get_offset2()}, |
| /*IsSampleC*/ true, ValCtx); |
| ValidateDerivativeOp(CI, ValCtx); |
| } break; |
| case DXIL::OpCode::SampleCmpLevel: { |
| // sampler must be comparison mode. |
| DxilInst_SampleCmpLevel sample(CI); |
| ValidateSampleInst( |
| CI, sample.get_srv(), sample.get_sampler(), |
| {sample.get_coord0(), sample.get_coord1(), sample.get_coord2(), |
| sample.get_coord3()}, |
| {sample.get_offset0(), sample.get_offset1(), sample.get_offset2()}, |
| /*IsSampleC*/ true, ValCtx); |
| } break; |
| case DXIL::OpCode::SampleCmpLevelZero: { |
| // sampler must be comparison mode. |
| DxilInst_SampleCmpLevelZero sample(CI); |
| ValidateSampleInst( |
| CI, sample.get_srv(), sample.get_sampler(), |
| {sample.get_coord0(), sample.get_coord1(), sample.get_coord2(), |
| sample.get_coord3()}, |
| {sample.get_offset0(), sample.get_offset1(), sample.get_offset2()}, |
| /*IsSampleC*/ true, ValCtx); |
| } break; |
| case DXIL::OpCode::SampleBias: { |
| DxilInst_SampleBias sample(CI); |
| Value *bias = sample.get_bias(); |
| if (ConstantFP *cBias = dyn_cast<ConstantFP>(bias)) { |
| float fBias = cBias->getValueAPF().convertToFloat(); |
| if (fBias < DXIL::kMinMipLodBias || fBias > DXIL::kMaxMipLodBias) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrImmBiasForSampleB, |
| {std::to_string(DXIL::kMinMipLodBias), |
| std::to_string(DXIL::kMaxMipLodBias), |
| std::to_string(cBias->getValueAPF().convertToFloat())}); |
| } |
| } |
| |
| ValidateSampleInst( |
| CI, sample.get_srv(), sample.get_sampler(), |
| {sample.get_coord0(), sample.get_coord1(), sample.get_coord2(), |
| sample.get_coord3()}, |
| {sample.get_offset0(), sample.get_offset1(), sample.get_offset2()}, |
| /*IsSampleC*/ false, ValCtx); |
| ValidateDerivativeOp(CI, ValCtx); |
| } break; |
| case DXIL::OpCode::SampleCmpBias: { |
| DxilInst_SampleCmpBias sample(CI); |
| Value *bias = sample.get_bias(); |
| if (ConstantFP *cBias = dyn_cast<ConstantFP>(bias)) { |
| float fBias = cBias->getValueAPF().convertToFloat(); |
| if (fBias < DXIL::kMinMipLodBias || fBias > DXIL::kMaxMipLodBias) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrImmBiasForSampleB, |
| {std::to_string(DXIL::kMinMipLodBias), |
| std::to_string(DXIL::kMaxMipLodBias), |
| std::to_string(cBias->getValueAPF().convertToFloat())}); |
| } |
| } |
| |
| ValidateSampleInst( |
| CI, sample.get_srv(), sample.get_sampler(), |
| {sample.get_coord0(), sample.get_coord1(), sample.get_coord2(), |
| sample.get_coord3()}, |
| {sample.get_offset0(), sample.get_offset1(), sample.get_offset2()}, |
| /*IsSampleC*/ true, ValCtx); |
| ValidateDerivativeOp(CI, ValCtx); |
| } break; |
| case DXIL::OpCode::SampleGrad: { |
| DxilInst_SampleGrad sample(CI); |
| ValidateSampleInst( |
| CI, sample.get_srv(), sample.get_sampler(), |
| {sample.get_coord0(), sample.get_coord1(), sample.get_coord2(), |
| sample.get_coord3()}, |
| {sample.get_offset0(), sample.get_offset1(), sample.get_offset2()}, |
| /*IsSampleC*/ false, ValCtx); |
| } break; |
| case DXIL::OpCode::SampleCmpGrad: { |
| DxilInst_SampleCmpGrad sample(CI); |
| ValidateSampleInst( |
| CI, sample.get_srv(), sample.get_sampler(), |
| {sample.get_coord0(), sample.get_coord1(), sample.get_coord2(), |
| sample.get_coord3()}, |
| {sample.get_offset0(), sample.get_offset1(), sample.get_offset2()}, |
| /*IsSampleC*/ true, ValCtx); |
| } break; |
| case DXIL::OpCode::SampleLevel: { |
| DxilInst_SampleLevel sample(CI); |
| ValidateSampleInst( |
| CI, sample.get_srv(), sample.get_sampler(), |
| {sample.get_coord0(), sample.get_coord1(), sample.get_coord2(), |
| sample.get_coord3()}, |
| {sample.get_offset0(), sample.get_offset1(), sample.get_offset2()}, |
| /*IsSampleC*/ false, ValCtx); |
| } break; |
| case DXIL::OpCode::CheckAccessFullyMapped: { |
| Value *Src = CI->getArgOperand(DXIL::OperandIndex::kUnarySrc0OpIdx); |
| ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Src); |
| if (!EVI) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrCheckAccessFullyMapped); |
| } else { |
| Value *V = EVI->getOperand(0); |
| bool isLegal = EVI->getNumIndices() == 1 && |
| EVI->getIndices()[0] == DXIL::kResRetStatusIndex && |
| ValCtx.DxilMod.GetOP()->IsResRetType(V->getType()); |
| if (!isLegal) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrCheckAccessFullyMapped); |
| } |
| } |
| } break; |
| case DXIL::OpCode::BufferStore: { |
| DxilInst_BufferStore bufSt(CI); |
| DXIL::ComponentType compTy; |
| DXIL::ResourceClass resClass; |
| DXIL::ResourceKind resKind = |
| GetResourceKindAndCompTy(bufSt.get_uav(), compTy, resClass, ValCtx); |
| |
| if (resClass != DXIL::ResourceClass::UAV) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForUAVStore); |
| } |
| |
| ConstantInt *mask = dyn_cast<ConstantInt>(bufSt.get_mask()); |
| unsigned stValMask = |
| StoreValueToMask({bufSt.get_value0(), bufSt.get_value1(), |
| bufSt.get_value2(), bufSt.get_value3()}); |
| |
| if (!ValidateStorageMasks(CI, opcode, mask, stValMask, |
| resKind == DXIL::ResourceKind::TypedBuffer || |
| resKind == DXIL::ResourceKind::TBuffer, |
| ValCtx)) |
| return; |
| Value *offset = bufSt.get_coord1(); |
| |
| switch (resKind) { |
| case DXIL::ResourceKind::RawBuffer: |
| if (!isa<UndefValue>(offset)) { |
| ValCtx.EmitInstrError( |
| CI, ValidationRule::InstrCoordinateCountForRawTypedBuf); |
| } |
| break; |
| case DXIL::ResourceKind::TypedBuffer: |
| case DXIL::ResourceKind::TBuffer: |
| if (!isa<UndefValue>(offset)) { |
| ValCtx.EmitInstrError( |
| CI, ValidationRule::InstrCoordinateCountForRawTypedBuf); |
| } |
| break; |
| case DXIL::ResourceKind::StructuredBuffer: |
| if (isa<UndefValue>(offset)) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrCoordinateCountForStructBuf); |
| } |
| break; |
| default: |
| ValCtx.EmitInstrError( |
| CI, ValidationRule::InstrResourceKindForBufferLoadStore); |
| break; |
| } |
| |
| } break; |
| case DXIL::OpCode::TextureStore: { |
| DxilInst_TextureStore texSt(CI); |
| DXIL::ComponentType compTy; |
| DXIL::ResourceClass resClass; |
| DXIL::ResourceKind resKind = |
| GetResourceKindAndCompTy(texSt.get_srv(), compTy, resClass, ValCtx); |
| |
| if (resClass != DXIL::ResourceClass::UAV) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForUAVStore); |
| } |
| |
| ConstantInt *mask = dyn_cast<ConstantInt>(texSt.get_mask()); |
| unsigned stValMask = |
| StoreValueToMask({texSt.get_value0(), texSt.get_value1(), |
| texSt.get_value2(), texSt.get_value3()}); |
| |
| if (!ValidateStorageMasks(CI, opcode, mask, stValMask, true /*isTyped*/, |
| ValCtx)) |
| return; |
| |
| switch (resKind) { |
| case DXIL::ResourceKind::Texture1D: |
| case DXIL::ResourceKind::Texture1DArray: |
| case DXIL::ResourceKind::Texture2D: |
| case DXIL::ResourceKind::Texture2DArray: |
| case DXIL::ResourceKind::Texture2DMS: |
| case DXIL::ResourceKind::Texture2DMSArray: |
| case DXIL::ResourceKind::Texture3D: |
| break; |
| default: |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrResourceKindForTextureStore); |
| break; |
| } |
| } break; |
| case DXIL::OpCode::BufferLoad: { |
| DxilInst_BufferLoad bufLd(CI); |
| DXIL::ComponentType compTy; |
| DXIL::ResourceClass resClass; |
| DXIL::ResourceKind resKind = |
| GetResourceKindAndCompTy(bufLd.get_srv(), compTy, resClass, ValCtx); |
| |
| if (resClass != DXIL::ResourceClass::SRV && |
| resClass != DXIL::ResourceClass::UAV) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForLoad); |
| } |
| |
| Value *offset = bufLd.get_wot(); |
| |
| switch (resKind) { |
| case DXIL::ResourceKind::RawBuffer: |
| case DXIL::ResourceKind::TypedBuffer: |
| case DXIL::ResourceKind::TBuffer: |
| if (!isa<UndefValue>(offset)) { |
| ValCtx.EmitInstrError( |
| CI, ValidationRule::InstrCoordinateCountForRawTypedBuf); |
| } |
| break; |
| case DXIL::ResourceKind::StructuredBuffer: |
| if (isa<UndefValue>(offset)) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrCoordinateCountForStructBuf); |
| } |
| break; |
| default: |
| ValCtx.EmitInstrError( |
| CI, ValidationRule::InstrResourceKindForBufferLoadStore); |
| break; |
| } |
| |
| } break; |
| case DXIL::OpCode::TextureLoad: { |
| DxilInst_TextureLoad texLd(CI); |
| DXIL::ComponentType compTy; |
| DXIL::ResourceClass resClass; |
| DXIL::ResourceKind resKind = |
| GetResourceKindAndCompTy(texLd.get_srv(), compTy, resClass, ValCtx); |
| |
| Value *mipLevel = texLd.get_mipLevelOrSampleCount(); |
| |
| if (resClass == DXIL::ResourceClass::UAV) { |
| bool noOffset = isa<UndefValue>(texLd.get_offset0()); |
| noOffset &= isa<UndefValue>(texLd.get_offset1()); |
| noOffset &= isa<UndefValue>(texLd.get_offset2()); |
| if (!noOffset) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrOffsetOnUAVLoad); |
| } |
| if (!isa<UndefValue>(mipLevel)) { |
| if (resKind != DXIL::ResourceKind::Texture2DMS && |
| resKind != DXIL::ResourceKind::Texture2DMSArray) |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrMipOnUAVLoad); |
| } |
| } else { |
| if (resClass != DXIL::ResourceClass::SRV) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForLoad); |
| } |
| } |
| |
| switch (resKind) { |
| case DXIL::ResourceKind::Texture1D: |
| case DXIL::ResourceKind::Texture1DArray: |
| case DXIL::ResourceKind::Texture2D: |
| case DXIL::ResourceKind::Texture2DArray: |
| case DXIL::ResourceKind::Texture3D: |
| break; |
| case DXIL::ResourceKind::Texture2DMS: |
| case DXIL::ResourceKind::Texture2DMSArray: { |
| if (isa<UndefValue>(mipLevel)) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrSampleIndexForLoad2DMS); |
| } |
| } break; |
| default: |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrResourceKindForTextureLoad); |
| return; |
| } |
| |
| ValidateResourceOffset( |
| CI, resKind, |
| {texLd.get_offset0(), texLd.get_offset1(), texLd.get_offset2()}, |
| ValCtx); |
| } break; |
| case DXIL::OpCode::CBufferLoad: { |
| DxilInst_CBufferLoad CBLoad(CI); |
| Value *regIndex = CBLoad.get_byteOffset(); |
| if (ConstantInt *cIndex = dyn_cast<ConstantInt>(regIndex)) { |
| int offset = cIndex->getLimitedValue(); |
| int size = GetCBufSize(CBLoad.get_handle(), ValCtx); |
| if (size > 0 && offset >= size) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrCBufferOutOfBound); |
| } |
| } |
| } break; |
| case DXIL::OpCode::CBufferLoadLegacy: { |
| DxilInst_CBufferLoadLegacy CBLoad(CI); |
| Value *regIndex = CBLoad.get_regIndex(); |
| if (ConstantInt *cIndex = dyn_cast<ConstantInt>(regIndex)) { |
| int offset = cIndex->getLimitedValue() * 16; // 16 bytes align |
| int size = GetCBufSize(CBLoad.get_handle(), ValCtx); |
| if (size > 0 && offset >= size) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrCBufferOutOfBound); |
| } |
| } |
| } break; |
| case DXIL::OpCode::RawBufferLoad: { |
| if (!ValCtx.DxilMod.GetShaderModel()->IsSM63Plus()) { |
| Type *Ty = OP::GetOverloadType(DXIL::OpCode::RawBufferLoad, |
| CI->getCalledFunction()); |
| if (ValCtx.DL.getTypeAllocSizeInBits(Ty) > 32) { |
| ValCtx.EmitInstrError(CI, ValidationRule::Sm64bitRawBufferLoadStore); |
| } |
| } |
| DxilInst_RawBufferLoad bufLd(CI); |
| DXIL::ComponentType compTy; |
| DXIL::ResourceClass resClass; |
| DXIL::ResourceKind resKind = |
| GetResourceKindAndCompTy(bufLd.get_srv(), compTy, resClass, ValCtx); |
| |
| if (resClass != DXIL::ResourceClass::SRV && |
| resClass != DXIL::ResourceClass::UAV) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForLoad); |
| } |
| |
| Value *offset = bufLd.get_elementOffset(); |
| Value *align = bufLd.get_alignment(); |
| unsigned alignSize = 0; |
| if (!isa<ConstantInt>(align)) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrCoordinateCountForRawTypedBuf); |
| } else { |
| alignSize = bufLd.get_alignment_val(); |
| } |
| switch (resKind) { |
| case DXIL::ResourceKind::RawBuffer: |
| if (!isa<UndefValue>(offset)) { |
| ValCtx.EmitInstrError( |
| CI, ValidationRule::InstrCoordinateCountForRawTypedBuf); |
| } |
| break; |
| case DXIL::ResourceKind::StructuredBuffer: |
| if (isa<UndefValue>(offset)) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrCoordinateCountForStructBuf); |
| } |
| break; |
| default: |
| ValCtx.EmitInstrError( |
| CI, ValidationRule::InstrResourceKindForBufferLoadStore); |
| break; |
| } |
| } break; |
| case DXIL::OpCode::RawBufferStore: { |
| if (!ValCtx.DxilMod.GetShaderModel()->IsSM63Plus()) { |
| Type *Ty = OP::GetOverloadType(DXIL::OpCode::RawBufferStore, |
| CI->getCalledFunction()); |
| if (ValCtx.DL.getTypeAllocSizeInBits(Ty) > 32) { |
| ValCtx.EmitInstrError(CI, ValidationRule::Sm64bitRawBufferLoadStore); |
| } |
| } |
| DxilInst_RawBufferStore bufSt(CI); |
| DXIL::ComponentType compTy; |
| DXIL::ResourceClass resClass; |
| DXIL::ResourceKind resKind = |
| GetResourceKindAndCompTy(bufSt.get_uav(), compTy, resClass, ValCtx); |
| |
| if (resClass != DXIL::ResourceClass::UAV) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceClassForUAVStore); |
| } |
| |
| ConstantInt *mask = dyn_cast<ConstantInt>(bufSt.get_mask()); |
| unsigned stValMask = |
| StoreValueToMask({bufSt.get_value0(), bufSt.get_value1(), |
| bufSt.get_value2(), bufSt.get_value3()}); |
| |
| if (!ValidateStorageMasks(CI, opcode, mask, stValMask, false /*isTyped*/, |
| ValCtx)) |
| return; |
| |
| Value *offset = bufSt.get_elementOffset(); |
| Value *align = bufSt.get_alignment(); |
| unsigned alignSize = 0; |
| if (!isa<ConstantInt>(align)) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrCoordinateCountForRawTypedBuf); |
| } else { |
| alignSize = bufSt.get_alignment_val(); |
| } |
| switch (resKind) { |
| case DXIL::ResourceKind::RawBuffer: |
| if (!isa<UndefValue>(offset)) { |
| ValCtx.EmitInstrError( |
| CI, ValidationRule::InstrCoordinateCountForRawTypedBuf); |
| } |
| break; |
| case DXIL::ResourceKind::StructuredBuffer: |
| if (isa<UndefValue>(offset)) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrCoordinateCountForStructBuf); |
| } |
| break; |
| default: |
| ValCtx.EmitInstrError( |
| CI, ValidationRule::InstrResourceKindForBufferLoadStore); |
| break; |
| } |
| } break; |
| case DXIL::OpCode::TraceRay: { |
| DxilInst_TraceRay traceRay(CI); |
| Value *hdl = traceRay.get_AccelerationStructure(); |
| DxilResourceProperties RP = ValCtx.GetResourceFromVal(hdl); |
| if (RP.getResourceClass() == DXIL::ResourceClass::Invalid) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceKindForTraceRay); |
| return; |
| } |
| if (RP.getResourceKind() != DXIL::ResourceKind::RTAccelerationStructure) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrResourceKindForTraceRay); |
| } |
| } break; |
| default: |
| break; |
| } |
| } |
| |
| static void ValidateBarrierFlagArg(ValidationContext &ValCtx, CallInst *CI, |
| Value *Arg, unsigned validMask, |
| StringRef flagName, StringRef opName) { |
| if (ConstantInt *CArg = dyn_cast<ConstantInt>(Arg)) { |
| if ((CArg->getLimitedValue() & (uint32_t)(~validMask)) != 0) { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrBarrierFlagInvalid, |
| {flagName, opName}); |
| } |
| } else { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrBarrierNonConstantFlagArgument); |
| } |
| } |
| |
| std::string GetLaunchTypeStr(DXIL::NodeLaunchType LT) { |
| switch (LT) { |
| case DXIL::NodeLaunchType::Broadcasting: |
| return "Broadcasting"; |
| case DXIL::NodeLaunchType::Coalescing: |
| return "Coalescing"; |
| case DXIL::NodeLaunchType::Thread: |
| return "Thread"; |
| default: |
| return "Invalid"; |
| } |
| } |
| |
| static void ValidateDxilOperationCallInProfile(CallInst *CI, |
| DXIL::OpCode opcode, |
| const ShaderModel *pSM, |
| ValidationContext &ValCtx) { |
| DXIL::ShaderKind shaderKind = |
| pSM ? pSM->GetKind() : DXIL::ShaderKind::Invalid; |
| llvm::Function *F = CI->getParent()->getParent(); |
| DXIL::NodeLaunchType nodeLaunchType = DXIL::NodeLaunchType::Invalid; |
| if (DXIL::ShaderKind::Library == shaderKind) { |
| if (ValCtx.DxilMod.HasDxilFunctionProps(F)) { |
| DxilEntryProps &entryProps = ValCtx.DxilMod.GetDxilEntryProps(F); |
| shaderKind = ValCtx.DxilMod.GetDxilFunctionProps(F).shaderKind; |
| if (shaderKind == DXIL::ShaderKind::Node) |
| nodeLaunchType = entryProps.props.Node.LaunchType; |
| |
| } else if (ValCtx.DxilMod.IsPatchConstantShader(F)) |
| shaderKind = DXIL::ShaderKind::Hull; |
| } |
| |
| // These shader models are treted like compute |
| bool isCSLike = shaderKind == DXIL::ShaderKind::Compute || |
| shaderKind == DXIL::ShaderKind::Mesh || |
| shaderKind == DXIL::ShaderKind::Amplification || |
| shaderKind == DXIL::ShaderKind::Node; |
| // Is called from a library function |
| bool isLibFunc = shaderKind == DXIL::ShaderKind::Library; |
| |
| ValidateHandleArgs(CI, opcode, ValCtx); |
| |
| switch (opcode) { |
| // Imm input value validation. |
| case DXIL::OpCode::Asin: |
| case DXIL::OpCode::Acos: |
| case DXIL::OpCode::Log: |
| case DXIL::OpCode::DerivFineX: |
| case DXIL::OpCode::DerivFineY: |
| case DXIL::OpCode::DerivCoarseX: |
| case DXIL::OpCode::DerivCoarseY: |
| ValidateImmOperandForMathDxilOp(CI, opcode, ValCtx); |
| break; |
| // Resource validation. |
| case DXIL::OpCode::GetDimensions: |
| case DXIL::OpCode::CalculateLOD: |
| case DXIL::OpCode::TextureGather: |
| case DXIL::OpCode::TextureGatherCmp: |
| case DXIL::OpCode::Sample: |
| case DXIL::OpCode::SampleCmp: |
| case DXIL::OpCode::SampleCmpLevel: |
| case DXIL::OpCode::SampleCmpLevelZero: |
| case DXIL::OpCode::SampleBias: |
| case DXIL::OpCode::SampleGrad: |
| case DXIL::OpCode::SampleCmpBias: |
| case DXIL::OpCode::SampleCmpGrad: |
| case DXIL::OpCode::SampleLevel: |
| case DXIL::OpCode::CheckAccessFullyMapped: |
| case DXIL::OpCode::BufferStore: |
| case DXIL::OpCode::TextureStore: |
| case DXIL::OpCode::BufferLoad: |
| case DXIL::OpCode::TextureLoad: |
| case DXIL::OpCode::CBufferLoad: |
| case DXIL::OpCode::CBufferLoadLegacy: |
| case DXIL::OpCode::RawBufferLoad: |
| case DXIL::OpCode::RawBufferStore: |
| ValidateResourceDxilOp(CI, opcode, ValCtx); |
| break; |
| // Input output. |
| case DXIL::OpCode::LoadInput: |
| case DXIL::OpCode::DomainLocation: |
| case DXIL::OpCode::StoreOutput: |
| case DXIL::OpCode::StoreVertexOutput: |
| case DXIL::OpCode::StorePrimitiveOutput: |
| case DXIL::OpCode::OutputControlPointID: |
| case DXIL::OpCode::LoadOutputControlPoint: |
| case DXIL::OpCode::StorePatchConstant: |
| case DXIL::OpCode::Coverage: |
| case DXIL::OpCode::InnerCoverage: |
| case DXIL::OpCode::ViewID: |
| case DXIL::OpCode::EvalCentroid: |
| case DXIL::OpCode::EvalSampleIndex: |
| case DXIL::OpCode::EvalSnapped: |
| case DXIL::OpCode::AttributeAtVertex: |
| case DXIL::OpCode::EmitStream: |
| case DXIL::OpCode::EmitThenCutStream: |
| case DXIL::OpCode::CutStream: |
| ValidateSignatureDxilOp(CI, opcode, ValCtx); |
| break; |
| // Special. |
| case DXIL::OpCode::BufferUpdateCounter: { |
| DxilInst_BufferUpdateCounter updateCounter(CI); |
| Value *handle = updateCounter.get_uav(); |
| DxilResourceProperties RP = ValCtx.GetResourceFromVal(handle); |
| |
| if (!RP.isUAV()) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrBufferUpdateCounterOnUAV); |
| } |
| |
| if (!DXIL::IsStructuredBuffer(RP.getResourceKind())) { |
| ValCtx.EmitInstrError(CI, ValidationRule::SmCounterOnlyOnStructBuf); |
| } |
| |
| if (!RP.Basic.SamplerCmpOrHasCounter) { |
| ValCtx.EmitInstrError( |
| CI, ValidationRule::InstrBufferUpdateCounterOnResHasCounter); |
| } |
| |
| Value *inc = updateCounter.get_inc(); |
| if (ConstantInt *cInc = dyn_cast<ConstantInt>(inc)) { |
| bool isInc = cInc->getLimitedValue() == 1; |
| if (!ValCtx.isLibProfile) { |
| auto it = ValCtx.HandleResIndexMap.find(handle); |
| if (it != ValCtx.HandleResIndexMap.end()) { |
| unsigned resIndex = it->second; |
| if (ValCtx.UavCounterIncMap.count(resIndex)) { |
| if (isInc != ValCtx.UavCounterIncMap[resIndex]) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrOnlyOneAllocConsume); |
| } |
| } else { |
| ValCtx.UavCounterIncMap[resIndex] = isInc; |
| } |
| } |
| |
| } else { |
| // TODO: validate ValidationRule::InstrOnlyOneAllocConsume for lib |
| // profile. |
| } |
| } else { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrOpConst, |
| {"inc", "BufferUpdateCounter"}); |
| } |
| |
| } break; |
| case DXIL::OpCode::Barrier: { |
| DxilInst_Barrier barrier(CI); |
| Value *mode = barrier.get_barrierMode(); |
| ConstantInt *cMode = dyn_cast<ConstantInt>(mode); |
| if (!cMode) { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrOpConst, |
| {"Mode", "Barrier"}); |
| return; |
| } |
| |
| const unsigned uglobal = |
| static_cast<unsigned>(DXIL::BarrierMode::UAVFenceGlobal); |
| const unsigned g = static_cast<unsigned>(DXIL::BarrierMode::TGSMFence); |
| const unsigned ut = |
| static_cast<unsigned>(DXIL::BarrierMode::UAVFenceThreadGroup); |
| unsigned barrierMode = cMode->getLimitedValue(); |
| |
| if (isCSLike || isLibFunc) { |
| bool bHasUGlobal = barrierMode & uglobal; |
| bool bHasGroup = barrierMode & g; |
| bool bHasUGroup = barrierMode & ut; |
| if (bHasUGlobal && bHasUGroup) { |
| ValCtx.EmitInstrError(CI, |
| ValidationRule::InstrBarrierModeUselessUGroup); |
| } |
| if (!bHasUGlobal && !bHasGroup && !bHasUGroup) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierModeNoMemory); |
| } |
| } else { |
| if (uglobal != barrierMode) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierModeForNonCS); |
| } |
| } |
| |
| } break; |
| case DXIL::OpCode::BarrierByMemoryType: { |
| DxilInst_BarrierByMemoryType DI(CI); |
| ValidateBarrierFlagArg(ValCtx, CI, DI.get_MemoryTypeFlags(), |
| (unsigned)hlsl::DXIL::MemoryTypeFlag::ValidMask, |
| "memory type", "BarrierByMemoryType"); |
| ValidateBarrierFlagArg(ValCtx, CI, DI.get_SemanticFlags(), |
| (unsigned)hlsl::DXIL::BarrierSemanticFlag::ValidMask, |
| "semantic", "BarrierByMemoryType"); |
| if (!isLibFunc && shaderKind != DXIL::ShaderKind::Node && |
| OP::BarrierRequiresNode(CI)) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierRequiresNode); |
| } |
| if (!isCSLike && !isLibFunc && OP::BarrierRequiresGroup(CI)) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierModeForNonCS); |
| } |
| } break; |
| case DXIL::OpCode::BarrierByNodeRecordHandle: |
| case DXIL::OpCode::BarrierByMemoryHandle: { |
| std::string opName = opcode == DXIL::OpCode::BarrierByNodeRecordHandle |
| ? "barrierByNodeRecordHandle" |
| : "barrierByMemoryHandle"; |
| DxilInst_BarrierByMemoryHandle DIMH(CI); |
| ValidateBarrierFlagArg(ValCtx, CI, DIMH.get_SemanticFlags(), |
| (unsigned)hlsl::DXIL::BarrierSemanticFlag::ValidMask, |
| "semantic", opName); |
| if (!isLibFunc && shaderKind != DXIL::ShaderKind::Node && |
| OP::BarrierRequiresNode(CI)) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierRequiresNode); |
| } |
| if (!isCSLike && !isLibFunc && OP::BarrierRequiresGroup(CI)) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrBarrierModeForNonCS); |
| } |
| } break; |
| case DXIL::OpCode::CreateHandleForLib: |
| if (!ValCtx.isLibProfile) { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"CreateHandleForLib", "Library"}); |
| } |
| break; |
| case DXIL::OpCode::AtomicBinOp: |
