| /////////////////////////////////////////////////////////////////////////////// |
| // // |
| // HLMatrixLowerPass.cpp // |
| // Copyright (C) Microsoft Corporation. All rights reserved. // |
| // This file is distributed under the University of Illinois Open Source // |
| // License. See LICENSE.TXT for details. // |
| // // |
| // HLMatrixLowerPass implementation. // |
| // // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "dxc/HLSL/HLMatrixLowerPass.h" |
| #include "dxc/HLSL/HLMatrixLowerHelper.h" |
| #include "dxc/HLSL/HLMatrixType.h" |
| #include "dxc/HLSL/HLOperations.h" |
| #include "dxc/HLSL/HLModule.h" |
| #include "dxc/HlslIntrinsicOp.h" |
| #include "dxc/Support/Global.h" |
| #include "dxc/DXIL/DxilOperations.h" |
| #include "dxc/DXIL/DxilTypeSystem.h" |
| #include "dxc/DXIL/DxilModule.h" |
| #include "dxc/DXIL/DxilUtil.h" |
| #include "HLMatrixSubscriptUseReplacer.h" |
| |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <unordered_set> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace hlsl; |
| using namespace hlsl::HLMatrixLower; |
| namespace hlsl { |
| namespace HLMatrixLower { |
| |
| Value *BuildVector(Type *EltTy, ArrayRef<llvm::Value *> elts, IRBuilder<> &Builder) { |
| Value *Vec = UndefValue::get(VectorType::get(EltTy, static_cast<unsigned>(elts.size()))); |
| for (unsigned i = 0; i < elts.size(); i++) |
| Vec = Builder.CreateInsertElement(Vec, elts[i], i); |
| return Vec; |
| } |
| |
| } // namespace HLMatrixLower |
| } // namespace hlsl |
| |
| namespace { |
| |
| // Creates and manages a set of temporary overloaded functions keyed on the function type, |
| // and which should be destroyed when the pool gets out of scope. |
| class TempOverloadPool { |
| public: |
| TempOverloadPool(llvm::Module &Module, const char* BaseName) |
| : Module(Module), BaseName(BaseName) {} |
| ~TempOverloadPool() { clear(); } |
| |
| Function *get(FunctionType *Ty); |
| bool contains(FunctionType *Ty) const { return Funcs.count(Ty) != 0; } |
| bool contains(Function *Func) const; |
| void clear(); |
| |
| private: |
| llvm::Module &Module; |
| const char* BaseName; |
| llvm::DenseMap<FunctionType*, Function*> Funcs; |
| }; |
| |
| Function *TempOverloadPool::get(FunctionType *Ty) { |
| auto It = Funcs.find(Ty); |
| if (It != Funcs.end()) return It->second; |
| |
| std::string MangledName; |
| raw_string_ostream MangledNameStream(MangledName); |
| MangledNameStream << BaseName; |
| MangledNameStream << '.'; |
| Ty->print(MangledNameStream); |
| MangledNameStream.flush(); |
| |
| Function* Func = cast<Function>(Module.getOrInsertFunction(MangledName, Ty)); |
| Funcs.insert(std::make_pair(Ty, Func)); |
| return Func; |
| } |
| |
| bool TempOverloadPool::contains(Function *Func) const { |
| auto It = Funcs.find(Func->getFunctionType()); |
| return It != Funcs.end() && It->second == Func; |
| } |
| |
| void TempOverloadPool::clear() { |
| for (auto Entry : Funcs) { |
| DXASSERT(Entry.second->use_empty(), "Temporary function still used during pool destruction."); |
| Entry.second->removeFromParent(); |
| } |
| Funcs.clear(); |
| } |
| |
| // High-level matrix lowering pass. |
| // |
| // This pass converts matrices to their lowered vector representations, |
| // including global variables, local variables and operations, |
| // but not function signatures (arguments and return types) - left to HLSignatureLower and HLMatrixBitcastLower, |
| // nor matrices obtained from resources or constant - left to HLOperationLower. |
| // |
| // Algorithm overview: |
| // 1. Find all matrix and matrix array global variables and lower them to vectors. |
| // Walk any GEPs and insert vec-to-mat translation stubs so that consuming |
| // instructions keep dealing with matrix types for the moment. |
| // 2. For each function |
| // 2a. Lower all matrix and matrix array allocas, just like global variables. |
| // 2b. Lower all other instructions producing or consuming matrices |
| // |
| // Conversion stubs are used to allow converting instructions in isolation, |
| // and in an order-independent manner: |
| // |
| // Initial: MatInst1(MatInst2(MatInst3)) |
| // After lowering MatInst2: MatInst1(VecToMat(VecInst2(MatToVec(MatInst3)))) |
| // After lowering MatInst1: VecInst1(VecInst2(MatToVec(MatInst3))) |
| // After lowering MatInst3: VecInst1(VecInst2(VecInst3)) |
| class HLMatrixLowerPass : public ModulePass { |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| explicit HLMatrixLowerPass() : ModulePass(ID) {} |
| |
| const char *getPassName() const override { return "HL matrix lower"; } |
| bool runOnModule(Module &M) override; |
| |
| private: |
| void runOnFunction(Function &Func); |
| void addToDeadInsts(Instruction *Inst) { m_deadInsts.emplace_back(Inst); } |
| void deleteDeadInsts(); |
| |
| void getMatrixAllocasAndOtherInsts(Function &Func, |
| std::vector<AllocaInst*> &MatAllocas, std::vector<Instruction*> &MatInsts); |
| Value *getLoweredByValOperand(Value *Val, IRBuilder<> &Builder, bool DiscardStub = false); |
| Value *tryGetLoweredPtrOperand(Value *Ptr, IRBuilder<> &Builder, bool DiscardStub = false); |
| Value *bitCastValue(Value *SrcVal, Type* DstTy, bool DstTyAlloca, IRBuilder<> &Builder); |
| void replaceAllUsesByLoweredValue(Instruction *MatInst, Value *VecVal); |
| void replaceAllVariableUses(Value* MatPtr, Value* LoweredPtr); |
| void replaceAllVariableUses(SmallVectorImpl<Value*> &GEPIdxStack, Value *StackTopPtr, Value* LoweredPtr); |
| Value *translateScalarMatMul(Value *scalar, Value *mat, IRBuilder<> &Builder, bool isLhsScalar = true); |
| |
| void lowerGlobal(GlobalVariable *Global); |
| Constant *lowerConstInitVal(Constant *Val); |
| AllocaInst *lowerAlloca(AllocaInst *MatAlloca); |
| void lowerInstruction(Instruction* Inst); |
| void lowerReturn(ReturnInst* Return); |
| Value *lowerCall(CallInst *Call); |
| Value *lowerNonHLCall(CallInst *Call); |
| void lowerPreciseCall(CallInst *Call, IRBuilder<> Builder); |
| Value *lowerHLOperation(CallInst *Call, HLOpcodeGroup OpcodeGroup); |
| Value *lowerHLIntrinsic(CallInst *Call, IntrinsicOp Opcode); |
| Value *lowerHLMulIntrinsic(Value* Lhs, Value *Rhs, bool Unsigned, IRBuilder<> &Builder); |
| Value *lowerHLTransposeIntrinsic(Value *MatVal, IRBuilder<> &Builder); |
| Value *lowerHLDeterminantIntrinsic(Value *MatVal, IRBuilder<> &Builder); |
| Value *lowerHLUnaryOperation(Value *MatVal, HLUnaryOpcode Opcode, IRBuilder<> &Builder); |
| Value *lowerHLBinaryOperation(Value *Lhs, Value *Rhs, HLBinaryOpcode Opcode, IRBuilder<> &Builder); |
| Value *lowerHLLoadStore(CallInst *Call, HLMatLoadStoreOpcode Opcode); |
| Value *lowerHLLoad(CallInst *Call, Value *MatPtr, bool RowMajor, IRBuilder<> &Builder); |
| Value *lowerHLStore(CallInst *Call, Value *MatVal, Value *MatPtr, bool RowMajor, bool Return, IRBuilder<> &Builder); |
| Value *lowerHLCast(CallInst *Call, Value *Src, Type *DstTy, HLCastOpcode Opcode, IRBuilder<> &Builder); |
| Value *lowerHLSubscript(CallInst *Call, HLSubscriptOpcode Opcode); |
| Value *lowerHLMatElementSubscript(CallInst *Call, bool RowMajor); |
| Value *lowerHLMatSubscript(CallInst *Call, bool RowMajor); |
| void lowerHLMatSubscript(CallInst *Call, Value *MatPtr, SmallVectorImpl<Value*> &ElemIndices); |
| Value *lowerHLInit(CallInst *Call); |
| Value *lowerHLSelect(CallInst *Call); |
| |
| private: |
| Module *m_pModule; |
| HLModule *m_pHLModule; |
| bool m_HasDbgInfo; |
| |
| // Pools for the translation stubs |
| TempOverloadPool *m_matToVecStubs = nullptr; |
| TempOverloadPool *m_vecToMatStubs = nullptr; |
| |
| std::vector<Instruction *> m_deadInsts; |
| }; |
| } |
| |
| char HLMatrixLowerPass::ID = 0; |
| |
| ModulePass *llvm::createHLMatrixLowerPass() { return new HLMatrixLowerPass(); } |
| |
| INITIALIZE_PASS(HLMatrixLowerPass, "hlmatrixlower", "HLSL High-Level Matrix Lower", false, false) |
| |
| bool HLMatrixLowerPass::runOnModule(Module &M) { |
| TempOverloadPool matToVecStubs(M, "hlmatrixlower.mat2vec"); |
| TempOverloadPool vecToMatStubs(M, "hlmatrixlower.vec2mat"); |
| |
| m_pModule = &M; |
| m_pHLModule = &m_pModule->GetOrCreateHLModule(); |
| // Load up debug information, to cross-reference values and the instructions |
| // used to load them. |
| m_HasDbgInfo = getDebugMetadataVersionFromModule(M) != 0; |
| m_matToVecStubs = &matToVecStubs; |
| m_vecToMatStubs = &vecToMatStubs; |
| |
| // First, lower static global variables. |
