blob: 77831152887e8e9d34ce9bf85c4b6dca658176a4 [file] [log] [blame]
/*
** 2004 May 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code that is specific to windows.
*/
#include "sqliteInt.h"
#if SQLITE_OS_WIN /* This file is used for windows only */
/*
** A Note About Memory Allocation:
**
** This driver uses malloc()/free() directly rather than going through
** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
** are designed for use on embedded systems where memory is scarce and
** malloc failures happen frequently. Win32 does not typically run on
** embedded systems, and when it does the developers normally have bigger
** problems to worry about than running out of memory. So there is not
** a compelling need to use the wrappers.
**
** But there is a good reason to not use the wrappers. If we use the
** wrappers then we will get simulated malloc() failures within this
** driver. And that causes all kinds of problems for our tests. We
** could enhance SQLite to deal with simulated malloc failures within
** the OS driver, but the code to deal with those failure would not
** be exercised on Linux (which does not need to malloc() in the driver)
** and so we would have difficulty writing coverage tests for that
** code. Better to leave the code out, we think.
**
** The point of this discussion is as follows: When creating a new
** OS layer for an embedded system, if you use this file as an example,
** avoid the use of malloc()/free(). Those routines work ok on windows
** desktops but not so well in embedded systems.
*/
#include <winbase.h>
#ifdef __CYGWIN__
# include <sys/cygwin.h>
#endif
/*
** Macros used to determine whether or not to use threads.
*/
#if defined(THREADSAFE) && THREADSAFE
# define SQLITE_W32_THREADS 1
#endif
/*
** Include code that is common to all os_*.c files
*/
#include "os_common.h"
/*
** Some microsoft compilers lack this definition.
*/
#ifndef INVALID_FILE_ATTRIBUTES
# define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
#endif
/*
** Determine if we are dealing with WindowsCE - which has a much
** reduced API.
*/
#if SQLITE_OS_WINCE
# define AreFileApisANSI() 1
# define FormatMessageW(a,b,c,d,e,f,g) 0
#endif
/*
** WinCE lacks native support for file locking so we have to fake it
** with some code of our own.
*/
#if SQLITE_OS_WINCE
typedef struct winceLock {
int nReaders; /* Number of reader locks obtained */
BOOL bPending; /* Indicates a pending lock has been obtained */
BOOL bReserved; /* Indicates a reserved lock has been obtained */
BOOL bExclusive; /* Indicates an exclusive lock has been obtained */
} winceLock;
#endif
/*
** The winFile structure is a subclass of sqlite3_file* specific to the win32
** portability layer.
*/
typedef struct winFile winFile;
struct winFile {
const sqlite3_io_methods *pMethod;/* Must be first */
HANDLE h; /* Handle for accessing the file */
unsigned char locktype; /* Type of lock currently held on this file */
short sharedLockByte; /* Randomly chosen byte used as a shared lock */
DWORD lastErrno; /* The Windows errno from the last I/O error */
DWORD sectorSize; /* Sector size of the device file is on */
#if SQLITE_OS_WINCE
WCHAR *zDeleteOnClose; /* Name of file to delete when closing */
HANDLE hMutex; /* Mutex used to control access to shared lock */
HANDLE hShared; /* Shared memory segment used for locking */
winceLock local; /* Locks obtained by this instance of winFile */
winceLock *shared; /* Global shared lock memory for the file */
#endif
};
/*
** Forward prototypes.
*/
static int getSectorSize(
sqlite3_vfs *pVfs,
const char *zRelative /* UTF-8 file name */
);
/*
** The following variable is (normally) set once and never changes
** thereafter. It records whether the operating system is Win95
** or WinNT.
**
** 0: Operating system unknown.
** 1: Operating system is Win95.
** 2: Operating system is WinNT.
**
** In order to facilitate testing on a WinNT system, the test fixture
** can manually set this value to 1 to emulate Win98 behavior.
*/
#ifdef SQLITE_TEST
int sqlite3_os_type = 0;
#else
static int sqlite3_os_type = 0;
#endif
/*
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
** or WinCE. Return false (zero) for Win95, Win98, or WinME.
**
** Here is an interesting observation: Win95, Win98, and WinME lack
** the LockFileEx() API. But we can still statically link against that
** API as long as we don't call it when running Win95/98/ME. A call to
** this routine is used to determine if the host is Win95/98/ME or
** WinNT/2K/XP so that we will know whether or not we can safely call
** the LockFileEx() API.
*/
#if SQLITE_OS_WINCE
# define isNT() (1)
#else
static int isNT(void){
if( sqlite3_os_type==0 ){
OSVERSIONINFO sInfo;
sInfo.dwOSVersionInfoSize = sizeof(sInfo);
GetVersionEx(&sInfo);
sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
}
return sqlite3_os_type==2;
}
#endif /* SQLITE_OS_WINCE */
/*
** Convert a UTF-8 string to microsoft unicode (UTF-16?).
**
** Space to hold the returned string is obtained from malloc.
*/
static WCHAR *utf8ToUnicode(const char *zFilename){
int nChar;
WCHAR *zWideFilename;
nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
zWideFilename = malloc( nChar*sizeof(zWideFilename[0]) );
if( zWideFilename==0 ){
return 0;
}
nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar);
if( nChar==0 ){
free(zWideFilename);
zWideFilename = 0;
}
return zWideFilename;
}
/*
** Convert microsoft unicode to UTF-8. Space to hold the returned string is
** obtained from malloc().
*/
static char *unicodeToUtf8(const WCHAR *zWideFilename){
int nByte;
char *zFilename;
nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
zFilename = malloc( nByte );
if( zFilename==0 ){
return 0;
}
nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte,
0, 0);
if( nByte == 0 ){
free(zFilename);
zFilename = 0;
}
return zFilename;
}
/*
** Convert an ansi string to microsoft unicode, based on the
** current codepage settings for file apis.
**
** Space to hold the returned string is obtained
** from malloc.
*/
static WCHAR *mbcsToUnicode(const char *zFilename){
int nByte;
WCHAR *zMbcsFilename;
int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, NULL,0)*sizeof(WCHAR);
zMbcsFilename = malloc( nByte*sizeof(zMbcsFilename[0]) );
if( zMbcsFilename==0 ){
return 0;
}
nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte);
if( nByte==0 ){
free(zMbcsFilename);
zMbcsFilename = 0;
}
return zMbcsFilename;