| case DXIL::OpCode::AtomicCompareExchange: { |
| Type *pOverloadType = OP::GetOverloadType(opcode, CI->getCalledFunction()); |
| if ((pOverloadType->isIntegerTy(64)) && !pSM->IsSM66Plus()) |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"64-bit atomic operations", "Shader Model 6.6+"}); |
| Value *Handle = CI->getOperand(DXIL::OperandIndex::kAtomicBinOpHandleOpIdx); |
| if (!isa<CallInst>(Handle) || |
| ValCtx.GetResourceFromVal(Handle).getResourceClass() != |
| DXIL::ResourceClass::UAV) |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrAtomicIntrinNonUAV); |
| } break; |
| case DXIL::OpCode::CreateHandle: |
| if (ValCtx.isLibProfile) { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"CreateHandle", "non-library targets"}); |
| } |
| // CreateHandle should not be used in SM 6.6 and above: |
| if (DXIL::CompareVersions(ValCtx.m_DxilMajor, ValCtx.m_DxilMinor, 1, 5) > |
| 0) { |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::SmOpcodeInInvalidFunction, |
| {"CreateHandle", "Shader model 6.5 and below"}); |
| } |
| break; |
| |
| case DXIL::OpCode::ThreadId: // SV_DispatchThreadID |
| if (shaderKind != DXIL::ShaderKind::Node) { |
| break; |
| } |
| |
| if (nodeLaunchType == DXIL::NodeLaunchType::Broadcasting) |
| break; |
| |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrSVConflictingLaunchMode, |
| {"ThreadId", "SV_DispatchThreadID", GetLaunchTypeStr(nodeLaunchType)}); |
| break; |
| |
| case DXIL::OpCode::GroupId: // SV_GroupId |
| if (shaderKind != DXIL::ShaderKind::Node) { |
| break; |
| } |
| |
| if (nodeLaunchType == DXIL::NodeLaunchType::Broadcasting) |
| break; |
| |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::InstrSVConflictingLaunchMode, |
| {"GroupId", "SV_GroupId", GetLaunchTypeStr(nodeLaunchType)}); |
| break; |
| |
| case DXIL::OpCode::ThreadIdInGroup: // SV_GroupThreadID |
| if (shaderKind != DXIL::ShaderKind::Node) { |
| break; |
| } |
| |
| if (nodeLaunchType == DXIL::NodeLaunchType::Broadcasting || |
| nodeLaunchType == DXIL::NodeLaunchType::Coalescing) |
| break; |
| |
| ValCtx.EmitInstrFormatError(CI, |
| ValidationRule::InstrSVConflictingLaunchMode, |
| {"ThreadIdInGroup", "SV_GroupThreadID", |
| GetLaunchTypeStr(nodeLaunchType)}); |
| |
| break; |
| |
| case DXIL::OpCode::FlattenedThreadIdInGroup: // SV_GroupIndex |
| if (shaderKind != DXIL::ShaderKind::Node) { |
| break; |
| } |
| |
| if (nodeLaunchType == DXIL::NodeLaunchType::Broadcasting || |
| nodeLaunchType == DXIL::NodeLaunchType::Coalescing) |
| break; |
| |
| ValCtx.EmitInstrFormatError(CI, |
| ValidationRule::InstrSVConflictingLaunchMode, |
| {"FlattenedThreadIdInGroup", "SV_GroupIndex", |
| GetLaunchTypeStr(nodeLaunchType)}); |
| |
| break; |
| |
| default: |
| // TODO: make sure every opcode is checked. |
| // Skip opcodes don't need special check. |
| break; |
| } |
| } |
| |
| static bool IsDxilFunction(llvm::Function *F) { |
| unsigned argSize = F->arg_size(); |
| if (argSize < 1) { |
| // Cannot be a DXIL operation. |
| return false; |
| } |
| |
| return OP::IsDxilOpFunc(F); |
| } |
| |
| static bool IsLifetimeIntrinsic(llvm::Function *F) { |
| return (F->isIntrinsic() && |
| (F->getIntrinsicID() == Intrinsic::lifetime_start || |
| F->getIntrinsicID() == Intrinsic::lifetime_end)); |
| } |
| |
| static void ValidateExternalFunction(Function *F, ValidationContext &ValCtx) { |
| if (DXIL::CompareVersions(ValCtx.m_DxilMajor, ValCtx.m_DxilMinor, 1, 6) >= |
| 0 && |
| IsLifetimeIntrinsic(F)) { |
| // TODO: validate lifetime intrinsic users |
| return; |
| } |
| |
| if (!IsDxilFunction(F) && !ValCtx.isLibProfile) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::DeclDxilFnExtern, |
| {F->getName()}); |
| return; |
| } |
| |
| if (F->use_empty()) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::DeclUsedExternalFunction, |
| {F->getName()}); |
| return; |
| } |
| |
| const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel(); |
| OP *hlslOP = ValCtx.DxilMod.GetOP(); |
| bool isDxilOp = OP::IsDxilOpFunc(F); |
| Type *voidTy = Type::getVoidTy(F->getContext()); |
| |
| for (User *user : F->users()) { |
| CallInst *CI = dyn_cast<CallInst>(user); |
| if (!CI) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::DeclFnIsCalled, |
| {F->getName()}); |
| continue; |
| } |
| |
| // Skip call to external user defined function |
| if (!isDxilOp) |
| continue; |
| |
| Value *argOpcode = CI->getArgOperand(0); |
| ConstantInt *constOpcode = dyn_cast<ConstantInt>(argOpcode); |
| if (!constOpcode) { |
| // opcode not immediate; function body will validate this error. |
| continue; |
| } |
| |
| unsigned opcode = constOpcode->getLimitedValue(); |
| if (opcode >= (unsigned)DXIL::OpCode::NumOpCodes) { |
| // invalid opcode; function body will validate this error. |
| continue; |
| } |
| |
| DXIL::OpCode dxilOpcode = (DXIL::OpCode)opcode; |
| |
| // In some cases, no overloads are provided (void is exclusive to others) |
| Function *dxilFunc; |
| if (hlslOP->IsOverloadLegal(dxilOpcode, voidTy)) { |
| dxilFunc = hlslOP->GetOpFunc(dxilOpcode, voidTy); |
| } else { |
| Type *Ty = OP::GetOverloadType(dxilOpcode, CI->getCalledFunction()); |
| try { |
| if (!hlslOP->IsOverloadLegal(dxilOpcode, Ty)) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrOload); |
| continue; |
| } |
| } catch (...) { |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrOload); |
| continue; |
| } |
| dxilFunc = hlslOP->GetOpFunc(dxilOpcode, Ty->getScalarType()); |
| } |
| |
| if (!dxilFunc) { |
| // Cannot find dxilFunction based on opcode and type. |
| ValCtx.EmitInstrError(CI, ValidationRule::InstrOload); |
| continue; |
| } |
| |
| if (dxilFunc->getFunctionType() != F->getFunctionType()) { |
| ValCtx.EmitInstrFormatError(CI, ValidationRule::InstrCallOload, |
| {dxilFunc->getName()}); |
| continue; |
| } |
| |
| unsigned major = pSM->GetMajor(); |
| unsigned minor = pSM->GetMinor(); |
| if (ValCtx.isLibProfile) { |
| Function *callingFunction = CI->getParent()->getParent(); |
| DXIL::ShaderKind SK = DXIL::ShaderKind::Library; |
| if (ValCtx.DxilMod.HasDxilFunctionProps(callingFunction)) |
| SK = ValCtx.DxilMod.GetDxilFunctionProps(callingFunction).shaderKind; |
| else if (ValCtx.DxilMod.IsPatchConstantShader(callingFunction)) |
| SK = DXIL::ShaderKind::Hull; |
| if (!ValidateOpcodeInProfile(dxilOpcode, SK, major, minor)) { |
| // Opcode not available in profile. |
| // produces: "lib_6_3(ps)", or "lib_6_3(anyhit)" for shader types |
| // Or: "lib_6_3(lib)" for library function |
| std::string shaderModel = pSM->GetName(); |
| shaderModel += std::string("(") + ShaderModel::GetKindName(SK) + ")"; |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::SmOpcode, |
| {hlslOP->GetOpCodeName(dxilOpcode), shaderModel}); |
| continue; |
| } |
| } else { |
| if (!ValidateOpcodeInProfile(dxilOpcode, pSM->GetKind(), major, minor)) { |
| // Opcode not available in profile. |
| ValCtx.EmitInstrFormatError( |
| CI, ValidationRule::SmOpcode, |
| {hlslOP->GetOpCodeName(dxilOpcode), pSM->GetName()}); |
| continue; |
| } |
| } |
| |
| // Check more detail. |
| ValidateDxilOperationCallInProfile(CI, dxilOpcode, pSM, ValCtx); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Instruction validation functions. // |
| |
| static bool IsDxilBuiltinStructType(StructType *ST, hlsl::OP *hlslOP) { |
| if (ST == hlslOP->GetBinaryWithCarryType()) |
| return true; |
| if (ST == hlslOP->GetBinaryWithTwoOutputsType()) |
| return true; |
| if (ST == hlslOP->GetFourI32Type()) |
| return true; |
| if (ST == hlslOP->GetFourI16Type()) |
| return true; |
| if (ST == hlslOP->GetDimensionsType()) |
| return true; |
| if (ST == hlslOP->GetHandleType()) |
| return true; |
| if (ST == hlslOP->GetSamplePosType()) |
| return true; |
| if (ST == hlslOP->GetSplitDoubleType()) |
| return true; |
| |
| unsigned EltNum = ST->getNumElements(); |
| switch (EltNum) { |
| case 2: |
| case 4: |
| case 8: { // 2 for doubles, 8 for halfs. |
| Type *EltTy = ST->getElementType(0); |
| return ST == hlslOP->GetCBufferRetType(EltTy); |
| } break; |
| case 5: { |
| Type *EltTy = ST->getElementType(0); |
| return ST == hlslOP->GetResRetType(EltTy); |
| } break; |
| default: |
| return false; |
| } |
| } |
| |
| // outer type may be: [ptr to][1 dim array of]( UDT struct | scalar ) |
| // inner type (UDT struct member) may be: [N dim array of]( UDT struct | scalar |
| // ) scalar type may be: ( float(16|32|64) | int(16|32|64) ) |
| static bool ValidateType(Type *Ty, ValidationContext &ValCtx, |
| bool bInner = false) { |
| DXASSERT_NOMSG(Ty != nullptr); |
| if (Ty->isPointerTy()) { |
| Type *EltTy = Ty->getPointerElementType(); |
| if (bInner || EltTy->isPointerTy()) { |
| ValCtx.EmitTypeError(Ty, ValidationRule::TypesNoPtrToPtr); |
| return false; |
| } |
| Ty = EltTy; |
| } |
| if (Ty->isArrayTy()) { |
| Type *EltTy = Ty->getArrayElementType(); |
| if (!bInner && isa<ArrayType>(EltTy)) { |
| // Outermost array should be converted to single-dim, |
| // but arrays inside struct are allowed to be multi-dim |
| ValCtx.EmitTypeError(Ty, ValidationRule::TypesNoMultiDim); |
| return false; |
| } |
| while (EltTy->isArrayTy()) |
| EltTy = EltTy->getArrayElementType(); |
| Ty = EltTy; |
| } |
| if (Ty->isStructTy()) { |
| bool result = true; |
| StructType *ST = cast<StructType>(Ty); |
| |
| StringRef Name = ST->getName(); |
| if (Name.startswith("dx.")) { |
| // Allow handle type. |
| if (ValCtx.HandleTy == Ty || ValCtx.WaveMatrixTy == Ty) |
| return true; |
| hlsl::OP *hlslOP = ValCtx.DxilMod.GetOP(); |
| if (IsDxilBuiltinStructType(ST, hlslOP)) { |
| ValCtx.EmitTypeError(Ty, ValidationRule::InstrDxilStructUser); |
| result = false; |
| } |
| |
| ValCtx.EmitTypeError(Ty, ValidationRule::DeclDxilNsReserved); |
| result = false; |
| } |
| for (auto e : ST->elements()) { |
| if (!ValidateType(e, ValCtx, /*bInner*/ true)) { |
| result = false; |
| } |
| } |
| return result; |
| } |
| if (Ty->isFloatTy() || Ty->isHalfTy() || Ty->isDoubleTy()) { |
| return true; |
| } |
| if (Ty->isIntegerTy()) { |
| unsigned width = Ty->getIntegerBitWidth(); |
| if (width != 1 && width != 8 && width != 16 && width != 32 && width != 64) { |
| ValCtx.EmitTypeError(Ty, ValidationRule::TypesIntWidth); |
| return false; |
| } |
| return true; |
| } |
| // Lib profile allow all types except those hit |
| // ValidationRule::InstrDxilStructUser. |
| if (ValCtx.isLibProfile) |
| return true; |
| |
| if (Ty->isVectorTy()) { |
| ValCtx.EmitTypeError(Ty, ValidationRule::TypesNoVector); |
| return false; |
| } |
| ValCtx.EmitTypeError(Ty, ValidationRule::TypesDefined); |
| return false; |
| } |
| |
| static bool GetNodeOperandAsInt(ValidationContext &ValCtx, MDNode *pMD, |
| unsigned index, uint64_t *pValue) { |
| *pValue = 0; |
| if (pMD->getNumOperands() < index) { |
| ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed); |
| return false; |
| } |
| ConstantAsMetadata *C = dyn_cast<ConstantAsMetadata>(pMD->getOperand(index)); |
| if (C == nullptr) { |
| ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed); |
| return false; |
| } |
| ConstantInt *CI = dyn_cast<ConstantInt>(C->getValue()); |
| if (CI == nullptr) { |
| ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed); |
| return false; |
| } |
| *pValue = CI->getValue().getZExtValue(); |
| return true; |
| } |
| |
| static bool IsPrecise(Instruction &I, ValidationContext &ValCtx) { |
| MDNode *pMD = I.getMetadata(DxilMDHelper::kDxilPreciseAttributeMDName); |
| if (pMD == nullptr) { |
| return false; |
| } |
| if (pMD->getNumOperands() != 1) { |
| ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed); |
| return false; |
| } |
| |
| uint64_t val; |
| if (!GetNodeOperandAsInt(ValCtx, pMD, 0, &val)) { |
| return false; |
| } |
| if (val == 1) { |
| return true; |
| } |
| if (val != 0) { |
| ValCtx.EmitMetaError(pMD, ValidationRule::MetaValueRange); |
| } |
| return false; |
| } |
| |
| static bool IsValueMinPrec(DxilModule &DxilMod, Value *V) { |
| DXASSERT(DxilMod.GetGlobalFlags() & DXIL::kEnableMinPrecision, |
| "else caller didn't check - currently this path should never be hit " |
| "otherwise"); |
| (void)(DxilMod); |
| Type *Ty = V->getType(); |
| if (Ty->isIntegerTy()) { |
| return 16 == Ty->getIntegerBitWidth(); |
| } |
| return Ty->isHalfTy(); |
| } |
| |
| static void ValidateMsIntrinsics(Function *F, ValidationContext &ValCtx, |
| CallInst *setMeshOutputCounts, |
| CallInst *getMeshPayload) { |
| if (ValCtx.DxilMod.HasDxilFunctionProps(F)) { |
| DXIL::ShaderKind shaderKind = |
| ValCtx.DxilMod.GetDxilFunctionProps(F).shaderKind; |
| if (shaderKind != DXIL::ShaderKind::Mesh) |
| return; |
| } else { |
| return; |
| } |
| |
| DominatorTreeAnalysis DTA; |
| DominatorTree DT = DTA.run(*F); |
| |
| for (auto b = F->begin(), bend = F->end(); b != bend; ++b) { |
| bool foundSetMeshOutputCountsInCurrentBB = false; |
| for (auto i = b->begin(), iend = b->end(); i != iend; ++i) { |
| llvm::Instruction &I = *i; |
| |
| // Calls to external functions. |
| CallInst *CI = dyn_cast<CallInst>(&I); |
| if (CI) { |
| Function *FCalled = CI->getCalledFunction(); |
| if (!FCalled) { |
| ValCtx.EmitInstrError(&I, ValidationRule::InstrAllowed); |
| continue; |
| } |
| if (FCalled->isDeclaration()) { |
| // External function validation will diagnose. |
| if (!IsDxilFunction(FCalled)) { |
| continue; |
| } |
| |
| if (CI == setMeshOutputCounts) { |
| foundSetMeshOutputCountsInCurrentBB = true; |
| } |
| Value *opcodeVal = CI->getOperand(0); |
| ConstantInt *OpcodeConst = dyn_cast<ConstantInt>(opcodeVal); |
| unsigned opcode = OpcodeConst->getLimitedValue(); |
| DXIL::OpCode dxilOpcode = (DXIL::OpCode)opcode; |
| |
| if (dxilOpcode == DXIL::OpCode::StoreVertexOutput || |
| dxilOpcode == DXIL::OpCode::StorePrimitiveOutput || |
| dxilOpcode == DXIL::OpCode::EmitIndices) { |
| if (setMeshOutputCounts == nullptr) { |
| ValCtx.EmitInstrError( |
| &I, ValidationRule::InstrMissingSetMeshOutputCounts); |
| } else if (!foundSetMeshOutputCountsInCurrentBB && |
| !DT.dominates(setMeshOutputCounts->getParent(), |
| I.getParent())) { |
| ValCtx.EmitInstrError( |
| &I, ValidationRule::InstrNonDominatingSetMeshOutputCounts); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (getMeshPayload) { |
| PointerType *payloadPTy = cast<PointerType>(getMeshPayload->getType()); |
| StructType *payloadTy = |
| cast<StructType>(payloadPTy->getPointerElementType()); |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| unsigned payloadSize = DL.getTypeAllocSize(payloadTy); |
| |
| DxilFunctionProps &prop = ValCtx.DxilMod.GetDxilFunctionProps(F); |
| |
| if (prop.ShaderProps.MS.payloadSizeInBytes < payloadSize) { |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::SmMeshShaderPayloadSizeDeclared, |
| {F->getName(), std::to_string(payloadSize), |
| std::to_string(prop.ShaderProps.MS.payloadSizeInBytes)}); |
| } |
| |
| if (prop.ShaderProps.MS.payloadSizeInBytes > DXIL::kMaxMSASPayloadBytes) { |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::SmMeshShaderPayloadSize, |
| {F->getName(), std::to_string(prop.ShaderProps.MS.payloadSizeInBytes), |
| std::to_string(DXIL::kMaxMSASPayloadBytes)}); |
| } |
| } |
| } |
| |
| static void ValidateAsIntrinsics(Function *F, ValidationContext &ValCtx, |
| CallInst *dispatchMesh) { |
| if (ValCtx.DxilMod.HasDxilFunctionProps(F)) { |
| DXIL::ShaderKind shaderKind = |
| ValCtx.DxilMod.GetDxilFunctionProps(F).shaderKind; |
| if (shaderKind != DXIL::ShaderKind::Amplification) |
| return; |
| |
| if (dispatchMesh) { |
| DxilInst_DispatchMesh dispatchMeshCall(dispatchMesh); |
| Value *operandVal = dispatchMeshCall.get_payload(); |
| Type *payloadTy = operandVal->getType(); |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| unsigned payloadSize = DL.getTypeAllocSize(payloadTy); |
| |
| DxilFunctionProps &prop = ValCtx.DxilMod.GetDxilFunctionProps(F); |
| |
| if (prop.ShaderProps.AS.payloadSizeInBytes < payloadSize) { |
| ValCtx.EmitInstrFormatError( |
| dispatchMesh, |
| ValidationRule::SmAmplificationShaderPayloadSizeDeclared, |
| {F->getName(), std::to_string(payloadSize), |
| std::to_string(prop.ShaderProps.AS.payloadSizeInBytes)}); |
| } |
| |
| if (prop.ShaderProps.AS.payloadSizeInBytes > DXIL::kMaxMSASPayloadBytes) { |
| ValCtx.EmitInstrFormatError( |
| dispatchMesh, ValidationRule::SmAmplificationShaderPayloadSize, |
| {F->getName(), |
| std::to_string(prop.ShaderProps.AS.payloadSizeInBytes), |
| std::to_string(DXIL::kMaxMSASPayloadBytes)}); |
| } |
| } |
| |
| } else { |
| return; |
| } |
| |
| if (dispatchMesh == nullptr) { |
| ValCtx.EmitFnError(F, ValidationRule::InstrNotOnceDispatchMesh); |
| return; |
| } |
| |
| PostDominatorTree PDT; |
| PDT.runOnFunction(*F); |
| |
| if (!PDT.dominates(dispatchMesh->getParent(), &F->getEntryBlock())) { |
| ValCtx.EmitInstrError(dispatchMesh, |
| ValidationRule::InstrNonDominatingDispatchMesh); |
| } |
| |
| Function *dispatchMeshFunc = dispatchMesh->getCalledFunction(); |
| FunctionType *dispatchMeshFuncTy = dispatchMeshFunc->getFunctionType(); |
| PointerType *payloadPTy = |
| cast<PointerType>(dispatchMeshFuncTy->getParamType(4)); |
| StructType *payloadTy = cast<StructType>(payloadPTy->getPointerElementType()); |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| unsigned payloadSize = DL.getTypeAllocSize(payloadTy); |
| |
| if (payloadSize > DXIL::kMaxMSASPayloadBytes) { |
| ValCtx.EmitInstrFormatError( |
| dispatchMesh, ValidationRule::SmAmplificationShaderPayloadSize, |
| {F->getName(), std::to_string(payloadSize), |
| std::to_string(DXIL::kMaxMSASPayloadBytes)}); |
| } |
| } |
| |
| static void ValidateControlFlowHint(BasicBlock &bb, ValidationContext &ValCtx) { |
| // Validate controlflow hint. |
| TerminatorInst *TI = bb.getTerminator(); |
| if (!TI) |
| return; |
| |
| MDNode *pNode = TI->getMetadata(DxilMDHelper::kDxilControlFlowHintMDName); |
| if (!pNode) |
| return; |
| |
| if (pNode->getNumOperands() < 3) |
| return; |
| |
| bool bHasBranch = false; |
| bool bHasFlatten = false; |
| bool bForceCase = false; |
| |
| for (unsigned i = 2; i < pNode->getNumOperands(); i++) { |
| uint64_t value = 0; |
| if (GetNodeOperandAsInt(ValCtx, pNode, i, &value)) { |
| DXIL::ControlFlowHint hint = static_cast<DXIL::ControlFlowHint>(value); |
| switch (hint) { |
| case DXIL::ControlFlowHint::Flatten: |
| bHasFlatten = true; |
| break; |
| case DXIL::ControlFlowHint::Branch: |
| bHasBranch = true; |
| break; |
| case DXIL::ControlFlowHint::ForceCase: |
| bForceCase = true; |
| break; |
| default: |
| ValCtx.EmitMetaError(pNode, ValidationRule::MetaInvalidControlFlowHint); |
| } |
| } |
| } |
| if (bHasBranch && bHasFlatten) { |
| ValCtx.EmitMetaError(pNode, ValidationRule::MetaBranchFlatten); |
| } |
| if (bForceCase && !isa<SwitchInst>(TI)) { |
| ValCtx.EmitMetaError(pNode, ValidationRule::MetaForceCaseOnSwitch); |
| } |
| } |
| |
| static void ValidateTBAAMetadata(MDNode *Node, ValidationContext &ValCtx) { |
| switch (Node->getNumOperands()) { |
| case 1: { |
| if (Node->getOperand(0)->getMetadataID() != Metadata::MDStringKind) { |
| ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed); |
| } |
| } break; |
| case 2: { |
| MDNode *rootNode = dyn_cast<MDNode>(Node->getOperand(1)); |
| if (!rootNode) { |
| ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed); |
| } else { |
| ValidateTBAAMetadata(rootNode, ValCtx); |
| } |
| } break; |
| case 3: { |
| MDNode *rootNode = dyn_cast<MDNode>(Node->getOperand(1)); |
| if (!rootNode) { |
| ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed); |
| } else { |
| ValidateTBAAMetadata(rootNode, ValCtx); |
| } |
| ConstantAsMetadata *pointsToConstMem = |
| dyn_cast<ConstantAsMetadata>(Node->getOperand(2)); |
| if (!pointsToConstMem) { |
| ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed); |
| } else { |
| ConstantInt *isConst = |
| dyn_cast<ConstantInt>(pointsToConstMem->getValue()); |
| if (!isConst) { |
| ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed); |
| } else if (isConst->getValue().getLimitedValue() > 1) { |
| ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed); |
| } |
| } |
| } break; |
| default: |
| ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed); |
| } |
| } |
| |
| static void ValidateLoopMetadata(MDNode *Node, ValidationContext &ValCtx) { |
| if (Node->getNumOperands() == 0 || Node->getNumOperands() > 2) { |
| ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed); |
| return; |
| } |
| if (Node != Node->getOperand(0).get()) { |
| ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed); |
| return; |
| } |
| if (Node->getNumOperands() == 1) { |
| return; |
| } |
| |
| MDNode *LoopNode = dyn_cast<MDNode>(Node->getOperand(1).get()); |
| if (!LoopNode) { |
| ValCtx.EmitMetaError(Node, ValidationRule::MetaWellFormed); |
| return; |
| } |
| |
| if (LoopNode->getNumOperands() < 1 || LoopNode->getNumOperands() > 2) { |
| ValCtx.EmitMetaError(LoopNode, ValidationRule::MetaWellFormed); |
| return; |
| } |
| |
| if (LoopNode->getOperand(0) == LoopNode) { |
| ValidateLoopMetadata(LoopNode, ValCtx); |
| return; |
| } |
| |
| MDString *LoopStr = dyn_cast<MDString>(LoopNode->getOperand(0)); |
| if (!LoopStr) { |
| ValCtx.EmitMetaError(LoopNode, ValidationRule::MetaWellFormed); |
| return; |
| } |
| |
| StringRef Name = LoopStr->getString(); |
| if (Name != "llvm.loop.unroll.full" && Name != "llvm.loop.unroll.disable" && |
| Name != "llvm.loop.unroll.count") { |
| ValCtx.EmitMetaError(LoopNode, ValidationRule::MetaWellFormed); |
| return; |
| } |
| |
| if (Name == "llvm.loop.unroll.count") { |
| if (LoopNode->getNumOperands() != 2) { |
| ValCtx.EmitMetaError(LoopNode, ValidationRule::MetaWellFormed); |
| return; |
| } |
| ConstantAsMetadata *CountNode = |
| dyn_cast<ConstantAsMetadata>(LoopNode->getOperand(1)); |
| if (!CountNode) { |
| ValCtx.EmitMetaError(LoopNode, ValidationRule::MetaWellFormed); |
| } else { |
| ConstantInt *Count = dyn_cast<ConstantInt>(CountNode->getValue()); |
| if (!Count) { |
| ValCtx.EmitMetaError(CountNode, ValidationRule::MetaWellFormed); |
| } |
| } |
| } |
| } |
| |
| static void ValidateNonUniformMetadata(Instruction &I, MDNode *pMD, |
| ValidationContext &ValCtx) { |
| if (!ValCtx.isLibProfile) { |
| ValCtx.EmitMetaError(pMD, ValidationRule::MetaUsed); |
| } |
| if (!isa<GetElementPtrInst>(I)) { |
| ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed); |
| } |
| if (pMD->getNumOperands() != 1) { |
| ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed); |
| } |
| uint64_t val; |
| if (!GetNodeOperandAsInt(ValCtx, pMD, 0, &val)) { |
| ValCtx.EmitMetaError(pMD, ValidationRule::MetaWellFormed); |
| } |
| if (val != 1) { |
| ValCtx.EmitMetaError(pMD, ValidationRule::MetaValueRange); |
| } |
| } |
| |
| static void ValidateInstructionMetadata(Instruction *I, |
| ValidationContext &ValCtx) { |
| SmallVector<std::pair<unsigned, MDNode *>, 2> MDNodes; |
| I->getAllMetadataOtherThanDebugLoc(MDNodes); |
| for (auto &MD : MDNodes) { |