| // We need to accumulate them locally because we'll be creating new ones as we lower them. |
| std::vector<GlobalVariable*> Globals; |
| for (GlobalVariable &Global : M.globals()) { |
| if ((dxilutil::IsStaticGlobal(&Global) || dxilutil::IsSharedMemoryGlobal(&Global)) |
| && HLMatrixType::isMatrixPtrOrArrayPtr(Global.getType())) { |
| Globals.emplace_back(&Global); |
| } |
| } |
| |
| for (GlobalVariable *Global : Globals) |
| lowerGlobal(Global); |
| |
| for (Function &F : M.functions()) { |
| if (F.isDeclaration()) continue; |
| runOnFunction(F); |
| } |
| |
| m_pModule = nullptr; |
| m_pHLModule = nullptr; |
| m_matToVecStubs = nullptr; |
| m_vecToMatStubs = nullptr; |
| |
| // If you hit an assert during TempOverloadPool destruction, |
| // it means that either a matrix producer was lowered, |
| // causing a translation stub to be created, |
| // but the consumer of that matrix was never (properly) lowered. |
| // Or the opposite: a matrix consumer was lowered and not its producer. |
| |
| return true; |
| } |
| |
| void HLMatrixLowerPass::runOnFunction(Function &Func) { |
| // Skip hl function definition (like createhandle) |
| if (hlsl::GetHLOpcodeGroupByName(&Func) != HLOpcodeGroup::NotHL) |
| return; |
| |
| // Save the matrix instructions first since the translation process |
| // will temporarily create other instructions consuming/producing matrix types. |
| std::vector<AllocaInst*> MatAllocas; |
| std::vector<Instruction*> MatInsts; |
| getMatrixAllocasAndOtherInsts(Func, MatAllocas, MatInsts); |
| |
| // First lower all allocas and take care of their GEP chains |
| for (AllocaInst* MatAlloca : MatAllocas) { |
| AllocaInst* LoweredAlloca = lowerAlloca(MatAlloca); |
| replaceAllVariableUses(MatAlloca, LoweredAlloca); |
| addToDeadInsts(MatAlloca); |
| } |
| |
| // Now lower all other matrix instructions |
| for (Instruction *MatInst : MatInsts) |
| lowerInstruction(MatInst); |
| |
| deleteDeadInsts(); |
| } |
| |
| void HLMatrixLowerPass::deleteDeadInsts() { |
| while (!m_deadInsts.empty()) { |
| Instruction *Inst = m_deadInsts.back(); |
| m_deadInsts.pop_back(); |
| |
| DXASSERT_NOMSG(Inst->use_empty()); |
| for (Value *Operand : Inst->operand_values()) { |
| Instruction *OperandInst = dyn_cast<Instruction>(Operand); |
| if (OperandInst && ++OperandInst->user_begin() == OperandInst->user_end()) { |
| // We were its only user, erase recursively. |
| // This will get rid of translation stubs: |
| // Original: MatConsumer(MatProducer) |
| // Producer lowered: MatConsumer(VecToMat(VecProducer)), MatProducer dead |
| // Consumer lowered: VecConsumer(VecProducer)), MatConsumer(VecToMat) dead |
| // Only by recursing on MatConsumer's operand do we delete the VecToMat stub. |
| DXASSERT_NOMSG(*OperandInst->user_begin() == Inst); |
| m_deadInsts.emplace_back(OperandInst); |
| } |
| } |
| |
| Inst->eraseFromParent(); |
| } |
| } |
| |
| // Find all instructions consuming or producing matrices, |
| // directly or through pointers/arrays. |
| void HLMatrixLowerPass::getMatrixAllocasAndOtherInsts(Function &Func, |
| std::vector<AllocaInst*> &MatAllocas, std::vector<Instruction*> &MatInsts){ |
| for (BasicBlock &BasicBlock : Func) { |
| for (Instruction &Inst : BasicBlock) { |
| // Don't lower GEPs directly, we'll handle them as we lower the root pointer, |
| // typically a global variable or alloca. |
| if (isa<GetElementPtrInst>(&Inst)) continue; |
| |
| if (AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst)) { |
| if (HLMatrixType::isMatrixOrPtrOrArrayPtr(Alloca->getType())) { |
| MatAllocas.emplace_back(Alloca); |
| } |
| continue; |
| } |
| |
| if (CallInst *Call = dyn_cast<CallInst>(&Inst)) { |
| // Lowering of global variables will have introduced |
| // vec-to-mat translation stubs, which we deal with indirectly, |
| // as we lower the instructions consuming them. |
| if (m_vecToMatStubs->contains(Call->getCalledFunction())) |
| continue; |
| |
| // Mat-to-vec stubs should only be introduced during instruction lowering. |
| // Globals lowering won't introduce any because their only operand is |
| // their initializer, which we can fully lower without stubbing since it is constant. |
| DXASSERT(!m_matToVecStubs->contains(Call->getCalledFunction()), |
| "Unexpected mat-to-vec stubbing before function instruction lowering."); |
| |
| // Match matrix producers |
| if (HLMatrixType::isMatrixOrPtrOrArrayPtr(Inst.getType())) { |
| MatInsts.emplace_back(Call); |
| continue; |
| } |
| |
| // Match matrix consumers |
| for (Value *Operand : Inst.operand_values()) { |
| if (HLMatrixType::isMatrixOrPtrOrArrayPtr(Operand->getType())) { |
| MatInsts.emplace_back(Call); |
| break; |
| } |
| } |
| |
| continue; |
| } |
| |
| if (ReturnInst *Return = dyn_cast<ReturnInst>(&Inst)) { |
| Value *ReturnValue = Return->getReturnValue(); |
| if (ReturnValue != nullptr && HLMatrixType::isMatrixOrPtrOrArrayPtr(ReturnValue->getType())) |
| MatInsts.emplace_back(Return); |
| continue; |
| } |
| |
| // Nothing else should produce or consume matrices |
| } |
| } |
| } |
| |
| // Gets the matrix-lowered representation of a value, potentially adding a translation stub. |
| // DiscardStub causes any vec-to-mat translation stubs to be deleted, |
| // it should be true only if the original instruction will be modified and kept alive. |
| // If a new instruction is created and the original marked as dead, |
| // then the remove dead instructions pass will take care of removing the stub. |
| Value* HLMatrixLowerPass::getLoweredByValOperand(Value *Val, IRBuilder<> &Builder, bool DiscardStub) { |
| Type *Ty = Val->getType(); |
| |
| // We're only lowering byval matrices. |
| // Since structs and arrays are always accessed by pointer, |
| // we do not need to worry about a matrix being hidden inside a more complex type. |
| DXASSERT(!Ty->isPointerTy(), "Value cannot be a pointer."); |
| HLMatrixType MatTy = HLMatrixType::dyn_cast(Ty); |
| if (!MatTy) return Val; |
| |
| Type *LoweredTy = MatTy.getLoweredVectorTypeForReg(); |
| |
| // Check if the value is already a vec-to-mat translation stub |
| if (CallInst *Call = dyn_cast<CallInst>(Val)) { |
| if (m_vecToMatStubs->contains(Call->getCalledFunction())) { |
| if (DiscardStub && Call->getNumUses() == 1) { |
| Call->use_begin()->set(UndefValue::get(Call->getType())); |
| addToDeadInsts(Call); |
| } |
| |
| Value *LoweredVal = Call->getArgOperand(0); |
| DXASSERT(LoweredVal->getType() == LoweredTy, "Unexpected already-lowered value type."); |
| return LoweredVal; |
| } |
| } |
| |
| // Return a mat-to-vec translation stub |
| FunctionType *TranslationStubTy = FunctionType::get(LoweredTy, { Ty }, /* isVarArg */ false); |
| Function *TranslationStub = m_matToVecStubs->get(TranslationStubTy); |
| return Builder.CreateCall(TranslationStub, { Val }); |
| } |
| |
| // Attempts to retrieve the lowered vector pointer equivalent to a matrix pointer. |
| // Returns nullptr if the pointed-to matrix lives in memory that cannot be lowered at this time, |
| // for example a buffer or shader inputs/outputs, which are lowered during signature lowering. |
| Value *HLMatrixLowerPass::tryGetLoweredPtrOperand(Value *Ptr, IRBuilder<> &Builder, bool DiscardStub) { |
| if (!HLMatrixType::isMatrixPtrOrArrayPtr(Ptr->getType())) |
| return nullptr; |
| |
| // Matrix pointers can only be derived from Allocas, GlobalVariables or resource accesses. |
| // The first two cases are what this pass must be able to lower, and we should already |
| // have replaced their uses by vector to matrix pointer translation stubs. |
| if (CallInst *Call = dyn_cast<CallInst>(Ptr)) { |
| if (m_vecToMatStubs->contains(Call->getCalledFunction())) { |
| if (DiscardStub && Call->getNumUses() == 1) { |
| Call->use_begin()->set(UndefValue::get(Call->getType())); |
| addToDeadInsts(Call); |
| } |
| return Call->getArgOperand(0); |
| } |
| } |
| |
| // There's one more case to handle. |
| // When compiling shader libraries, signatures won't have been lowered yet. |
| // So we can have a matrix in a struct as an argument, |
| // or an alloca'd struct holding the return value of a call and containing a matrix. |
| Value *RootPtr = Ptr; |
| while (GEPOperator *GEP = dyn_cast<GEPOperator>(RootPtr)) |
| RootPtr = GEP->getPointerOperand(); |
| |
| Argument *Arg = dyn_cast<Argument>(RootPtr); |
| bool IsNonShaderArg = Arg != nullptr && !m_pHLModule->IsGraphicsShader(Arg->getParent()); |