}
/*
** Convert microsoft unicode to multibyte character string, based on the
** user's Ansi codepage.
**
** Space to hold the returned string is obtained from
** malloc().
*/
static char *unicodeToMbcs(const WCHAR *zWideFilename){
int nByte;
char *zFilename;
int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
zFilename = malloc( nByte );
if( zFilename==0 ){
return 0;
}
nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte,
0, 0);
if( nByte == 0 ){
free(zFilename);
zFilename = 0;
}
return zFilename;
}
/*
** Convert multibyte character string to UTF-8. Space to hold the
** returned string is obtained from malloc().
*/
char *sqlite3_win32_mbcs_to_utf8(const char *zFilename){
char *zFilenameUtf8;
WCHAR *zTmpWide;
zTmpWide = mbcsToUnicode(zFilename);
if( zTmpWide==0 ){
return 0;
}
zFilenameUtf8 = unicodeToUtf8(zTmpWide);
free(zTmpWide);
return zFilenameUtf8;
}
/*
** Convert UTF-8 to multibyte character string. Space to hold the
** returned string is obtained from malloc().
*/
static char *utf8ToMbcs(const char *zFilename){
char *zFilenameMbcs;
WCHAR *zTmpWide;
zTmpWide = utf8ToUnicode(zFilename);
if( zTmpWide==0 ){
return 0;
}
zFilenameMbcs = unicodeToMbcs(zTmpWide);
free(zTmpWide);
return zFilenameMbcs;
}
#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
*/
/*
** WindowsCE does not have a localtime() function. So create a
** substitute.
*/
#include <time.h>
struct tm *__cdecl localtime(const time_t *t)
{
static struct tm y;
FILETIME uTm, lTm;
SYSTEMTIME pTm;
sqlite3_int64 t64;
t64 = *t;
t64 = (t64 + 11644473600)*10000000;
uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF);
uTm.dwHighDateTime= (DWORD)(t64 >> 32);
FileTimeToLocalFileTime(&uTm,&lTm);
FileTimeToSystemTime(&lTm,&pTm);
y.tm_year = pTm.wYear - 1900;
y.tm_mon = pTm.wMonth - 1;
y.tm_wday = pTm.wDayOfWeek;
y.tm_mday = pTm.wDay;
y.tm_hour = pTm.wHour;
y.tm_min = pTm.wMinute;
y.tm_sec = pTm.wSecond;
return &y;
}
/* This will never be called, but defined to make the code compile */
#define GetTempPathA(a,b)
#define LockFile(a,b,c,d,e) winceLockFile(&a, b, c, d, e)
#define UnlockFile(a,b,c,d,e) winceUnlockFile(&a, b, c, d, e)
#define LockFileEx(a,b,c,d,e,f) winceLockFileEx(&a, b, c, d, e, f)
#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]
/*
** Acquire a lock on the handle h
*/
static void winceMutexAcquire(HANDLE h){
DWORD dwErr;
do {
dwErr = WaitForSingleObject(h, INFINITE);
} while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
}
/*
** Release a lock acquired by winceMutexAcquire()
*/
#define winceMutexRelease(h) ReleaseMutex(h)
/*
** Create the mutex and shared memory used for locking in the file
** descriptor pFile
*/
static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
WCHAR *zTok;
WCHAR *zName = utf8ToUnicode(zFilename);
BOOL bInit = TRUE;
/* Initialize the local lockdata */
ZeroMemory(&pFile->local, sizeof(pFile->local));
/* Replace the backslashes from the filename and lowercase it
** to derive a mutex name. */
zTok = CharLowerW(zName);
for (;*zTok;zTok++){
if (*zTok == '\\') *zTok = '_';
}
/* Create/open the named mutex */
pFile->hMutex = CreateMutexW(NULL, FALSE, zName);
if (!pFile->hMutex){
pFile->lastErrno = GetLastError();
free(zName);
return FALSE;
}
/* Acquire the mutex before continuing */
winceMutexAcquire(pFile->hMutex);
/* Since the names of named mutexes, semaphores, file mappings etc are
** case-sensitive, take advantage of that by uppercasing the mutex name
** and using that as the shared filemapping name.
*/
CharUpperW(zName);
pFile->hShared = CreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
PAGE_READWRITE, 0, sizeof(winceLock),
zName);
/* Set a flag that indicates we're the first to create the memory so it
** must be zero-initialized */
if (GetLastError() == ERROR_ALREADY_EXISTS){
bInit = FALSE;
}
free(zName);
/* If we succeeded in making the shared memory handle, map it. */
if (pFile->hShared){
pFile->shared = (winceLock*)MapViewOfFile(pFile->hShared,
FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
/* If mapping failed, close the shared memory handle and erase it */
if (!pFile->shared){
pFile->lastErrno = GetLastError();
CloseHandle(pFile->hShared);
pFile->hShared = NULL;
}
}
/* If shared memory could not be created, then close the mutex and fail */
if (pFile->hShared == NULL){
winceMutexRelease(pFile->hMutex);
CloseHandle(pFile->hMutex);
pFile->hMutex = NULL;
return FALSE;
}
/* Initialize the shared memory if we're supposed to */
if (bInit) {
ZeroMemory(pFile->shared, sizeof(winceLock));
}
winceMutexRelease(pFile->hMutex);
return TRUE;
}
/*
** Destroy the part of winFile that deals with wince locks
*/
static void winceDestroyLock(winFile *pFile){
if (pFile->hMutex){
/* Acquire the mutex */
winceMutexAcquire(pFile->hMutex);
/* The following blocks should probably assert in debug mode, but they
are to cleanup in case any locks remained open */
if (pFile->local.nReaders){
pFile->shared->nReaders --;
}
if (pFile->local.bReserved){
pFile->shared->bReserved = FALSE;
}
if (pFile->local.bPending){
pFile->shared->bPending = FALSE;
}
if (pFile->local.bExclusive){
pFile->shared->bExclusive = FALSE;
}
/* De-reference and close our copy of the shared memory handle */
UnmapViewOfFile(pFile->shared);
CloseHandle(pFile->hShared);
/* Done with the mutex */
winceMutexRelease(pFile->hMutex);
CloseHandle(pFile->hMutex);
pFile->hMutex = NULL;
}
}
/*
** An implementation of the LockFile() API of windows for wince
*/
static BOOL winceLockFile(
HANDLE *phFile,
DWORD dwFileOffsetLow,
DWORD dwFileOffsetHigh,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh
){
winFile *pFile = HANDLE_TO_WINFILE(phFile);
BOOL bReturn = FALSE;
UNUSED_PARAMETER(dwFileOffsetHigh);
UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
if (!pFile->hMutex) return TRUE;
winceMutexAcquire(pFile->hMutex);