| if (MD.first == ValCtx.kDxilControlFlowHintMDKind) { |
| if (!isa<TerminatorInst>(I)) { |
| ValCtx.EmitInstrError( |
| I, ValidationRule::MetaControlFlowHintNotOnControlFlow); |
| } |
| } else if (MD.first == ValCtx.kDxilPreciseMDKind) { |
| // Validated in IsPrecise. |
| } else if (MD.first == ValCtx.kLLVMLoopMDKind) { |
| ValidateLoopMetadata(MD.second, ValCtx); |
| } else if (MD.first == LLVMContext::MD_tbaa) { |
| ValidateTBAAMetadata(MD.second, ValCtx); |
| } else if (MD.first == LLVMContext::MD_range) { |
| // Validated in Verifier.cpp. |
| } else if (MD.first == LLVMContext::MD_noalias || |
| MD.first == LLVMContext::MD_alias_scope) { |
| // noalias for DXIL validator >= 1.2 |
| } else if (MD.first == ValCtx.kDxilNonUniformMDKind) { |
| ValidateNonUniformMetadata(*I, MD.second, ValCtx); |
| } else { |
| ValCtx.EmitMetaError(MD.second, ValidationRule::MetaUsed); |
| } |
| } |
| } |
| |
| static void ValidateFunctionAttribute(Function *F, ValidationContext &ValCtx) { |
| AttributeSet attrSet = F->getAttributes().getFnAttributes(); |
| // fp32-denorm-mode |
| if (attrSet.hasAttribute(AttributeSet::FunctionIndex, |
| DXIL::kFP32DenormKindString)) { |
| Attribute attr = attrSet.getAttribute(AttributeSet::FunctionIndex, |
| DXIL::kFP32DenormKindString); |
| StringRef value = attr.getValueAsString(); |
| if (!value.equals(DXIL::kFP32DenormValueAnyString) && |
| !value.equals(DXIL::kFP32DenormValueFtzString) && |
| !value.equals(DXIL::kFP32DenormValuePreserveString)) { |
| ValCtx.EmitFnAttributeError(F, attr.getKindAsString(), |
| attr.getValueAsString()); |
| } |
| } |
| // TODO: If validating libraries, we should remove all unknown function |
| // attributes. For each attribute, check if it is a known attribute |
| for (unsigned I = 0, E = attrSet.getNumSlots(); I != E; ++I) { |
| for (auto AttrIter = attrSet.begin(I), AttrEnd = attrSet.end(I); |
| AttrIter != AttrEnd; ++AttrIter) { |
| if (!AttrIter->isStringAttribute()) { |
| continue; |
| } |
| StringRef kind = AttrIter->getKindAsString(); |
| if (!kind.equals(DXIL::kFP32DenormKindString) && |
| !kind.equals(DXIL::kWaveOpsIncludeHelperLanesString)) { |
| ValCtx.EmitFnAttributeError(F, AttrIter->getKindAsString(), |
| AttrIter->getValueAsString()); |
| } |
| } |
| } |
| } |
| |
| static void ValidateFunctionMetadata(Function *F, ValidationContext &ValCtx) { |
| SmallVector<std::pair<unsigned, MDNode *>, 2> MDNodes; |
| F->getAllMetadata(MDNodes); |
| for (auto &MD : MDNodes) { |
| ValCtx.EmitMetaError(MD.second, ValidationRule::MetaUsed); |
| } |
| } |
| |
| static bool IsLLVMInstructionAllowedForLib(Instruction &I, |
| ValidationContext &ValCtx) { |
| if (!(ValCtx.isLibProfile || ValCtx.DxilMod.GetShaderModel()->IsMS() || |
| ValCtx.DxilMod.GetShaderModel()->IsAS())) |
| return false; |
| switch (I.getOpcode()) { |
| case Instruction::InsertElement: |
| case Instruction::ExtractElement: |
| case Instruction::ShuffleVector: |
| return true; |
| case Instruction::Unreachable: |
| if (Instruction *Prev = I.getPrevNode()) { |
| if (CallInst *CI = dyn_cast<CallInst>(Prev)) { |
| Function *F = CI->getCalledFunction(); |
| if (IsDxilFunction(F) && |
| F->hasFnAttribute(Attribute::AttrKind::NoReturn)) { |
| return true; |
| } |
| } |
| } |
| return false; |
| default: |
| return false; |
| } |
| } |
| |
| static void ValidateFunctionBody(Function *F, ValidationContext &ValCtx) { |
| bool SupportsMinPrecision = |
| ValCtx.DxilMod.GetGlobalFlags() & DXIL::kEnableMinPrecision; |
| bool SupportsLifetimeIntrinsics = |
| ValCtx.DxilMod.GetShaderModel()->IsSM66Plus(); |
| SmallVector<CallInst *, 16> gradientOps; |
| SmallVector<CallInst *, 16> barriers; |
| CallInst *setMeshOutputCounts = nullptr; |
| CallInst *getMeshPayload = nullptr; |
| CallInst *dispatchMesh = nullptr; |
| hlsl::OP *hlslOP = ValCtx.DxilMod.GetOP(); |
| |
| for (auto b = F->begin(), bend = F->end(); b != bend; ++b) { |
| for (auto i = b->begin(), iend = b->end(); i != iend; ++i) { |
| llvm::Instruction &I = *i; |
| |
| if (I.hasMetadata()) { |
| |
| ValidateInstructionMetadata(&I, ValCtx); |
| } |
| |
| // Instructions must be allowed. |
| if (!IsLLVMInstructionAllowed(I)) { |
| if (!IsLLVMInstructionAllowedForLib(I, ValCtx)) { |
| ValCtx.EmitInstrError(&I, ValidationRule::InstrAllowed); |
| continue; |
| } |
| } |
| |
| // Instructions marked precise may not have minprecision arguments. |
| if (SupportsMinPrecision) { |
| if (IsPrecise(I, ValCtx)) { |
| for (auto &O : I.operands()) { |
| if (IsValueMinPrec(ValCtx.DxilMod, O)) { |
| ValCtx.EmitInstrError( |
| &I, ValidationRule::InstrMinPrecisionNotPrecise); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Calls to external functions. |
| CallInst *CI = dyn_cast<CallInst>(&I); |
| if (CI) { |
| Function *FCalled = CI->getCalledFunction(); |
| if (FCalled->isDeclaration()) { |
| // External function validation will diagnose. |
| if (!IsDxilFunction(FCalled)) { |
| continue; |
| } |
| |
| Value *opcodeVal = CI->getOperand(0); |
| ConstantInt *OpcodeConst = dyn_cast<ConstantInt>(opcodeVal); |
| if (OpcodeConst == nullptr) { |
| ValCtx.EmitInstrFormatError(&I, ValidationRule::InstrOpConst, |
| {"Opcode", "DXIL operation"}); |
| continue; |
| } |
| |
| unsigned opcode = OpcodeConst->getLimitedValue(); |
| if (opcode >= static_cast<unsigned>(DXIL::OpCode::NumOpCodes)) { |
| ValCtx.EmitInstrFormatError( |
| &I, ValidationRule::InstrIllegalDXILOpCode, |
| {std::to_string((unsigned)DXIL::OpCode::NumOpCodes), |
| std::to_string(opcode)}); |
| continue; |
| } |
| DXIL::OpCode dxilOpcode = (DXIL::OpCode)opcode; |
| |
| bool IllegalOpFunc = true; |
| for (auto &it : hlslOP->GetOpFuncList(dxilOpcode)) { |
| if (it.second == FCalled) { |
| IllegalOpFunc = false; |
| break; |
| } |
| } |
| |
| if (IllegalOpFunc) { |
| ValCtx.EmitInstrFormatError( |
| &I, ValidationRule::InstrIllegalDXILOpFunction, |
| {FCalled->getName(), OP::GetOpCodeName(dxilOpcode)}); |
| continue; |
| } |
| |
| if (OP::IsDxilOpGradient(dxilOpcode)) { |
| gradientOps.push_back(CI); |
| } |
| |
| if (dxilOpcode == DXIL::OpCode::Barrier) { |
| barriers.push_back(CI); |
| } |
| // External function validation will check the parameter |
| // list. This function will check that the call does not |
| // violate any rules. |
| |
| if (dxilOpcode == DXIL::OpCode::SetMeshOutputCounts) { |
| // validate the call count of SetMeshOutputCounts |
| if (setMeshOutputCounts != nullptr) { |
| ValCtx.EmitInstrError( |
| &I, ValidationRule::InstrMultipleSetMeshOutputCounts); |
| } |
| setMeshOutputCounts = CI; |
| } |
| |
| if (dxilOpcode == DXIL::OpCode::GetMeshPayload) { |
| // validate the call count of GetMeshPayload |
| if (getMeshPayload != nullptr) { |
| ValCtx.EmitInstrError( |
| &I, ValidationRule::InstrMultipleGetMeshPayload); |
| } |
| getMeshPayload = CI; |
| } |
| |
| if (dxilOpcode == DXIL::OpCode::DispatchMesh) { |
| // validate the call count of DispatchMesh |
| if (dispatchMesh != nullptr) { |
| ValCtx.EmitInstrError(&I, |
| ValidationRule::InstrNotOnceDispatchMesh); |
| } |
| dispatchMesh = CI; |
| } |
| } |
| continue; |
| } |
| |
| for (Value *op : I.operands()) { |
| if (isa<UndefValue>(op)) { |
| bool legalUndef = isa<PHINode>(&I); |
| if (isa<InsertElementInst>(&I)) { |
| legalUndef = op == I.getOperand(0); |
| } |
| if (isa<ShuffleVectorInst>(&I)) { |
| legalUndef = op == I.getOperand(1); |
| } |
| if (isa<StoreInst>(&I)) { |
| legalUndef = op == I.getOperand(0); |
| } |
| |
| if (!legalUndef) |
| ValCtx.EmitInstrError(&I, |
| ValidationRule::InstrNoReadingUninitialized); |
| } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(op)) { |
| for (Value *opCE : CE->operands()) { |
| if (isa<UndefValue>(opCE)) { |
| ValCtx.EmitInstrError( |
| &I, ValidationRule::InstrNoReadingUninitialized); |
| } |
| } |
| } |
| if (IntegerType *IT = dyn_cast<IntegerType>(op->getType())) { |
| if (IT->getBitWidth() == 8) { |
| // We always fail if we see i8 as operand type of a non-lifetime |
| // instruction. |
| ValCtx.EmitInstrError(&I, ValidationRule::TypesI8); |
| } |
| } |
| } |
| |
| Type *Ty = I.getType(); |
| if (isa<PointerType>(Ty)) |
| Ty = Ty->getPointerElementType(); |
| while (isa<ArrayType>(Ty)) |
| Ty = Ty->getArrayElementType(); |
| if (IntegerType *IT = dyn_cast<IntegerType>(Ty)) { |
| if (IT->getBitWidth() == 8) { |
| // Allow i8* cast for llvm.lifetime.* intrinsics. |
| if (!SupportsLifetimeIntrinsics || !isa<BitCastInst>(I) || |
| !onlyUsedByLifetimeMarkers(&I)) { |
| ValCtx.EmitInstrError(&I, ValidationRule::TypesI8); |
| } |
| } |
| } |
| |
| unsigned opcode = I.getOpcode(); |
| switch (opcode) { |
| case Instruction::Alloca: { |
| AllocaInst *AI = cast<AllocaInst>(&I); |
| // TODO: validate address space and alignment |
| Type *Ty = AI->getAllocatedType(); |
| if (!ValidateType(Ty, ValCtx)) { |
| continue; |
| } |
| } break; |
| case Instruction::ExtractValue: { |
| ExtractValueInst *EV = cast<ExtractValueInst>(&I); |
| Type *Ty = EV->getAggregateOperand()->getType(); |
| if (StructType *ST = dyn_cast<StructType>(Ty)) { |
| Value *Agg = EV->getAggregateOperand(); |
| if (!isa<AtomicCmpXchgInst>(Agg) && |
| !IsDxilBuiltinStructType(ST, ValCtx.DxilMod.GetOP())) { |
| ValCtx.EmitInstrError(EV, ValidationRule::InstrExtractValue); |
| } |
| } else { |
| ValCtx.EmitInstrError(EV, ValidationRule::InstrExtractValue); |
| } |
| } break; |
| case Instruction::Load: { |
| Type *Ty = I.getType(); |
| if (!ValidateType(Ty, ValCtx)) { |
| continue; |
| } |
| } break; |
| case Instruction::Store: { |
| StoreInst *SI = cast<StoreInst>(&I); |
| Type *Ty = SI->getValueOperand()->getType(); |
| if (!ValidateType(Ty, ValCtx)) { |
| continue; |
| } |
| } break; |
| case Instruction::GetElementPtr: { |
| Type *Ty = I.getType()->getPointerElementType(); |
| if (!ValidateType(Ty, ValCtx)) { |
| continue; |
| } |
| GetElementPtrInst *GEP = cast<GetElementPtrInst>(&I); |
| bool allImmIndex = true; |
| for (auto Idx = GEP->idx_begin(), E = GEP->idx_end(); Idx != E; Idx++) { |
| if (!isa<ConstantInt>(Idx)) { |
| allImmIndex = false; |
| break; |
| } |
| } |
| if (allImmIndex) { |
| const DataLayout &DL = ValCtx.DL; |
| |
| Value *Ptr = GEP->getPointerOperand(); |
| unsigned size = |
| DL.getTypeAllocSize(Ptr->getType()->getPointerElementType()); |
| unsigned valSize = |
| DL.getTypeAllocSize(GEP->getType()->getPointerElementType()); |
| |
| SmallVector<Value *, 8> Indices(GEP->idx_begin(), GEP->idx_end()); |
| unsigned offset = |
| DL.getIndexedOffset(GEP->getPointerOperandType(), Indices); |
| if ((offset + valSize) > size) { |
| ValCtx.EmitInstrError(GEP, ValidationRule::InstrInBoundsAccess); |
| } |
| } |
| } break; |
| case Instruction::SDiv: { |
| BinaryOperator *BO = cast<BinaryOperator>(&I); |
| Value *V = BO->getOperand(1); |
| if (ConstantInt *imm = dyn_cast<ConstantInt>(V)) { |
| if (imm->getValue().getLimitedValue() == 0) { |
| ValCtx.EmitInstrError(BO, ValidationRule::InstrNoIDivByZero); |
| } |
| } |
| } break; |
| case Instruction::UDiv: { |
| BinaryOperator *BO = cast<BinaryOperator>(&I); |
| Value *V = BO->getOperand(1); |
| if (ConstantInt *imm = dyn_cast<ConstantInt>(V)) { |
| if (imm->getValue().getLimitedValue() == 0) { |
| ValCtx.EmitInstrError(BO, ValidationRule::InstrNoUDivByZero); |
| } |
| } |
| } break; |
| case Instruction::AddrSpaceCast: { |
| AddrSpaceCastInst *Cast = cast<AddrSpaceCastInst>(&I); |
| unsigned ToAddrSpace = Cast->getType()->getPointerAddressSpace(); |
| unsigned FromAddrSpace = |
| Cast->getOperand(0)->getType()->getPointerAddressSpace(); |
| if (ToAddrSpace != DXIL::kGenericPointerAddrSpace && |
| FromAddrSpace != DXIL::kGenericPointerAddrSpace) { |
| ValCtx.EmitInstrError(Cast, |
| ValidationRule::InstrNoGenericPtrAddrSpaceCast); |
| } |
| } break; |
| case Instruction::BitCast: { |
| BitCastInst *Cast = cast<BitCastInst>(&I); |
| Type *FromTy = Cast->getOperand(0)->getType(); |
| Type *ToTy = Cast->getType(); |
| // Allow i8* cast for llvm.lifetime.* intrinsics. |
| if (SupportsLifetimeIntrinsics && |
| ToTy == Type::getInt8PtrTy(ToTy->getContext())) |
| continue; |
| if (isa<PointerType>(FromTy)) { |
| FromTy = FromTy->getPointerElementType(); |
| ToTy = ToTy->getPointerElementType(); |
| unsigned FromSize = ValCtx.DL.getTypeAllocSize(FromTy); |
| unsigned ToSize = ValCtx.DL.getTypeAllocSize(ToTy); |
| if (FromSize != ToSize) { |
| ValCtx.EmitInstrError(Cast, ValidationRule::InstrPtrBitCast); |
| continue; |
| } |
| while (isa<ArrayType>(FromTy)) { |
| FromTy = FromTy->getArrayElementType(); |
| } |
| while (isa<ArrayType>(ToTy)) { |
| ToTy = ToTy->getArrayElementType(); |
| } |
| } |
| if ((isa<StructType>(FromTy) || isa<StructType>(ToTy)) && |
| !ValCtx.isLibProfile) { |
| ValCtx.EmitInstrError(Cast, ValidationRule::InstrStructBitCast); |
| continue; |
| } |
| |
| bool IsMinPrecisionTy = (ValCtx.DL.getTypeStoreSize(FromTy) < 4 || |
| ValCtx.DL.getTypeStoreSize(ToTy) < 4) && |
| ValCtx.DxilMod.GetUseMinPrecision(); |
| if (IsMinPrecisionTy) { |
| ValCtx.EmitInstrError(Cast, ValidationRule::InstrMinPrecisonBitCast); |
| } |
| } break; |
| case Instruction::AtomicCmpXchg: |
| case Instruction::AtomicRMW: { |
| Value *Ptr = I.getOperand(AtomicRMWInst::getPointerOperandIndex()); |
| PointerType *ptrType = cast<PointerType>(Ptr->getType()); |
| Type *elType = ptrType->getElementType(); |
| const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel(); |
| if ((elType->isIntegerTy(64)) && !pSM->IsSM66Plus()) |
| ValCtx.EmitInstrFormatError( |
| &I, ValidationRule::SmOpcodeInInvalidFunction, |
| {"64-bit atomic operations", "Shader Model 6.6+"}); |
| |
| if (ptrType->getAddressSpace() != DXIL::kTGSMAddrSpace && |
| ptrType->getAddressSpace() != DXIL::kNodeRecordAddrSpace) |
| ValCtx.EmitInstrError( |
| &I, ValidationRule::InstrAtomicOpNonGroupsharedOrRecord); |
| |
| // Drill through GEP and bitcasts |
| while (true) { |
| if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { |
| Ptr = GEP->getPointerOperand(); |
| continue; |
| } |
| if (BitCastInst *BC = dyn_cast<BitCastInst>(Ptr)) { |
| Ptr = BC->getOperand(0); |
| continue; |
| } |
| break; |
| } |
| |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { |
| if (GV->isConstant()) |
| ValCtx.EmitInstrError(&I, ValidationRule::InstrAtomicConst); |
| } |
| } break; |
| } |
| |
| if (PointerType *PT = dyn_cast<PointerType>(I.getType())) { |
| if (PT->getAddressSpace() == DXIL::kTGSMAddrSpace) { |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { |
| Value *Ptr = GEP->getPointerOperand(); |
| // Allow inner constant GEP |
| if (isa<ConstantExpr>(Ptr) && isa<GEPOperator>(Ptr)) |
| Ptr = cast<GEPOperator>(Ptr)->getPointerOperand(); |
| if (!isa<GlobalVariable>(Ptr)) { |
| ValCtx.EmitInstrError( |
| &I, ValidationRule::InstrFailToResloveTGSMPointer); |
| } |
| } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(&I)) { |
| Value *Ptr = BCI->getOperand(0); |
| // Allow inner constant GEP |
| if (isa<ConstantExpr>(Ptr) && isa<GEPOperator>(Ptr)) |
| Ptr = cast<GEPOperator>(Ptr)->getPointerOperand(); |
| if (!isa<GetElementPtrInst>(Ptr) && !isa<GlobalVariable>(Ptr)) { |
| ValCtx.EmitInstrError( |
| &I, ValidationRule::InstrFailToResloveTGSMPointer); |
| } |
| } else { |
| ValCtx.EmitInstrError( |
| &I, ValidationRule::InstrFailToResloveTGSMPointer); |
| } |
| } |
| } |
| } |
| ValidateControlFlowHint(*b, ValCtx); |
| } |
| |
| ValidateMsIntrinsics(F, ValCtx, setMeshOutputCounts, getMeshPayload); |
| |
| ValidateAsIntrinsics(F, ValCtx, dispatchMesh); |
| } |
| |
| static void ValidateNodeInputRecord(Function *F, ValidationContext &ValCtx) { |
| // if there are no function props or LaunchType is Invalid, there is nothing |
| // to do here |
| if (!ValCtx.DxilMod.HasDxilFunctionProps(F)) |
| return; |
| auto &props = ValCtx.DxilMod.GetDxilFunctionProps(F); |
| if (!props.IsNode()) |
| return; |
| if (props.InputNodes.size() > 1) { |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::DeclMultipleNodeInputs, |
| {F->getName(), std::to_string(props.InputNodes.size())}); |
| } |
| for (auto &input : props.InputNodes) { |
| if (!input.Flags.RecordTypeMatchesLaunchType(props.Node.LaunchType)) { |
| // We allow EmptyNodeInput here, as that may have been added implicitly |
| // if there was no input specified |
| if (input.Flags.IsEmptyInput()) |
| continue; |
| |
| llvm::StringRef validInputs = ""; |
| switch (props.Node.LaunchType) { |
| case DXIL::NodeLaunchType::Broadcasting: |
| validInputs = "{RW}DispatchNodeInputRecord"; |
| break; |
| case DXIL::NodeLaunchType::Coalescing: |
| validInputs = "{RW}GroupNodeInputRecords or EmptyNodeInput"; |
| break; |
| case DXIL::NodeLaunchType::Thread: |
| validInputs = "{RW}ThreadNodeInputRecord"; |
| break; |
| default: |
| llvm_unreachable("invalid launch type"); |
| } |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::DeclNodeLaunchInputType, |
| {ShaderModel::GetNodeLaunchTypeName(props.Node.LaunchType), |
| F->getName(), validInputs}); |
| } |
| } |
| } |
| |
| static void ValidateFunction(Function &F, ValidationContext &ValCtx) { |
| if (F.isDeclaration()) { |
| ValidateExternalFunction(&F, ValCtx); |
| if (F.isIntrinsic() || IsDxilFunction(&F)) |
| return; |
| } else { |
| DXIL::ShaderKind shaderKind = DXIL::ShaderKind::Library; |
| bool isShader = ValCtx.DxilMod.HasDxilFunctionProps(&F); |
| unsigned numUDTShaderArgs = 0; |
| if (isShader) { |
| shaderKind = ValCtx.DxilMod.GetDxilFunctionProps(&F).shaderKind; |
| switch (shaderKind) { |
| case DXIL::ShaderKind::AnyHit: |
| case DXIL::ShaderKind::ClosestHit: |
| numUDTShaderArgs = 2; |
| break; |
| case DXIL::ShaderKind::Miss: |
| case DXIL::ShaderKind::Callable: |
| numUDTShaderArgs = 1; |
| break; |
| case DXIL::ShaderKind::Compute: { |
| DxilModule &DM = ValCtx.DxilMod; |
| if (DM.HasDxilEntryProps(&F)) { |
| DxilEntryProps &entryProps = DM.GetDxilEntryProps(&F); |
| // Check that compute has no node metadata |
| if (entryProps.props.IsNode()) { |
| ValCtx.EmitFnFormatError(&F, ValidationRule::MetaComputeWithNode, |
| {F.getName()}); |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } else { |
| isShader = ValCtx.DxilMod.IsPatchConstantShader(&F); |
| } |
| |
| // Entry function should not have parameter. |
| if (isShader && 0 == numUDTShaderArgs && !F.arg_empty()) |
| ValCtx.EmitFnFormatError(&F, ValidationRule::FlowFunctionCall, |
| {F.getName()}); |
| |
| // Shader functions should return void. |
| if (isShader && !F.getReturnType()->isVoidTy()) |
| ValCtx.EmitFnFormatError(&F, ValidationRule::DeclShaderReturnVoid, |
| {F.getName()}); |
| |
| auto ArgFormatError = [&](Function &F, Argument &arg, ValidationRule rule) { |
| if (arg.hasName()) |
| ValCtx.EmitFnFormatError(&F, rule, {arg.getName().str(), F.getName()}); |
| else |
| ValCtx.EmitFnFormatError(&F, rule, |
| {std::to_string(arg.getArgNo()), F.getName()}); |
| }; |
| |
| unsigned numArgs = 0; |
| for (auto &arg : F.args()) { |
| Type *argTy = arg.getType(); |
| if (argTy->isPointerTy()) |
| argTy = argTy->getPointerElementType(); |
| |
| numArgs++; |
| if (numUDTShaderArgs) { |
| if (arg.getArgNo() >= numUDTShaderArgs) { |
| ArgFormatError(F, arg, ValidationRule::DeclExtraArgs); |
| } else if (!argTy->isStructTy()) { |
| switch (shaderKind) { |
| case DXIL::ShaderKind::Callable: |
| ArgFormatError(F, arg, ValidationRule::DeclParamStruct); |
| break; |
| default: |
| ArgFormatError(F, arg, |
| arg.getArgNo() == 0 |
| ? ValidationRule::DeclPayloadStruct |
| : ValidationRule::DeclAttrStruct); |
| } |
| } |
| continue; |
| } |
| |
| while (argTy->isArrayTy()) { |
| argTy = argTy->getArrayElementType(); |
| } |
| |
| if (argTy->isStructTy() && !ValCtx.isLibProfile) { |
| ArgFormatError(F, arg, ValidationRule::DeclFnFlattenParam); |
| break; |
| } |
| } |
| |
| if (numArgs < numUDTShaderArgs && shaderKind != DXIL::ShaderKind::Node) { |
| StringRef argType[2] = { |
| shaderKind == DXIL::ShaderKind::Callable ? "params" : "payload", |
| "attributes"}; |
| for (unsigned i = numArgs; i < numUDTShaderArgs; i++) { |
| ValCtx.EmitFnFormatError( |
| &F, ValidationRule::DeclShaderMissingArg, |
| {ShaderModel::GetKindName(shaderKind), F.getName(), argType[i]}); |
| } |
| } |
| |
| if (ValCtx.DxilMod.HasDxilFunctionProps(&F) && |
| ValCtx.DxilMod.GetDxilFunctionProps(&F).IsNode()) { |
| ValidateNodeInputRecord(&F, ValCtx); |
| } |
| |
| ValidateFunctionBody(&F, ValCtx); |
| } |
| |
| // function params & return type must not contain resources |
| if (dxilutil::ContainsHLSLObjectType(F.getReturnType())) { |
| ValCtx.EmitFnFormatError(&F, ValidationRule::DeclResourceInFnSig, |
| {F.getName()}); |
| return; |
| } |
| for (auto &Arg : F.args()) { |
| if (dxilutil::ContainsHLSLObjectType(Arg.getType())) { |
| ValCtx.EmitFnFormatError(&F, ValidationRule::DeclResourceInFnSig, |
| {F.getName()}); |
| return; |
| } |
| } |
| |
| // TODO: Remove attribute for lib? |
| if (!ValCtx.isLibProfile) |
| ValidateFunctionAttribute(&F, ValCtx); |
| |
| if (F.hasMetadata()) { |
| ValidateFunctionMetadata(&F, ValCtx); |
| } |
| } |
| |
| static void ValidateGlobalVariable(GlobalVariable &GV, |
| ValidationContext &ValCtx) { |
| bool isInternalGV = |
| dxilutil::IsStaticGlobal(&GV) || dxilutil::IsSharedMemoryGlobal(&GV); |
| |
| if (ValCtx.isLibProfile) { |
| auto isCBufferGlobal = |
| [&](const std::vector<std::unique_ptr<DxilCBuffer>> &ResTab) -> bool { |
| for (auto &Res : ResTab) |
| if (Res->GetGlobalSymbol() == &GV) |
| return true; |
| return false; |
| }; |
| auto isResourceGlobal = |
| [&](const std::vector<std::unique_ptr<DxilResource>> &ResTab) -> bool { |
| for (auto &Res : ResTab) |
| if (Res->GetGlobalSymbol() == &GV) |
| return true; |
| return false; |
| }; |
| auto isSamplerGlobal = |
| [&](const std::vector<std::unique_ptr<DxilSampler>> &ResTab) -> bool { |
| for (auto &Res : ResTab) |
| if (Res->GetGlobalSymbol() == &GV) |
| return true; |
| return false; |
| }; |
| |
| bool isRes = isCBufferGlobal(ValCtx.DxilMod.GetCBuffers()); |
| isRes |= isResourceGlobal(ValCtx.DxilMod.GetUAVs()); |
| isRes |= isResourceGlobal(ValCtx.DxilMod.GetSRVs()); |
| isRes |= isSamplerGlobal(ValCtx.DxilMod.GetSamplers()); |
| isInternalGV |= isRes; |
| |
| // Allow special dx.ishelper for library target |
| if (GV.getName().compare(DXIL::kDxIsHelperGlobalName) == 0) { |
| Type *Ty = GV.getType()->getPointerElementType(); |
| if (Ty->isIntegerTy() && Ty->getScalarSizeInBits() == 32) { |
| isInternalGV = true; |
| } |
| } |
| } |
| |
| if (!isInternalGV) { |
| if (!GV.user_empty()) { |
| bool hasInstructionUser = false; |
| for (User *U : GV.users()) { |
| if (isa<Instruction>(U)) { |
| hasInstructionUser = true; |
| break; |
| } |
| } |
| // External GV should not have instruction user. |
| if (hasInstructionUser) { |
| ValCtx.EmitGlobalVariableFormatError( |
| &GV, ValidationRule::DeclNotUsedExternal, {GV.getName()}); |
| } |
| } |
| // Must have metadata description for each variable. |
| |
| } else { |
| // Internal GV must have user. |
| if (GV.user_empty()) { |
| ValCtx.EmitGlobalVariableFormatError( |