| if (IsNonShaderArg || isa<AllocaInst>(RootPtr)) { |
| // Bitcast the matrix pointer to its lowered equivalent. |
| // The HLMatrixBitcast pass will take care of this later. |
| return Builder.CreateBitCast(Ptr, HLMatrixType::getLoweredType(Ptr->getType())); |
| } |
| |
| // The pointer must be derived from a resource, we don't handle it in this pass. |
| return nullptr; |
| } |
| |
| // Bitcasts a value from matrix to vector or vice-versa. |
| // This is used to convert to/from arguments/return values since we don't |
| // lower signatures in this pass. The later HLMatrixBitcastLower pass fixes this. |
| Value *HLMatrixLowerPass::bitCastValue(Value *SrcVal, Type* DstTy, bool DstTyAlloca, IRBuilder<> &Builder) { |
| Type *SrcTy = SrcVal->getType(); |
| DXASSERT_NOMSG(!SrcTy->isPointerTy()); |
| |
| // We store and load from a temporary alloca, bitcasting either on the store pointer |
| // or on the load pointer. |
| IRBuilder<> AllocaBuilder(dxilutil::FindAllocaInsertionPt(Builder.GetInsertPoint())); |
| Value *Alloca = AllocaBuilder.CreateAlloca(DstTyAlloca ? DstTy : SrcTy); |
| Value *BitCastedAlloca = Builder.CreateBitCast(Alloca, (DstTyAlloca ? SrcTy : DstTy)->getPointerTo()); |
| Builder.CreateStore(SrcVal, DstTyAlloca ? BitCastedAlloca : Alloca); |
| return Builder.CreateLoad(DstTyAlloca ? Alloca : BitCastedAlloca); |
| } |
| |
| // Replaces all uses of a matrix value by its lowered vector form, |
| // inserting translation stubs for users which still expect a matrix value. |
| void HLMatrixLowerPass::replaceAllUsesByLoweredValue(Instruction* MatInst, Value* VecVal) { |
| if (VecVal == nullptr || VecVal == MatInst) return; |
| |
| DXASSERT(HLMatrixType::getLoweredType(MatInst->getType()) == VecVal->getType(), |
| "Unexpected lowered value type."); |
| |
| Instruction *VecToMatStub = nullptr; |
| |
| while (!MatInst->use_empty()) { |
| Use &ValUse = *MatInst->use_begin(); |
| |
| // Handle non-matrix cases, just point to the new value. |
| if (MatInst->getType() == VecVal->getType()) { |
| ValUse.set(VecVal); |
| continue; |
| } |
| |
| // If the user is already a matrix-to-vector translation stub, |
| // we can now replace it by the proper vector value. |
| if (CallInst *Call = dyn_cast<CallInst>(ValUse.getUser())) { |
| if (m_matToVecStubs->contains(Call->getCalledFunction())) { |
| Call->replaceAllUsesWith(VecVal); |
| ValUse.set(UndefValue::get(MatInst->getType())); |
| addToDeadInsts(Call); |
| continue; |
| } |
| } |
| |
| // Otherwise, the user should point to a vector-to-matrix translation |
| // stub of the new vector value. |
| if (VecToMatStub == nullptr) { |
| FunctionType *TranslationStubTy = FunctionType::get( |
| MatInst->getType(), { VecVal->getType() }, /* isVarArg */ false); |
| Function *TranslationStub = m_vecToMatStubs->get(TranslationStubTy); |
| |
| Instruction *PrevInst = dyn_cast<Instruction>(VecVal); |
| if (PrevInst == nullptr) PrevInst = MatInst; |
| |
| IRBuilder<> Builder(dxilutil::SkipAllocas(PrevInst->getNextNode())); |
| VecToMatStub = Builder.CreateCall(TranslationStub, { VecVal }); |
| } |
| |
| ValUse.set(VecToMatStub); |
| } |
| } |
| |
| // Replaces all uses of a matrix or matrix array alloca or global variable by its lowered equivalent. |
| // This doesn't lower the users, but will insert a translation stub from the lowered value pointer |
| // back to the matrix value pointer, and recreate any GEPs around the new pointer. |
| // Before: User(GEP(MatrixArrayAlloca)) |
| // After: User(VecToMatPtrStub(GEP'(VectorArrayAlloca))) |
| void HLMatrixLowerPass::replaceAllVariableUses(Value* MatPtr, Value* LoweredPtr) { |
| DXASSERT_NOMSG(HLMatrixType::isMatrixPtrOrArrayPtr(MatPtr->getType())); |
| DXASSERT_NOMSG(LoweredPtr->getType() == HLMatrixType::getLoweredType(MatPtr->getType())); |
| |
| SmallVector<Value*, 4> GEPIdxStack; |
| GEPIdxStack.emplace_back(ConstantInt::get(Type::getInt32Ty(MatPtr->getContext()), 0)); |
| replaceAllVariableUses(GEPIdxStack, MatPtr, LoweredPtr); |
| } |
| |
| void HLMatrixLowerPass::replaceAllVariableUses( |
| SmallVectorImpl<Value*> &GEPIdxStack, Value *StackTopPtr, Value* LoweredPtr) { |
| while (!StackTopPtr->use_empty()) { |
| llvm::Use &Use = *StackTopPtr->use_begin(); |
| if (GEPOperator *GEP = dyn_cast<GEPOperator>(Use.getUser())) { |
| DXASSERT(GEP->getNumIndices() >= 1, "Unexpected degenerate GEP."); |
| DXASSERT(cast<ConstantInt>(*GEP->idx_begin())->isZero(), "Unexpected non-zero first GEP index."); |
| |
| // Recurse in GEP to find actual users |
| for (auto It = GEP->idx_begin() + 1; It != GEP->idx_end(); ++It) |
| GEPIdxStack.emplace_back(*It); |
| replaceAllVariableUses(GEPIdxStack, GEP, LoweredPtr); |
| GEPIdxStack.erase(GEPIdxStack.end() - (GEP->getNumIndices() - 1), GEPIdxStack.end()); |
| |
| // Discard the GEP |
| DXASSERT_NOMSG(GEP->use_empty()); |
| if (GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(GEP)) { |
| Use.set(UndefValue::get(Use->getType())); |
| addToDeadInsts(GEPInst); |
| } else { |
| // constant GEP |
| cast<Constant>(GEP)->destroyConstant(); |
| } |
| continue; |
| } |
| |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Use.getUser())) { |
| DXASSERT(CE->getOpcode() == Instruction::AddrSpaceCast, |
| "Unexpected constant user"); |
| replaceAllVariableUses(GEPIdxStack, CE, LoweredPtr); |
| DXASSERT_NOMSG(CE->use_empty()); |
| CE->destroyConstant(); |
| continue; |
| } |
| |
| if (AddrSpaceCastInst *CI = dyn_cast<AddrSpaceCastInst>(Use.getUser())) { |
| replaceAllVariableUses(GEPIdxStack, CI, LoweredPtr); |
| Use.set(UndefValue::get(Use->getType())); |
| addToDeadInsts(CI); |
| continue; |
| } |
| |
| // Recreate the same GEP sequence, if any, on the lowered pointer |
| IRBuilder<> Builder(cast<Instruction>(Use.getUser())); |
| Value *LoweredStackTopPtr = GEPIdxStack.size() == 1 |
| ? LoweredPtr : Builder.CreateGEP(LoweredPtr, GEPIdxStack); |
| |
| // Generate a stub translating the vector pointer back to a matrix pointer, |
| // such that consuming instructions are unaffected. |
| FunctionType *TranslationStubTy = FunctionType::get( |
| StackTopPtr->getType(), { LoweredStackTopPtr->getType() }, /* isVarArg */ false); |
| Function *TranslationStub = m_vecToMatStubs->get(TranslationStubTy); |
| Use.set(Builder.CreateCall(TranslationStub, { LoweredStackTopPtr })); |
| } |
| } |
| |
| void HLMatrixLowerPass::lowerGlobal(GlobalVariable *Global) { |
| if (Global->user_empty()) return; |
| |
| PointerType *LoweredPtrTy = cast<PointerType>(HLMatrixType::getLoweredType(Global->getType())); |
| DXASSERT_NOMSG(LoweredPtrTy != Global->getType()); |
| |
| Constant *LoweredInitVal = Global->hasInitializer() |
| ? lowerConstInitVal(Global->getInitializer()) : nullptr; |
| GlobalVariable *LoweredGlobal = new GlobalVariable(*m_pModule, LoweredPtrTy->getElementType(), |
| Global->isConstant(), Global->getLinkage(), LoweredInitVal, |
| Global->getName() + ".v", /*InsertBefore*/ nullptr, Global->getThreadLocalMode(), |
| Global->getType()->getAddressSpace()); |
| |
| // Add debug info. |
| if (m_HasDbgInfo) { |
| DebugInfoFinder &Finder = m_pHLModule->GetOrCreateDebugInfoFinder(); |
| HLModule::UpdateGlobalVariableDebugInfo(Global, Finder, LoweredGlobal); |
| } |
| |
| replaceAllVariableUses(Global, LoweredGlobal); |
| Global->removeDeadConstantUsers(); |
| Global->eraseFromParent(); |
| } |
| |
| Constant *HLMatrixLowerPass::lowerConstInitVal(Constant *Val) { |
| Type *Ty = Val->getType(); |
| |
| // If it's an array of matrices, recurse for each element or nested array |
| if (ArrayType *ArrayTy = dyn_cast<ArrayType>(Ty)) { |
| SmallVector<Constant*, 4> LoweredElems; |
| unsigned NumElems = ArrayTy->getNumElements(); |
| LoweredElems.reserve(NumElems); |
| for (unsigned ElemIdx = 0; ElemIdx < NumElems; ++ElemIdx) { |
| Constant *ArrayElem = Val->getAggregateElement(ElemIdx); |
| LoweredElems.emplace_back(lowerConstInitVal(ArrayElem)); |
| } |
| |
| Type *LoweredElemTy = HLMatrixType::getLoweredType(ArrayTy->getElementType(), /*MemRepr*/true); |
| ArrayType *LoweredArrayTy = ArrayType::get(LoweredElemTy, NumElems); |
| return ConstantArray::get(LoweredArrayTy, LoweredElems); |
| } |
| |
| // Otherwise it's a matrix, lower it to a vector |
| HLMatrixType MatTy = HLMatrixType::cast(Ty); |
| DXASSERT_NOMSG(isa<StructType>(Ty)); |
| Constant *RowArrayVal = Val->getAggregateElement((unsigned)0); |
| |