/* Wanting an exclusive lock? */
if (dwFileOffsetLow == (DWORD)SHARED_FIRST
&& nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
pFile->shared->bExclusive = TRUE;
pFile->local.bExclusive = TRUE;
bReturn = TRUE;
}
}
/* Want a read-only lock? */
else if (dwFileOffsetLow == (DWORD)SHARED_FIRST &&
nNumberOfBytesToLockLow == 1){
if (pFile->shared->bExclusive == 0){
pFile->local.nReaders ++;
if (pFile->local.nReaders == 1){
pFile->shared->nReaders ++;
}
bReturn = TRUE;
}
}
/* Want a pending lock? */
else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToLockLow == 1){
/* If no pending lock has been acquired, then acquire it */
if (pFile->shared->bPending == 0) {
pFile->shared->bPending = TRUE;
pFile->local.bPending = TRUE;
bReturn = TRUE;
}
}
/* Want a reserved lock? */
else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToLockLow == 1){
if (pFile->shared->bReserved == 0) {
pFile->shared->bReserved = TRUE;
pFile->local.bReserved = TRUE;
bReturn = TRUE;
}
}
winceMutexRelease(pFile->hMutex);
return bReturn;
}
/*
** An implementation of the UnlockFile API of windows for wince
*/
static BOOL winceUnlockFile(
HANDLE *phFile,
DWORD dwFileOffsetLow,
DWORD dwFileOffsetHigh,
DWORD nNumberOfBytesToUnlockLow,
DWORD nNumberOfBytesToUnlockHigh
){
winFile *pFile = HANDLE_TO_WINFILE(phFile);
BOOL bReturn = FALSE;
UNUSED_PARAMETER(dwFileOffsetHigh);
UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh);
if (!pFile->hMutex) return TRUE;
winceMutexAcquire(pFile->hMutex);
/* Releasing a reader lock or an exclusive lock */
if (dwFileOffsetLow == (DWORD)SHARED_FIRST){
/* Did we have an exclusive lock? */
if (pFile->local.bExclusive){
assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE);
pFile->local.bExclusive = FALSE;
pFile->shared->bExclusive = FALSE;
bReturn = TRUE;
}
/* Did we just have a reader lock? */
else if (pFile->local.nReaders){
assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE || nNumberOfBytesToUnlockLow == 1);
pFile->local.nReaders --;
if (pFile->local.nReaders == 0)
{
pFile->shared->nReaders --;
}
bReturn = TRUE;
}
}
/* Releasing a pending lock */
else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){
if (pFile->local.bPending){
pFile->local.bPending = FALSE;
pFile->shared->bPending = FALSE;
bReturn = TRUE;
}
}
/* Releasing a reserved lock */
else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){
if (pFile->local.bReserved) {
pFile->local.bReserved = FALSE;
pFile->shared->bReserved = FALSE;
bReturn = TRUE;
}
}
winceMutexRelease(pFile->hMutex);
return bReturn;
}
/*
** An implementation of the LockFileEx() API of windows for wince
*/
static BOOL winceLockFileEx(
HANDLE *phFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped
){
UNUSED_PARAMETER(dwReserved);
UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
/* If the caller wants a shared read lock, forward this call
** to winceLockFile */
if (lpOverlapped->Offset == (DWORD)SHARED_FIRST &&
dwFlags == 1 &&
nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0);
}
return FALSE;
}
/*
** End of the special code for wince
*****************************************************************************/
#endif /* SQLITE_OS_WINCE */
/*****************************************************************************
** The next group of routines implement the I/O methods specified
** by the sqlite3_io_methods object.
******************************************************************************/
/*
** Close a file.
**
** It is reported that an attempt to close a handle might sometimes
** fail. This is a very unreasonable result, but windows is notorious
** for being unreasonable so I do not doubt that it might happen. If
** the close fails, we pause for 100 milliseconds and try again. As
** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
** giving up and returning an error.
*/
#define MX_CLOSE_ATTEMPT 3
static int winClose(sqlite3_file *id){
int rc, cnt = 0;
winFile *pFile = (winFile*)id;
assert( id!=0 );
do{
rc = CloseHandle(pFile->h);
}while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (Sleep(100), 1) );
#if SQLITE_OS_WINCE
#define WINCE_DELETION_ATTEMPTS 3
winceDestroyLock(pFile);
if( pFile->zDeleteOnClose ){
int cnt = 0;
while(
DeleteFileW(pFile->zDeleteOnClose)==0
&& GetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff
&& cnt++ < WINCE_DELETION_ATTEMPTS
){
Sleep(100); /* Wait a little before trying again */
}
free(pFile->zDeleteOnClose);
}
#endif
OSTRACE(("CLOSE %d %s\n", pFile->h, rc ? "ok" : "failed"));
OpenCounter(-1);
return rc ? SQLITE_OK : SQLITE_IOERR;
}
/*
** Some microsoft compilers lack this definition.
*/
#ifndef INVALID_SET_FILE_POINTER
# define INVALID_SET_FILE_POINTER ((DWORD)-1)
#endif
/*
** Read data from a file into a buffer. Return SQLITE_OK if all
** bytes were read successfully and SQLITE_IOERR if anything goes
** wrong.
*/
static int winRead(
sqlite3_file *id, /* File to read from */
void *pBuf, /* Write content into this buffer */
int amt, /* Number of bytes to read */
sqlite3_int64 offset /* Begin reading at this offset */
){
LONG upperBits = (LONG)((offset>>32) & 0x7fffffff);
LONG lowerBits = (LONG)(offset & 0xffffffff);
DWORD rc;
winFile *pFile = (winFile*)id;
DWORD error;
DWORD got;
assert( id!=0 );
SimulateIOError(return SQLITE_IOERR_READ);
OSTRACE3("READ %d lock=%d\n", pFile->h, pFile->locktype);
rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
if( rc==INVALID_SET_FILE_POINTER && (error=GetLastError())!=NO_ERROR ){
pFile->lastErrno = error;
return SQLITE_FULL;
}
if( !ReadFile(pFile->h, pBuf, amt, &got, 0) ){
pFile->lastErrno = GetLastError();
return SQLITE_IOERR_READ;
}
if( got==(DWORD)amt ){
return SQLITE_OK;
}else{
/* Unread parts of the buffer must be zero-filled */
memset(&((char*)pBuf)[got], 0, amt-got);
return SQLITE_IOERR_SHORT_READ;