| &GV, ValidationRule::DeclUsedInternal, {GV.getName()}); |
| } |
| |
| // Validate type for internal globals. |
| if (dxilutil::IsStaticGlobal(&GV) || dxilutil::IsSharedMemoryGlobal(&GV)) { |
| Type *Ty = GV.getType()->getPointerElementType(); |
| ValidateType(Ty, ValCtx); |
| } |
| } |
| } |
| |
| static void CollectFixAddressAccess(Value *V, |
| std::vector<StoreInst *> &fixAddrTGSMList) { |
| for (User *U : V->users()) { |
| if (GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { |
| if (isa<ConstantExpr>(GEP) || GEP->hasAllConstantIndices()) { |
| CollectFixAddressAccess(GEP, fixAddrTGSMList); |
| } |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { |
| fixAddrTGSMList.emplace_back(SI); |
| } |
| } |
| } |
| |
| static bool IsDivergent(Value *V) { |
| // TODO: return correct result. |
| return false; |
| } |
| |
| static void ValidateTGSMRaceCondition(std::vector<StoreInst *> &fixAddrTGSMList, |
| ValidationContext &ValCtx) { |
| std::unordered_set<Function *> fixAddrTGSMFuncSet; |
| for (StoreInst *I : fixAddrTGSMList) { |
| BasicBlock *BB = I->getParent(); |
| fixAddrTGSMFuncSet.insert(BB->getParent()); |
| } |
| |
| for (auto &F : ValCtx.DxilMod.GetModule()->functions()) { |
| if (F.isDeclaration() || !fixAddrTGSMFuncSet.count(&F)) |
| continue; |
| |
| PostDominatorTree PDT; |
| PDT.runOnFunction(F); |
| |
| BasicBlock *Entry = &F.getEntryBlock(); |
| |
| for (StoreInst *SI : fixAddrTGSMList) { |
| BasicBlock *BB = SI->getParent(); |
| if (BB->getParent() == &F) { |
| if (PDT.dominates(BB, Entry)) { |
| if (IsDivergent(SI->getValueOperand())) |
| ValCtx.EmitInstrError(SI, ValidationRule::InstrTGSMRaceCond); |
| } |
| } |
| } |
| } |
| } |
| |
| static void ValidateGlobalVariables(ValidationContext &ValCtx) { |
| DxilModule &M = ValCtx.DxilMod; |
| |
| const ShaderModel *pSM = ValCtx.DxilMod.GetShaderModel(); |
| bool TGSMAllowed = pSM->IsCS() || pSM->IsAS() || pSM->IsMS() || pSM->IsLib(); |
| |
| unsigned TGSMSize = 0; |
| std::vector<StoreInst *> fixAddrTGSMList; |
| const DataLayout &DL = M.GetModule()->getDataLayout(); |
| for (GlobalVariable &GV : M.GetModule()->globals()) { |
| ValidateGlobalVariable(GV, ValCtx); |
| if (GV.getType()->getAddressSpace() == DXIL::kTGSMAddrSpace) { |
| if (!TGSMAllowed) |
| ValCtx.EmitGlobalVariableFormatError( |
| &GV, ValidationRule::SmTGSMUnsupported, |
| {std::string("in Shader Model ") + M.GetShaderModel()->GetName()}); |
| // Lib targets need to check the usage to know if it's allowed |
| if (pSM->IsLib()) { |
| for (User *U : GV.users()) { |
| if (Instruction *I = dyn_cast<Instruction>(U)) { |
| llvm::Function *F = I->getParent()->getParent(); |
| if (M.HasDxilEntryProps(F)) { |
| DxilFunctionProps &props = M.GetDxilEntryProps(F).props; |
| if (!props.IsCS() && !props.IsAS() && !props.IsMS() && |
| !props.IsNode()) { |
| ValCtx.EmitInstrFormatError(I, |
| ValidationRule::SmTGSMUnsupported, |
| {"from non-compute entry points"}); |
| } |
| } |
| } |
| } |
| } |
| TGSMSize += DL.getTypeAllocSize(GV.getType()->getElementType()); |
| CollectFixAddressAccess(&GV, fixAddrTGSMList); |
| } |
| } |
| |
| ValidationRule Rule = ValidationRule::SmMaxTGSMSize; |
| unsigned MaxSize = DXIL::kMaxTGSMSize; |
| |
| if (M.GetShaderModel()->IsMS()) { |
| Rule = ValidationRule::SmMaxMSSMSize; |
| MaxSize = DXIL::kMaxMSSMSize; |
| } |
| if (TGSMSize > MaxSize) { |
| Module::global_iterator GI = M.GetModule()->global_end(); |
| GlobalVariable *GV = &*GI; |
| do { |
| GI--; |
| GV = &*GI; |
| if (GV->getType()->getAddressSpace() == hlsl::DXIL::kTGSMAddrSpace) |
| break; |
| } while (GI != M.GetModule()->global_begin()); |
| ValCtx.EmitGlobalVariableFormatError( |
| GV, Rule, {std::to_string(TGSMSize), std::to_string(MaxSize)}); |
| } |
| |
| if (!fixAddrTGSMList.empty()) { |
| ValidateTGSMRaceCondition(fixAddrTGSMList, ValCtx); |
| } |
| } |
| |
| static void ValidateValidatorVersion(ValidationContext &ValCtx) { |
| Module *pModule = &ValCtx.M; |
| NamedMDNode *pNode = pModule->getNamedMetadata("dx.valver"); |
| if (pNode == nullptr) { |
| return; |
| } |
| if (pNode->getNumOperands() == 1) { |
| MDTuple *pVerValues = dyn_cast<MDTuple>(pNode->getOperand(0)); |
| if (pVerValues != nullptr && pVerValues->getNumOperands() == 2) { |
| uint64_t majorVer, minorVer; |
| if (GetNodeOperandAsInt(ValCtx, pVerValues, 0, &majorVer) && |
| GetNodeOperandAsInt(ValCtx, pVerValues, 1, &minorVer)) { |
| unsigned curMajor, curMinor; |
| GetValidationVersion(&curMajor, &curMinor); |
| // This will need to be updated as major/minor versions evolve, |
| // depending on the degree of compat across versions. |
| if (majorVer == curMajor && minorVer <= curMinor) { |
| return; |
| } else { |
| ValCtx.EmitFormatError( |
| ValidationRule::MetaVersionSupported, |
| {"Validator", std::to_string(majorVer), std::to_string(minorVer), |
| std::to_string(curMajor), std::to_string(curMinor)}); |
| return; |
| } |
| } |
| } |
| } |
| ValCtx.EmitError(ValidationRule::MetaWellFormed); |
| } |
| |
| static void ValidateDxilVersion(ValidationContext &ValCtx) { |
| Module *pModule = &ValCtx.M; |
| NamedMDNode *pNode = pModule->getNamedMetadata("dx.version"); |
| if (pNode == nullptr) { |
| return; |
| } |
| if (pNode->getNumOperands() == 1) { |
| MDTuple *pVerValues = dyn_cast<MDTuple>(pNode->getOperand(0)); |
| if (pVerValues != nullptr && pVerValues->getNumOperands() == 2) { |
| uint64_t majorVer, minorVer; |
| if (GetNodeOperandAsInt(ValCtx, pVerValues, 0, &majorVer) && |
| GetNodeOperandAsInt(ValCtx, pVerValues, 1, &minorVer)) { |
| // This will need to be updated as dxil major/minor versions evolve, |
| // depending on the degree of compat across versions. |
| if ((majorVer == DXIL::kDxilMajor && minorVer <= DXIL::kDxilMinor) && |
| (majorVer == ValCtx.m_DxilMajor && |
| minorVer == ValCtx.m_DxilMinor)) { |
| return; |
| } else { |
| ValCtx.EmitFormatError(ValidationRule::MetaVersionSupported, |
| {"Dxil", std::to_string(majorVer), |
| std::to_string(minorVer), |
| std::to_string(DXIL::kDxilMajor), |
| std::to_string(DXIL::kDxilMinor)}); |
| return; |
| } |
| } |
| } |
| } |
| // ValCtx.EmitMetaError(pNode, ValidationRule::MetaWellFormed); |
| ValCtx.EmitError(ValidationRule::MetaWellFormed); |
| } |
| |
| static void ValidateTypeAnnotation(ValidationContext &ValCtx) { |
| if (ValCtx.m_DxilMajor == 1 && ValCtx.m_DxilMinor >= 2) { |
| Module *pModule = &ValCtx.M; |
| NamedMDNode *TA = pModule->getNamedMetadata("dx.typeAnnotations"); |
| if (TA == nullptr) |
| return; |
| for (unsigned i = 0, end = TA->getNumOperands(); i < end; ++i) { |
| MDTuple *TANode = dyn_cast<MDTuple>(TA->getOperand(i)); |
| if (TANode->getNumOperands() < 3) { |
| ValCtx.EmitMetaError(TANode, ValidationRule::MetaWellFormed); |
| return; |
| } |
| ConstantInt *tag = mdconst::extract<ConstantInt>(TANode->getOperand(0)); |
| uint64_t tagValue = tag->getZExtValue(); |
| if (tagValue != DxilMDHelper::kDxilTypeSystemStructTag && |
| tagValue != DxilMDHelper::kDxilTypeSystemFunctionTag) { |
| ValCtx.EmitMetaError(TANode, ValidationRule::MetaWellFormed); |
| return; |
| } |
| } |
| } |
| } |
| |
| static void ValidateBitcode(ValidationContext &ValCtx) { |
| std::string diagStr; |
| raw_string_ostream diagStream(diagStr); |
| if (llvm::verifyModule(ValCtx.M, &diagStream)) { |
| ValCtx.EmitError(ValidationRule::BitcodeValid); |
| dxilutil::EmitErrorOnContext(ValCtx.M.getContext(), diagStream.str()); |
| } |
| } |
| |
| static void ValidateWaveSize(ValidationContext &ValCtx, |
| const hlsl::ShaderModel *SM, Module *pModule) { |
| // Don't do this validation if the shader is non-compute |
| if (!(SM->IsCS() || SM->IsLib())) |
| return; |
| |
| NamedMDNode *EPs = pModule->getNamedMetadata("dx.entryPoints"); |
| if (!EPs) |
| return; |
| |
| for (unsigned i = 0, end = EPs->getNumOperands(); i < end; ++i) { |
| MDTuple *EPNodeRef = dyn_cast<MDTuple>(EPs->getOperand(i)); |
| if (EPNodeRef->getNumOperands() < 5) { |
| ValCtx.EmitMetaError(EPNodeRef, ValidationRule::MetaWellFormed); |
| return; |
| } |
| // get access to the digit that represents the metadata number that |
| // would store entry properties |
| const llvm::MDOperand &mOp = |
| EPNodeRef->getOperand(EPNodeRef->getNumOperands() - 1); |
| // the final operand to the entry points tuple should be a tuple. |
| if (mOp == nullptr || (mOp.get())->getMetadataID() != Metadata::MDTupleKind) |
| continue; |
| |
| // get access to the node that stores entry properties |
| MDTuple *EPropNode = dyn_cast<MDTuple>( |
| EPNodeRef->getOperand(EPNodeRef->getNumOperands() - 1)); |
| // find any incompatible tags inside the entry properties |
| // increment j by 2 to only analyze tags, not values |
| bool foundTag = false; |
| for (unsigned j = 0, end2 = EPropNode->getNumOperands(); j < end2; j += 2) { |
| const MDOperand &propertyTagOp = EPropNode->getOperand(j); |
| // note, we are only looking for tags, which will be a constant |
| // integer |
| DXASSERT(!(propertyTagOp == nullptr || |
| (propertyTagOp.get())->getMetadataID() != |
| Metadata::ConstantAsMetadataKind), |
| "tag operand should be a constant integer."); |
| |
| ConstantInt *tag = mdconst::extract<ConstantInt>(propertyTagOp); |
| uint64_t tagValue = tag->getZExtValue(); |
| |
| // legacy wavesize is only supported between 6.6 and 6.7, so we |
| // should fail if we find the ranged wave size metadata tag |
| if (tagValue == DxilMDHelper::kDxilRangedWaveSizeTag) { |
| // if this tag is already present in the |
| // current entry point, emit an error |
| if (foundTag) { |
| ValCtx.EmitFormatError(ValidationRule::SmWaveSizeTagDuplicate, {}); |
| return; |
| } |
| foundTag = true; |
| if (SM->IsSM66Plus() && !SM->IsSM68Plus()) { |
| |
| ValCtx.EmitFormatError(ValidationRule::SmWaveSizeRangeNeedsSM68Plus, |
| {}); |
| return; |
| } |
| // get the metadata that contains the |
| // parameters to the wavesize attribute |
| MDTuple *WaveTuple = dyn_cast<MDTuple>(EPropNode->getOperand(j + 1)); |
| if (WaveTuple->getNumOperands() != 3) { |
| ValCtx.EmitFormatError( |
| ValidationRule::SmWaveSizeRangeExpectsThreeParams, {}); |
| return; |
| } |
| for (int k = 0; k < 3; k++) { |
| const MDOperand ¶m = WaveTuple->getOperand(k); |
| if (param->getMetadataID() != Metadata::ConstantAsMetadataKind) { |
| ValCtx.EmitFormatError( |
| ValidationRule::SmWaveSizeNeedsConstantOperands, {}); |
| return; |
| } |
| } |
| |
| } else if (tagValue == DxilMDHelper::kDxilWaveSizeTag) { |
| // if this tag is already present in the |
| // current entry point, emit an error |
| if (foundTag) { |
| ValCtx.EmitFormatError(ValidationRule::SmWaveSizeTagDuplicate, {}); |
| return; |
| } |
| foundTag = true; |
| MDTuple *WaveTuple = dyn_cast<MDTuple>(EPropNode->getOperand(j + 1)); |
| if (WaveTuple->getNumOperands() != 1) { |
| ValCtx.EmitFormatError(ValidationRule::SmWaveSizeExpectsOneParam, {}); |
| return; |
| } |
| const MDOperand ¶m = WaveTuple->getOperand(0); |
| if (param->getMetadataID() != Metadata::ConstantAsMetadataKind) { |
| ValCtx.EmitFormatError( |
| ValidationRule::SmWaveSizeNeedsConstantOperands, {}); |
| return; |
| } |
| // if the shader model is anything but 6.6 or 6.7, then we do not |
| // expect to encounter the legacy wave size tag. |
| if (!(SM->IsSM66Plus() && !SM->IsSM68Plus())) { |
| ValCtx.EmitFormatError(ValidationRule::SmWaveSizeNeedsSM66or67, {}); |
| return; |
| } |
| } |
| } |
| } |
| } |
| |
| static void ValidateMetadata(ValidationContext &ValCtx) { |
| ValidateValidatorVersion(ValCtx); |
| ValidateDxilVersion(ValCtx); |
| |
| Module *pModule = &ValCtx.M; |
| const std::string &target = pModule->getTargetTriple(); |
| if (target != "dxil-ms-dx") { |
| ValCtx.EmitFormatError(ValidationRule::MetaTarget, {target}); |
| } |
| |
| // The llvm.dbg.(cu/contents/defines/mainFileName/arg) named metadata nodes |
| // are only available in debug modules, not in the validated ones. |
| // llvm.bitsets is also disallowed. |
| // |
| // These are verified in lib/IR/Verifier.cpp. |
| StringMap<bool> llvmNamedMeta; |
| llvmNamedMeta["llvm.ident"]; |
| llvmNamedMeta["llvm.module.flags"]; |
| |
| for (auto &NamedMetaNode : pModule->named_metadata()) { |
| if (!DxilModule::IsKnownNamedMetaData(NamedMetaNode)) { |
| StringRef name = NamedMetaNode.getName(); |
| if (!name.startswith_lower("llvm.")) { |
| ValCtx.EmitFormatError(ValidationRule::MetaKnown, {name.str()}); |
| } else { |
| if (llvmNamedMeta.count(name) == 0) { |
| ValCtx.EmitFormatError(ValidationRule::MetaKnown, {name.str()}); |
| } |
| } |
| } |
| } |
| |
| const hlsl::ShaderModel *SM = ValCtx.DxilMod.GetShaderModel(); |
| // validate that any wavesize tags don't appear outside their expected shader |
| // models. Validate only 1 tag exists per entry point. |
| ValidateWaveSize(ValCtx, SM, pModule); |
| |
| if (!SM->IsValidForDxil()) { |
| ValCtx.EmitFormatError(ValidationRule::SmName, |
| {ValCtx.DxilMod.GetShaderModel()->GetName()}); |
| } |
| |
| if (SM->GetMajor() == 6) { |
| // Make sure DxilVersion matches the shader model. |
| unsigned SMDxilMajor, SMDxilMinor; |
| SM->GetDxilVersion(SMDxilMajor, SMDxilMinor); |
| if (ValCtx.m_DxilMajor != SMDxilMajor || |
| ValCtx.m_DxilMinor != SMDxilMinor) { |
| ValCtx.EmitFormatError( |
| ValidationRule::SmDxilVersion, |
| {std::to_string(SMDxilMajor), std::to_string(SMDxilMinor)}); |
| } |
| } |
| |
| ValidateTypeAnnotation(ValCtx); |
| } |
| |
| static void ValidateResourceOverlap( |
| hlsl::DxilResourceBase &res, |
| SpacesAllocator<unsigned, DxilResourceBase> &spaceAllocator, |
| ValidationContext &ValCtx) { |
| unsigned base = res.GetLowerBound(); |
| if (ValCtx.isLibProfile && !res.IsAllocated()) { |
| // Skip unallocated resource for library. |
| return; |
| } |
| unsigned size = res.GetRangeSize(); |
| unsigned space = res.GetSpaceID(); |
| |
| auto &allocator = spaceAllocator.Get(space); |
| unsigned end = base + size - 1; |
| // unbounded |
| if (end < base) |
| end = size; |
| const DxilResourceBase *conflictRes = allocator.Insert(&res, base, end); |
| if (conflictRes) { |
| ValCtx.EmitFormatError( |
| ValidationRule::SmResourceRangeOverlap, |
| {ValCtx.GetResourceName(&res), std::to_string(base), |
| std::to_string(size), std::to_string(conflictRes->GetLowerBound()), |
| std::to_string(conflictRes->GetRangeSize()), std::to_string(space)}); |
| } |
| } |
| |
| static void ValidateResource(hlsl::DxilResource &res, |
| ValidationContext &ValCtx) { |
| switch (res.GetKind()) { |
| case DXIL::ResourceKind::RawBuffer: |
| case DXIL::ResourceKind::TypedBuffer: |
| case DXIL::ResourceKind::TBuffer: |
| case DXIL::ResourceKind::StructuredBuffer: |
| case DXIL::ResourceKind::Texture1D: |
| case DXIL::ResourceKind::Texture1DArray: |
| case DXIL::ResourceKind::Texture2D: |
| case DXIL::ResourceKind::Texture2DArray: |
| case DXIL::ResourceKind::Texture3D: |
| case DXIL::ResourceKind::TextureCube: |
| case DXIL::ResourceKind::TextureCubeArray: |
| if (res.GetSampleCount() > 0) { |
| ValCtx.EmitResourceError(&res, ValidationRule::SmSampleCountOnlyOn2DMS); |
| } |
| break; |
| case DXIL::ResourceKind::Texture2DMS: |
| case DXIL::ResourceKind::Texture2DMSArray: |
| break; |
| case DXIL::ResourceKind::RTAccelerationStructure: |
| // TODO: check profile. |
| break; |
| case DXIL::ResourceKind::FeedbackTexture2D: |
| case DXIL::ResourceKind::FeedbackTexture2DArray: |
| if (res.GetSamplerFeedbackType() >= DXIL::SamplerFeedbackType::LastEntry) |
| ValCtx.EmitResourceError(&res, |
| ValidationRule::SmInvalidSamplerFeedbackType); |
| break; |
| default: |
| ValCtx.EmitResourceError(&res, ValidationRule::SmInvalidResourceKind); |
| break; |
| } |
| |
| switch (res.GetCompType().GetKind()) { |
| case DXIL::ComponentType::F32: |
| case DXIL::ComponentType::SNormF32: |
| case DXIL::ComponentType::UNormF32: |
| case DXIL::ComponentType::F64: |
| case DXIL::ComponentType::I32: |
| case DXIL::ComponentType::I64: |
| case DXIL::ComponentType::U32: |
| case DXIL::ComponentType::U64: |
| case DXIL::ComponentType::F16: |
| case DXIL::ComponentType::I16: |
| case DXIL::ComponentType::U16: |
| break; |
| default: |
| if (!res.IsStructuredBuffer() && !res.IsRawBuffer() && |
| !res.IsFeedbackTexture()) |
| ValCtx.EmitResourceError(&res, ValidationRule::SmInvalidResourceCompType); |
| break; |
| } |
| |
| if (res.IsStructuredBuffer()) { |
| unsigned stride = res.GetElementStride(); |
| bool alignedTo4Bytes = (stride & 3) == 0; |
| if (!alignedTo4Bytes && ValCtx.M.GetDxilModule().GetUseMinPrecision()) { |
| ValCtx.EmitResourceFormatError( |
| &res, ValidationRule::MetaStructBufAlignment, |
| {std::to_string(4), std::to_string(stride)}); |
| } |
| if (stride > DXIL::kMaxStructBufferStride) { |
| ValCtx.EmitResourceFormatError( |
| &res, ValidationRule::MetaStructBufAlignmentOutOfBound, |
| {std::to_string(DXIL::kMaxStructBufferStride), |
| std::to_string(stride)}); |
| } |
| } |
| |
| if (res.IsAnyTexture() || res.IsTypedBuffer()) { |
| Type *RetTy = res.GetRetType(); |
| unsigned size = |
| ValCtx.DxilMod.GetModule()->getDataLayout().getTypeAllocSize(RetTy); |
| if (size > 4 * 4) { |
| ValCtx.EmitResourceError(&res, ValidationRule::MetaTextureType); |
| } |
| } |
| } |
| |
| static void CollectCBufferRanges( |
| DxilStructAnnotation *annotation, |
| SpanAllocator<unsigned, DxilFieldAnnotation> &constAllocator, unsigned base, |
| DxilTypeSystem &typeSys, StringRef cbName, ValidationContext &ValCtx) { |
| DXASSERT(((base + 15) & ~(0xf)) == base, |
| "otherwise, base for struct is not aligned"); |
| unsigned cbSize = annotation->GetCBufferSize(); |
| |
| const StructType *ST = annotation->GetStructType(); |
| |
| for (int i = annotation->GetNumFields() - 1; i >= 0; i--) { |
| DxilFieldAnnotation &fieldAnnotation = annotation->GetFieldAnnotation(i); |
| Type *EltTy = ST->getElementType(i); |
| |
| unsigned offset = fieldAnnotation.GetCBufferOffset(); |
| |
| unsigned EltSize = dxilutil::GetLegacyCBufferFieldElementSize( |
| fieldAnnotation, EltTy, typeSys); |
| |
| bool bOutOfBound = false; |
| if (!EltTy->isAggregateType()) { |
| bOutOfBound = (offset + EltSize) > cbSize; |
| if (!bOutOfBound) { |
| if (constAllocator.Insert(&fieldAnnotation, base + offset, |
| base + offset + EltSize - 1)) { |
| ValCtx.EmitFormatError(ValidationRule::SmCBufferOffsetOverlap, |
| {cbName, std::to_string(base + offset)}); |
| } |
| } |
| } else if (isa<ArrayType>(EltTy)) { |
| if (((offset + 15) & ~(0xf)) != offset) { |
| ValCtx.EmitFormatError(ValidationRule::SmCBufferArrayOffsetAlignment, |
| {cbName, std::to_string(offset)}); |
| continue; |
| } |
| unsigned arrayCount = 1; |
| while (isa<ArrayType>(EltTy)) { |
| arrayCount *= EltTy->getArrayNumElements(); |
| EltTy = EltTy->getArrayElementType(); |
| } |
| |
| DxilStructAnnotation *EltAnnotation = nullptr; |
| if (StructType *EltST = dyn_cast<StructType>(EltTy)) |
| EltAnnotation = typeSys.GetStructAnnotation(EltST); |
| |
| unsigned alignedEltSize = ((EltSize + 15) & ~(0xf)); |
| unsigned arraySize = ((arrayCount - 1) * alignedEltSize) + EltSize; |
| bOutOfBound = (offset + arraySize) > cbSize; |
| |
| if (!bOutOfBound) { |
| // If we didn't care about gaps where elements could be placed with user |
| // offsets, we could: recurse once if EltAnnotation, then allocate the |
| // rest if arrayCount > 1 |
| |
| unsigned arrayBase = base + offset; |
| if (!EltAnnotation) { |
| if (EltSize > 0 && |
| nullptr != constAllocator.Insert(&fieldAnnotation, arrayBase, |
| arrayBase + arraySize - 1)) { |
| ValCtx.EmitFormatError(ValidationRule::SmCBufferOffsetOverlap, |
| {cbName, std::to_string(arrayBase)}); |
| } |
| } else { |
| for (unsigned idx = 0; idx < arrayCount; idx++) { |
| CollectCBufferRanges(EltAnnotation, constAllocator, arrayBase, |
| typeSys, cbName, ValCtx); |
| arrayBase += alignedEltSize; |
| } |
| } |
| } |
| } else { |
| StructType *EltST = cast<StructType>(EltTy); |
| unsigned structBase = base + offset; |
| bOutOfBound = (offset + EltSize) > cbSize; |
| if (!bOutOfBound) { |
| if (DxilStructAnnotation *EltAnnotation = |
| typeSys.GetStructAnnotation(EltST)) { |
| CollectCBufferRanges(EltAnnotation, constAllocator, structBase, |
| typeSys, cbName, ValCtx); |
| } else { |
| if (EltSize > 0 && |
| nullptr != constAllocator.Insert(&fieldAnnotation, structBase, |
| structBase + EltSize - 1)) { |
| ValCtx.EmitFormatError(ValidationRule::SmCBufferOffsetOverlap, |
| {cbName, std::to_string(structBase)}); |
| } |
| } |
| } |
| } |
| |
| if (bOutOfBound) { |
| ValCtx.EmitFormatError(ValidationRule::SmCBufferElementOverflow, |
| {cbName, std::to_string(base + offset)}); |
| } |
| } |
| } |
| |
| static void ValidateCBuffer(DxilCBuffer &cb, ValidationContext &ValCtx) { |
| Type *Ty = cb.GetHLSLType()->getPointerElementType(); |
| if (cb.GetRangeSize() != 1 || Ty->isArrayTy()) { |
| Ty = Ty->getArrayElementType(); |
| } |
| if (!isa<StructType>(Ty)) { |
| ValCtx.EmitResourceError(&cb, |
| ValidationRule::SmCBufferTemplateTypeMustBeStruct); |
| return; |
| } |
| if (cb.GetSize() > (DXIL::kMaxCBufferSize << 4)) { |
| ValCtx.EmitResourceFormatError(&cb, ValidationRule::SmCBufferSize, |
| {std::to_string(cb.GetSize())}); |
| return; |
| } |
| StructType *ST = cast<StructType>(Ty); |
| DxilTypeSystem &typeSys = ValCtx.DxilMod.GetTypeSystem(); |
| DxilStructAnnotation *annotation = typeSys.GetStructAnnotation(ST); |
| if (!annotation) |
| return; |
| |
| // Collect constant ranges. |
| std::vector<std::pair<unsigned, unsigned>> constRanges; |
| SpanAllocator<unsigned, DxilFieldAnnotation> constAllocator( |
| 0, |
| // 4096 * 16 bytes. |
| DXIL::kMaxCBufferSize << 4); |
| CollectCBufferRanges(annotation, constAllocator, 0, typeSys, |
| ValCtx.GetResourceName(&cb), ValCtx); |
| } |
| |
| static void ValidateResources(ValidationContext &ValCtx) { |
| const vector<unique_ptr<DxilResource>> &uavs = ValCtx.DxilMod.GetUAVs(); |
| SpacesAllocator<unsigned, DxilResourceBase> uavAllocator; |
| |
| for (auto &uav : uavs) { |
| if (uav->IsROV()) { |
| if (!ValCtx.DxilMod.GetShaderModel()->IsPS() && !ValCtx.isLibProfile) { |
| ValCtx.EmitResourceError(uav.get(), ValidationRule::SmROVOnlyInPS); |
| } |
| } |
| switch (uav->GetKind()) { |
| case DXIL::ResourceKind::TextureCube: |
| case DXIL::ResourceKind::TextureCubeArray: |
| ValCtx.EmitResourceError(uav.get(), |
| ValidationRule::SmInvalidTextureKindOnUAV); |
| break; |
| default: |
| break; |
| } |
| |
| if (uav->HasCounter() && !uav->IsStructuredBuffer()) { |
| ValCtx.EmitResourceError(uav.get(), |
| ValidationRule::SmCounterOnlyOnStructBuf); |
| } |
| if (uav->HasCounter() && uav->IsGloballyCoherent()) |
| ValCtx.EmitResourceFormatError(uav.get(), |
| ValidationRule::MetaGlcNotOnAppendConsume, |
| {ValCtx.GetResourceName(uav.get())}); |
| |
| ValidateResource(*uav, ValCtx); |
| ValidateResourceOverlap(*uav, uavAllocator, ValCtx); |
| } |
| |
| SpacesAllocator<unsigned, DxilResourceBase> srvAllocator; |
| const vector<unique_ptr<DxilResource>> &srvs = ValCtx.DxilMod.GetSRVs(); |