| // Original initializer should have been produced in row/column-major order |
| // depending on the qualifiers of the target variable, so preserve the order. |
| SmallVector<Constant*, 16> MatElems; |
| for (unsigned RowIdx = 0; RowIdx < MatTy.getNumRows(); ++RowIdx) { |
| Constant *RowVal = RowArrayVal->getAggregateElement(RowIdx); |
| for (unsigned ColIdx = 0; ColIdx < MatTy.getNumColumns(); ++ColIdx) { |
| MatElems.emplace_back(RowVal->getAggregateElement(ColIdx)); |
| } |
| } |
| |
| Constant *Vec = ConstantVector::get(MatElems); |
| |
| // Matrix elements are always in register representation, |
| // but the lowered global variable is of vector type in |
| // its memory representation, so we must convert here. |
| |
| // This will produce a constant so we can use an IRBuilder without a valid insertion point. |
| IRBuilder<> DummyBuilder(Val->getContext()); |
| return cast<Constant>(MatTy.emitLoweredRegToMem(Vec, DummyBuilder)); |
| } |
| |
| AllocaInst *HLMatrixLowerPass::lowerAlloca(AllocaInst *MatAlloca) { |
| PointerType *LoweredAllocaTy = cast<PointerType>(HLMatrixType::getLoweredType(MatAlloca->getType())); |
| |
| IRBuilder<> Builder(MatAlloca); |
| AllocaInst *LoweredAlloca = Builder.CreateAlloca( |
| LoweredAllocaTy->getElementType(), nullptr, MatAlloca->getName()); |
| |
| // Update debug info. |
| if (DbgDeclareInst *DbgDeclare = llvm::FindAllocaDbgDeclare(MatAlloca)) { |
| LLVMContext &Context = MatAlloca->getContext(); |
| Value *DbgDeclareVar = MetadataAsValue::get(Context, DbgDeclare->getRawVariable()); |
| Value *DbgDeclareExpr = MetadataAsValue::get(Context, DbgDeclare->getRawExpression()); |
| Value *ValueMetadata = MetadataAsValue::get(Context, ValueAsMetadata::get(LoweredAlloca)); |
| IRBuilder<> DebugBuilder(DbgDeclare); |
| DebugBuilder.CreateCall(DbgDeclare->getCalledFunction(), { ValueMetadata, DbgDeclareVar, DbgDeclareExpr }); |
| } |
| |
| if (HLModule::HasPreciseAttributeWithMetadata(MatAlloca)) |
| HLModule::MarkPreciseAttributeWithMetadata(LoweredAlloca); |
| |
| replaceAllVariableUses(MatAlloca, LoweredAlloca); |
| |
| return LoweredAlloca; |
| } |
| |
| void HLMatrixLowerPass::lowerInstruction(Instruction* Inst) { |
| if (CallInst *Call = dyn_cast<CallInst>(Inst)) { |
| Value *LoweredValue = lowerCall(Call); |
| |
| // lowerCall returns the lowered value iff we should discard |
| // the original matrix instruction and replace all of its uses |
| // by the lowered value. It returns nullptr to opt-out of this. |
| if (LoweredValue != nullptr) { |
| replaceAllUsesByLoweredValue(Call, LoweredValue); |
| addToDeadInsts(Inst); |
| } |
| } |
| else if (ReturnInst *Return = dyn_cast<ReturnInst>(Inst)) { |
| lowerReturn(Return); |
| } |
| else |
| llvm_unreachable("Unexpected matrix instruction type."); |
| } |
| |
| void HLMatrixLowerPass::lowerReturn(ReturnInst* Return) { |
| Value *RetVal = Return->getReturnValue(); |
| Type *RetTy = RetVal->getType(); |
| DXASSERT_LOCALVAR(RetTy, !RetTy->isPointerTy(), "Unexpected matrix returned by pointer."); |
| |
| IRBuilder<> Builder(Return); |
| Value *LoweredRetVal = getLoweredByValOperand(RetVal, Builder, /* DiscardStub */ true); |
| |
| // Since we're not lowering the signature, we can't return the lowered value directly, |
| // so insert a bitcast, which HLMatrixBitcastLower knows how to eliminate. |
| Value *BitCastedRetVal = bitCastValue(LoweredRetVal, RetVal->getType(), /* DstTyAlloca */ false, Builder); |
| Return->setOperand(0, BitCastedRetVal); |
| } |
| |
| Value *HLMatrixLowerPass::lowerCall(CallInst *Call) { |
| HLOpcodeGroup OpcodeGroup = GetHLOpcodeGroupByName(Call->getCalledFunction()); |
| return OpcodeGroup == HLOpcodeGroup::NotHL |
| ? lowerNonHLCall(Call) : lowerHLOperation(Call, OpcodeGroup); |
| } |
| |
| // Special function to lower precise call applied to a matrix |
| // The matrix should be lowered and the call regenerated with vector arg |
| void HLMatrixLowerPass::lowerPreciseCall(CallInst *Call, IRBuilder<> Builder) { |
| DXASSERT(Call->getNumArgOperands() == 1, "Only one arg expected for precise matrix call"); |
| Value *Arg = Call->getArgOperand(0); |
| Value *LoweredArg = getLoweredByValOperand(Arg, Builder); |
| HLModule::MarkPreciseAttributeOnValWithFunctionCall(LoweredArg, Builder, *m_pModule); |
| addToDeadInsts(Call); |
| } |
| |
| Value *HLMatrixLowerPass::lowerNonHLCall(CallInst *Call) { |
| // First, handle any operand of matrix-derived type |
| // We don't lower the callee's signature in this pass, |
| // so, for any matrix-typed parameter, we create a bitcast from the |
| // lowered vector back to the matrix type, which the later HLMatrixBitcastLower |
| // pass knows how to eliminate. |
| IRBuilder<> PreCallBuilder(Call); |
| unsigned NumArgs = Call->getNumArgOperands(); |
| Function *Func = Call->getCalledFunction(); |
| if (Func && HLModule::HasPreciseAttribute(Func)) { |
| lowerPreciseCall(Call, PreCallBuilder); |
| return nullptr; |
| } |
| |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| Use &ArgUse = Call->getArgOperandUse(ArgIdx); |
| if (ArgUse->getType()->isPointerTy()) { |
| // Byref arg |
| Value *LoweredArg = tryGetLoweredPtrOperand(ArgUse.get(), PreCallBuilder, /* DiscardStub */ true); |
| if (LoweredArg != nullptr) { |
| // Pointer to a matrix we've lowered, insert a bitcast back to matrix pointer type. |
| Value *BitCastedArg = PreCallBuilder.CreateBitCast(LoweredArg, ArgUse->getType()); |
| ArgUse.set(BitCastedArg); |
| } |
| } |
| else { |
| // Byvalue arg |
| Value *LoweredArg = getLoweredByValOperand(ArgUse.get(), PreCallBuilder, /* DiscardStub */ true); |
| if (LoweredArg == ArgUse.get()) continue; |
| |
| Value *BitCastedArg = bitCastValue(LoweredArg, ArgUse->getType(), /* DstTyAlloca */ false, PreCallBuilder); |
| ArgUse.set(BitCastedArg); |
| } |
| } |
| |
| // Now check the return type |
| HLMatrixType RetMatTy = HLMatrixType::dyn_cast(Call->getType()); |
| if (!RetMatTy) { |
| DXASSERT(!HLMatrixType::isMatrixPtrOrArrayPtr(Call->getType()), |
| "Unexpected user call returning a matrix by pointer."); |
| // Nothing to replace, other instructions can consume a non-matrix return type. |
| return nullptr; |
| } |
| |
| // The callee returns a matrix, and we don't lower signatures in this pass. |
| // We perform a sketchy bitcast to the lowered register-representation type, |
| // which the later HLMatrixBitcastLower pass knows how to eliminate. |
| IRBuilder<> AllocaBuilder(dxilutil::FindAllocaInsertionPt(Call)); |
| Value *LoweredAlloca = AllocaBuilder.CreateAlloca(RetMatTy.getLoweredVectorTypeForReg()); |
| |
| IRBuilder<> PostCallBuilder(Call->getNextNode()); |
| Value *BitCastedAlloca = PostCallBuilder.CreateBitCast(LoweredAlloca, Call->getType()->getPointerTo()); |
| |
| // This is slightly tricky |
| // We want to replace all uses of the matrix-returning call by the bitcasted value, |
| // but the store to the bitcasted pointer itself is a use of that matrix, |
| // so we need to create the load, replace the uses, and then insert the store. |
| LoadInst *LoweredVal = PostCallBuilder.CreateLoad(LoweredAlloca); |
| replaceAllUsesByLoweredValue(Call, LoweredVal); |
| |
| // Now we can insert the store. Make sure to do so before the load. |
| PostCallBuilder.SetInsertPoint(LoweredVal); |
| PostCallBuilder.CreateStore(Call, BitCastedAlloca); |
| |
| // Return nullptr since we did our own uses replacement and we don't want |
| // the matrix instruction to be marked as dead since we're still using it. |
| return nullptr; |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLOperation(CallInst *Call, HLOpcodeGroup OpcodeGroup) { |
| IRBuilder<> Builder(Call); |
| switch (OpcodeGroup) { |
| case HLOpcodeGroup::HLIntrinsic: |
| return lowerHLIntrinsic(Call, static_cast<IntrinsicOp>(GetHLOpcode(Call))); |
| |
| case HLOpcodeGroup::HLBinOp: |
| return lowerHLBinaryOperation( |
| Call->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx), |
| Call->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx), |
| static_cast<HLBinaryOpcode>(GetHLOpcode(Call)), Builder); |
| |
| case HLOpcodeGroup::HLUnOp: |
| return lowerHLUnaryOperation( |
| Call->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx), |
| static_cast<HLUnaryOpcode>(GetHLOpcode(Call)), Builder); |
| |
| case HLOpcodeGroup::HLMatLoadStore: |
| return lowerHLLoadStore(Call, static_cast<HLMatLoadStoreOpcode>(GetHLOpcode(Call))); |