}
}
/*
** Write data from a buffer into a file. Return SQLITE_OK on success
** or some other error code on failure.
*/
static int winWrite(
sqlite3_file *id, /* File to write into */
const void *pBuf, /* The bytes to be written */
int amt, /* Number of bytes to write */
sqlite3_int64 offset /* Offset into the file to begin writing at */
){
LONG upperBits = (LONG)((offset>>32) & 0x7fffffff);
LONG lowerBits = (LONG)(offset & 0xffffffff);
DWORD rc;
winFile *pFile = (winFile*)id;
DWORD error;
DWORD wrote = 0;
assert( id!=0 );
SimulateIOError(return SQLITE_IOERR_WRITE);
SimulateDiskfullError(return SQLITE_FULL);
OSTRACE3("WRITE %d lock=%d\n", pFile->h, pFile->locktype);
rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
if( rc==INVALID_SET_FILE_POINTER && (error=GetLastError())!=NO_ERROR ){
pFile->lastErrno = error;
return SQLITE_FULL;
}
assert( amt>0 );
while(
amt>0
&& (rc = WriteFile(pFile->h, pBuf, amt, &wrote, 0))!=0
&& wrote>0
){
amt -= wrote;
pBuf = &((char*)pBuf)[wrote];
}
if( !rc || amt>(int)wrote ){
pFile->lastErrno = GetLastError();
return SQLITE_FULL;
}
return SQLITE_OK;
}
/*
** Truncate an open file to a specified size
*/
static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
LONG upperBits = (LONG)((nByte>>32) & 0x7fffffff);
LONG lowerBits = (LONG)(nByte & 0xffffffff);
DWORD dwRet;
winFile *pFile = (winFile*)id;
DWORD error;
int rc = SQLITE_OK;
assert( id!=0 );
SimulateIOError(return SQLITE_IOERR_TRUNCATE);
dwRet = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
if( dwRet==INVALID_SET_FILE_POINTER && (error=GetLastError())!=NO_ERROR ){
pFile->lastErrno = error;
rc = SQLITE_IOERR_TRUNCATE;
/* SetEndOfFile will fail if nByte is negative */
}else if( !SetEndOfFile(pFile->h) ){
pFile->lastErrno = GetLastError();
rc = SQLITE_IOERR_TRUNCATE;
}
OSTRACE(("TRUNCATE %d %lld %s\n", pFile->h, nByte, rc==SQLITE_OK ? "ok" : "failed"));
return rc;
}
#ifdef SQLITE_TEST
/*
** Count the number of fullsyncs and normal syncs. This is used to test
** that syncs and fullsyncs are occuring at the right times.
*/
int sqlite3_sync_count = 0;
int sqlite3_fullsync_count = 0;
#endif
/*
** Make sure all writes to a particular file are committed to disk.
*/
static int winSync(sqlite3_file *id, int flags){
#ifndef SQLITE_NO_SYNC
winFile *pFile = (winFile*)id;
assert( id!=0 );
OSTRACE3("SYNC %d lock=%d\n", pFile->h, pFile->locktype);
#else
UNUSED_PARAMETER(id);
#endif
#ifndef SQLITE_TEST
UNUSED_PARAMETER(flags);
#else
if( flags & SQLITE_SYNC_FULL ){
sqlite3_fullsync_count++;
}
sqlite3_sync_count++;
#endif
/* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
** no-op
*/
#ifdef SQLITE_NO_SYNC
return SQLITE_OK;
#else
if( FlushFileBuffers(pFile->h) ){
return SQLITE_OK;
}else{
pFile->lastErrno = GetLastError();
return SQLITE_IOERR;
}
#endif
}
/*
** Determine the current size of a file in bytes
*/
static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
DWORD upperBits;
DWORD lowerBits;
winFile *pFile = (winFile*)id;
DWORD error;
assert( id!=0 );
SimulateIOError(return SQLITE_IOERR_FSTAT);
lowerBits = GetFileSize(pFile->h, &upperBits);
if( (lowerBits == INVALID_FILE_SIZE)
&& ((error = GetLastError()) != NO_ERROR) )
{
pFile->lastErrno = error;
return SQLITE_IOERR_FSTAT;
}
*pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
return SQLITE_OK;
}
/*
** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
*/
#ifndef LOCKFILE_FAIL_IMMEDIATELY
# define LOCKFILE_FAIL_IMMEDIATELY 1
#endif
/*
** Acquire a reader lock.
** Different API routines are called depending on whether or not this
** is Win95 or WinNT.
*/
static int getReadLock(winFile *pFile){
int res;
if( isNT() ){
OVERLAPPED ovlp;
ovlp.Offset = SHARED_FIRST;
ovlp.OffsetHigh = 0;
ovlp.hEvent = 0;
res = LockFileEx(pFile->h, LOCKFILE_FAIL_IMMEDIATELY,
0, SHARED_SIZE, 0, &ovlp);
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
*/
#if SQLITE_OS_WINCE==0
}else{
int lk;
sqlite3_randomness(sizeof(lk), &lk);
pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1));
res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
#endif
}
if( res == 0 ){
pFile->lastErrno = GetLastError();
}
return res;
}
/*
** Undo a readlock
*/
static int unlockReadLock(winFile *pFile){
int res;
if( isNT() ){
res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
*/
#if SQLITE_OS_WINCE==0
}else{
res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0);
#endif
}
if( res == 0 ){
pFile->lastErrno = GetLastError();
}
return res;