| for (auto &srv : srvs) { |
| ValidateResource(*srv, ValCtx); |
| ValidateResourceOverlap(*srv, srvAllocator, ValCtx); |
| } |
| |
| hlsl::DxilResourceBase *pNonDense; |
| if (!AreDxilResourcesDense(&ValCtx.M, &pNonDense)) { |
| ValCtx.EmitResourceError(pNonDense, ValidationRule::MetaDenseResIDs); |
| } |
| |
| SpacesAllocator<unsigned, DxilResourceBase> samplerAllocator; |
| for (auto &sampler : ValCtx.DxilMod.GetSamplers()) { |
| if (sampler->GetSamplerKind() == DXIL::SamplerKind::Invalid) { |
| ValCtx.EmitResourceError(sampler.get(), |
| ValidationRule::MetaValidSamplerMode); |
| } |
| ValidateResourceOverlap(*sampler, samplerAllocator, ValCtx); |
| } |
| |
| SpacesAllocator<unsigned, DxilResourceBase> cbufferAllocator; |
| for (auto &cbuffer : ValCtx.DxilMod.GetCBuffers()) { |
| ValidateCBuffer(*cbuffer, ValCtx); |
| ValidateResourceOverlap(*cbuffer, cbufferAllocator, ValCtx); |
| } |
| } |
| |
| static void ValidateShaderFlags(ValidationContext &ValCtx) { |
| ShaderFlags calcFlags; |
| ValCtx.DxilMod.CollectShaderFlagsForModule(calcFlags); |
| |
| // Special case for validator version prior to 1.8. |
| // If DXR 1.1 flag is set, but our computed flags do not have this set, then |
| // this is due to prior versions setting the flag based on DXR 1.1 subobjects, |
| // which are gone by this point. Set the flag and the rest should match. |
| unsigned valMajor, valMinor; |
| ValCtx.DxilMod.GetValidatorVersion(valMajor, valMinor); |
| if (DXIL::CompareVersions(valMajor, valMinor, 1, 5) >= 0 && |
| DXIL::CompareVersions(valMajor, valMinor, 1, 8) < 0 && |
| ValCtx.DxilMod.m_ShaderFlags.GetRaytracingTier1_1() && |
| !calcFlags.GetRaytracingTier1_1()) { |
| calcFlags.SetRaytracingTier1_1(true); |
| } |
| |
| const uint64_t mask = ShaderFlags::GetShaderFlagsRawForCollection(); |
| uint64_t declaredFlagsRaw = ValCtx.DxilMod.m_ShaderFlags.GetShaderFlagsRaw(); |
| uint64_t calcFlagsRaw = calcFlags.GetShaderFlagsRaw(); |
| |
| declaredFlagsRaw &= mask; |
| calcFlagsRaw &= mask; |
| |
| if (declaredFlagsRaw == calcFlagsRaw) { |
| return; |
| } |
| ValCtx.EmitError(ValidationRule::MetaFlagsUsage); |
| |
| dxilutil::EmitNoteOnContext(ValCtx.M.getContext(), |
| Twine("Flags declared=") + |
| Twine(declaredFlagsRaw) + Twine(", actual=") + |
| Twine(calcFlagsRaw)); |
| } |
| |
| static void ValidateSignatureElement(DxilSignatureElement &SE, |
| ValidationContext &ValCtx) { |
| DXIL::SemanticKind semanticKind = SE.GetSemantic()->GetKind(); |
| CompType::Kind compKind = SE.GetCompType().GetKind(); |
| DXIL::InterpolationMode Mode = SE.GetInterpolationMode()->GetKind(); |
| |
| StringRef Name = SE.GetName(); |
| if (Name.size() < 1 || Name.size() > 64) { |
| ValCtx.EmitSignatureError(&SE, ValidationRule::MetaSemanticLen); |
| } |
| |
| if (semanticKind > DXIL::SemanticKind::Arbitrary && |
| semanticKind < DXIL::SemanticKind::Invalid) { |
| if (semanticKind != Semantic::GetByName(SE.GetName())->GetKind()) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemaKindMatchesName, |
| {SE.GetName(), SE.GetSemantic()->GetName()}); |
| } |
| } |
| |
| unsigned compWidth = 0; |
| bool compFloat = false; |
| bool compInt = false; |
| bool compBool = false; |
| |
| switch (compKind) { |
| case CompType::Kind::U64: |
| compWidth = 64; |
| compInt = true; |
| break; |
| case CompType::Kind::I64: |
| compWidth = 64; |
| compInt = true; |
| break; |
| // These should be translated for signatures: |
| // case CompType::Kind::PackedS8x32: |
| // case CompType::Kind::PackedU8x32: |
| case CompType::Kind::U32: |
| compWidth = 32; |
| compInt = true; |
| break; |
| case CompType::Kind::I32: |
| compWidth = 32; |
| compInt = true; |
| break; |
| case CompType::Kind::U16: |
| compWidth = 16; |
| compInt = true; |
| break; |
| case CompType::Kind::I16: |
| compWidth = 16; |
| compInt = true; |
| break; |
| case CompType::Kind::I1: |
| compWidth = 1; |
| compBool = true; |
| break; |
| case CompType::Kind::F64: |
| compWidth = 64; |
| compFloat = true; |
| break; |
| case CompType::Kind::F32: |
| compWidth = 32; |
| compFloat = true; |
| break; |
| case CompType::Kind::F16: |
| compWidth = 16; |
| compFloat = true; |
| break; |
| case CompType::Kind::SNormF64: |
| compWidth = 64; |
| compFloat = true; |
| break; |
| case CompType::Kind::SNormF32: |
| compWidth = 32; |
| compFloat = true; |
| break; |
| case CompType::Kind::SNormF16: |
| compWidth = 16; |
| compFloat = true; |
| break; |
| case CompType::Kind::UNormF64: |
| compWidth = 64; |
| compFloat = true; |
| break; |
| case CompType::Kind::UNormF32: |
| compWidth = 32; |
| compFloat = true; |
| break; |
| case CompType::Kind::UNormF16: |
| compWidth = 16; |
| compFloat = true; |
| break; |
| case CompType::Kind::Invalid: |
| default: |
| ValCtx.EmitFormatError(ValidationRule::MetaSignatureCompType, |
| {SE.GetName()}); |
| break; |
| } |
| |
| if (compInt || compBool) { |
| switch (Mode) { |
| case DXIL::InterpolationMode::Linear: |
| case DXIL::InterpolationMode::LinearCentroid: |
| case DXIL::InterpolationMode::LinearNoperspective: |
| case DXIL::InterpolationMode::LinearNoperspectiveCentroid: |
| case DXIL::InterpolationMode::LinearSample: |
| case DXIL::InterpolationMode::LinearNoperspectiveSample: { |
| ValCtx.EmitFormatError(ValidationRule::MetaIntegerInterpMode, |
| {SE.GetName()}); |
| } break; |
| default: |
| break; |
| } |
| } |
| |
| // Elements that should not appear in the Dxil signature: |
| bool bAllowedInSig = true; |
| bool bShouldBeAllocated = true; |
| switch (SE.GetInterpretation()) { |
| case DXIL::SemanticInterpretationKind::NA: |
| case DXIL::SemanticInterpretationKind::NotInSig: |
| case DXIL::SemanticInterpretationKind::Invalid: |
| bAllowedInSig = false; |
| LLVM_FALLTHROUGH; |
| case DXIL::SemanticInterpretationKind::NotPacked: |
| case DXIL::SemanticInterpretationKind::Shadow: |
| bShouldBeAllocated = false; |
| break; |
| default: |
| break; |
| } |
| |
| const char *inputOutput = nullptr; |
| if (SE.IsInput()) |
| inputOutput = "Input"; |
| else if (SE.IsOutput()) |
| inputOutput = "Output"; |
| else |
| inputOutput = "PatchConstant"; |
| |
| if (!bAllowedInSig) { |
| ValCtx.EmitFormatError(ValidationRule::SmSemantic, |
| {SE.GetName(), |
| ValCtx.DxilMod.GetShaderModel()->GetKindName(), |
| inputOutput}); |
| } else if (bShouldBeAllocated && !SE.IsAllocated()) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticShouldBeAllocated, |
| {inputOutput, SE.GetName()}); |
| } else if (!bShouldBeAllocated && SE.IsAllocated()) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticShouldNotBeAllocated, |
| {inputOutput, SE.GetName()}); |
| } |
| |
| bool bIsClipCull = false; |
| bool bIsTessfactor = false; |
| bool bIsBarycentric = false; |
| |
| switch (semanticKind) { |
| case DXIL::SemanticKind::Depth: |
| case DXIL::SemanticKind::DepthGreaterEqual: |
| case DXIL::SemanticKind::DepthLessEqual: |
| if (!compFloat || compWidth > 32 || SE.GetCols() != 1) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType, |
| {SE.GetSemantic()->GetName(), "float"}); |
| } |
| break; |
| case DXIL::SemanticKind::Coverage: |
| DXASSERT(!SE.IsInput() || !bAllowedInSig, |
| "else internal inconsistency between semantic interpretation " |
| "table and validation code"); |
| LLVM_FALLTHROUGH; |
| case DXIL::SemanticKind::InnerCoverage: |
| case DXIL::SemanticKind::OutputControlPointID: |
| if (compKind != CompType::Kind::U32 || SE.GetCols() != 1) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType, |
| {SE.GetSemantic()->GetName(), "uint"}); |
| } |
| break; |
| case DXIL::SemanticKind::Position: |
| if (!compFloat || compWidth > 32 || SE.GetCols() != 4) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType, |
| {SE.GetSemantic()->GetName(), "float4"}); |
| } |
| break; |
| case DXIL::SemanticKind::Target: |
| if (compWidth > 32) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType, |
| {SE.GetSemantic()->GetName(), "float/int/uint"}); |
| } |
| break; |
| case DXIL::SemanticKind::ClipDistance: |
| case DXIL::SemanticKind::CullDistance: |
| bIsClipCull = true; |
| if (!compFloat || compWidth > 32) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType, |
| {SE.GetSemantic()->GetName(), "float"}); |
| } |
| // NOTE: clip cull distance size is checked at ValidateSignature. |
| break; |
| case DXIL::SemanticKind::IsFrontFace: { |
| if (!(compInt && compWidth == 32) || SE.GetCols() != 1) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType, |
| {SE.GetSemantic()->GetName(), "uint"}); |
| } |
| } break; |
| case DXIL::SemanticKind::RenderTargetArrayIndex: |
| case DXIL::SemanticKind::ViewPortArrayIndex: |
| case DXIL::SemanticKind::VertexID: |
| case DXIL::SemanticKind::PrimitiveID: |
| case DXIL::SemanticKind::InstanceID: |
| case DXIL::SemanticKind::GSInstanceID: |
| case DXIL::SemanticKind::SampleIndex: |
| case DXIL::SemanticKind::StencilRef: |
| case DXIL::SemanticKind::ShadingRate: |
| if ((compKind != CompType::Kind::U32 && compKind != CompType::Kind::U16) || |
| SE.GetCols() != 1) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType, |
| {SE.GetSemantic()->GetName(), "uint"}); |
| } |
| break; |
| case DXIL::SemanticKind::CullPrimitive: { |
| if (!(compBool && compWidth == 1) || SE.GetCols() != 1) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType, |
| {SE.GetSemantic()->GetName(), "bool"}); |
| } |
| } break; |
| case DXIL::SemanticKind::TessFactor: |
| case DXIL::SemanticKind::InsideTessFactor: |
| // NOTE: the size check is at CheckPatchConstantSemantic. |
| bIsTessfactor = true; |
| if (!compFloat || compWidth > 32) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType, |
| {SE.GetSemantic()->GetName(), "float"}); |
| } |
| break; |
| case DXIL::SemanticKind::Arbitrary: |
| break; |
| case DXIL::SemanticKind::DomainLocation: |
| case DXIL::SemanticKind::Invalid: |
| DXASSERT(!bAllowedInSig, "else internal inconsistency between semantic " |
| "interpretation table and validation code"); |
| break; |
| case DXIL::SemanticKind::Barycentrics: |
| bIsBarycentric = true; |
| if (!compFloat || compWidth > 32) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticCompType, |
| {SE.GetSemantic()->GetName(), "float"}); |
| } |
| if (Mode != InterpolationMode::Kind::Linear && |
| Mode != InterpolationMode::Kind::LinearCentroid && |
| Mode != InterpolationMode::Kind::LinearNoperspective && |
| Mode != InterpolationMode::Kind::LinearNoperspectiveCentroid && |
| Mode != InterpolationMode::Kind::LinearNoperspectiveSample && |
| Mode != InterpolationMode::Kind::LinearSample) { |
| ValCtx.EmitSignatureError(&SE, |
| ValidationRule::MetaBarycentricsInterpolation); |
| } |
| if (SE.GetCols() != 3) { |
| ValCtx.EmitSignatureError(&SE, ValidationRule::MetaBarycentricsFloat3); |
| } |
| break; |
| default: |
| ValCtx.EmitSignatureError(&SE, ValidationRule::MetaSemaKindValid); |
| break; |
| } |
| |
| if (ValCtx.DxilMod.GetShaderModel()->IsGS() && SE.IsOutput()) { |
| if (SE.GetOutputStream() >= DXIL::kNumOutputStreams) { |
| ValCtx.EmitFormatError(ValidationRule::SmStreamIndexRange, |
| {std::to_string(SE.GetOutputStream()), |
| std::to_string(DXIL::kNumOutputStreams - 1)}); |
| } |
| } else { |
| if (SE.GetOutputStream() > 0) { |
| ValCtx.EmitFormatError(ValidationRule::SmStreamIndexRange, |
| {std::to_string(SE.GetOutputStream()), "0"}); |
| } |
| } |
| |
| if (ValCtx.DxilMod.GetShaderModel()->IsGS()) { |
| if (SE.GetOutputStream() != 0) { |
| if (ValCtx.DxilMod.GetStreamPrimitiveTopology() != |
| DXIL::PrimitiveTopology::PointList) { |
| ValCtx.EmitSignatureError(&SE, |
| ValidationRule::SmMultiStreamMustBePoint); |
| } |
| } |
| } |
| |
| if (semanticKind == DXIL::SemanticKind::Target) { |
| // Verify packed row == semantic index |
| unsigned row = SE.GetStartRow(); |
| for (unsigned i : SE.GetSemanticIndexVec()) { |
| if (row != i) { |
| ValCtx.EmitSignatureError(&SE, |
| ValidationRule::SmPSTargetIndexMatchesRow); |
| } |
| ++row; |
| } |
| // Verify packed col is 0 |
| if (SE.GetStartCol() != 0) { |
| ValCtx.EmitSignatureError(&SE, ValidationRule::SmPSTargetCol0); |
| } |
| // Verify max row used < 8 |
| if (SE.GetStartRow() + SE.GetRows() > 8) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticIndexMax, |
| {"SV_Target", "7"}); |
| } |
| } else if (bAllowedInSig && semanticKind != DXIL::SemanticKind::Arbitrary) { |
| if (bIsBarycentric) { |
| if (SE.GetSemanticStartIndex() > 1) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticIndexMax, |
| {SE.GetSemantic()->GetName(), "1"}); |
| } |
| } else if (!bIsClipCull && SE.GetSemanticStartIndex() > 0) { |
| ValCtx.EmitFormatError(ValidationRule::MetaSemanticIndexMax, |
| {SE.GetSemantic()->GetName(), "0"}); |
| } |
| // Maximum rows is 1 for system values other than Target |
| // with the exception of tessfactors, which are validated in |
| // CheckPatchConstantSemantic and ClipDistance/CullDistance, which have |
| // other custom constraints. |
| if (!bIsTessfactor && !bIsClipCull && SE.GetRows() > 1) { |
| ValCtx.EmitSignatureError(&SE, ValidationRule::MetaSystemValueRows); |
| } |
| } |
| |
| if (SE.GetCols() + (SE.IsAllocated() ? SE.GetStartCol() : 0) > 4) { |
| unsigned size = (SE.GetRows() - 1) * 4 + SE.GetCols(); |
| ValCtx.EmitFormatError(ValidationRule::MetaSignatureOutOfRange, |
| {SE.GetName(), std::to_string(SE.GetStartRow()), |
| std::to_string(SE.GetStartCol()), |
| std::to_string(size)}); |
| } |
| |
| if (!SE.GetInterpolationMode()->IsValid()) { |
| ValCtx.EmitSignatureError(&SE, ValidationRule::MetaInterpModeValid); |
| } |
| } |
| |
| static void ValidateSignatureOverlap(DxilSignatureElement &E, |
| unsigned maxScalars, |
| DxilSignatureAllocator &allocator, |
| ValidationContext &ValCtx) { |
| |
| // Skip entries that are not or should not be allocated. Validation occurs in |
| // ValidateSignatureElement. |
| if (!E.IsAllocated()) |
| return; |
| switch (E.GetInterpretation()) { |
| case DXIL::SemanticInterpretationKind::NA: |
| case DXIL::SemanticInterpretationKind::NotInSig: |
| case DXIL::SemanticInterpretationKind::Invalid: |
| case DXIL::SemanticInterpretationKind::NotPacked: |
| case DXIL::SemanticInterpretationKind::Shadow: |
| return; |
| default: |
| break; |
| } |
| |
| DxilPackElement PE(&E, allocator.UseMinPrecision()); |
| DxilSignatureAllocator::ConflictType conflict = |
| allocator.DetectRowConflict(&PE, E.GetStartRow()); |
| if (conflict == DxilSignatureAllocator::kNoConflict || |
| conflict == DxilSignatureAllocator::kInsufficientFreeComponents) |
| conflict = |
| allocator.DetectColConflict(&PE, E.GetStartRow(), E.GetStartCol()); |
| switch (conflict) { |
| case DxilSignatureAllocator::kNoConflict: |
| allocator.PlaceElement(&PE, E.GetStartRow(), E.GetStartCol()); |
| break; |
| case DxilSignatureAllocator::kConflictsWithIndexed: |
| ValCtx.EmitFormatError(ValidationRule::MetaSignatureIndexConflict, |
| {E.GetName(), std::to_string(E.GetStartRow()), |
| std::to_string(E.GetStartCol()), |
| std::to_string(E.GetRows()), |
| std::to_string(E.GetCols())}); |
| break; |
| case DxilSignatureAllocator::kConflictsWithIndexedTessFactor: |
| ValCtx.EmitFormatError(ValidationRule::MetaSignatureIndexConflict, |
| {E.GetName(), std::to_string(E.GetStartRow()), |
| std::to_string(E.GetStartCol()), |
| std::to_string(E.GetRows()), |
| std::to_string(E.GetCols())}); |
| break; |
| case DxilSignatureAllocator::kConflictsWithInterpolationMode: |
| ValCtx.EmitFormatError(ValidationRule::MetaInterpModeInOneRow, |
| {E.GetName(), std::to_string(E.GetStartRow()), |
| std::to_string(E.GetStartCol()), |
| std::to_string(E.GetRows()), |
| std::to_string(E.GetCols())}); |
| break; |
| case DxilSignatureAllocator::kInsufficientFreeComponents: |
| DXASSERT(false, "otherwise, conflict not translated"); |
| break; |
| case DxilSignatureAllocator::kOverlapElement: |
| ValCtx.EmitFormatError(ValidationRule::MetaSignatureOverlap, |
| {E.GetName(), std::to_string(E.GetStartRow()), |
| std::to_string(E.GetStartCol()), |
| std::to_string(E.GetRows()), |
| std::to_string(E.GetCols())}); |
| break; |
| case DxilSignatureAllocator::kIllegalComponentOrder: |
| ValCtx.EmitFormatError(ValidationRule::MetaSignatureIllegalComponentOrder, |
| {E.GetName(), std::to_string(E.GetStartRow()), |
| std::to_string(E.GetStartCol()), |
| std::to_string(E.GetRows()), |
| std::to_string(E.GetCols())}); |
| break; |
| case DxilSignatureAllocator::kConflictFit: |
| ValCtx.EmitFormatError(ValidationRule::MetaSignatureOutOfRange, |
| {E.GetName(), std::to_string(E.GetStartRow()), |
| std::to_string(E.GetStartCol()), |
| std::to_string(E.GetRows()), |
| std::to_string(E.GetCols())}); |
| break; |
| case DxilSignatureAllocator::kConflictDataWidth: |
| ValCtx.EmitFormatError(ValidationRule::MetaSignatureDataWidth, |
| {E.GetName(), std::to_string(E.GetStartRow()), |
| std::to_string(E.GetStartCol()), |
| std::to_string(E.GetRows()), |
| std::to_string(E.GetCols())}); |
| break; |
| default: |
| DXASSERT( |
| false, |
| "otherwise, unrecognized conflict type from DxilSignatureAllocator"); |
| } |
| } |
| |
| static void ValidateSignature(ValidationContext &ValCtx, const DxilSignature &S, |
| EntryStatus &Status, unsigned maxScalars) { |
| DxilSignatureAllocator allocator[DXIL::kNumOutputStreams] = { |
| {32, ValCtx.DxilMod.GetUseMinPrecision()}, |
| {32, ValCtx.DxilMod.GetUseMinPrecision()}, |
| {32, ValCtx.DxilMod.GetUseMinPrecision()}, |
| {32, ValCtx.DxilMod.GetUseMinPrecision()}}; |
| unordered_set<unsigned> semanticUsageSet[DXIL::kNumOutputStreams]; |
| StringMap<unordered_set<unsigned>> semanticIndexMap[DXIL::kNumOutputStreams]; |
| unordered_set<unsigned> clipcullRowSet[DXIL::kNumOutputStreams]; |
| unsigned clipcullComponents[DXIL::kNumOutputStreams] = {0, 0, 0, 0}; |
| |
| bool isOutput = S.IsOutput(); |
| unsigned TargetMask = 0; |
| DXIL::SemanticKind DepthKind = DXIL::SemanticKind::Invalid; |
| |
| const InterpolationMode *prevBaryInterpMode = nullptr; |
| unsigned numBarycentrics = 0; |
| |
| for (auto &E : S.GetElements()) { |
| DXIL::SemanticKind semanticKind = E->GetSemantic()->GetKind(); |
| ValidateSignatureElement(*E, ValCtx); |
| // Avoid OOB indexing on streamId. |
| unsigned streamId = E->GetOutputStream(); |
| if (streamId >= DXIL::kNumOutputStreams || !isOutput || |
| !ValCtx.DxilMod.GetShaderModel()->IsGS()) { |
| streamId = 0; |
| } |
| |
| // Semantic index overlap check, keyed by name. |
| std::string nameUpper(E->GetName()); |
| std::transform(nameUpper.begin(), nameUpper.end(), nameUpper.begin(), |
| ::toupper); |
| unordered_set<unsigned> &semIdxSet = semanticIndexMap[streamId][nameUpper]; |
| for (unsigned semIdx : E->GetSemanticIndexVec()) { |
| if (semIdxSet.count(semIdx) > 0) { |
| ValCtx.EmitFormatError(ValidationRule::MetaNoSemanticOverlap, |
| {E->GetName(), std::to_string(semIdx)}); |
| return; |
| } else |
| semIdxSet.insert(semIdx); |
| } |
| |
| // SV_Target has special rules |
| if (semanticKind == DXIL::SemanticKind::Target) { |
| // Validate target overlap |
| if (E->GetStartRow() + E->GetRows() <= 8) { |
| unsigned mask = ((1 << E->GetRows()) - 1) << E->GetStartRow(); |
| if (TargetMask & mask) { |
| ValCtx.EmitFormatError( |
| ValidationRule::MetaNoSemanticOverlap, |
| {"SV_Target", std::to_string(E->GetStartRow())}); |
| } |
| TargetMask = TargetMask | mask; |
| } |
| if (E->GetRows() > 1) { |
| ValCtx.EmitSignatureError(E.get(), ValidationRule::SmNoPSOutputIdx); |
| } |
| continue; |
| } |
| |
| if (E->GetSemantic()->IsInvalid()) |
| continue; |
| |
| // validate system value semantic rules |
| switch (semanticKind) { |
| case DXIL::SemanticKind::Arbitrary: |
| break; |
| case DXIL::SemanticKind::ClipDistance: |
| case DXIL::SemanticKind::CullDistance: |
| // Validate max 8 components across 2 rows (registers) |
| for (unsigned rowIdx = 0; rowIdx < E->GetRows(); rowIdx++) |
| clipcullRowSet[streamId].insert(E->GetStartRow() + rowIdx); |
| if (clipcullRowSet[streamId].size() > 2) { |
| ValCtx.EmitSignatureError(E.get(), ValidationRule::MetaClipCullMaxRows); |
| } |
| clipcullComponents[streamId] += E->GetCols(); |
| if (clipcullComponents[streamId] > 8) { |
| ValCtx.EmitSignatureError(E.get(), |
| ValidationRule::MetaClipCullMaxComponents); |
| } |
| break; |
| case DXIL::SemanticKind::Depth: |
| case DXIL::SemanticKind::DepthGreaterEqual: |
| case DXIL::SemanticKind::DepthLessEqual: |
| if (DepthKind != DXIL::SemanticKind::Invalid) { |
| ValCtx.EmitSignatureError(E.get(), |
| ValidationRule::SmPSMultipleDepthSemantic); |
| } |
| DepthKind = semanticKind; |
| break; |
| case DXIL::SemanticKind::Barycentrics: { |
| // There can only be up to two SV_Barycentrics |
| // with differeent perspective interpolation modes. |
| if (numBarycentrics++ > 1) { |
| ValCtx.EmitSignatureError( |
| E.get(), ValidationRule::MetaBarycentricsTwoPerspectives); |
| break; |
| } |
| const InterpolationMode *mode = E->GetInterpolationMode(); |
| if (prevBaryInterpMode) { |
| if ((mode->IsAnyNoPerspective() && |
| prevBaryInterpMode->IsAnyNoPerspective()) || |
| (!mode->IsAnyNoPerspective() && |
| !prevBaryInterpMode->IsAnyNoPerspective())) { |
| ValCtx.EmitSignatureError( |
| E.get(), ValidationRule::MetaBarycentricsTwoPerspectives); |
| } |
| } |
| prevBaryInterpMode = mode; |
| break; |
| } |
| default: |
| if (semanticUsageSet[streamId].count( |
| static_cast<unsigned>(semanticKind)) > 0) { |
| ValCtx.EmitFormatError(ValidationRule::MetaDuplicateSysValue, |
| {E->GetSemantic()->GetName()}); |
| } |
| semanticUsageSet[streamId].insert(static_cast<unsigned>(semanticKind)); |
| break; |
| } |
| |
| // Packed element overlap check. |
| ValidateSignatureOverlap(*E.get(), maxScalars, allocator[streamId], ValCtx); |
| |
| if (isOutput && semanticKind == DXIL::SemanticKind::Position) { |
| Status.hasOutputPosition[E->GetOutputStream()] = true; |
| } |
| } |
| |
| if (Status.hasViewID && S.IsInput() && |
| ValCtx.DxilMod.GetShaderModel()->GetKind() == DXIL::ShaderKind::Pixel) { |
| // Ensure sufficient space for ViewID: |
| DxilSignatureAllocator::DummyElement viewID; |
| viewID.rows = 1; |
| viewID.cols = 1; |
| viewID.kind = DXIL::SemanticKind::Arbitrary; |
| viewID.interpolation = DXIL::InterpolationMode::Constant; |
| viewID.interpretation = DXIL::SemanticInterpretationKind::SGV; |
| allocator[0].PackNext(&viewID, 0, 32); |
| if (!viewID.IsAllocated()) { |
| ValCtx.EmitError(ValidationRule::SmViewIDNeedsSlot); |
| } |
| } |
| } |
| |
| static void ValidateNoInterpModeSignature(ValidationContext &ValCtx, |
| const DxilSignature &S) { |
| for (auto &E : S.GetElements()) { |
| if (!E->GetInterpolationMode()->IsUndefined()) { |
| ValCtx.EmitSignatureError(E.get(), ValidationRule::SmNoInterpMode); |
| } |
| } |
| } |
| |
| static void ValidateConstantInterpModeSignature(ValidationContext &ValCtx, |
| const DxilSignature &S) { |
| for (auto &E : S.GetElements()) { |
| if (!E->GetInterpolationMode()->IsConstant()) { |
| ValCtx.EmitSignatureError(E.get(), ValidationRule::SmConstantInterpMode); |