| |
| case HLOpcodeGroup::HLCast: |
| return lowerHLCast(Call, |
| Call->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx), Call->getType(), |
| static_cast<HLCastOpcode>(GetHLOpcode(Call)), Builder); |
| |
| case HLOpcodeGroup::HLSubscript: |
| return lowerHLSubscript(Call, static_cast<HLSubscriptOpcode>(GetHLOpcode(Call))); |
| |
| case HLOpcodeGroup::HLInit: |
| return lowerHLInit(Call); |
| |
| case HLOpcodeGroup::HLSelect: |
| return lowerHLSelect(Call); |
| |
| default: |
| llvm_unreachable("Unexpected matrix opcode"); |
| } |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLIntrinsic(CallInst *Call, IntrinsicOp Opcode) { |
| IRBuilder<> Builder(Call); |
| |
| // See if this is a matrix-specific intrinsic which we should expand here |
| switch (Opcode) { |
| case IntrinsicOp::IOP_umul: |
| case IntrinsicOp::IOP_mul: |
| return lowerHLMulIntrinsic( |
| Call->getArgOperand(HLOperandIndex::kBinaryOpSrc0Idx), |
| Call->getArgOperand(HLOperandIndex::kBinaryOpSrc1Idx), |
| /* Unsigned */ Opcode == IntrinsicOp::IOP_umul, Builder); |
| case IntrinsicOp::IOP_transpose: |
| return lowerHLTransposeIntrinsic(Call->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx), Builder); |
| case IntrinsicOp::IOP_determinant: |
| return lowerHLDeterminantIntrinsic(Call->getArgOperand(HLOperandIndex::kUnaryOpSrc0Idx), Builder); |
| } |
| |
| // Delegate to a lowered intrinsic call |
| SmallVector<Value*, 4> LoweredArgs; |
| LoweredArgs.reserve(Call->getNumArgOperands()); |
| for (Value *Arg : Call->arg_operands()) { |
| if (Arg->getType()->isPointerTy()) { |
| // ByRef parameter (for example, frexp's second parameter) |
| // If the argument points to a lowered matrix variable, replace it here, |
| // otherwise preserve the matrix type and let further passes handle the lowering. |
| Value *LoweredArg = tryGetLoweredPtrOperand(Arg, Builder); |
| if (LoweredArg == nullptr) LoweredArg = Arg; |
| LoweredArgs.emplace_back(LoweredArg); |
| } |
| else { |
| LoweredArgs.emplace_back(getLoweredByValOperand(Arg, Builder)); |
| } |
| } |
| |
| Type *LoweredRetTy = HLMatrixType::getLoweredType(Call->getType()); |
| return callHLFunction(*m_pModule, HLOpcodeGroup::HLIntrinsic, static_cast<unsigned>(Opcode), |
| LoweredRetTy, LoweredArgs, |
| Call->getCalledFunction()->getAttributes().getFnAttributes(), Builder); |
| } |
| |
| // Handles multiplcation of a scalar with a matrix |
| Value *HLMatrixLowerPass::translateScalarMatMul(Value *Lhs, Value *Rhs, IRBuilder<> &Builder, bool isLhsScalar) { |
| Value *Mat = isLhsScalar ? Rhs : Lhs; |
| Value *Scalar = isLhsScalar ? Lhs : Rhs; |
| Value* LoweredMat = getLoweredByValOperand(Mat, Builder); |
| Type *ScalarTy = Scalar->getType(); |
| |
| // Perform the scalar-matrix multiplication! |
| Type *ElemTy = LoweredMat->getType()->getVectorElementType(); |
| bool isIntMulOp = ScalarTy->isIntegerTy() && ElemTy->isIntegerTy(); |
| bool isFloatMulOp = ScalarTy->isFloatingPointTy() && ElemTy->isFloatingPointTy(); |
| DXASSERT(ScalarTy == ElemTy, "Scalar type must match the matrix component type."); |
| Value *Result = Builder.CreateVectorSplat(LoweredMat->getType()->getVectorNumElements(), Scalar); |
| |
| if (isFloatMulOp) { |
| // Preserve the order of operation for floats |
| Result = isLhsScalar ? Builder.CreateFMul(Result, LoweredMat) : Builder.CreateFMul(LoweredMat, Result); |
| } |
| else if (isIntMulOp) { |
| // Doesn't matter for integers but still preserve the order of operation |
| Result = isLhsScalar ? Builder.CreateMul(Result, LoweredMat) : Builder.CreateMul(LoweredMat, Result); |
| } |
| else { |
| DXASSERT(0, "Unknown type encountered when doing scalar-matrix multiplication."); |
| } |
| |
| return Result; |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLMulIntrinsic(Value* Lhs, Value *Rhs, |
| bool Unsigned, IRBuilder<> &Builder) { |
| HLMatrixType LhsMatTy = HLMatrixType::dyn_cast(Lhs->getType()); |
| HLMatrixType RhsMatTy = HLMatrixType::dyn_cast(Rhs->getType()); |
| Value* LoweredLhs = getLoweredByValOperand(Lhs, Builder); |
| Value* LoweredRhs = getLoweredByValOperand(Rhs, Builder); |
| |
| // Translate multiplication of scalar with matrix |
| bool isLhsScalar = !LoweredLhs->getType()->isVectorTy(); |
| bool isRhsScalar = !LoweredRhs->getType()->isVectorTy(); |
| bool isScalar = isLhsScalar || isRhsScalar; |
| if (isScalar) |
| return translateScalarMatMul(Lhs, Rhs, Builder, isLhsScalar); |
| |
| DXASSERT(LoweredLhs->getType()->getScalarType() == LoweredRhs->getType()->getScalarType(), |
| "Unexpected element type mismatch in mul intrinsic."); |
| DXASSERT(cast<VectorType>(LoweredLhs->getType()) && cast<VectorType>(LoweredRhs->getType()), |
| "Unexpected scalar in lowered matrix mul intrinsic operands."); |
| |
| Type* ElemTy = LoweredLhs->getType()->getScalarType(); |
| |
| // Figure out the dimensions of each side |
| unsigned LhsNumRows, LhsNumCols, RhsNumRows, RhsNumCols; |
| if (LhsMatTy && RhsMatTy) { |
| LhsNumRows = LhsMatTy.getNumRows(); |
| LhsNumCols = LhsMatTy.getNumColumns(); |
| RhsNumRows = RhsMatTy.getNumRows(); |
| RhsNumCols = RhsMatTy.getNumColumns(); |
| } |
| else if (LhsMatTy) { |
| LhsNumRows = LhsMatTy.getNumRows(); |
| LhsNumCols = LhsMatTy.getNumColumns(); |
| RhsNumRows = LoweredRhs->getType()->getVectorNumElements(); |
| RhsNumCols = 1; |
| } |
| else if (RhsMatTy) { |
| LhsNumRows = 1; |
| LhsNumCols = LoweredLhs->getType()->getVectorNumElements(); |
| RhsNumRows = RhsMatTy.getNumRows(); |
| RhsNumCols = RhsMatTy.getNumColumns(); |
| } |
| else { |
| llvm_unreachable("mul intrinsic was identified as a matrix operation but neither operand is a matrix."); |
| } |
| |
| DXASSERT(LhsNumCols == RhsNumRows, "Matrix mul intrinsic operands dimensions mismatch."); |
| HLMatrixType ResultMatTy(ElemTy, LhsNumRows, RhsNumCols); |
| unsigned AccCount = LhsNumCols; |
| |
| // Get the multiply-and-add intrinsic function, we'll need it |
| IntrinsicOp MadOpcode = Unsigned ? IntrinsicOp::IOP_umad : IntrinsicOp::IOP_mad; |
| FunctionType *MadFuncTy = FunctionType::get(ElemTy, { Builder.getInt32Ty(), ElemTy, ElemTy, ElemTy }, false); |
| Function *MadFunc = GetOrCreateHLFunction(*m_pModule, MadFuncTy, HLOpcodeGroup::HLIntrinsic, (unsigned)MadOpcode); |
| Constant *MadOpcodeVal = Builder.getInt32((unsigned)MadOpcode); |
| |
| // Perform the multiplication! |
| Value *Result = UndefValue::get(VectorType::get(ElemTy, LhsNumRows * RhsNumCols)); |
| for (unsigned ResultRowIdx = 0; ResultRowIdx < ResultMatTy.getNumRows(); ++ResultRowIdx) { |
| for (unsigned ResultColIdx = 0; ResultColIdx < ResultMatTy.getNumColumns(); ++ResultColIdx) { |
| unsigned ResultElemIdx = ResultMatTy.getRowMajorIndex(ResultRowIdx, ResultColIdx); |
| Value *ResultElem = nullptr; |
| |
| for (unsigned AccIdx = 0; AccIdx < AccCount; ++AccIdx) { |
| unsigned LhsElemIdx = HLMatrixType::getRowMajorIndex(ResultRowIdx, AccIdx, LhsNumRows, LhsNumCols); |
| unsigned RhsElemIdx = HLMatrixType::getRowMajorIndex(AccIdx, ResultColIdx, RhsNumRows, RhsNumCols); |
| Value* LhsElem = Builder.CreateExtractElement(LoweredLhs, static_cast<uint64_t>(LhsElemIdx)); |
| Value* RhsElem = Builder.CreateExtractElement(LoweredRhs, static_cast<uint64_t>(RhsElemIdx)); |
| if (ResultElem == nullptr) { |
| ResultElem = ElemTy->isFloatingPointTy() |
| ? Builder.CreateFMul(LhsElem, RhsElem) |
| : Builder.CreateMul(LhsElem, RhsElem); |
| } |
| else { |
| ResultElem = Builder.CreateCall(MadFunc, { MadOpcodeVal, LhsElem, RhsElem, ResultElem }); |
| } |
| } |
| |
| Result = Builder.CreateInsertElement(Result, ResultElem, static_cast<uint64_t>(ResultElemIdx)); |
| } |
| } |
| |
| return Result; |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLTransposeIntrinsic(Value* MatVal, IRBuilder<> &Builder) { |
| HLMatrixType MatTy = HLMatrixType::cast(MatVal->getType()); |
| Value *LoweredVal = getLoweredByValOperand(MatVal, Builder); |
| return MatTy.emitLoweredVectorRowToCol(LoweredVal, Builder); |
| } |
| |
| static Value *determinant2x2(Value *M00, Value *M01, Value *M10, Value *M11, IRBuilder<> &Builder) { |
| Value *Mul0 = Builder.CreateFMul(M00, M11); |
| Value *Mul1 = Builder.CreateFMul(M01, M10); |
| return Builder.CreateFSub(Mul0, Mul1); |
| } |
| |
| static Value *determinant3x3(Value *M00, Value *M01, Value *M02, |
| Value *M10, Value *M11, Value *M12, |
| Value *M20, Value *M21, Value *M22, |
| IRBuilder<> &Builder) { |