}
/*
** Lock the file with the lock specified by parameter locktype - one
** of the following:
**
** (1) SHARED_LOCK
** (2) RESERVED_LOCK
** (3) PENDING_LOCK
** (4) EXCLUSIVE_LOCK
**
** Sometimes when requesting one lock state, additional lock states
** are inserted in between. The locking might fail on one of the later
** transitions leaving the lock state different from what it started but
** still short of its goal. The following chart shows the allowed
** transitions and the inserted intermediate states:
**
** UNLOCKED -> SHARED
** SHARED -> RESERVED
** SHARED -> (PENDING) -> EXCLUSIVE
** RESERVED -> (PENDING) -> EXCLUSIVE
** PENDING -> EXCLUSIVE
**
** This routine will only increase a lock. The winUnlock() routine
** erases all locks at once and returns us immediately to locking level 0.
** It is not possible to lower the locking level one step at a time. You
** must go straight to locking level 0.
*/
static int winLock(sqlite3_file *id, int locktype){
int rc = SQLITE_OK; /* Return code from subroutines */
int res = 1; /* Result of a windows lock call */
int newLocktype; /* Set pFile->locktype to this value before exiting */
int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
winFile *pFile = (winFile*)id;
DWORD error = NO_ERROR;
assert( id!=0 );
OSTRACE(("LOCK %d %d was %d(%d)\n",
pFile->h, locktype, pFile->locktype, pFile->sharedLockByte));
/* If there is already a lock of this type or more restrictive on the
** OsFile, do nothing. Don't use the end_lock: exit path, as
** sqlite3OsEnterMutex() hasn't been called yet.
*/
if( pFile->locktype>=locktype ){
return SQLITE_OK;
}
/* Make sure the locking sequence is correct
*/
assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
assert( locktype!=PENDING_LOCK );
assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
/* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
** the PENDING_LOCK byte is temporary.
*/
newLocktype = pFile->locktype;
if( (pFile->locktype==NO_LOCK)
|| ( (locktype==EXCLUSIVE_LOCK)
&& (pFile->locktype==RESERVED_LOCK))
){
int cnt = 3;
while( cnt-->0 && (res = LockFile(pFile->h, PENDING_BYTE, 0, 1, 0))==0 ){
/* Try 3 times to get the pending lock. The pending lock might be
** held by another reader process who will release it momentarily.
*/
OSTRACE2("could not get a PENDING lock. cnt=%d\n", cnt);
Sleep(1);
}
gotPendingLock = res;
if( !res ){
error = GetLastError();
}
}
/* Acquire a shared lock
*/
if( locktype==SHARED_LOCK && res ){
assert( pFile->locktype==NO_LOCK );
res = getReadLock(pFile);
if( res ){
newLocktype = SHARED_LOCK;
}else{
error = GetLastError();
}
}
/* Acquire a RESERVED lock
*/
if( locktype==RESERVED_LOCK && res ){
assert( pFile->locktype==SHARED_LOCK );
res = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
if( res ){
newLocktype = RESERVED_LOCK;
}else{
error = GetLastError();
}
}
/* Acquire a PENDING lock
*/
if( locktype==EXCLUSIVE_LOCK && res ){
newLocktype = PENDING_LOCK;
gotPendingLock = 0;
}
/* Acquire an EXCLUSIVE lock
*/
if( locktype==EXCLUSIVE_LOCK && res ){
assert( pFile->locktype>=SHARED_LOCK );
res = unlockReadLock(pFile);
OSTRACE2("unreadlock = %d\n", res);
res = LockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
if( res ){
newLocktype = EXCLUSIVE_LOCK;
}else{
error = GetLastError();
OSTRACE2("error-code = %d\n", error);
getReadLock(pFile);
}
}
/* If we are holding a PENDING lock that ought to be released, then
** release it now.
*/
if( gotPendingLock && locktype==SHARED_LOCK ){
UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
}
/* Update the state of the lock has held in the file descriptor then
** return the appropriate result code.
*/
if( res ){
rc = SQLITE_OK;
}else{
OSTRACE4("LOCK FAILED %d trying for %d but got %d\n", pFile->h,
locktype, newLocktype);
pFile->lastErrno = error;
rc = SQLITE_BUSY;
}
pFile->locktype = (u8)newLocktype;
return rc;
}
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, return
** non-zero, otherwise zero.
*/
static int winCheckReservedLock(sqlite3_file *id, int *pResOut){
int rc;
winFile *pFile = (winFile*)id;
assert( id!=0 );
if( pFile->locktype>=RESERVED_LOCK ){
rc = 1;
OSTRACE3("TEST WR-LOCK %d %d (local)\n", pFile->h, rc);
}else{
rc = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
if( rc ){
UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
}
rc = !rc;
OSTRACE3("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc);
}
*pResOut = rc;
return SQLITE_OK;
}
/*
** Lower the locking level on file descriptor id to locktype. locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
**
** It is not possible for this routine to fail if the second argument
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
** might return SQLITE_IOERR;
*/
static int winUnlock(sqlite3_file *id, int locktype){
int type;
winFile *pFile = (winFile*)id;
int rc = SQLITE_OK;
assert( pFile!=0 );
assert( locktype<=SHARED_LOCK );
OSTRACE5("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype,
pFile->locktype, pFile->sharedLockByte);
type = pFile->locktype;
if( type>=EXCLUSIVE_LOCK ){
UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
if( locktype==SHARED_LOCK && !getReadLock(pFile) ){
/* This should never happen. We should always be able to
** reacquire the read lock */
rc = SQLITE_IOERR_UNLOCK;
}
}
if( type>=RESERVED_LOCK ){
UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
}
if( locktype==NO_LOCK && type>=SHARED_LOCK ){
unlockReadLock(pFile);
}
if( type>=PENDING_LOCK ){
UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
}
pFile->locktype = (u8)locktype;
return rc;
}
/*
** Control and query of the open file handle.
*/
static int winFileControl(sqlite3_file *id, int op, void *pArg){
switch( op ){
case SQLITE_FCNTL_LOCKSTATE: {
*(int*)pArg = ((winFile*)id)->locktype;
return SQLITE_OK;
}
case SQLITE_LAST_ERRNO: {
*(int*)pArg = (int)((winFile*)id)->lastErrno;
return SQLITE_OK;
}
}
return SQLITE_ERROR;
}
/*
** Return the sector size in bytes of the underlying block device for
** the specified file. This is almost always 512 bytes, but may be
** larger for some devices.
**
** SQLite code assumes this function cannot fail. It also assumes that
** if two files are created in the same file-system directory (i.e.
** a database and its journal file) that the sector size will be the
** same for both.
*/
static int winSectorSize(sqlite3_file *id){
assert( id!=0 );
return (int)(((winFile*)id)->sectorSize);
}
/*
** Return a vector of device characteristics.
*/
static int winDeviceCharacteristics(sqlite3_file *id){
UNUSED_PARAMETER(id);
return 0;
}
/*
** This vector defines all the methods that can operate on an
** sqlite3_file for win32.
*/
static const sqlite3_io_methods winIoMethod = {
1, /* iVersion */
winClose,
winRead,
winWrite,
winTruncate,
winSync,
winFileSize,
winLock,
winUnlock,
winCheckReservedLock,
winFileControl,
winSectorSize,
winDeviceCharacteristics
};