| } |
| } |
| } |
| |
| static void ValidateEntrySignatures(ValidationContext &ValCtx, |
| const DxilEntryProps &entryProps, |
| EntryStatus &Status, Function &F) { |
| const DxilFunctionProps &props = entryProps.props; |
| const DxilEntrySignature &S = entryProps.sig; |
| |
| if (props.IsRay()) { |
| // No signatures allowed |
| if (!S.InputSignature.GetElements().empty() || |
| !S.OutputSignature.GetElements().empty() || |
| !S.PatchConstOrPrimSignature.GetElements().empty()) { |
| ValCtx.EmitFnFormatError(&F, ValidationRule::SmRayShaderSignatures, |
| {F.getName()}); |
| } |
| |
| // Validate payload/attribute/params sizes |
| unsigned payloadSize = 0; |
| unsigned attrSize = 0; |
| auto itPayload = F.arg_begin(); |
| auto itAttr = itPayload; |
| if (itAttr != F.arg_end()) |
| itAttr++; |
| DataLayout DL(F.getParent()); |
| switch (props.shaderKind) { |
| case DXIL::ShaderKind::AnyHit: |
| case DXIL::ShaderKind::ClosestHit: |
| if (itAttr != F.arg_end()) { |
| Type *Ty = itAttr->getType(); |
| if (Ty->isPointerTy()) |
| Ty = Ty->getPointerElementType(); |
| attrSize = |
| (unsigned)std::min(DL.getTypeAllocSize(Ty), (uint64_t)UINT_MAX); |
| } |
| LLVM_FALLTHROUGH; |
| case DXIL::ShaderKind::Miss: |
| case DXIL::ShaderKind::Callable: |
| if (itPayload != F.arg_end()) { |
| Type *Ty = itPayload->getType(); |
| if (Ty->isPointerTy()) |
| Ty = Ty->getPointerElementType(); |
| payloadSize = |
| (unsigned)std::min(DL.getTypeAllocSize(Ty), (uint64_t)UINT_MAX); |
| } |
| break; |
| } |
| if (props.ShaderProps.Ray.payloadSizeInBytes < payloadSize) { |
| ValCtx.EmitFnFormatError( |
| &F, ValidationRule::SmRayShaderPayloadSize, |
| {F.getName(), props.IsCallable() ? "params" : "payload"}); |
| } |
| if (props.ShaderProps.Ray.attributeSizeInBytes < attrSize) { |
| ValCtx.EmitFnFormatError(&F, ValidationRule::SmRayShaderPayloadSize, |
| {F.getName(), "attribute"}); |
| } |
| return; |
| } |
| |
| bool isPS = props.IsPS(); |
| bool isVS = props.IsVS(); |
| bool isGS = props.IsGS(); |
| bool isCS = props.IsCS(); |
| bool isMS = props.IsMS(); |
| |
| if (isPS) { |
| // PS output no interp mode. |
| ValidateNoInterpModeSignature(ValCtx, S.OutputSignature); |
| } else if (isVS) { |
| // VS input no interp mode. |
| ValidateNoInterpModeSignature(ValCtx, S.InputSignature); |
| } |
| |
| if (isMS) { |
| // primitive output constant interp mode. |
| ValidateConstantInterpModeSignature(ValCtx, S.PatchConstOrPrimSignature); |
| } else { |
| // patch constant no interp mode. |
| ValidateNoInterpModeSignature(ValCtx, S.PatchConstOrPrimSignature); |
| } |
| |
| unsigned maxInputScalars = DXIL::kMaxInputTotalScalars; |
| unsigned maxOutputScalars = 0; |
| unsigned maxPatchConstantScalars = 0; |
| |
| switch (props.shaderKind) { |
| case DXIL::ShaderKind::Compute: |
| break; |
| case DXIL::ShaderKind::Vertex: |
| case DXIL::ShaderKind::Geometry: |
| case DXIL::ShaderKind::Pixel: |
| maxOutputScalars = DXIL::kMaxOutputTotalScalars; |
| break; |
| case DXIL::ShaderKind::Hull: |
| case DXIL::ShaderKind::Domain: |
| maxOutputScalars = DXIL::kMaxOutputTotalScalars; |
| maxPatchConstantScalars = DXIL::kMaxHSOutputPatchConstantTotalScalars; |
| break; |
| case DXIL::ShaderKind::Mesh: |
| maxOutputScalars = DXIL::kMaxOutputTotalScalars; |
| maxPatchConstantScalars = DXIL::kMaxOutputTotalScalars; |
| break; |
| case DXIL::ShaderKind::Amplification: |
| default: |
| break; |
| } |
| |
| ValidateSignature(ValCtx, S.InputSignature, Status, maxInputScalars); |
| ValidateSignature(ValCtx, S.OutputSignature, Status, maxOutputScalars); |
| ValidateSignature(ValCtx, S.PatchConstOrPrimSignature, Status, |
| maxPatchConstantScalars); |
| |
| if (isPS) { |
| // Gather execution information. |
| hlsl::PSExecutionInfo PSExec; |
| DxilSignatureElement *PosInterpSE = nullptr; |
| for (auto &E : S.InputSignature.GetElements()) { |
| if (E->GetKind() == DXIL::SemanticKind::SampleIndex) { |
| PSExec.SuperSampling = true; |
| continue; |
| } |
| |
| const InterpolationMode *IM = E->GetInterpolationMode(); |
| if (IM->IsLinearSample() || IM->IsLinearNoperspectiveSample()) { |
| PSExec.SuperSampling = true; |
| } |
| if (E->GetKind() == DXIL::SemanticKind::Position) { |
| PSExec.PositionInterpolationMode = IM; |
| PosInterpSE = E.get(); |
| } |
| } |
| |
| for (auto &E : S.OutputSignature.GetElements()) { |
| if (E->IsAnyDepth()) { |
| PSExec.OutputDepthKind = E->GetKind(); |
| break; |
| } |
| } |
| |
| if (!PSExec.SuperSampling && |
| PSExec.OutputDepthKind != DXIL::SemanticKind::Invalid && |
| PSExec.OutputDepthKind != DXIL::SemanticKind::Depth) { |
| if (PSExec.PositionInterpolationMode != nullptr) { |
| if (!PSExec.PositionInterpolationMode->IsUndefined() && |
| !PSExec.PositionInterpolationMode |
| ->IsLinearNoperspectiveCentroid() && |
| !PSExec.PositionInterpolationMode->IsLinearNoperspectiveSample()) { |
| ValCtx.EmitFnFormatError(&F, ValidationRule::SmPSConsistentInterp, |
| {PosInterpSE->GetName()}); |
| } |
| } |
| } |
| |
| // Validate PS output semantic. |
| const DxilSignature &outputSig = S.OutputSignature; |
| for (auto &SE : outputSig.GetElements()) { |
| Semantic::Kind semanticKind = SE->GetSemantic()->GetKind(); |
| switch (semanticKind) { |
| case Semantic::Kind::Target: |
| case Semantic::Kind::Coverage: |
| case Semantic::Kind::Depth: |
| case Semantic::Kind::DepthGreaterEqual: |
| case Semantic::Kind::DepthLessEqual: |
| case Semantic::Kind::StencilRef: |
| break; |
| default: { |
| ValCtx.EmitFnFormatError(&F, ValidationRule::SmPSOutputSemantic, |
| {SE->GetName()}); |
| } break; |
| } |
| } |
| } |
| |
| if (isGS) { |
| unsigned maxVertexCount = props.ShaderProps.GS.maxVertexCount; |
| unsigned outputScalarCount = 0; |
| const DxilSignature &outSig = S.OutputSignature; |
| for (auto &SE : outSig.GetElements()) { |
| outputScalarCount += SE->GetRows() * SE->GetCols(); |
| } |
| unsigned totalOutputScalars = maxVertexCount * outputScalarCount; |
| if (totalOutputScalars > DXIL::kMaxGSOutputTotalScalars) { |
| ValCtx.EmitFnFormatError( |
| &F, ValidationRule::SmGSTotalOutputVertexDataRange, |
| {std::to_string(maxVertexCount), std::to_string(outputScalarCount), |
| std::to_string(totalOutputScalars), |
| std::to_string(DXIL::kMaxGSOutputTotalScalars)}); |
| } |
| } |
| |
| if (isCS) { |
| if (!S.InputSignature.GetElements().empty() || |
| !S.OutputSignature.GetElements().empty() || |
| !S.PatchConstOrPrimSignature.GetElements().empty()) { |
| ValCtx.EmitFnError(&F, ValidationRule::SmCSNoSignatures); |
| } |
| } |
| |
| if (isMS) { |
| unsigned VertexSignatureRows = S.OutputSignature.GetRowCount(); |
| if (VertexSignatureRows > DXIL::kMaxMSVSigRows) { |
| ValCtx.EmitFnFormatError( |
| &F, ValidationRule::SmMeshVSigRowCount, |
| {F.getName(), std::to_string(DXIL::kMaxMSVSigRows)}); |
| } |
| unsigned PrimitiveSignatureRows = S.PatchConstOrPrimSignature.GetRowCount(); |
| if (PrimitiveSignatureRows > DXIL::kMaxMSPSigRows) { |
| ValCtx.EmitFnFormatError( |
| &F, ValidationRule::SmMeshPSigRowCount, |
| {F.getName(), std::to_string(DXIL::kMaxMSPSigRows)}); |
| } |
| if (VertexSignatureRows + PrimitiveSignatureRows > |
| DXIL::kMaxMSTotalSigRows) { |
| ValCtx.EmitFnFormatError( |
| &F, ValidationRule::SmMeshTotalSigRowCount, |
| {F.getName(), std::to_string(DXIL::kMaxMSTotalSigRows)}); |
| } |
| |
| const unsigned kScalarSizeForMSAttributes = 4; |
| #define ALIGN32(n) (((n) + 31) & ~31) |
| unsigned maxAlign32VertexCount = |
| ALIGN32(props.ShaderProps.MS.maxVertexCount); |
| unsigned maxAlign32PrimitiveCount = |
| ALIGN32(props.ShaderProps.MS.maxPrimitiveCount); |
| unsigned totalOutputScalars = 0; |
| for (auto &SE : S.OutputSignature.GetElements()) { |
| totalOutputScalars += |
| SE->GetRows() * SE->GetCols() * maxAlign32VertexCount; |
| } |
| for (auto &SE : S.PatchConstOrPrimSignature.GetElements()) { |
| totalOutputScalars += |
| SE->GetRows() * SE->GetCols() * maxAlign32PrimitiveCount; |
| } |
| |
| if (totalOutputScalars * kScalarSizeForMSAttributes > |
| DXIL::kMaxMSOutputTotalBytes) { |
| ValCtx.EmitFnFormatError( |
| &F, ValidationRule::SmMeshShaderOutputSize, |
| {F.getName(), std::to_string(DXIL::kMaxMSOutputTotalBytes)}); |
| } |
| |
| unsigned totalInputOutputBytes = |
| totalOutputScalars * kScalarSizeForMSAttributes + |
| props.ShaderProps.MS.payloadSizeInBytes; |
| if (totalInputOutputBytes > DXIL::kMaxMSInputOutputTotalBytes) { |
| ValCtx.EmitFnFormatError( |
| &F, ValidationRule::SmMeshShaderInOutSize, |
| {F.getName(), std::to_string(DXIL::kMaxMSInputOutputTotalBytes)}); |
| } |
| } |
| } |
| |
| static void ValidateEntrySignatures(ValidationContext &ValCtx) { |
| DxilModule &DM = ValCtx.DxilMod; |
| if (ValCtx.isLibProfile) { |
| for (Function &F : DM.GetModule()->functions()) { |
| if (DM.HasDxilEntryProps(&F)) { |
| DxilEntryProps &entryProps = DM.GetDxilEntryProps(&F); |
| EntryStatus &Status = ValCtx.GetEntryStatus(&F); |
| ValidateEntrySignatures(ValCtx, entryProps, Status, F); |
| } |
| } |
| } else { |
| Function *Entry = DM.GetEntryFunction(); |
| if (!DM.HasDxilEntryProps(Entry)) { |
| // must have props. |
| ValCtx.EmitFnError(Entry, ValidationRule::MetaNoEntryPropsForEntry); |
| return; |
| } |
| EntryStatus &Status = ValCtx.GetEntryStatus(Entry); |
| DxilEntryProps &entryProps = DM.GetDxilEntryProps(Entry); |
| ValidateEntrySignatures(ValCtx, entryProps, Status, *Entry); |
| } |
| } |
| |
| // CompatibilityChecker is used to identify incompatibilities in an entry |
| // function and any functions called by that entry function. |
| struct CompatibilityChecker { |
| ValidationContext &ValCtx; |
| Function *EntryFn; |
| const DxilFunctionProps &props; |
| DXIL::ShaderKind shaderKind; |
| |
| // These masks identify the potential conflict flags based on the entry |
| // function's shader kind and properties when either UsesDerivatives or |
| // RequiresGroup flags are set in ShaderCompatInfo. |
| uint32_t maskForDeriv = 0; |
| uint32_t maskForGroup = 0; |
| |
| enum class ConflictKind : uint32_t { |
| Stage, |
| ShaderModel, |
| DerivLaunch, |
| DerivThreadGroupDim, |
| DerivInComputeShaderModel, |
| RequiresGroup, |
| }; |
| enum class ConflictFlags : uint32_t { |
| Stage = 1 << (uint32_t)ConflictKind::Stage, |
| ShaderModel = 1 << (uint32_t)ConflictKind::ShaderModel, |
| DerivLaunch = 1 << (uint32_t)ConflictKind::DerivLaunch, |
| DerivThreadGroupDim = 1 << (uint32_t)ConflictKind::DerivThreadGroupDim, |
| DerivInComputeShaderModel = |
| 1 << (uint32_t)ConflictKind::DerivInComputeShaderModel, |
| RequiresGroup = 1 << (uint32_t)ConflictKind::RequiresGroup, |
| }; |
| |
| CompatibilityChecker(ValidationContext &ValCtx, Function *EntryFn) |
| : ValCtx(ValCtx), EntryFn(EntryFn), |
| props(ValCtx.DxilMod.GetDxilEntryProps(EntryFn).props), |
| shaderKind(props.shaderKind) { |
| |
| // Precompute potential incompatibilities based on shader stage, shader kind |
| // and entry attributes. These will turn into full conflicts if the entry |
| // point's shader flags indicate that they use relevant features. |
| if (!ValCtx.DxilMod.GetShaderModel()->IsSM66Plus() && |
| (shaderKind == DXIL::ShaderKind::Mesh || |
| shaderKind == DXIL::ShaderKind::Amplification || |
| shaderKind == DXIL::ShaderKind::Compute)) { |
| maskForDeriv |= |
| static_cast<uint32_t>(ConflictFlags::DerivInComputeShaderModel); |
| } else if (shaderKind == DXIL::ShaderKind::Node) { |
| // Only broadcasting launch supports derivatives. |
| if (props.Node.LaunchType != DXIL::NodeLaunchType::Broadcasting) |
| maskForDeriv |= static_cast<uint32_t>(ConflictFlags::DerivLaunch); |
| // Thread launch node has no group. |
| if (props.Node.LaunchType == DXIL::NodeLaunchType::Thread) |
| maskForGroup |= static_cast<uint32_t>(ConflictFlags::RequiresGroup); |
| } |
| |
| if (shaderKind == DXIL::ShaderKind::Mesh || |
| shaderKind == DXIL::ShaderKind::Amplification || |
| shaderKind == DXIL::ShaderKind::Compute || |
| shaderKind == DXIL::ShaderKind::Node) { |
| // All compute-like stages |
| // Thread dimensions must be either 1D and X is multiple of 4, or 2D |
| // and X and Y must be multiples of 2. |
| if (props.numThreads[1] == 1 && props.numThreads[2] == 1) { |
| if ((props.numThreads[0] & 0x3) != 0) |
| maskForDeriv |= |
| static_cast<uint32_t>(ConflictFlags::DerivThreadGroupDim); |
| } else if ((props.numThreads[0] & 0x1) || (props.numThreads[1] & 0x1)) |
| maskForDeriv |= |
| static_cast<uint32_t>(ConflictFlags::DerivThreadGroupDim); |
| } else { |
| // other stages have no group |
| maskForGroup |= static_cast<uint32_t>(ConflictFlags::RequiresGroup); |
| } |
| } |
| |
| uint32_t |
| IdentifyConflict(const DxilModule::ShaderCompatInfo &compatInfo) const { |
| uint32_t conflictMask = 0; |
| |
| // Compatibility check said this shader kind is not compatible. |
| if (0 == ((1 << (uint32_t)shaderKind) & compatInfo.mask)) |
| conflictMask |= (uint32_t)ConflictFlags::Stage; |
| |
| // Compatibility check said this shader model is not compatible. |
| if (DXIL::CompareVersions(ValCtx.DxilMod.GetShaderModel()->GetMajor(), |
| ValCtx.DxilMod.GetShaderModel()->GetMinor(), |
| compatInfo.minMajor, compatInfo.minMinor) < 0) |
| conflictMask |= (uint32_t)ConflictFlags::ShaderModel; |
| |
| if (compatInfo.shaderFlags.GetUsesDerivatives()) |
| conflictMask |= maskForDeriv; |
| |
| if (compatInfo.shaderFlags.GetRequiresGroup()) |
| conflictMask |= maskForGroup; |
| |
| return conflictMask; |
| } |
| |
| void Diagnose(Function *F, uint32_t conflictMask, ConflictKind conflict, |
| ValidationRule rule, ArrayRef<StringRef> args = {}) { |
| if (conflictMask & (1 << (unsigned)conflict)) |
| ValCtx.EmitFnFormatError(F, rule, args); |
| } |
| |
| void DiagnoseConflicts(Function *F, uint32_t conflictMask) { |
| // Emit a diagnostic indicating that either the entry function or a function |
| // called by the entry function contains a disallowed operation. |
| if (F == EntryFn) |
| ValCtx.EmitFnError(EntryFn, ValidationRule::SmIncompatibleOperation); |
| else |
| ValCtx.EmitFnError(EntryFn, ValidationRule::SmIncompatibleCallInEntry); |
| |
| // Emit diagnostics for each conflict found in this function. |
| Diagnose(F, conflictMask, ConflictKind::Stage, |
| ValidationRule::SmIncompatibleStage, |
| {ShaderModel::GetKindName(props.shaderKind)}); |
| Diagnose(F, conflictMask, ConflictKind::ShaderModel, |
| ValidationRule::SmIncompatibleShaderModel); |
| Diagnose(F, conflictMask, ConflictKind::DerivLaunch, |
| ValidationRule::SmIncompatibleDerivLaunch, |
| {GetLaunchTypeStr(props.Node.LaunchType)}); |
| Diagnose(F, conflictMask, ConflictKind::DerivThreadGroupDim, |
| ValidationRule::SmIncompatibleThreadGroupDim, |
| {std::to_string(props.numThreads[0]), |
| std::to_string(props.numThreads[1]), |
| std::to_string(props.numThreads[2])}); |
| Diagnose(F, conflictMask, ConflictKind::DerivInComputeShaderModel, |
| ValidationRule::SmIncompatibleDerivInComputeShaderModel); |
| Diagnose(F, conflictMask, ConflictKind::RequiresGroup, |
| ValidationRule::SmIncompatibleRequiresGroup); |
| } |
| |
| // Visit function and all functions called by it. |
| // Emit diagnostics for incompatibilities found in a function when no |
| // functions called by that function introduced the conflict. |
| // In those cases, the called functions themselves will emit the diagnostic. |
| // Return conflict mask for this function. |
| uint32_t Visit(Function *F, uint32_t &remainingMask, |
| llvm::SmallPtrSet<Function *, 8> &visited, CallGraph &CG) { |
| // Recursive check looks for where a conflict is found and not present |
| // in functions called by the current function. |
| // - When a source is found, emit diagnostics and clear the conflict |
| // flags introduced by this function from the working mask so we don't |
| // report this conflict again. |
| // - When the remainingMask is 0, we are done. |
| |
| if (remainingMask == 0) |
| return 0; // Nothing left to search for. |
| if (!visited.insert(F).second) |
| return 0; // Already visited. |
| |
| const DxilModule::ShaderCompatInfo *compatInfo = |
| ValCtx.DxilMod.GetCompatInfoForFunction(F); |
| DXASSERT(compatInfo, "otherwise, compat info not computed in module"); |
| if (!compatInfo) |
| return 0; |
| uint32_t maskForThisFunction = IdentifyConflict(*compatInfo); |
| |
| uint32_t maskForCalls = 0; |
| if (CallGraphNode *CGNode = CG[F]) { |
| for (auto &Call : *CGNode) { |
| Function *called = Call.second->getFunction(); |
| if (called->isDeclaration()) |
| continue; |
| maskForCalls |= Visit(called, remainingMask, visited, CG); |
| if (remainingMask == 0) |
| return 0; // Nothing left to search for. |
| } |
| } |
| |
| // Mask of incompatibilities introduced by this function. |
| uint32_t conflictsIntroduced = |
| remainingMask & maskForThisFunction & ~maskForCalls; |
| if (conflictsIntroduced) { |
| // This function introduces at least one conflict. |
| DiagnoseConflicts(F, conflictsIntroduced); |
| // Mask off diagnosed incompatibilities. |
| remainingMask &= ~conflictsIntroduced; |
| } |
| return maskForThisFunction; |
| } |
| |
| void FindIncompatibleCall(const DxilModule::ShaderCompatInfo &compatInfo) { |
| uint32_t conflictMask = IdentifyConflict(compatInfo); |
| if (conflictMask == 0) |
| return; |
| |
| CallGraph &CG = ValCtx.GetCallGraph(); |
| llvm::SmallPtrSet<Function *, 8> visited; |
| Visit(EntryFn, conflictMask, visited, CG); |
| } |
| }; |
| |
| static void ValidateEntryCompatibility(ValidationContext &ValCtx) { |
| // Make sure functions called from each entry are compatible with that entry. |
| DxilModule &DM = ValCtx.DxilMod; |
| for (Function &F : DM.GetModule()->functions()) { |
| if (DM.HasDxilEntryProps(&F)) { |
| const DxilModule::ShaderCompatInfo *compatInfo = |
| DM.GetCompatInfoForFunction(&F); |
| DXASSERT(compatInfo, "otherwise, compat info not computed in module"); |
| if (!compatInfo) |
| continue; |
| |
| CompatibilityChecker checker(ValCtx, &F); |
| checker.FindIncompatibleCall(*compatInfo); |
| } |
| } |
| } |
| |
| static void CheckPatchConstantSemantic(ValidationContext &ValCtx, |
| const DxilEntryProps &EntryProps, |
| EntryStatus &Status, Function *F) { |
| const DxilFunctionProps &props = EntryProps.props; |
| bool isHS = props.IsHS(); |
| |
| DXIL::TessellatorDomain domain = |
| isHS ? props.ShaderProps.HS.domain : props.ShaderProps.DS.domain; |
| |
| const DxilSignature &patchConstantSig = |
| EntryProps.sig.PatchConstOrPrimSignature; |
| |
| const unsigned kQuadEdgeSize = 4; |
| const unsigned kQuadInsideSize = 2; |
| const unsigned kQuadDomainLocSize = 2; |
| |
| const unsigned kTriEdgeSize = 3; |
| const unsigned kTriInsideSize = 1; |
| const unsigned kTriDomainLocSize = 3; |
| |
| const unsigned kIsolineEdgeSize = 2; |
| const unsigned kIsolineInsideSize = 0; |
| const unsigned kIsolineDomainLocSize = 3; |
| |
| const char *domainName = ""; |
| |
| DXIL::SemanticKind kEdgeSemantic = DXIL::SemanticKind::TessFactor; |
| unsigned edgeSize = 0; |
| |
| DXIL::SemanticKind kInsideSemantic = DXIL::SemanticKind::InsideTessFactor; |
| unsigned insideSize = 0; |
| |
| Status.domainLocSize = 0; |
| |
| switch (domain) { |
| case DXIL::TessellatorDomain::IsoLine: |
| domainName = "IsoLine"; |
| edgeSize = kIsolineEdgeSize; |
| insideSize = kIsolineInsideSize; |
| Status.domainLocSize = kIsolineDomainLocSize; |
| break; |
| case DXIL::TessellatorDomain::Tri: |
| domainName = "Tri"; |
| edgeSize = kTriEdgeSize; |
| insideSize = kTriInsideSize; |
| Status.domainLocSize = kTriDomainLocSize; |
| break; |
| case DXIL::TessellatorDomain::Quad: |
| domainName = "Quad"; |
| edgeSize = kQuadEdgeSize; |
| insideSize = kQuadInsideSize; |
| Status.domainLocSize = kQuadDomainLocSize; |
| break; |
| default: |
| // Don't bother with other tests if domain is invalid |
| return; |
| } |
| |
| bool bFoundEdgeSemantic = false; |
| bool bFoundInsideSemantic = false; |
| for (auto &SE : patchConstantSig.GetElements()) { |
| Semantic::Kind kind = SE->GetSemantic()->GetKind(); |
| if (kind == kEdgeSemantic) { |
| bFoundEdgeSemantic = true; |
| if (SE->GetRows() != edgeSize || SE->GetCols() > 1) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmTessFactorSizeMatchDomain, |
| {std::to_string(SE->GetRows()), |
| std::to_string(SE->GetCols()), domainName, |
| std::to_string(edgeSize)}); |
| } |
| } else if (kind == kInsideSemantic) { |
| bFoundInsideSemantic = true; |
| if (SE->GetRows() != insideSize || SE->GetCols() > 1) { |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::SmInsideTessFactorSizeMatchDomain, |
| {std::to_string(SE->GetRows()), std::to_string(SE->GetCols()), |
| domainName, std::to_string(insideSize)}); |
| } |
| } |
| } |
| |
| if (isHS) { |
| if (!bFoundEdgeSemantic) { |
| ValCtx.EmitFnError(F, ValidationRule::SmTessFactorForDomain); |
| } |
| if (!bFoundInsideSemantic && domain != DXIL::TessellatorDomain::IsoLine) { |
| ValCtx.EmitFnError(F, ValidationRule::SmTessFactorForDomain); |
| } |
| } |
| } |
| |
| static void ValidatePassThruHS(ValidationContext &ValCtx, |
| const DxilEntryProps &entryProps, Function *F) { |
| // Check pass thru HS. |
| if (F->isDeclaration()) { |
| const auto &props = entryProps.props; |
| if (props.IsHS()) { |
| const auto &HS = props.ShaderProps.HS; |
| if (HS.inputControlPoints < HS.outputControlPoints) { |
| ValCtx.EmitFnError( |
| F, ValidationRule::SmHullPassThruControlPointCountMatch); |
| } |
| |
| // Check declared control point outputs storage amounts are ok to pass |
| // through (less output storage than input for control points). |
| const DxilSignature &outSig = entryProps.sig.OutputSignature; |
| unsigned totalOutputCPScalars = 0; |
| for (auto &SE : outSig.GetElements()) { |
| totalOutputCPScalars += SE->GetRows() * SE->GetCols(); |
| } |
| if (totalOutputCPScalars * HS.outputControlPoints > |
| DXIL::kMaxHSOutputControlPointsTotalScalars) { |
| ValCtx.EmitFnError(F, |
| ValidationRule::SmOutputControlPointsTotalScalars); |
| // TODO: add number at end. need format fn error? |
| } |
| } else { |
| ValCtx.EmitFnError(F, ValidationRule::MetaEntryFunction); |
| } |
| } |
| } |
| |
| // validate wave size (currently allowed only on CS and node shaders but might |
| // be supported on other shader types in the future) |
| static void ValidateWaveSize(ValidationContext &ValCtx, |
| const DxilEntryProps &entryProps, Function *F) { |
| const DxilFunctionProps &props = entryProps.props; |
| const hlsl::DxilWaveSize &waveSize = props.WaveSize; |
| |
| switch (waveSize.Validate()) { |
| case hlsl::DxilWaveSize::ValidationResult::Success: |
| break; |
| case hlsl::DxilWaveSize::ValidationResult::InvalidMin: |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmWaveSizeValue, |
| {"Min", std::to_string(waveSize.Min), |
| std::to_string(DXIL::kMinWaveSize), |
| std::to_string(DXIL::kMaxWaveSize)}); |
| break; |
| case hlsl::DxilWaveSize::ValidationResult::InvalidMax: |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmWaveSizeValue, |
| {"Max", std::to_string(waveSize.Max), |