| Value *Det00 = determinant2x2(M11, M12, M21, M22, Builder); |
| Value *Det01 = determinant2x2(M10, M12, M20, M22, Builder); |
| Value *Det02 = determinant2x2(M10, M11, M20, M21, Builder); |
| Det00 = Builder.CreateFMul(M00, Det00); |
| Det01 = Builder.CreateFMul(M01, Det01); |
| Det02 = Builder.CreateFMul(M02, Det02); |
| Value *Result = Builder.CreateFSub(Det00, Det01); |
| Result = Builder.CreateFAdd(Result, Det02); |
| return Result; |
| } |
| |
| static Value *determinant4x4(Value *M00, Value *M01, Value *M02, Value *M03, |
| Value *M10, Value *M11, Value *M12, Value *M13, |
| Value *M20, Value *M21, Value *M22, Value *M23, |
| Value *M30, Value *M31, Value *M32, Value *M33, |
| IRBuilder<> &Builder) { |
| Value *Det00 = determinant3x3(M11, M12, M13, M21, M22, M23, M31, M32, M33, Builder); |
| Value *Det01 = determinant3x3(M10, M12, M13, M20, M22, M23, M30, M32, M33, Builder); |
| Value *Det02 = determinant3x3(M10, M11, M13, M20, M21, M23, M30, M31, M33, Builder); |
| Value *Det03 = determinant3x3(M10, M11, M12, M20, M21, M22, M30, M31, M32, Builder); |
| Det00 = Builder.CreateFMul(M00, Det00); |
| Det01 = Builder.CreateFMul(M01, Det01); |
| Det02 = Builder.CreateFMul(M02, Det02); |
| Det03 = Builder.CreateFMul(M03, Det03); |
| Value *Result = Builder.CreateFSub(Det00, Det01); |
| Result = Builder.CreateFAdd(Result, Det02); |
| Result = Builder.CreateFSub(Result, Det03); |
| return Result; |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLDeterminantIntrinsic(Value* MatVal, IRBuilder<> &Builder) { |
| HLMatrixType MatTy = HLMatrixType::cast(MatVal->getType()); |
| DXASSERT_NOMSG(MatTy.getNumColumns() == MatTy.getNumRows()); |
| |
| Value *LoweredVal = getLoweredByValOperand(MatVal, Builder); |
| |
| // Extract all matrix elements |
| SmallVector<Value*, 16> Elems; |
| for (unsigned ElemIdx = 0; ElemIdx < MatTy.getNumElements(); ++ElemIdx) |
| Elems.emplace_back(Builder.CreateExtractElement(LoweredVal, static_cast<uint64_t>(ElemIdx))); |
| |
| // Delegate to appropriate determinant function |
| switch (MatTy.getNumColumns()) { |
| case 1: |
| return Elems[0]; |
| |
| case 2: |
| return determinant2x2( |
| Elems[0], Elems[1], |
| Elems[2], Elems[3], |
| Builder); |
| |
| case 3: |
| return determinant3x3( |
| Elems[0], Elems[1], Elems[2], |
| Elems[3], Elems[4], Elems[5], |
| Elems[6], Elems[7], Elems[8], |
| Builder); |
| |
| case 4: |
| return determinant4x4( |
| Elems[0], Elems[1], Elems[2], Elems[3], |
| Elems[4], Elems[5], Elems[6], Elems[7], |
| Elems[8], Elems[9], Elems[10], Elems[11], |
| Elems[12], Elems[13], Elems[14], Elems[15], |
| Builder); |
| |
| default: |
| llvm_unreachable("Unexpected matrix dimensions."); |
| } |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLUnaryOperation(Value *MatVal, HLUnaryOpcode Opcode, IRBuilder<> &Builder) { |
| Value *LoweredVal = getLoweredByValOperand(MatVal, Builder); |
| VectorType *VecTy = cast<VectorType>(LoweredVal->getType()); |
| bool IsFloat = VecTy->getElementType()->isFloatingPointTy(); |
| |
| switch (Opcode) { |
| case HLUnaryOpcode::Plus: return LoweredVal; // No-op |
| |
| case HLUnaryOpcode::Minus: |
| return IsFloat |
| ? Builder.CreateFSub(Constant::getNullValue(VecTy), LoweredVal) |
| : Builder.CreateSub(Constant::getNullValue(VecTy), LoweredVal); |
| |
| case HLUnaryOpcode::LNot: |
| return IsFloat |
| ? Builder.CreateFCmp(CmpInst::FCMP_UEQ, LoweredVal, Constant::getNullValue(VecTy)) |
| : Builder.CreateICmp(CmpInst::ICMP_EQ, LoweredVal, Constant::getNullValue(VecTy)); |
| |
| case HLUnaryOpcode::Not: |
| return Builder.CreateXor(LoweredVal, Constant::getAllOnesValue(VecTy)); |
| |
| case HLUnaryOpcode::PostInc: |
| case HLUnaryOpcode::PreInc: |
| case HLUnaryOpcode::PostDec: |
| case HLUnaryOpcode::PreDec: { |
| Constant *ScalarOne = IsFloat |
| ? ConstantFP::get(VecTy->getElementType(), 1) |
| : ConstantInt::get(VecTy->getElementType(), 1); |
| Constant *VecOne = ConstantVector::getSplat(VecTy->getNumElements(), ScalarOne); |
| |
| // CodeGen already emitted the load and following store, our job is only to produce |
| // the updated value. |
| if (Opcode == HLUnaryOpcode::PostInc || Opcode == HLUnaryOpcode::PreInc) { |
| return IsFloat |
| ? Builder.CreateFAdd(LoweredVal, VecOne) |
| : Builder.CreateAdd(LoweredVal, VecOne); |
| } |
| else { |
| return IsFloat |
| ? Builder.CreateFSub(LoweredVal, VecOne) |
| : Builder.CreateSub(LoweredVal, VecOne); |
| } |
| } |
| default: |
| llvm_unreachable("Unsupported unary matrix operator"); |
| } |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLBinaryOperation(Value *Lhs, Value *Rhs, HLBinaryOpcode Opcode, IRBuilder<> &Builder) { |
| Value *LoweredLhs = getLoweredByValOperand(Lhs, Builder); |
| Value *LoweredRhs = getLoweredByValOperand(Rhs, Builder); |
| |
| DXASSERT(LoweredLhs->getType()->isVectorTy() && LoweredRhs->getType()->isVectorTy(), |
| "Expected lowered binary operation operands to be vectors"); |
| DXASSERT(LoweredLhs->getType() == LoweredRhs->getType(), |
| "Expected lowered binary operation operands to have matching types."); |
| |
| bool IsFloat = LoweredLhs->getType()->getVectorElementType()->isFloatingPointTy(); |
| |
| switch (Opcode) { |
| case HLBinaryOpcode::Add: |
| return IsFloat |
| ? Builder.CreateFAdd(LoweredLhs, LoweredRhs) |
| : Builder.CreateAdd(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::Sub: |
| return IsFloat |
| ? Builder.CreateFSub(LoweredLhs, LoweredRhs) |
| : Builder.CreateSub(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::Mul: |
| return IsFloat |
| ? Builder.CreateFMul(LoweredLhs, LoweredRhs) |
| : Builder.CreateMul(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::Div: |
| return IsFloat |
| ? Builder.CreateFDiv(LoweredLhs, LoweredRhs) |
| : Builder.CreateSDiv(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::Rem: |
| return IsFloat |
| ? Builder.CreateFRem(LoweredLhs, LoweredRhs) |
| : Builder.CreateSRem(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::And: |
| return Builder.CreateAnd(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::Or: |
| return Builder.CreateOr(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::Xor: |
| return Builder.CreateXor(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::Shl: |
| return Builder.CreateShl(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::Shr: |
| return Builder.CreateAShr(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::LT: |
| return IsFloat |
| ? Builder.CreateFCmp(CmpInst::FCMP_OLT, LoweredLhs, LoweredRhs) |
| : Builder.CreateICmp(CmpInst::ICMP_SLT, LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::GT: |
| return IsFloat |
| ? Builder.CreateFCmp(CmpInst::FCMP_OGT, LoweredLhs, LoweredRhs) |
| : Builder.CreateICmp(CmpInst::ICMP_SGT, LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::LE: |
| return IsFloat |
| ? Builder.CreateFCmp(CmpInst::FCMP_OLE, LoweredLhs, LoweredRhs) |
| : Builder.CreateICmp(CmpInst::ICMP_SLE, LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::GE: |
| return IsFloat |
| ? Builder.CreateFCmp(CmpInst::FCMP_OGE, LoweredLhs, LoweredRhs) |
| : Builder.CreateICmp(CmpInst::ICMP_SGE, LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::EQ: |
| return IsFloat |
| ? Builder.CreateFCmp(CmpInst::FCMP_OEQ, LoweredLhs, LoweredRhs) |
| : Builder.CreateICmp(CmpInst::ICMP_EQ, LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::NE: |
| return IsFloat |
| ? Builder.CreateFCmp(CmpInst::FCMP_ONE, LoweredLhs, LoweredRhs) |
| : Builder.CreateICmp(CmpInst::ICMP_NE, LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::UDiv: |
| return Builder.CreateUDiv(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::URem: |
| return Builder.CreateURem(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::UShr: |
| return Builder.CreateLShr(LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::ULT: |
| return Builder.CreateICmp(CmpInst::ICMP_ULT, LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::UGT: |
| return Builder.CreateICmp(CmpInst::ICMP_UGT, LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::ULE: |
| return Builder.CreateICmp(CmpInst::ICMP_ULE, LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::UGE: |
| return Builder.CreateICmp(CmpInst::ICMP_UGE, LoweredLhs, LoweredRhs); |
| |
| case HLBinaryOpcode::LAnd: |
| case HLBinaryOpcode::LOr: { |
| Value *Zero = Constant::getNullValue(LoweredLhs->getType()); |
| Value *LhsCmp = IsFloat |