/***************************************************************************
** Here ends the I/O methods that form the sqlite3_io_methods object.
**
** The next block of code implements the VFS methods.
****************************************************************************/
/*
** Convert a UTF-8 filename into whatever form the underlying
** operating system wants filenames in. Space to hold the result
** is obtained from malloc and must be freed by the calling
** function.
*/
static void *convertUtf8Filename(const char *zFilename){
void *zConverted = 0;
if( isNT() ){
zConverted = utf8ToUnicode(zFilename);
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
*/
#if SQLITE_OS_WINCE==0
}else{
zConverted = utf8ToMbcs(zFilename);
#endif
}
/* caller will handle out of memory */
return zConverted;
}
/*
** Create a temporary file name in zBuf. zBuf must be big enough to
** hold at pVfs->mxPathname characters.
*/
static int getTempname(int nBuf, char *zBuf){
static char zChars[] =
"abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"0123456789";
size_t i, j;
char zTempPath[MAX_PATH+1];
if( sqlite3_temp_directory ){
sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory);
}else if( isNT() ){
char *zMulti;
WCHAR zWidePath[MAX_PATH];
GetTempPathW(MAX_PATH-30, zWidePath);
zMulti = unicodeToUtf8(zWidePath);
if( zMulti ){
sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti);
free(zMulti);
}else{
return SQLITE_NOMEM;
}
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
** Since the ASCII version of these Windows API do not exist for WINCE,
** it's important to not reference them for WINCE builds.
*/
#if SQLITE_OS_WINCE==0
}else{
char *zUtf8;
char zMbcsPath[MAX_PATH];
GetTempPathA(MAX_PATH-30, zMbcsPath);
zUtf8 = sqlite3_win32_mbcs_to_utf8(zMbcsPath);
if( zUtf8 ){
sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8);
free(zUtf8);
}else{
return SQLITE_NOMEM;
}
#endif
}
for(i=sqlite3Strlen30(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
zTempPath[i] = 0;
sqlite3_snprintf(nBuf-30, zBuf,
"%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
j = sqlite3Strlen30(zBuf);
sqlite3_randomness(20, &zBuf[j]);
for(i=0; i<20; i++, j++){
zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
}
zBuf[j] = 0;
OSTRACE2("TEMP FILENAME: %s\n", zBuf);
return SQLITE_OK;
}
/*
** The return value of getLastErrorMsg
** is zero if the error message fits in the buffer, or non-zero
** otherwise (if the message was truncated).
*/
static int getLastErrorMsg(int nBuf, char *zBuf){
/* FormatMessage returns 0 on failure. Otherwise it
** returns the number of TCHARs written to the output
** buffer, excluding the terminating null char.
*/
DWORD error = GetLastError();
DWORD dwLen = 0;
char *zOut = 0;
if( isNT() ){
WCHAR *zTempWide = NULL;
dwLen = FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
error,
0,
(LPWSTR) &zTempWide,
0,
0);
if( dwLen > 0 ){
/* allocate a buffer and convert to UTF8 */
zOut = unicodeToUtf8(zTempWide);
/* free the system buffer allocated by FormatMessage */
LocalFree(zTempWide);
}
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
** Since the ASCII version of these Windows API do not exist for WINCE,
** it's important to not reference them for WINCE builds.
*/
#if SQLITE_OS_WINCE==0
}else{
char *zTemp = NULL;
dwLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
error,
0,
(LPSTR) &zTemp,
0,
0);
if( dwLen > 0 ){
/* allocate a buffer and convert to UTF8 */
zOut = sqlite3_win32_mbcs_to_utf8(zTemp);
/* free the system buffer allocated by FormatMessage */
LocalFree(zTemp);
}
#endif
}
if( 0 == dwLen ){
sqlite3_snprintf(nBuf, zBuf, "OsError 0x%x (%u)", error, error);
}else{
/* copy a maximum of nBuf chars to output buffer */
sqlite3_snprintf(nBuf, zBuf, "%s", zOut);
/* free the UTF8 buffer */
free(zOut);
}
return 0;
}
/*
** Open a file.
*/
static int winOpen(
sqlite3_vfs *pVfs, /* Not used */
const char *zName, /* Name of the file (UTF-8) */
sqlite3_file *id, /* Write the SQLite file handle here */
int flags, /* Open mode flags */
int *pOutFlags /* Status return flags */
){
HANDLE h;
DWORD dwDesiredAccess;
DWORD dwShareMode;
DWORD dwCreationDisposition;
DWORD dwFlagsAndAttributes = 0;
#if SQLITE_OS_WINCE
int isTemp = 0;
#endif
winFile *pFile = (winFile*)id;
void *zConverted; /* Filename in OS encoding */
const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
char zTmpname[MAX_PATH+1]; /* Buffer used to create temp filename */
assert( id!=0 );
UNUSED_PARAMETER(pVfs);
pFile->h = INVALID_HANDLE_VALUE;
/* If the second argument to this function is NULL, generate a
** temporary file name to use
*/
if( !zUtf8Name ){
int rc = getTempname(MAX_PATH+1, zTmpname);
if( rc!=SQLITE_OK ){
return rc;
}
zUtf8Name = zTmpname;
}
/* Convert the filename to the system encoding. */
zConverted = convertUtf8Filename(zUtf8Name);
if( zConverted==0 ){
return SQLITE_NOMEM;
}
if( flags & SQLITE_OPEN_READWRITE ){
dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
}else{
dwDesiredAccess = GENERIC_READ;
}
/* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is
** created. SQLite doesn't use it to indicate "exclusive access"
** as it is usually understood.
*/
assert(!(flags & SQLITE_OPEN_EXCLUSIVE) || (flags & SQLITE_OPEN_CREATE));
if( flags & SQLITE_OPEN_EXCLUSIVE ){
/* Creates a new file, only if it does not already exist. */
/* If the file exists, it fails. */
dwCreationDisposition = CREATE_NEW;
}else if( flags & SQLITE_OPEN_CREATE ){
/* Open existing file, or create if it doesn't exist */
dwCreationDisposition = OPEN_ALWAYS;
}else{
/* Opens a file, only if it exists. */
dwCreationDisposition = OPEN_EXISTING;
}
dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
if( flags & SQLITE_OPEN_DELETEONCLOSE ){
#if SQLITE_OS_WINCE
dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
isTemp = 1;
#else
dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
| FILE_ATTRIBUTE_HIDDEN
| FILE_FLAG_DELETE_ON_CLOSE;
#endif
}else{
dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
}
/* Reports from the internet are that performance is always
** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */
#if SQLITE_OS_WINCE
dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
#endif
if( isNT() ){
h = CreateFileW((WCHAR*)zConverted,
dwDesiredAccess,
dwShareMode,
NULL,
dwCreationDisposition,
dwFlagsAndAttributes,
NULL
);