| std::to_string(DXIL::kMinWaveSize), |
| std::to_string(DXIL::kMaxWaveSize)}); |
| break; |
| case hlsl::DxilWaveSize::ValidationResult::InvalidPreferred: |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmWaveSizeValue, |
| {"Preferred", std::to_string(waveSize.Preferred), |
| std::to_string(DXIL::kMinWaveSize), |
| std::to_string(DXIL::kMaxWaveSize)}); |
| break; |
| case hlsl::DxilWaveSize::ValidationResult::MaxOrPreferredWhenUndefined: |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::SmWaveSizeAllZeroWhenUndefined, |
| {std::to_string(waveSize.Max), std::to_string(waveSize.Preferred)}); |
| break; |
| case hlsl::DxilWaveSize::ValidationResult::MaxEqualsMin: |
| // This case is allowed because users may disable the ErrorDefault warning. |
| break; |
| case hlsl::DxilWaveSize::ValidationResult::PreferredWhenNoRange: |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::SmWaveSizeMaxAndPreferredZeroWhenNoRange, |
| {std::to_string(waveSize.Max), std::to_string(waveSize.Preferred)}); |
| break; |
| case hlsl::DxilWaveSize::ValidationResult::MaxLessThanMin: |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::SmWaveSizeMaxGreaterThanMin, |
| {std::to_string(waveSize.Max), std::to_string(waveSize.Min)}); |
| break; |
| case hlsl::DxilWaveSize::ValidationResult::PreferredOutOfRange: |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmWaveSizePreferredInRange, |
| {std::to_string(waveSize.Preferred), |
| std::to_string(waveSize.Min), |
| std::to_string(waveSize.Max)}); |
| break; |
| } |
| |
| // Check shader model and kind. |
| if (waveSize.IsDefined()) { |
| if (!props.IsCS() && !props.IsNode()) { |
| ValCtx.EmitFnError(F, ValidationRule::SmWaveSizeOnComputeOrNode); |
| } |
| } |
| } |
| |
| static void ValidateEntryProps(ValidationContext &ValCtx, |
| const DxilEntryProps &entryProps, |
| EntryStatus &Status, Function *F) { |
| const DxilFunctionProps &props = entryProps.props; |
| DXIL::ShaderKind ShaderType = props.shaderKind; |
| |
| ValidateWaveSize(ValCtx, entryProps, F); |
| |
| if (ShaderType == DXIL::ShaderKind::Compute || props.IsNode()) { |
| unsigned x = props.numThreads[0]; |
| unsigned y = props.numThreads[1]; |
| unsigned z = props.numThreads[2]; |
| |
| unsigned threadsInGroup = x * y * z; |
| |
| if ((x < DXIL::kMinCSThreadGroupX) || (x > DXIL::kMaxCSThreadGroupX)) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange, |
| {"X", std::to_string(x), |
| std::to_string(DXIL::kMinCSThreadGroupX), |
| std::to_string(DXIL::kMaxCSThreadGroupX)}); |
| } |
| if ((y < DXIL::kMinCSThreadGroupY) || (y > DXIL::kMaxCSThreadGroupY)) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange, |
| {"Y", std::to_string(y), |
| std::to_string(DXIL::kMinCSThreadGroupY), |
| std::to_string(DXIL::kMaxCSThreadGroupY)}); |
| } |
| if ((z < DXIL::kMinCSThreadGroupZ) || (z > DXIL::kMaxCSThreadGroupZ)) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange, |
| {"Z", std::to_string(z), |
| std::to_string(DXIL::kMinCSThreadGroupZ), |
| std::to_string(DXIL::kMaxCSThreadGroupZ)}); |
| } |
| |
| if (threadsInGroup > DXIL::kMaxCSThreadsPerGroup) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmMaxTheadGroup, |
| {std::to_string(threadsInGroup), |
| std::to_string(DXIL::kMaxCSThreadsPerGroup)}); |
| } |
| |
| // type of threadID, thread group ID take care by DXIL operation overload |
| // check. |
| } else if (ShaderType == DXIL::ShaderKind::Mesh) { |
| const auto &MS = props.ShaderProps.MS; |
| unsigned x = props.numThreads[0]; |
| unsigned y = props.numThreads[1]; |
| unsigned z = props.numThreads[2]; |
| |
| unsigned threadsInGroup = x * y * z; |
| |
| if ((x < DXIL::kMinMSASThreadGroupX) || (x > DXIL::kMaxMSASThreadGroupX)) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange, |
| {"X", std::to_string(x), |
| std::to_string(DXIL::kMinMSASThreadGroupX), |
| std::to_string(DXIL::kMaxMSASThreadGroupX)}); |
| } |
| if ((y < DXIL::kMinMSASThreadGroupY) || (y > DXIL::kMaxMSASThreadGroupY)) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange, |
| {"Y", std::to_string(y), |
| std::to_string(DXIL::kMinMSASThreadGroupY), |
| std::to_string(DXIL::kMaxMSASThreadGroupY)}); |
| } |
| if ((z < DXIL::kMinMSASThreadGroupZ) || (z > DXIL::kMaxMSASThreadGroupZ)) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange, |
| {"Z", std::to_string(z), |
| std::to_string(DXIL::kMinMSASThreadGroupZ), |
| std::to_string(DXIL::kMaxMSASThreadGroupZ)}); |
| } |
| |
| if (threadsInGroup > DXIL::kMaxMSASThreadsPerGroup) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmMaxTheadGroup, |
| {std::to_string(threadsInGroup), |
| std::to_string(DXIL::kMaxMSASThreadsPerGroup)}); |
| } |
| |
| // type of threadID, thread group ID take care by DXIL operation overload |
| // check. |
| |
| unsigned maxVertexCount = MS.maxVertexCount; |
| if (maxVertexCount > DXIL::kMaxMSOutputVertexCount) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmMeshShaderMaxVertexCount, |
| {std::to_string(DXIL::kMaxMSOutputVertexCount), |
| std::to_string(maxVertexCount)}); |
| } |
| |
| unsigned maxPrimitiveCount = MS.maxPrimitiveCount; |
| if (maxPrimitiveCount > DXIL::kMaxMSOutputPrimitiveCount) { |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::SmMeshShaderMaxPrimitiveCount, |
| {std::to_string(DXIL::kMaxMSOutputPrimitiveCount), |
| std::to_string(maxPrimitiveCount)}); |
| } |
| } else if (ShaderType == DXIL::ShaderKind::Amplification) { |
| unsigned x = props.numThreads[0]; |
| unsigned y = props.numThreads[1]; |
| unsigned z = props.numThreads[2]; |
| |
| unsigned threadsInGroup = x * y * z; |
| |
| if ((x < DXIL::kMinMSASThreadGroupX) || (x > DXIL::kMaxMSASThreadGroupX)) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange, |
| {"X", std::to_string(x), |
| std::to_string(DXIL::kMinMSASThreadGroupX), |
| std::to_string(DXIL::kMaxMSASThreadGroupX)}); |
| } |
| if ((y < DXIL::kMinMSASThreadGroupY) || (y > DXIL::kMaxMSASThreadGroupY)) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange, |
| {"Y", std::to_string(y), |
| std::to_string(DXIL::kMinMSASThreadGroupY), |
| std::to_string(DXIL::kMaxMSASThreadGroupY)}); |
| } |
| if ((z < DXIL::kMinMSASThreadGroupZ) || (z > DXIL::kMaxMSASThreadGroupZ)) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmThreadGroupChannelRange, |
| {"Z", std::to_string(z), |
| std::to_string(DXIL::kMinMSASThreadGroupZ), |
| std::to_string(DXIL::kMaxMSASThreadGroupZ)}); |
| } |
| |
| if (threadsInGroup > DXIL::kMaxMSASThreadsPerGroup) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmMaxTheadGroup, |
| {std::to_string(threadsInGroup), |
| std::to_string(DXIL::kMaxMSASThreadsPerGroup)}); |
| } |
| |
| // type of threadID, thread group ID take care by DXIL operation overload |
| // check. |
| } else if (ShaderType == DXIL::ShaderKind::Domain) { |
| const auto &DS = props.ShaderProps.DS; |
| DXIL::TessellatorDomain domain = DS.domain; |
| if (domain >= DXIL::TessellatorDomain::LastEntry) |
| domain = DXIL::TessellatorDomain::Undefined; |
| unsigned inputControlPointCount = DS.inputControlPoints; |
| |
| if (inputControlPointCount > DXIL::kMaxIAPatchControlPointCount) { |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::SmDSInputControlPointCountRange, |
| {std::to_string(DXIL::kMaxIAPatchControlPointCount), |
| std::to_string(inputControlPointCount)}); |
| } |
| if (domain == DXIL::TessellatorDomain::Undefined) { |
| ValCtx.EmitFnError(F, ValidationRule::SmValidDomain); |
| } |
| CheckPatchConstantSemantic(ValCtx, entryProps, Status, F); |
| } else if (ShaderType == DXIL::ShaderKind::Hull) { |
| const auto &HS = props.ShaderProps.HS; |
| DXIL::TessellatorDomain domain = HS.domain; |
| if (domain >= DXIL::TessellatorDomain::LastEntry) |
| domain = DXIL::TessellatorDomain::Undefined; |
| unsigned inputControlPointCount = HS.inputControlPoints; |
| if (inputControlPointCount == 0) { |
| const DxilSignature &inputSig = entryProps.sig.InputSignature; |
| if (!inputSig.GetElements().empty()) { |
| ValCtx.EmitFnError(F, |
| ValidationRule::SmZeroHSInputControlPointWithInput); |
| } |
| } else if (inputControlPointCount > DXIL::kMaxIAPatchControlPointCount) { |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::SmHSInputControlPointCountRange, |
| {std::to_string(DXIL::kMaxIAPatchControlPointCount), |
| std::to_string(inputControlPointCount)}); |
| } |
| |
| unsigned outputControlPointCount = HS.outputControlPoints; |
| if (outputControlPointCount > DXIL::kMaxIAPatchControlPointCount) { |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::SmOutputControlPointCountRange, |
| {std::to_string(DXIL::kMaxIAPatchControlPointCount), |
| std::to_string(outputControlPointCount)}); |
| } |
| if (domain == DXIL::TessellatorDomain::Undefined) { |
| ValCtx.EmitFnError(F, ValidationRule::SmValidDomain); |
| } |
| DXIL::TessellatorPartitioning partition = HS.partition; |
| if (partition == DXIL::TessellatorPartitioning::Undefined) { |
| ValCtx.EmitFnError(F, ValidationRule::MetaTessellatorPartition); |
| } |
| |
| DXIL::TessellatorOutputPrimitive tessOutputPrimitive = HS.outputPrimitive; |
| if (tessOutputPrimitive == DXIL::TessellatorOutputPrimitive::Undefined || |
| tessOutputPrimitive == DXIL::TessellatorOutputPrimitive::LastEntry) { |
| ValCtx.EmitFnError(F, ValidationRule::MetaTessellatorOutputPrimitive); |
| } |
| |
| float maxTessFactor = HS.maxTessFactor; |
| if (maxTessFactor < DXIL::kHSMaxTessFactorLowerBound || |
| maxTessFactor > DXIL::kHSMaxTessFactorUpperBound) { |
| ValCtx.EmitFnFormatError( |
| F, ValidationRule::MetaMaxTessFactor, |
| {std::to_string(DXIL::kHSMaxTessFactorLowerBound), |
| std::to_string(DXIL::kHSMaxTessFactorUpperBound), |
| std::to_string(maxTessFactor)}); |
| } |
| // Domain and OutPrimivtive match. |
| switch (domain) { |
| case DXIL::TessellatorDomain::IsoLine: |
| switch (tessOutputPrimitive) { |
| case DXIL::TessellatorOutputPrimitive::TriangleCW: |
| case DXIL::TessellatorOutputPrimitive::TriangleCCW: |
| ValCtx.EmitFnError(F, ValidationRule::SmIsoLineOutputPrimitiveMismatch); |
| break; |
| default: |
| break; |
| } |
| break; |
| case DXIL::TessellatorDomain::Tri: |
| switch (tessOutputPrimitive) { |
| case DXIL::TessellatorOutputPrimitive::Line: |
| ValCtx.EmitFnError(F, ValidationRule::SmTriOutputPrimitiveMismatch); |
| break; |
| default: |
| break; |
| } |
| break; |
| case DXIL::TessellatorDomain::Quad: |
| switch (tessOutputPrimitive) { |
| case DXIL::TessellatorOutputPrimitive::Line: |
| ValCtx.EmitFnError(F, ValidationRule::SmTriOutputPrimitiveMismatch); |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| ValCtx.EmitFnError(F, ValidationRule::SmValidDomain); |
| break; |
| } |
| |
| CheckPatchConstantSemantic(ValCtx, entryProps, Status, F); |
| } else if (ShaderType == DXIL::ShaderKind::Geometry) { |
| const auto &GS = props.ShaderProps.GS; |
| unsigned maxVertexCount = GS.maxVertexCount; |
| if (maxVertexCount > DXIL::kMaxGSOutputVertexCount) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmGSOutputVertexCountRange, |
| {std::to_string(DXIL::kMaxGSOutputVertexCount), |
| std::to_string(maxVertexCount)}); |
| } |
| |
| unsigned instanceCount = GS.instanceCount; |
| if (instanceCount > DXIL::kMaxGSInstanceCount || instanceCount < 1) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmGSInstanceCountRange, |
| {std::to_string(DXIL::kMaxGSInstanceCount), |
| std::to_string(instanceCount)}); |
| } |
| |
| DXIL::PrimitiveTopology topo = DXIL::PrimitiveTopology::Undefined; |
| bool bTopoMismatch = false; |
| for (size_t i = 0; i < _countof(GS.streamPrimitiveTopologies); ++i) { |
| if (GS.streamPrimitiveTopologies[i] != |
| DXIL::PrimitiveTopology::Undefined) { |
| if (topo == DXIL::PrimitiveTopology::Undefined) |
| topo = GS.streamPrimitiveTopologies[i]; |
| else if (topo != GS.streamPrimitiveTopologies[i]) { |
| bTopoMismatch = true; |
| break; |
| } |
| } |
| } |
| if (bTopoMismatch) |
| topo = DXIL::PrimitiveTopology::Undefined; |
| switch (topo) { |
| case DXIL::PrimitiveTopology::PointList: |
| case DXIL::PrimitiveTopology::LineStrip: |
| case DXIL::PrimitiveTopology::TriangleStrip: |
| break; |
| default: { |
| ValCtx.EmitFnError(F, ValidationRule::SmGSValidOutputPrimitiveTopology); |
| } break; |
| } |
| |
| DXIL::InputPrimitive inputPrimitive = GS.inputPrimitive; |
| unsigned VertexCount = GetNumVertices(inputPrimitive); |
| if (VertexCount == 0 && inputPrimitive != DXIL::InputPrimitive::Undefined) { |
| ValCtx.EmitFnError(F, ValidationRule::SmGSValidInputPrimitive); |
| } |
| } |
| } |
| |
| static void ValidateShaderState(ValidationContext &ValCtx) { |
| DxilModule &DM = ValCtx.DxilMod; |
| if (ValCtx.isLibProfile) { |
| for (Function &F : DM.GetModule()->functions()) { |
| if (DM.HasDxilEntryProps(&F)) { |
| DxilEntryProps &entryProps = DM.GetDxilEntryProps(&F); |
| EntryStatus &Status = ValCtx.GetEntryStatus(&F); |
| ValidateEntryProps(ValCtx, entryProps, Status, &F); |
| ValidatePassThruHS(ValCtx, entryProps, &F); |
| } |
| } |
| } else { |
| Function *Entry = DM.GetEntryFunction(); |
| if (!DM.HasDxilEntryProps(Entry)) { |
| // must have props. |
| ValCtx.EmitFnError(Entry, ValidationRule::MetaNoEntryPropsForEntry); |
| return; |
| } |
| EntryStatus &Status = ValCtx.GetEntryStatus(Entry); |
| DxilEntryProps &entryProps = DM.GetDxilEntryProps(Entry); |
| ValidateEntryProps(ValCtx, entryProps, Status, Entry); |
| ValidatePassThruHS(ValCtx, entryProps, Entry); |
| } |
| } |
| |
| static CallGraphNode * |
| CalculateCallDepth(CallGraphNode *node, |
| std::unordered_map<CallGraphNode *, unsigned> &depthMap, |
| std::unordered_set<CallGraphNode *> &callStack, |
| std::unordered_set<Function *> &funcSet) { |
| unsigned depth = callStack.size(); |
| funcSet.insert(node->getFunction()); |
| for (auto it = node->begin(), ei = node->end(); it != ei; it++) { |
| CallGraphNode *toNode = it->second; |
| if (callStack.insert(toNode).second == false) { |
| // Recursive. |
| return toNode; |
| } |
| if (depthMap[toNode] < depth) |
| depthMap[toNode] = depth; |
| if (CallGraphNode *N = |
| CalculateCallDepth(toNode, depthMap, callStack, funcSet)) { |
| // Recursive |
| return N; |
| } |
| callStack.erase(toNode); |
| } |
| |
| return nullptr; |
| } |
| |
| static void ValidateCallGraph(ValidationContext &ValCtx) { |
| // Build CallGraph. |
| CallGraph &CG = ValCtx.GetCallGraph(); |
| |
| std::unordered_map<CallGraphNode *, unsigned> depthMap; |
| std::unordered_set<CallGraphNode *> callStack; |
| CallGraphNode *entryNode = CG[ValCtx.DxilMod.GetEntryFunction()]; |
| depthMap[entryNode] = 0; |
| if (CallGraphNode *N = CalculateCallDepth(entryNode, depthMap, callStack, |
| ValCtx.entryFuncCallSet)) |
| ValCtx.EmitFnError(N->getFunction(), ValidationRule::FlowNoRecursion); |
| if (ValCtx.DxilMod.GetShaderModel()->IsHS()) { |
| CallGraphNode *patchConstantNode = |
| CG[ValCtx.DxilMod.GetPatchConstantFunction()]; |
| depthMap[patchConstantNode] = 0; |
| callStack.clear(); |
| if (CallGraphNode *N = |
| CalculateCallDepth(patchConstantNode, depthMap, callStack, |
| ValCtx.patchConstFuncCallSet)) |
| ValCtx.EmitFnError(N->getFunction(), ValidationRule::FlowNoRecursion); |
| } |
| } |
| |
| static void ValidateFlowControl(ValidationContext &ValCtx) { |
| bool reducible = |
| IsReducible(*ValCtx.DxilMod.GetModule(), IrreducibilityAction::Ignore); |
| if (!reducible) { |
| ValCtx.EmitError(ValidationRule::FlowReducible); |
| return; |
| } |
| |
| ValidateCallGraph(ValCtx); |
| |
| for (llvm::Function &F : ValCtx.DxilMod.GetModule()->functions()) { |
| if (F.isDeclaration()) |
| continue; |
| |
| DominatorTreeAnalysis DTA; |
| DominatorTree DT = DTA.run(F); |
| LoopInfo LI; |
| LI.Analyze(DT); |
| for (auto loopIt = LI.begin(); loopIt != LI.end(); loopIt++) { |
| Loop *loop = *loopIt; |
| SmallVector<BasicBlock *, 4> exitBlocks; |
| loop->getExitBlocks(exitBlocks); |
| if (exitBlocks.empty()) |
| ValCtx.EmitFnError(&F, ValidationRule::FlowDeadLoop); |
| } |
| |
| // validate that there is no use of a value that has been output-completed |
| // for this function. |
| |
| hlsl::OP *hlslOP = ValCtx.DxilMod.GetOP(); |
| |
| for (auto &it : hlslOP->GetOpFuncList(DXIL::OpCode::OutputComplete)) { |
| Function *pF = it.second; |
| if (!pF) |
| continue; |
| |
| // first, collect all the output complete calls that are not dominated |
| // by another OutputComplete call for the same handle value |
| llvm::SmallMapVector<Value *, llvm::SmallPtrSet<CallInst *, 4>, 4> |
| handleToCI; |
| for (User *U : pF->users()) { |
| // all OutputComplete calls are instructions, and call instructions, |
| // so there shouldn't need to be a null check. |
| CallInst *CI = cast<CallInst>(U); |
| |
| // verify that the function that contains this instruction is the same |
| // function that the DominatorTree was built on. |
| if (&F != CI->getParent()->getParent()) |
| continue; |
| |
| DxilInst_OutputComplete OutputComplete(CI); |
| Value *completedRecord = OutputComplete.get_output(); |
| |
| auto vIt = handleToCI.find(completedRecord); |
| if (vIt == handleToCI.end()) { |
| llvm::SmallPtrSet<CallInst *, 4> s; |
| s.insert(CI); |
| handleToCI.insert(std::make_pair(completedRecord, s)); |
| } else { |
| // if the handle is already in the map, make sure the map's set of |
| // output complete calls that dominate the handle and do not dominate |
| // each other gets updated if necessary |
| bool CI_is_dominated = false; |
| for (auto ocIt = vIt->second.begin(); ocIt != vIt->second.end();) { |
| // if our new OC CI dominates an OC instruction in the set, |
| // then replace the instruction in the set with the new OC CI. |
| |
| if (DT.dominates(CI, *ocIt)) { |
| auto cur_it = ocIt++; |
| vIt->second.erase(*cur_it); |
| continue; |
| } |
| // Remember if our new CI gets dominated by any CI in the set. |
| if (DT.dominates(*ocIt, CI)) { |
| CI_is_dominated = true; |
| break; |
| } |
| ocIt++; |
| } |
| // if no CI in the set dominates our new CI, |
| // the new CI should be added to the set |
| if (!CI_is_dominated) |
| vIt->second.insert(CI); |
| } |
| } |
| |
| for (auto handle_iter = handleToCI.begin(), e = handleToCI.end(); |
| handle_iter != e; handle_iter++) { |
| for (auto user_itr = handle_iter->first->user_begin(); |
| user_itr != handle_iter->first->user_end(); user_itr++) { |
| User *pU = *user_itr; |
| Instruction *useInstr = cast<Instruction>(pU); |
| if (useInstr) { |
| if (CallInst *CI = dyn_cast<CallInst>(useInstr)) { |
| // if the user is an output complete call that is in the set of |
| // OutputComplete calls not dominated by another OutputComplete |
| // call for the same handle value, no diagnostics need to be |
| // emitted. |
| if (handle_iter->second.count(CI) == 1) |
| continue; |
| } |
| |
| // make sure any output complete call in the set |
| // that dominates this use gets its diagnostic emitted. |
| for (auto ocIt = handle_iter->second.begin(); |
| ocIt != handle_iter->second.end(); ocIt++) { |
| Instruction *ocInstr = cast<Instruction>(*ocIt); |
| if (DT.dominates(ocInstr, useInstr)) { |
| ValCtx.EmitInstrError( |
| useInstr, |
| ValidationRule::InstrNodeRecordHandleUseAfterComplete); |
| ValCtx.EmitInstrNote( |
| *ocIt, "record handle invalidated by OutputComplete"); |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| // fxc has ERR_CONTINUE_INSIDE_SWITCH to disallow continue in switch. |
| // Not do it for now. |
| } |
| |
| static void ValidateUninitializedOutput(ValidationContext &ValCtx, |
| Function *F) { |
| DxilModule &DM = ValCtx.DxilMod; |
| DxilEntryProps &entryProps = DM.GetDxilEntryProps(F); |
| EntryStatus &Status = ValCtx.GetEntryStatus(F); |
| const DxilFunctionProps &props = entryProps.props; |
| // For HS only need to check Tessfactor which is in patch constant sig. |
| if (props.IsHS()) { |
| std::vector<unsigned> &patchConstOrPrimCols = Status.patchConstOrPrimCols; |
| const DxilSignature &patchConstSig = |
| entryProps.sig.PatchConstOrPrimSignature; |
| for (auto &E : patchConstSig.GetElements()) { |
| unsigned mask = patchConstOrPrimCols[E->GetID()]; |
| unsigned requireMask = (1 << E->GetCols()) - 1; |
| // TODO: check other case uninitialized output is allowed. |
| if (mask != requireMask && !E->GetSemantic()->IsArbitrary()) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmUndefinedOutput, |
| {E->GetName()}); |
| } |
| } |
| return; |
| } |
| const DxilSignature &outSig = entryProps.sig.OutputSignature; |
| std::vector<unsigned> &outputCols = Status.outputCols; |
| for (auto &E : outSig.GetElements()) { |
| unsigned mask = outputCols[E->GetID()]; |
| unsigned requireMask = (1 << E->GetCols()) - 1; |
| // TODO: check other case uninitialized output is allowed. |
| if (mask != requireMask && !E->GetSemantic()->IsArbitrary() && |
| E->GetSemantic()->GetKind() != Semantic::Kind::Target) { |
| ValCtx.EmitFnFormatError(F, ValidationRule::SmUndefinedOutput, |
| {E->GetName()}); |
| } |
| } |
| |
| if (!props.IsGS()) { |
| unsigned posMask = Status.OutputPositionMask[0]; |
| if (posMask != 0xf && Status.hasOutputPosition[0]) { |
| ValCtx.EmitFnError(F, ValidationRule::SmCompletePosition); |
| } |
| } else { |
| const auto &GS = props.ShaderProps.GS; |
| unsigned streamMask = 0; |
| for (size_t i = 0; i < _countof(GS.streamPrimitiveTopologies); ++i) { |
| if (GS.streamPrimitiveTopologies[i] != |
| DXIL::PrimitiveTopology::Undefined) { |
| streamMask |= 1 << i; |
| } |
| } |
| |
| for (unsigned i = 0; i < DXIL::kNumOutputStreams; i++) { |
| if (streamMask & (1 << i)) { |
| unsigned posMask = Status.OutputPositionMask[i]; |
| if (posMask != 0xf && Status.hasOutputPosition[i]) { |
| ValCtx.EmitFnError(F, ValidationRule::SmCompletePosition); |
| } |
| } |
| } |
| } |
| } |
| |
| static void ValidateUninitializedOutput(ValidationContext &ValCtx) { |
| DxilModule &DM = ValCtx.DxilMod; |
| if (ValCtx.isLibProfile) { |
| for (Function &F : DM.GetModule()->functions()) { |
| if (DM.HasDxilEntryProps(&F)) { |
| ValidateUninitializedOutput(ValCtx, &F); |
| } |
| } |
| } else { |
| Function *Entry = DM.GetEntryFunction(); |
| if (!DM.HasDxilEntryProps(Entry)) { |
| // must have props. |
| ValCtx.EmitFnError(Entry, ValidationRule::MetaNoEntryPropsForEntry); |
| return; |
| } |
| ValidateUninitializedOutput(ValCtx, Entry); |
| } |
| } |
| |
| HRESULT ValidateDxilModule(llvm::Module *pModule, llvm::Module *pDebugModule) { |
| DxilModule *pDxilModule = DxilModule::TryGetDxilModule(pModule); |
| if (!pDxilModule) { |
| return DXC_E_IR_VERIFICATION_FAILED; |
| } |
| if (pDxilModule->HasMetadataErrors()) { |
| dxilutil::EmitErrorOnContext(pModule->getContext(), |
| "Metadata error encountered in non-critical " |
| "metadata (such as Type Annotations)."); |
| return DXC_E_IR_VERIFICATION_FAILED; |
| } |
| |
| ValidationContext ValCtx(*pModule, pDebugModule, *pDxilModule); |
| |
| ValidateBitcode(ValCtx); |
| |
| ValidateMetadata(ValCtx); |
| |
| ValidateShaderState(ValCtx); |
| |
| ValidateGlobalVariables(ValCtx); |
| |
| ValidateResources(ValCtx); |