| ? Builder.CreateFCmp(CmpInst::FCMP_ONE, LoweredLhs, Zero) |
| : Builder.CreateICmp(CmpInst::ICMP_NE, LoweredLhs, Zero); |
| Value *RhsCmp = IsFloat |
| ? Builder.CreateFCmp(CmpInst::FCMP_ONE, LoweredRhs, Zero) |
| : Builder.CreateICmp(CmpInst::ICMP_NE, LoweredRhs, Zero); |
| return Opcode == HLBinaryOpcode::LOr |
| ? Builder.CreateOr(LhsCmp, RhsCmp) |
| : Builder.CreateAnd(LhsCmp, RhsCmp); |
| } |
| default: |
| llvm_unreachable("Unsupported binary matrix operator"); |
| } |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLLoadStore(CallInst *Call, HLMatLoadStoreOpcode Opcode) { |
| IRBuilder<> Builder(Call); |
| switch (Opcode) { |
| case HLMatLoadStoreOpcode::RowMatLoad: |
| case HLMatLoadStoreOpcode::ColMatLoad: |
| return lowerHLLoad(Call, Call->getArgOperand(HLOperandIndex::kMatLoadPtrOpIdx), |
| /* RowMajor */ Opcode == HLMatLoadStoreOpcode::RowMatLoad, Builder); |
| |
| case HLMatLoadStoreOpcode::RowMatStore: |
| case HLMatLoadStoreOpcode::ColMatStore: |
| return lowerHLStore(Call, |
| Call->getArgOperand(HLOperandIndex::kMatStoreValOpIdx), |
| Call->getArgOperand(HLOperandIndex::kMatStoreDstPtrOpIdx), |
| /* RowMajor */ Opcode == HLMatLoadStoreOpcode::RowMatStore, |
| /* Return */ !Call->getType()->isVoidTy(), Builder); |
| |
| default: |
| llvm_unreachable("Unsupported matrix load/store operation"); |
| } |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLLoad(CallInst *Call, Value *MatPtr, bool RowMajor, IRBuilder<> &Builder) { |
| HLMatrixType MatTy = HLMatrixType::cast(MatPtr->getType()->getPointerElementType()); |
| |
| Value *LoweredPtr = tryGetLoweredPtrOperand(MatPtr, Builder); |
| if (LoweredPtr == nullptr) { |
| // Can't lower this here, defer to HL signature lower |
| HLMatLoadStoreOpcode Opcode = RowMajor ? HLMatLoadStoreOpcode::RowMatLoad : HLMatLoadStoreOpcode::ColMatLoad; |
| return callHLFunction( |
| *m_pModule, HLOpcodeGroup::HLMatLoadStore, static_cast<unsigned>(Opcode), |
| MatTy.getLoweredVectorTypeForReg(), { Builder.getInt32((uint32_t)Opcode), MatPtr }, |
| Call->getCalledFunction()->getAttributes().getFnAttributes(), Builder); |
| } |
| |
| return MatTy.emitLoweredLoad(LoweredPtr, Builder); |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLStore(CallInst *Call, Value *MatVal, Value *MatPtr, |
| bool RowMajor, bool Return, IRBuilder<> &Builder) { |
| DXASSERT(MatVal->getType() == MatPtr->getType()->getPointerElementType(), |
| "Matrix store value/pointer type mismatch."); |
| |
| Value *LoweredPtr = tryGetLoweredPtrOperand(MatPtr, Builder); |
| Value *LoweredVal = getLoweredByValOperand(MatVal, Builder); |
| if (LoweredPtr == nullptr) { |
| // Can't lower the pointer here, defer to HL signature lower |
| HLMatLoadStoreOpcode Opcode = RowMajor ? HLMatLoadStoreOpcode::RowMatStore : HLMatLoadStoreOpcode::ColMatStore; |
| return callHLFunction( |
| *m_pModule, HLOpcodeGroup::HLMatLoadStore, static_cast<unsigned>(Opcode), |
| Return ? LoweredVal->getType() : Builder.getVoidTy(), |
| { Builder.getInt32((uint32_t)Opcode), MatPtr, LoweredVal }, |
| Call->getCalledFunction()->getAttributes().getFnAttributes(), Builder); |
| } |
| |
| HLMatrixType MatTy = HLMatrixType::cast(MatPtr->getType()->getPointerElementType()); |
| StoreInst *LoweredStore = MatTy.emitLoweredStore(LoweredVal, LoweredPtr, Builder); |
| |
| // If the intrinsic returned a value, return the stored lowered value |
| return Return ? LoweredVal : LoweredStore; |
| } |
| |
| static Value *convertScalarOrVector(Value *SrcVal, Type *DstTy, HLCastOpcode Opcode, IRBuilder<> Builder) { |
| DXASSERT(SrcVal->getType()->isVectorTy() == DstTy->isVectorTy(), |
| "Scalar/vector type mismatch in numerical conversion."); |
| Type *SrcTy = SrcVal->getType(); |
| |
| // Conversions between equivalent types are no-ops, |
| // even between signed/unsigned variants. |
| if (SrcTy == DstTy) return SrcVal; |
| |
| // Conversions to bools are comparisons |
| if (DstTy->getScalarSizeInBits() == 1) { |
| // fcmp une is what regular clang uses in C++ for (bool)f; |
| return cast<Instruction>(SrcTy->isIntOrIntVectorTy() |
| ? Builder.CreateICmpNE(SrcVal, llvm::Constant::getNullValue(SrcTy), "tobool") |
| : Builder.CreateFCmpUNE(SrcVal, llvm::Constant::getNullValue(SrcTy), "tobool")); |
| } |
| |
| // Cast necessary |
| bool SrcIsUnsigned = Opcode == HLCastOpcode::FromUnsignedCast || |
| Opcode == HLCastOpcode::UnsignedUnsignedCast; |
| bool DstIsUnsigned = Opcode == HLCastOpcode::ToUnsignedCast || |
| Opcode == HLCastOpcode::UnsignedUnsignedCast; |
| auto CastOp = static_cast<Instruction::CastOps>(HLModule::GetNumericCastOp( |
| SrcTy, SrcIsUnsigned, DstTy, DstIsUnsigned)); |
| return cast<Instruction>(Builder.CreateCast(CastOp, SrcVal, DstTy)); |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLCast(CallInst *Call, Value *Src, Type *DstTy, |
| HLCastOpcode Opcode, IRBuilder<> &Builder) { |
| // The opcode really doesn't mean much here, the types involved are what drive most of the casting. |
| DXASSERT(Opcode != HLCastOpcode::HandleToResCast, "Unexpected matrix cast opcode."); |
| |
| if (dxilutil::IsIntegerOrFloatingPointType(Src->getType())) { |
| // Scalar to matrix splat |
| HLMatrixType MatDstTy = HLMatrixType::cast(DstTy); |
| |
| // Apply element conversion |
| Value *Result = convertScalarOrVector(Src, |
| MatDstTy.getElementTypeForReg(), Opcode, Builder); |
| |
| // Splat to a vector |
| Result = Builder.CreateInsertElement( |
| UndefValue::get(VectorType::get(Result->getType(), 1)), |
| Result, static_cast<uint64_t>(0)); |
| return Builder.CreateShuffleVector(Result, Result, |
| ConstantVector::getSplat(MatDstTy.getNumElements(), Builder.getInt32(0))); |
| } |
| else if (VectorType *SrcVecTy = dyn_cast<VectorType>(Src->getType())) { |
| // Vector to matrix |
| HLMatrixType MatDstTy = HLMatrixType::cast(DstTy); |
| Value *Result = Src; |
| |
| // We might need to truncate |
| if (MatDstTy.getNumElements() < SrcVecTy->getNumElements()) { |
| SmallVector<int, 4> ShuffleIndices; |
| for (unsigned Idx = 0; Idx < MatDstTy.getNumElements(); ++Idx) |
| ShuffleIndices.emplace_back(static_cast<int>(Idx)); |
| Result = Builder.CreateShuffleVector(Src, Src, ShuffleIndices); |
| } |
| |
| // Apply element conversion |
| return convertScalarOrVector(Result, |
| MatDstTy.getLoweredVectorTypeForReg(), Opcode, Builder); |
| } |
| |
| // Source must now be a matrix |
| HLMatrixType MatSrcTy = HLMatrixType::cast(Src->getType()); |
| VectorType* LoweredSrcTy = MatSrcTy.getLoweredVectorTypeForReg(); |
| |
| Value *LoweredSrc; |
| if (isa<Argument>(Src)) { |
| // Function arguments are lowered in HLSignatureLower. |
| // Initial codegen first generates those cast intrinsics to tell us how to lower them into vectors. |
| // Preserve them, but change the return type to vector. |
| DXASSERT(Opcode == HLCastOpcode::ColMatrixToVecCast || Opcode == HLCastOpcode::RowMatrixToVecCast, |
| "Unexpected cast of matrix argument."); |
| LoweredSrc = callHLFunction(*m_pModule, HLOpcodeGroup::HLCast, static_cast<unsigned>(Opcode), |
| LoweredSrcTy, { Builder.getInt32((uint32_t)Opcode), Src }, |
| Call->getCalledFunction()->getAttributes().getFnAttributes(), Builder); |
| } |
| else { |
| LoweredSrc = getLoweredByValOperand(Src, Builder); |
| } |
| DXASSERT_NOMSG(LoweredSrc->getType() == LoweredSrcTy); |
| |
| Value* Result = LoweredSrc; |
| Type* LoweredDstTy = DstTy; |
| if (dxilutil::IsIntegerOrFloatingPointType(DstTy)) { |
| // Matrix to scalar |
| Result = Builder.CreateExtractElement(LoweredSrc, static_cast<uint64_t>(0)); |
| } |
| else if (DstTy->isVectorTy()) { |
| // Matrix to vector |
| VectorType *DstVecTy = cast<VectorType>(DstTy); |
| DXASSERT(DstVecTy->getNumElements() <= LoweredSrcTy->getNumElements(), |
| "Cannot cast matrix to a larger vector."); |
| |
| // We might have to truncate |
| if (DstTy->getVectorNumElements() < LoweredSrcTy->getNumElements()) { |
| SmallVector<int, 3> ShuffleIndices; |
| for (unsigned Idx = 0; Idx < DstVecTy->getNumElements(); ++Idx) |
| ShuffleIndices.emplace_back(static_cast<int>(Idx)); |
| Result = Builder.CreateShuffleVector(Result, Result, ShuffleIndices); |
| } |
| } |
| else { |
| // Destination must now be a matrix too |
| HLMatrixType MatDstTy = HLMatrixType::cast(DstTy); |
| |
| // Apply any changes at the matrix level: orientation changes and truncation |
| if (Opcode == HLCastOpcode::ColMatrixToRowMatrix) |