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
** Since the ASCII version of these Windows API do not exist for WINCE,
** it's important to not reference them for WINCE builds.
*/
#if SQLITE_OS_WINCE==0
}else{
h = CreateFileA((char*)zConverted,
dwDesiredAccess,
dwShareMode,
NULL,
dwCreationDisposition,
dwFlagsAndAttributes,
NULL
);
#endif
}
OSTRACE(("OPEN %d %s 0x%lx %s\n",
h, zName, dwDesiredAccess,
h==INVALID_HANDLE_VALUE ? "failed" : "ok"));
if( h==INVALID_HANDLE_VALUE ){
free(zConverted);
if( flags & SQLITE_OPEN_READWRITE ){
return winOpen(pVfs, zName, id,
((flags|SQLITE_OPEN_READONLY)&~SQLITE_OPEN_READWRITE), pOutFlags);
}else{
return SQLITE_CANTOPEN_BKPT;
}
}
if( pOutFlags ){
if( flags & SQLITE_OPEN_READWRITE ){
*pOutFlags = SQLITE_OPEN_READWRITE;
}else{
*pOutFlags = SQLITE_OPEN_READONLY;
}
}
memset(pFile, 0, sizeof(*pFile));
pFile->pMethod = &winIoMethod;
pFile->h = h;
pFile->lastErrno = NO_ERROR;
pFile->sectorSize = getSectorSize(pVfs, zUtf8Name);
#if SQLITE_OS_WINCE
if( (flags & (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)) ==
(SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)
&& !winceCreateLock(zName, pFile)
){
CloseHandle(h);
free(zConverted);
return SQLITE_CANTOPEN_BKPT;
}
if( isTemp ){
pFile->zDeleteOnClose = zConverted;
}else
#endif
{
free(zConverted);
}
OpenCounter(+1);
return SQLITE_OK;
}
/*
** Delete the named file.
**
** Note that windows does not allow a file to be deleted if some other
** process has it open. Sometimes a virus scanner or indexing program
** will open a journal file shortly after it is created in order to do
** whatever it does. While this other process is holding the
** file open, we will be unable to delete it. To work around this
** problem, we delay 100 milliseconds and try to delete again. Up
** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
** up and returning an error.
*/
#define MX_DELETION_ATTEMPTS 5
static int winDelete(
sqlite3_vfs *pVfs, /* Not used on win32 */
const char *zFilename, /* Name of file to delete */
int syncDir /* Not used on win32 */
){
int cnt = 0;
DWORD rc;
DWORD error = 0;
void *zConverted = convertUtf8Filename(zFilename);
UNUSED_PARAMETER(pVfs);
UNUSED_PARAMETER(syncDir);
if( zConverted==0 ){
return SQLITE_NOMEM;
}
SimulateIOError(return SQLITE_IOERR_DELETE);
if( isNT() ){
do{
DeleteFileW(zConverted);
}while( ( ((rc = GetFileAttributesW(zConverted)) != INVALID_FILE_ATTRIBUTES)
|| ((error = GetLastError()) == ERROR_ACCESS_DENIED))
&& (++cnt < MX_DELETION_ATTEMPTS)
&& (Sleep(100), 1) );
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
** Since the ASCII version of these Windows API do not exist for WINCE,
** it's important to not reference them for WINCE builds.
*/
#if SQLITE_OS_WINCE==0
}else{
do{
DeleteFileA(zConverted);
}while( ( ((rc = GetFileAttributesA(zConverted)) != INVALID_FILE_ATTRIBUTES)
|| ((error = GetLastError()) == ERROR_ACCESS_DENIED))
&& (++cnt < MX_DELETION_ATTEMPTS)
&& (Sleep(100), 1) );
#endif
}
free(zConverted);
OSTRACE(("DELETE \"%s\" %s\n", zFilename, ( (rc == INVALID_FILE_ATTRIBUTES)
&& (error == ERROR_FILE_NOT_FOUND)) ? "ok" : "failed" ));
return ( (rc == INVALID_FILE_ATTRIBUTES)
&& (error == ERROR_FILE_NOT_FOUND)) ? SQLITE_OK : SQLITE_IOERR_DELETE;
}
/*
** Check the existance and status of a file.
*/
static int winAccess(
sqlite3_vfs *pVfs, /* Not used on win32 */
const char *zFilename, /* Name of file to check */
int flags, /* Type of test to make on this file */
int *pResOut /* OUT: Result */
){
DWORD attr;
int rc = 0;
void *zConverted = convertUtf8Filename(zFilename);
UNUSED_PARAMETER(pVfs);
if( zConverted==0 ){
return SQLITE_NOMEM;
}
if( isNT() ){
attr = GetFileAttributesW((WCHAR*)zConverted);
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
** Since the ASCII version of these Windows API do not exist for WINCE,
** it's important to not reference them for WINCE builds.
*/
#if SQLITE_OS_WINCE==0
}else{
attr = GetFileAttributesA((char*)zConverted);
#endif
}
free(zConverted);
switch( flags ){
case SQLITE_ACCESS_READ:
case SQLITE_ACCESS_EXISTS:
rc = attr!=INVALID_FILE_ATTRIBUTES;
break;
case SQLITE_ACCESS_READWRITE:
rc = (attr & FILE_ATTRIBUTE_READONLY)==0;
break;
default:
assert(!"Invalid flags argument");
}
*pResOut = rc;
return SQLITE_OK;