| |
| // Validate control flow and collect function call info. |
| // If has recursive call, call info collection will not finish. |
| ValidateFlowControl(ValCtx); |
| |
| // Validate functions. |
| for (Function &F : pModule->functions()) { |
| ValidateFunction(F, ValCtx); |
| } |
| |
| ValidateShaderFlags(ValCtx); |
| |
| ValidateEntryCompatibility(ValCtx); |
| |
| ValidateEntrySignatures(ValCtx); |
| |
| ValidateUninitializedOutput(ValCtx); |
| // Ensure error messages are flushed out on error. |
| if (ValCtx.Failed) { |
| return DXC_E_IR_VERIFICATION_FAILED; |
| } |
| return S_OK; |
| } |
| |
| // DXIL Container Verification Functions |
| |
| static void VerifyBlobPartMatches(ValidationContext &ValCtx, LPCSTR pName, |
| DxilPartWriter *pWriter, const void *pData, |
| uint32_t Size) { |
| if (!pData && pWriter->size()) { |
| // No blob part, but writer says non-zero size is expected. |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartMissing, {pName}); |
| return; |
| } |
| |
| // Compare sizes |
| if (pWriter->size() != Size) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartMatches, {pName}); |
| return; |
| } |
| |
| if (Size == 0) { |
| return; |
| } |
| |
| CComPtr<AbstractMemoryStream> pOutputStream; |
| IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pOutputStream)); |
| pOutputStream->Reserve(Size); |
| |
| pWriter->write(pOutputStream); |
| DXASSERT(pOutputStream->GetPtrSize() == Size, |
| "otherwise, DxilPartWriter misreported size"); |
| |
| if (memcmp(pData, pOutputStream->GetPtr(), Size)) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartMatches, {pName}); |
| return; |
| } |
| |
| return; |
| } |
| |
| static void VerifySignatureMatches(ValidationContext &ValCtx, |
| DXIL::SignatureKind SigKind, |
| const void *pSigData, uint32_t SigSize) { |
| // Generate corresponding signature from module and memcmp |
| |
| const char *pName = nullptr; |
| switch (SigKind) { |
| case hlsl::DXIL::SignatureKind::Input: |
| pName = "Program Input Signature"; |
| break; |
| case hlsl::DXIL::SignatureKind::Output: |
| pName = "Program Output Signature"; |
| break; |
| case hlsl::DXIL::SignatureKind::PatchConstOrPrim: |
| if (ValCtx.DxilMod.GetShaderModel()->GetKind() == DXIL::ShaderKind::Mesh) |
| pName = "Program Primitive Signature"; |
| else |
| pName = "Program Patch Constant Signature"; |
| break; |
| default: |
| break; |
| } |
| |
| unique_ptr<DxilPartWriter> pWriter( |
| NewProgramSignatureWriter(ValCtx.DxilMod, SigKind)); |
| VerifyBlobPartMatches(ValCtx, pName, pWriter.get(), pSigData, SigSize); |
| } |
| |
| bool VerifySignatureMatches(llvm::Module *pModule, DXIL::SignatureKind SigKind, |
| const void *pSigData, uint32_t SigSize) { |
| ValidationContext ValCtx(*pModule, nullptr, pModule->GetOrCreateDxilModule()); |
| VerifySignatureMatches(ValCtx, SigKind, pSigData, SigSize); |
| return !ValCtx.Failed; |
| } |
| |
| static void VerifyPSVMatches(ValidationContext &ValCtx, const void *pPSVData, |
| uint32_t PSVSize) { |
| uint32_t PSVVersion = |
| MAX_PSV_VERSION; // This should be set to the newest version |
| unique_ptr<DxilPartWriter> pWriter(NewPSVWriter(ValCtx.DxilMod, PSVVersion)); |
| // Try each version in case an earlier version matches module |
| while (PSVVersion && pWriter->size() != PSVSize) { |
| PSVVersion--; |
| pWriter.reset(NewPSVWriter(ValCtx.DxilMod, PSVVersion)); |
| } |
| // generate PSV data from module and memcmp |
| VerifyBlobPartMatches(ValCtx, "Pipeline State Validation", pWriter.get(), |
| pPSVData, PSVSize); |
| } |
| |
| bool VerifyPSVMatches(llvm::Module *pModule, const void *pPSVData, |
| uint32_t PSVSize) { |
| ValidationContext ValCtx(*pModule, nullptr, pModule->GetOrCreateDxilModule()); |
| VerifyPSVMatches(ValCtx, pPSVData, PSVSize); |
| return !ValCtx.Failed; |
| } |
| |
| static void VerifyFeatureInfoMatches(ValidationContext &ValCtx, |
| const void *pFeatureInfoData, |
| uint32_t FeatureInfoSize) { |
| // generate Feature Info data from module and memcmp |
| unique_ptr<DxilPartWriter> pWriter(NewFeatureInfoWriter(ValCtx.DxilMod)); |
| VerifyBlobPartMatches(ValCtx, "Feature Info", pWriter.get(), pFeatureInfoData, |
| FeatureInfoSize); |
| } |
| |
| // return true if the pBlob is a valid, well-formed CompilerVersion part, false |
| // otherwise |
| bool ValidateCompilerVersionPart(const void *pBlobPtr, UINT blobSize) { |
| // The hlsl::DxilCompilerVersion struct is always 16 bytes. (2 2-byte |
| // uint16's, 3 4-byte uint32's) The blob size should absolutely never be less |
| // than 16 bytes. |
| if (blobSize < sizeof(hlsl::DxilCompilerVersion)) { |
| return false; |
| } |
| |
| const hlsl::DxilCompilerVersion *pDCV = |
| (const hlsl::DxilCompilerVersion *)pBlobPtr; |
| if (pDCV->VersionStringListSizeInBytes == 0) { |
| // No version strings, just make sure there is no extra space. |
| return blobSize == sizeof(hlsl::DxilCompilerVersion); |
| } |
| |
| // after this point, we know VersionStringListSizeInBytes >= 1, because it is |
| // a UINT |
| |
| UINT EndOfVersionStringIndex = |
| sizeof(hlsl::DxilCompilerVersion) + pDCV->VersionStringListSizeInBytes; |
| // Make sure that the buffer size is large enough to contain both the DCV |
| // struct and the version string but not any larger than necessary |
| if (PSVALIGN4(EndOfVersionStringIndex) != blobSize) { |
| return false; |
| } |
| |
| const char *VersionStringsListData = |
| (const char *)pBlobPtr + sizeof(hlsl::DxilCompilerVersion); |
| UINT VersionStringListSizeInBytes = pDCV->VersionStringListSizeInBytes; |
| |
| // now make sure that any pad bytes that were added are null-terminators. |
| for (UINT i = VersionStringListSizeInBytes; |
| i < blobSize - sizeof(hlsl::DxilCompilerVersion); i++) { |
| if (VersionStringsListData[i] != '\0') { |
| return false; |
| } |
| } |
| |
| // Now, version string validation |
| // first, the final byte of the string should always be null-terminator so |
| // that the string ends |
| if (VersionStringsListData[VersionStringListSizeInBytes - 1] != '\0') { |
| return false; |
| } |
| |
| // construct the first string |
| // data format for VersionString can be see in the definition for the |
| // DxilCompilerVersion struct. summary: 2 strings that each end with the null |
| // terminator, and [0-3] null terminators after the final null terminator |
| StringRef firstStr(VersionStringsListData); |
| |
| // if the second string exists, attempt to construct it. |
| if (VersionStringListSizeInBytes > (firstStr.size() + 1)) { |
| StringRef secondStr(VersionStringsListData + firstStr.size() + 1); |
| |
| // the VersionStringListSizeInBytes member should be exactly equal to the |
| // two string lengths, plus the 2 null terminator bytes. |
| if (VersionStringListSizeInBytes != |
| firstStr.size() + secondStr.size() + 2) { |
| return false; |
| } |
| } else { |
| // the VersionStringListSizeInBytes member should be exactly equal to the |
| // first string length, plus the 1 null terminator byte. |
| if (VersionStringListSizeInBytes != firstStr.size() + 1) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static void VerifyRDATMatches(ValidationContext &ValCtx, const void *pRDATData, |
| uint32_t RDATSize) { |
| const char *PartName = "Runtime Data (RDAT)"; |
| RDAT::DxilRuntimeData rdat(pRDATData, RDATSize); |
| if (!rdat.Validate()) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartMatches, {PartName}); |
| return; |
| } |
| |
| // If DxilModule subobjects already loaded, validate these against the RDAT |
| // blob, otherwise, load subobject into DxilModule to generate reference RDAT. |
| if (!ValCtx.DxilMod.GetSubobjects()) { |
| auto table = rdat.GetSubobjectTable(); |
| if (table && table.Count() > 0) { |
| ValCtx.DxilMod.ResetSubobjects(new DxilSubobjects()); |
| if (!LoadSubobjectsFromRDAT(*ValCtx.DxilMod.GetSubobjects(), rdat)) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartMatches, |
| {PartName}); |
| return; |
| } |
| } |
| } |
| |
| unique_ptr<DxilPartWriter> pWriter(NewRDATWriter(ValCtx.DxilMod)); |
| VerifyBlobPartMatches(ValCtx, PartName, pWriter.get(), pRDATData, RDATSize); |
| } |
| |
| bool VerifyRDATMatches(llvm::Module *pModule, const void *pRDATData, |
| uint32_t RDATSize) { |
| ValidationContext ValCtx(*pModule, nullptr, pModule->GetOrCreateDxilModule()); |
| VerifyRDATMatches(ValCtx, pRDATData, RDATSize); |
| return !ValCtx.Failed; |
| } |
| |
| bool VerifyFeatureInfoMatches(llvm::Module *pModule, |
| const void *pFeatureInfoData, |
| uint32_t FeatureInfoSize) { |
| ValidationContext ValCtx(*pModule, nullptr, pModule->GetOrCreateDxilModule()); |
| VerifyFeatureInfoMatches(ValCtx, pFeatureInfoData, FeatureInfoSize); |
| return !ValCtx.Failed; |
| } |
| |
| HRESULT ValidateDxilContainerParts(llvm::Module *pModule, |
| llvm::Module *pDebugModule, |
| const DxilContainerHeader *pContainer, |
| uint32_t ContainerSize) { |
| |
| DXASSERT_NOMSG(pModule); |
| if (!pContainer || !IsValidDxilContainer(pContainer, ContainerSize)) { |
| return DXC_E_CONTAINER_INVALID; |
| } |
| |
| DxilModule *pDxilModule = DxilModule::TryGetDxilModule(pModule); |
| if (!pDxilModule) { |
| return DXC_E_IR_VERIFICATION_FAILED; |
| } |
| |
| ValidationContext ValCtx(*pModule, pDebugModule, *pDxilModule); |
| |
| DXIL::ShaderKind ShaderKind = pDxilModule->GetShaderModel()->GetKind(); |
| bool bTessOrMesh = ShaderKind == DXIL::ShaderKind::Hull || |
| ShaderKind == DXIL::ShaderKind::Domain || |
| ShaderKind == DXIL::ShaderKind::Mesh; |
| |
| std::unordered_set<uint32_t> FourCCFound; |
| const DxilPartHeader *pRootSignaturePart = nullptr; |
| const DxilPartHeader *pPSVPart = nullptr; |
| |
| for (auto it = begin(pContainer), itEnd = end(pContainer); it != itEnd; |
| ++it) { |
| const DxilPartHeader *pPart = *it; |
| |
| char szFourCC[5]; |
| PartKindToCharArray(pPart->PartFourCC, szFourCC); |
| if (FourCCFound.find(pPart->PartFourCC) != FourCCFound.end()) { |
| // Two parts with same FourCC found |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartRepeated, {szFourCC}); |
| continue; |
| } |
| FourCCFound.insert(pPart->PartFourCC); |
| |
| switch (pPart->PartFourCC) { |
| case DFCC_InputSignature: |
| if (ValCtx.isLibProfile) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid, |
| {szFourCC}); |
| } else { |
| VerifySignatureMatches(ValCtx, DXIL::SignatureKind::Input, |
| GetDxilPartData(pPart), pPart->PartSize); |
| } |
| break; |
| case DFCC_OutputSignature: |
| if (ValCtx.isLibProfile) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid, |
| {szFourCC}); |
| } else { |
| VerifySignatureMatches(ValCtx, DXIL::SignatureKind::Output, |
| GetDxilPartData(pPart), pPart->PartSize); |
| } |
| break; |
| case DFCC_PatchConstantSignature: |
| if (ValCtx.isLibProfile) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid, |
| {szFourCC}); |
| } else { |
| if (bTessOrMesh) { |
| VerifySignatureMatches(ValCtx, DXIL::SignatureKind::PatchConstOrPrim, |
| GetDxilPartData(pPart), pPart->PartSize); |
| } else { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartMatches, |
| {"Program Patch Constant Signature"}); |
| } |
| } |
| break; |
| case DFCC_FeatureInfo: |
| VerifyFeatureInfoMatches(ValCtx, GetDxilPartData(pPart), pPart->PartSize); |
| break; |
| case DFCC_CompilerVersion: |
| // This blob is either a PDB, or a library profile |
| if (ValCtx.isLibProfile) { |
| if (!ValidateCompilerVersionPart((void *)GetDxilPartData(pPart), |
| pPart->PartSize)) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid, |
| {szFourCC}); |
| } |
| } else { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid, |
| {szFourCC}); |
| } |
| break; |
| |
| case DFCC_RootSignature: |
| pRootSignaturePart = pPart; |
| if (ValCtx.isLibProfile) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid, |
| {szFourCC}); |
| } |
| break; |
| case DFCC_PipelineStateValidation: |
| pPSVPart = pPart; |
| if (ValCtx.isLibProfile) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid, |
| {szFourCC}); |
| } else { |
| VerifyPSVMatches(ValCtx, GetDxilPartData(pPart), pPart->PartSize); |
| } |
| break; |
| |
| // Skip these |
| case DFCC_ResourceDef: |
| case DFCC_ShaderStatistics: |
| case DFCC_PrivateData: |
| case DFCC_DXIL: |
| case DFCC_ShaderDebugInfoDXIL: |
| case DFCC_ShaderDebugName: |
| continue; |
| |
| case DFCC_ShaderHash: |
| if (pPart->PartSize != sizeof(DxilShaderHash)) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid, |
| {szFourCC}); |
| } |
| break; |
| |
| // Runtime Data (RDAT) for libraries |
| case DFCC_RuntimeData: |
| if (ValCtx.isLibProfile) { |
| // TODO: validate without exact binary comparison of serialized data |
| // - support earlier versions |
| // - verify no newer record versions than known here (size no larger |
| // than newest version) |
| // - verify all data makes sense and matches expectations based on |
| // module |
| VerifyRDATMatches(ValCtx, GetDxilPartData(pPart), pPart->PartSize); |
| } else { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid, |
| {szFourCC}); |
| } |
| break; |
| |
| case DFCC_Container: |
| default: |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartInvalid, {szFourCC}); |
| break; |
| } |
| } |
| |
| // Verify required parts found |
| if (ValCtx.isLibProfile) { |
| if (FourCCFound.find(DFCC_RuntimeData) == FourCCFound.end()) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartMissing, |
| {"Runtime Data (RDAT)"}); |
| } |
| } else { |
| if (FourCCFound.find(DFCC_InputSignature) == FourCCFound.end()) { |
| VerifySignatureMatches(ValCtx, DXIL::SignatureKind::Input, nullptr, 0); |
| } |
| if (FourCCFound.find(DFCC_OutputSignature) == FourCCFound.end()) { |
| VerifySignatureMatches(ValCtx, DXIL::SignatureKind::Output, nullptr, 0); |
| } |
| if (bTessOrMesh && |
| FourCCFound.find(DFCC_PatchConstantSignature) == FourCCFound.end() && |
| pDxilModule->GetPatchConstOrPrimSignature().GetElements().size()) { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartMissing, |
| {"Program Patch Constant Signature"}); |
| } |
| if (FourCCFound.find(DFCC_FeatureInfo) == FourCCFound.end()) { |
| // Could be optional, but RS1 runtime doesn't handle this case properly. |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartMissing, |
| {"Feature Info"}); |
| } |
| |
| // Validate Root Signature |
| if (pPSVPart) { |
| if (pRootSignaturePart) { |
| std::string diagStr; |
| raw_string_ostream DiagStream(diagStr); |
| try { |
| RootSignatureHandle RS; |
| RS.LoadSerialized( |
| (const uint8_t *)GetDxilPartData(pRootSignaturePart), |
| pRootSignaturePart->PartSize); |
| RS.Deserialize(); |
| IFTBOOL(VerifyRootSignatureWithShaderPSV( |
| RS.GetDesc(), pDxilModule->GetShaderModel()->GetKind(), |
| GetDxilPartData(pPSVPart), pPSVPart->PartSize, |
| DiagStream), |
| DXC_E_INCORRECT_ROOT_SIGNATURE); |
| } catch (...) { |
| ValCtx.EmitError(ValidationRule::ContainerRootSignatureIncompatible); |
| emitDxilDiag(pModule->getContext(), DiagStream.str().c_str()); |
| } |
| } |
| } else { |
| ValCtx.EmitFormatError(ValidationRule::ContainerPartMissing, |
| {"Pipeline State Validation"}); |
| } |
| } |
| |
| if (ValCtx.Failed) { |
| return DXC_E_MALFORMED_CONTAINER; |
| } |
| return S_OK; |
| } |
| |
| static HRESULT FindDxilPart(const void *pContainerBytes, uint32_t ContainerSize, |
| DxilFourCC FourCC, const DxilPartHeader **ppPart) { |
| |
| const DxilContainerHeader *pContainer = |
| IsDxilContainerLike(pContainerBytes, ContainerSize); |
| |
| if (!pContainer) { |
| IFR(DXC_E_CONTAINER_INVALID); |
| } |
| if (!IsValidDxilContainer(pContainer, ContainerSize)) { |
| IFR(DXC_E_CONTAINER_INVALID); |
| } |
| |
| DxilPartIterator it = |
| std::find_if(begin(pContainer), end(pContainer), DxilPartIsType(FourCC)); |
| if (it == end(pContainer)) { |
| IFR(DXC_E_CONTAINER_MISSING_DXIL); |
| } |
| |
| const DxilProgramHeader *pProgramHeader = |
| reinterpret_cast<const DxilProgramHeader *>(GetDxilPartData(*it)); |
| if (!IsValidDxilProgramHeader(pProgramHeader, (*it)->PartSize)) { |
| IFR(DXC_E_CONTAINER_INVALID); |
| } |
| |
| *ppPart = *it; |
| return S_OK; |
| } |
| |
| HRESULT ValidateLoadModule(const char *pIL, uint32_t ILLength, |
| unique_ptr<llvm::Module> &pModule, LLVMContext &Ctx, |
| llvm::raw_ostream &DiagStream, unsigned bLazyLoad) { |
| |
| llvm::DiagnosticPrinterRawOStream DiagPrinter(DiagStream); |
| PrintDiagnosticContext DiagContext(DiagPrinter); |
| DiagRestore DR(Ctx, &DiagContext); |
| |
| std::unique_ptr<llvm::MemoryBuffer> pBitcodeBuf; |
| pBitcodeBuf.reset(llvm::MemoryBuffer::getMemBuffer( |
| llvm::StringRef(pIL, ILLength), "", false) |
| .release()); |
| |
| ErrorOr<std::unique_ptr<Module>> loadedModuleResult = |
| bLazyLoad == 0 |
| ? llvm::parseBitcodeFile(pBitcodeBuf->getMemBufferRef(), Ctx, nullptr, |
| true /*Track Bitstream*/) |
| : llvm::getLazyBitcodeModule(std::move(pBitcodeBuf), Ctx, nullptr, |
| false, true /*Track Bitstream*/); |
| |
| // DXIL disallows some LLVM bitcode constructs, like unaccounted-for |
| // sub-blocks. These appear as warnings, which the validator should reject. |
| if (DiagContext.HasErrors() || DiagContext.HasWarnings() || |
| loadedModuleResult.getError()) |
| return DXC_E_IR_VERIFICATION_FAILED; |
| |
| pModule = std::move(loadedModuleResult.get()); |
| return S_OK; |
| } |
| |
| HRESULT ValidateDxilBitcode(const char *pIL, uint32_t ILLength, |
| llvm::raw_ostream &DiagStream) { |
| |
| LLVMContext Ctx; |
| std::unique_ptr<llvm::Module> pModule; |
| |
| llvm::DiagnosticPrinterRawOStream DiagPrinter(DiagStream); |
| PrintDiagnosticContext DiagContext(DiagPrinter); |
| Ctx.setDiagnosticHandler(PrintDiagnosticContext::PrintDiagnosticHandler, |
| &DiagContext, true); |
| |
| HRESULT hr; |
| if (FAILED(hr = ValidateLoadModule(pIL, ILLength, pModule, Ctx, DiagStream, |
| /*bLazyLoad*/ false))) |
| return hr; |
| |
| if (FAILED(hr = ValidateDxilModule(pModule.get(), nullptr))) |
| return hr; |
| |
| DxilModule &dxilModule = pModule->GetDxilModule(); |
| auto &SerializedRootSig = dxilModule.GetSerializedRootSignature(); |
| if (!SerializedRootSig.empty()) { |
| unique_ptr<DxilPartWriter> pWriter(NewPSVWriter(dxilModule)); |
| DXASSERT_NOMSG(pWriter->size()); |
| CComPtr<AbstractMemoryStream> pOutputStream; |
| IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pOutputStream)); |
| pOutputStream->Reserve(pWriter->size()); |
| pWriter->write(pOutputStream); |
| DxilVersionedRootSignature desc; |
| try { |
| DeserializeRootSignature(SerializedRootSig.data(), |
| SerializedRootSig.size(), desc.get_address_of()); |
| if (!desc.get()) { |
| return DXC_E_INCORRECT_ROOT_SIGNATURE; |
| } |
| IFTBOOL(VerifyRootSignatureWithShaderPSV( |
| desc.get(), dxilModule.GetShaderModel()->GetKind(), |
| pOutputStream->GetPtr(), pWriter->size(), DiagStream), |
| DXC_E_INCORRECT_ROOT_SIGNATURE); |
| } catch (...) { |
| return DXC_E_INCORRECT_ROOT_SIGNATURE; |
| } |
| } |
| |
| if (DiagContext.HasErrors() || DiagContext.HasWarnings()) { |
| return DXC_E_IR_VERIFICATION_FAILED; |
| } |
| |
| return S_OK; |
| } |
| |
| static HRESULT ValidateLoadModuleFromContainer( |
| const void *pContainer, uint32_t ContainerSize, |
| std::unique_ptr<llvm::Module> &pModule, |
| std::unique_ptr<llvm::Module> &pDebugModule, llvm::LLVMContext &Ctx, |
| LLVMContext &DbgCtx, llvm::raw_ostream &DiagStream, unsigned bLazyLoad) { |
| llvm::DiagnosticPrinterRawOStream DiagPrinter(DiagStream); |
| PrintDiagnosticContext DiagContext(DiagPrinter); |
| DiagRestore DR(Ctx, &DiagContext); |
| DiagRestore DR2(DbgCtx, &DiagContext); |
| |
| const DxilPartHeader *pPart = nullptr; |
| IFR(FindDxilPart(pContainer, ContainerSize, DFCC_DXIL, &pPart)); |
| |
| const char *pIL = nullptr; |
| uint32_t ILLength = 0; |
| GetDxilProgramBitcode( |
| reinterpret_cast<const DxilProgramHeader *>(GetDxilPartData(pPart)), &pIL, |
| &ILLength); |
| |
| IFR(ValidateLoadModule(pIL, ILLength, pModule, Ctx, DiagStream, bLazyLoad)); |
| |
| HRESULT hr; |
| const DxilPartHeader *pDbgPart = nullptr; |
| if (FAILED(hr = FindDxilPart(pContainer, ContainerSize, |
| DFCC_ShaderDebugInfoDXIL, &pDbgPart)) && |
| hr != DXC_E_CONTAINER_MISSING_DXIL) { |
| return hr; |
| } |
| |
| if (pDbgPart) { |
| GetDxilProgramBitcode( |
| reinterpret_cast<const DxilProgramHeader *>(GetDxilPartData(pDbgPart)), |
| &pIL, &ILLength); |
| if (FAILED(hr = ValidateLoadModule(pIL, ILLength, pDebugModule, DbgCtx, |
| DiagStream, bLazyLoad))) { |
| return hr; |
| } |
| } |
| |
| return S_OK; |
| } |
| |
| HRESULT ValidateLoadModuleFromContainer( |
| const void *pContainer, uint32_t ContainerSize, |
| std::unique_ptr<llvm::Module> &pModule, |
| std::unique_ptr<llvm::Module> &pDebugModule, llvm::LLVMContext &Ctx, |
| llvm::LLVMContext &DbgCtx, llvm::raw_ostream &DiagStream) { |
| return ValidateLoadModuleFromContainer(pContainer, ContainerSize, pModule, |
| pDebugModule, Ctx, DbgCtx, DiagStream, |
| /*bLazyLoad*/ false); |
| } |
| // Lazy loads module from container, validating load, but not module. |
| HRESULT ValidateLoadModuleFromContainerLazy( |
| const void *pContainer, uint32_t ContainerSize, |
| std::unique_ptr<llvm::Module> &pModule, |
| std::unique_ptr<llvm::Module> &pDebugModule, llvm::LLVMContext &Ctx, |
| llvm::LLVMContext &DbgCtx, llvm::raw_ostream &DiagStream) { |
| return ValidateLoadModuleFromContainer(pContainer, ContainerSize, pModule, |
| pDebugModule, Ctx, DbgCtx, DiagStream, |
| /*bLazyLoad*/ true); |
| } |
| |
| HRESULT ValidateDxilContainer(const void *pContainer, uint32_t ContainerSize, |
| const void *pOptDebugBitcode, |
| uint32_t OptDebugBitcodeSize, |
| llvm::raw_ostream &DiagStream) { |
| LLVMContext Ctx, DbgCtx; |
| std::unique_ptr<llvm::Module> pModule, pDebugModule; |
| |
| llvm::DiagnosticPrinterRawOStream DiagPrinter(DiagStream); |
| PrintDiagnosticContext DiagContext(DiagPrinter); |
| Ctx.setDiagnosticHandler(PrintDiagnosticContext::PrintDiagnosticHandler, |
| &DiagContext, true); |
| DbgCtx.setDiagnosticHandler(PrintDiagnosticContext::PrintDiagnosticHandler, |
| &DiagContext, true); |
| |
| IFR(ValidateLoadModuleFromContainer(pContainer, ContainerSize, pModule, |
| pDebugModule, Ctx, DbgCtx, DiagStream)); |
| |
| if (!pDebugModule && pOptDebugBitcode) { |
| // TODO: lazy load for perf |
| IFR(ValidateLoadModule((const char *)pOptDebugBitcode, OptDebugBitcodeSize, |
| pDebugModule, DbgCtx, DiagStream, |
| /*bLazyLoad*/ false)); |
| } |
| |
| // Validate DXIL Module |
| IFR(ValidateDxilModule(pModule.get(), pDebugModule.get())); |
| |
| if (DiagContext.HasErrors() || DiagContext.HasWarnings()) { |
| return DXC_E_IR_VERIFICATION_FAILED; |
| } |
| |
| return ValidateDxilContainerParts( |
| pModule.get(), pDebugModule.get(), |
| IsDxilContainerLike(pContainer, ContainerSize), ContainerSize); |
| } |
| |
| HRESULT ValidateDxilContainer(const void *pContainer, uint32_t ContainerSize, |
| llvm::raw_ostream &DiagStream) { |
| return ValidateDxilContainer(pContainer, ContainerSize, nullptr, 0, |
| DiagStream); |
| } |
| } // namespace hlsl |