| Result = MatSrcTy.emitLoweredVectorColToRow(Result, Builder); |
| else if (Opcode == HLCastOpcode::RowMatrixToColMatrix) |
| Result = MatSrcTy.emitLoweredVectorRowToCol(Result, Builder); |
| else if (MatDstTy.getNumRows() != MatSrcTy.getNumRows() |
| || MatDstTy.getNumColumns() != MatSrcTy.getNumColumns()) { |
| // Apply truncation |
| DXASSERT(MatDstTy.getNumRows() <= MatSrcTy.getNumRows() |
| && MatDstTy.getNumColumns() <= MatSrcTy.getNumColumns(), |
| "Unexpected matrix cast between incompatible dimensions."); |
| SmallVector<int, 16> ShuffleIndices; |
| for (unsigned RowIdx = 0; RowIdx < MatDstTy.getNumRows(); ++RowIdx) |
| for (unsigned ColIdx = 0; ColIdx < MatDstTy.getNumColumns(); ++ColIdx) |
| ShuffleIndices.emplace_back(static_cast<int>(MatSrcTy.getRowMajorIndex(RowIdx, ColIdx))); |
| Result = Builder.CreateShuffleVector(Result, Result, ShuffleIndices); |
| } |
| |
| LoweredDstTy = MatDstTy.getLoweredVectorTypeForReg(); |
| DXASSERT(Result->getType()->getVectorNumElements() == LoweredDstTy->getVectorNumElements(), |
| "Unexpected matrix src/dst lowered element count mismatch after truncation."); |
| } |
| |
| // Apply element conversion |
| return convertScalarOrVector(Result, LoweredDstTy, Opcode, Builder); |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLSubscript(CallInst *Call, HLSubscriptOpcode Opcode) { |
| switch (Opcode) { |
| case HLSubscriptOpcode::RowMatElement: |
| case HLSubscriptOpcode::ColMatElement: |
| return lowerHLMatElementSubscript(Call, |
| /* RowMajor */ Opcode == HLSubscriptOpcode::RowMatElement); |
| |
| case HLSubscriptOpcode::RowMatSubscript: |
| case HLSubscriptOpcode::ColMatSubscript: |
| return lowerHLMatSubscript(Call, |
| /* RowMajor */ Opcode == HLSubscriptOpcode::RowMatSubscript); |
| |
| case HLSubscriptOpcode::DefaultSubscript: |
| case HLSubscriptOpcode::CBufferSubscript: |
| // Those get lowered during HLOperationLower, |
| // and the return type must stay unchanged (as a matrix) |
| // to provide the metadata to properly emit the loads. |
| return nullptr; |
| |
| default: |
| llvm_unreachable("Unexpected matrix subscript opcode."); |
| } |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLMatElementSubscript(CallInst *Call, bool RowMajor) { |
| (void)RowMajor; // It doesn't look like we actually need this? |
| |
| Value *MatPtr = Call->getArgOperand(HLOperandIndex::kMatSubscriptMatOpIdx); |
| Constant *IdxVec = cast<Constant>(Call->getArgOperand(HLOperandIndex::kMatSubscriptSubOpIdx)); |
| VectorType *IdxVecTy = cast<VectorType>(IdxVec->getType()); |
| |
| // Get the loaded lowered vector element indices |
| SmallVector<Value*, 4> ElemIndices; |
| ElemIndices.reserve(IdxVecTy->getNumElements()); |
| for (unsigned VecIdx = 0; VecIdx < IdxVecTy->getNumElements(); ++VecIdx) { |
| ElemIndices.emplace_back(IdxVec->getAggregateElement(VecIdx)); |
| } |
| |
| lowerHLMatSubscript(Call, MatPtr, ElemIndices); |
| |
| // We did our own replacement of uses, opt-out of having the caller does it for us. |
| return nullptr; |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLMatSubscript(CallInst *Call, bool RowMajor) { |
| (void)RowMajor; // It doesn't look like we actually need this? |
| |
| Value *MatPtr = Call->getArgOperand(HLOperandIndex::kMatSubscriptMatOpIdx); |
| |
| // Gather the indices, checking if they are all constant |
| SmallVector<Value*, 4> ElemIndices; |
| for (unsigned Idx = HLOperandIndex::kMatSubscriptSubOpIdx; Idx < Call->getNumArgOperands(); ++Idx) { |
| ElemIndices.emplace_back(Call->getArgOperand(Idx)); |
| } |
| |
| lowerHLMatSubscript(Call, MatPtr, ElemIndices); |
| |
| // We did our own replacement of uses, opt-out of having the caller does it for us. |
| return nullptr; |
| } |
| |
| void HLMatrixLowerPass::lowerHLMatSubscript(CallInst *Call, Value *MatPtr, SmallVectorImpl<Value*> &ElemIndices) { |
| DXASSERT_NOMSG(HLMatrixType::isMatrixPtr(MatPtr->getType())); |
| |
| IRBuilder<> CallBuilder(Call); |
| Value *LoweredPtr = tryGetLoweredPtrOperand(MatPtr, CallBuilder); |
| if (LoweredPtr == nullptr) return; |
| |
| // For global variables, we can GEP directly into the lowered vector pointer. |
| // This is necessary to support group shared memory atomics and the likes. |
| Value *RootPtr = LoweredPtr; |
| while (GEPOperator *GEP = dyn_cast<GEPOperator>(RootPtr)) |
| RootPtr = GEP->getPointerOperand(); |
| bool AllowLoweredPtrGEPs = isa<GlobalVariable>(RootPtr); |
| |
| // Just constructing this does all the work |
| HLMatrixSubscriptUseReplacer UseReplacer(Call, LoweredPtr, ElemIndices, AllowLoweredPtrGEPs, m_deadInsts); |
| |
| DXASSERT(Call->use_empty(), "Expected all matrix subscript uses to have been replaced."); |
| addToDeadInsts(Call); |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLInit(CallInst *Call) { |
| DXASSERT(GetHLOpcode(Call) == 0, "Unexpected matrix init opcode."); |
| |
| // Figure out the result type |
| HLMatrixType MatTy = HLMatrixType::cast(Call->getType()); |
| VectorType *LoweredTy = MatTy.getLoweredVectorTypeForReg(); |
| |
| // Handle case where produced by EmitHLSLFlatConversion where there's one |
| // vector argument, instead of scalar arguments. |
| if (1 == Call->getNumArgOperands() - HLOperandIndex::kInitFirstArgOpIdx && |
| Call->getArgOperand(HLOperandIndex::kInitFirstArgOpIdx)-> |
| getType()->isVectorTy()) { |
| Value *LoweredVec = Call->getArgOperand(HLOperandIndex::kInitFirstArgOpIdx); |
| DXASSERT(LoweredTy->getNumElements() == |
| LoweredVec->getType()->getVectorNumElements(), |
| "Invalid matrix init argument vector element count."); |
| return LoweredVec; |
| } |
| |
| DXASSERT(LoweredTy->getNumElements() == Call->getNumArgOperands() - HLOperandIndex::kInitFirstArgOpIdx, |
| "Invalid matrix init argument count."); |
| |
| // Build the result vector from the init args. |
| // Both the args and the result vector are in row-major order, so no shuffling is necessary. |
| IRBuilder<> Builder(Call); |
| Value *LoweredVec = UndefValue::get(LoweredTy); |
| for (unsigned VecElemIdx = 0; VecElemIdx < LoweredTy->getNumElements(); ++VecElemIdx) { |
| Value *ArgVal = Call->getArgOperand(HLOperandIndex::kInitFirstArgOpIdx + VecElemIdx); |
| DXASSERT(dxilutil::IsIntegerOrFloatingPointType(ArgVal->getType()), |
| "Expected only scalars in matrix initialization."); |
| LoweredVec = Builder.CreateInsertElement(LoweredVec, ArgVal, static_cast<uint64_t>(VecElemIdx)); |
| } |
| |
| return LoweredVec; |
| } |
| |
| Value *HLMatrixLowerPass::lowerHLSelect(CallInst *Call) { |
| DXASSERT(GetHLOpcode(Call) == 0, "Unexpected matrix init opcode."); |
| |
| Value *Cond = Call->getArgOperand(HLOperandIndex::kTrinaryOpSrc0Idx); |
| Value *TrueMat = Call->getArgOperand(HLOperandIndex::kTrinaryOpSrc1Idx); |
| Value *FalseMat = Call->getArgOperand(HLOperandIndex::kTrinaryOpSrc2Idx); |
| |
| DXASSERT(TrueMat->getType() == FalseMat->getType(), |
| "Unexpected type mismatch between matrix ternary operator values."); |
| |
| #ifndef NDEBUG |
| // Assert that if the condition is a matrix, it matches the dimensions of the values |
| if (HLMatrixType MatCondTy = HLMatrixType::dyn_cast(Cond->getType())) { |
| HLMatrixType ValMatTy = HLMatrixType::cast(TrueMat->getType()); |
| DXASSERT(MatCondTy.getNumRows() == ValMatTy.getNumRows() |
| && MatCondTy.getNumColumns() == ValMatTy.getNumColumns(), |
| "Unexpected mismatch between ternary operator condition and value matrix dimensions."); |
| } |
| #endif |
| |
| IRBuilder<> Builder(Call); |
| Value *LoweredCond = getLoweredByValOperand(Cond, Builder); |
| Value *LoweredTrueVec = getLoweredByValOperand(TrueMat, Builder); |
| Value *LoweredFalseVec = getLoweredByValOperand(FalseMat, Builder); |
| Value *Result = UndefValue::get(LoweredTrueVec->getType()); |
| |
| bool IsScalarCond = !LoweredCond->getType()->isVectorTy(); |
| |
| unsigned NumElems = Result->getType()->getVectorNumElements(); |
| for (uint64_t ElemIdx = 0; ElemIdx < NumElems; ++ElemIdx) { |
| Value *ElemCond = IsScalarCond ? LoweredCond |
| : Builder.CreateExtractElement(LoweredCond, ElemIdx); |
| Value *ElemTrueVal = Builder.CreateExtractElement(LoweredTrueVec, ElemIdx); |
| Value *ElemFalseVal = Builder.CreateExtractElement(LoweredFalseVec, ElemIdx); |
| Value *ResultElem = Builder.CreateSelect(ElemCond, ElemTrueVal, ElemFalseVal); |
| Result = Builder.CreateInsertElement(Result, ResultElem, ElemIdx); |
| } |
| |
| return Result; |
| } |