}
/*
** Turn a relative pathname into a full pathname. Write the full
** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
** bytes in size.
*/
static int winFullPathname(
sqlite3_vfs *pVfs, /* Pointer to vfs object */
const char *zRelative, /* Possibly relative input path */
int nFull, /* Size of output buffer in bytes */
char *zFull /* Output buffer */
){
#if defined(__CYGWIN__)
UNUSED_PARAMETER(nFull);
cygwin_conv_to_full_win32_path(zRelative, zFull);
return SQLITE_OK;
#endif
#if SQLITE_OS_WINCE
UNUSED_PARAMETER(nFull);
/* WinCE has no concept of a relative pathname, or so I am told. */
sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative);
return SQLITE_OK;
#endif
#if !SQLITE_OS_WINCE && !defined(__CYGWIN__)
int nByte;
void *zConverted;
char *zOut;
UNUSED_PARAMETER(nFull);
zConverted = convertUtf8Filename(zRelative);
if( isNT() ){
WCHAR *zTemp;
nByte = GetFullPathNameW((WCHAR*)zConverted, 0, 0, 0) + 3;
zTemp = malloc( nByte*sizeof(zTemp[0]) );
if( zTemp==0 ){
free(zConverted);
return SQLITE_NOMEM;
}
GetFullPathNameW((WCHAR*)zConverted, nByte, zTemp, 0);
free(zConverted);
zOut = unicodeToUtf8(zTemp);
free(zTemp);
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
** Since the ASCII version of these Windows API do not exist for WINCE,
** it's important to not reference them for WINCE builds.
*/
#if SQLITE_OS_WINCE==0
}else{
char *zTemp;
nByte = GetFullPathNameA((char*)zConverted, 0, 0, 0) + 3;
zTemp = malloc( nByte*sizeof(zTemp[0]) );
if( zTemp==0 ){
free(zConverted);
return SQLITE_NOMEM;
}
GetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
free(zConverted);
zOut = sqlite3_win32_mbcs_to_utf8(zTemp);
free(zTemp);
#endif
}
if( zOut ){
sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zOut);
free(zOut);
return SQLITE_OK;
}else{
return SQLITE_NOMEM;
}
#endif
}
/*
** Get the sector size of the device used to store
** file.
*/
static int getSectorSize(
sqlite3_vfs *pVfs,
const char *zRelative /* UTF-8 file name */
){
DWORD bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;
/* GetDiskFreeSpace is not supported under WINCE */
#if SQLITE_OS_WINCE
UNUSED_PARAMETER(pVfs);
UNUSED_PARAMETER(zRelative);
#else
char zFullpath[MAX_PATH+1];
int rc;
DWORD dwRet = 0;
DWORD dwDummy;
/*
** We need to get the full path name of the file
** to get the drive letter to look up the sector
** size.
*/
rc = winFullPathname(pVfs, zRelative, MAX_PATH, zFullpath);
if( rc == SQLITE_OK )
{
void *zConverted = convertUtf8Filename(zFullpath);
if( zConverted ){
if( isNT() ){
/* trim path to just drive reference */
WCHAR *p = zConverted;
for(;*p;p++){
if( *p == '\\' ){
*p = '\0';
break;
}
}
dwRet = GetDiskFreeSpaceW((WCHAR*)zConverted,
&dwDummy,
&bytesPerSector,
&dwDummy,
&dwDummy);
}else{
/* trim path to just drive reference */
char *p = (char *)zConverted;
for(;*p;p++){
if( *p == '\\' ){
*p = '\0';
break;
}
}
dwRet = GetDiskFreeSpaceA((char*)zConverted,
&dwDummy,
&bytesPerSector,
&dwDummy,
&dwDummy);
}
free(zConverted);
}
if( !dwRet ){
bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;
}
}
#endif
return (int) bytesPerSector;
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
HANDLE h;
void *zConverted = convertUtf8Filename(zFilename);
UNUSED_PARAMETER(pVfs);
if( zConverted==0 ){
return 0;
}
if( isNT() ){
h = LoadLibraryW((WCHAR*)zConverted);
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
** Since the ASCII version of these Windows API do not exist for WINCE,
** it's important to not reference them for WINCE builds.
*/
#if SQLITE_OS_WINCE==0
}else{
h = LoadLibraryA((char*)zConverted);
#endif
}
free(zConverted);
return (void*)h;
}
static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
UNUSED_PARAMETER(pVfs);
getLastErrorMsg(nBuf, zBufOut);
}
void (*winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol))(void){
UNUSED_PARAMETER(pVfs);
#if SQLITE_OS_WINCE
/* The GetProcAddressA() routine is only available on wince. */
return (void(*)(void))GetProcAddressA((HANDLE)pHandle, zSymbol);
#else
/* All other windows platforms expect GetProcAddress() to take
** an Ansi string regardless of the _UNICODE setting */
return (void(*)(void))GetProcAddress((HANDLE)pHandle, zSymbol);
#endif
}
void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
UNUSED_PARAMETER(pVfs);
FreeLibrary((HANDLE)pHandle);
}
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
#define winDlOpen 0
#define winDlError 0
#define winDlSym 0
#define winDlClose 0
#endif
/*
** Write up to nBuf bytes of randomness into zBuf.
*/
static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
int n = 0;
UNUSED_PARAMETER(pVfs);
#if defined(SQLITE_TEST)
n = nBuf;
memset(zBuf, 0, nBuf);
#else
if( sizeof(SYSTEMTIME)<=nBuf-n ){
SYSTEMTIME x;
GetSystemTime(&x);
memcpy(&zBuf[n], &x, sizeof(x));
n += sizeof(x);
}
if( sizeof(DWORD)<=nBuf-n ){
DWORD pid = GetCurrentProcessId();
memcpy(&zBuf[n], &pid, sizeof(pid));
n += sizeof(pid);
}
if( sizeof(DWORD)<=nBuf-n ){
DWORD cnt = GetTickCount();
memcpy(&zBuf[n], &cnt, sizeof(cnt));
n += sizeof(cnt);
}
if( sizeof(LARGE_INTEGER)<=nBuf-n ){
LARGE_INTEGER i;
QueryPerformanceCounter(&i);
memcpy(&zBuf[n], &i, sizeof(i));
n += sizeof(i);
}
#endif
return n;
}
/*
** Sleep for a little while. Return the amount of time slept.
*/
static int winSleep(sqlite3_vfs *pVfs, int microsec){
Sleep((microsec+999)/1000);
UNUSED_PARAMETER(pVfs);
return ((microsec+999)/1000)*1000;
}
/*
** The following variable, if set to a non-zero value, is interpreted as
** the number of seconds since 1970 and is used to set the result of
** sqlite3OsCurrentTime() during testing.
*/
#ifdef SQLITE_TEST
int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
#endif
/*
** Find the current time (in Universal Coordinated Time). Write into *piNow
** the current time and date as a Julian Day number times 86_400_000. In
** other words, write into *piNow the number of milliseconds since the Julian
** epoch of noon in Greenwich on November 24, 4714 B.C according to the
** proleptic Gregorian calendar.
**
** On success, return 0. Return 1 if the time and date cannot be found.
*/
static int winCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){
/* FILETIME structure is a 64-bit value representing the number of
100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
*/
FILETIME ft;
static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000;
#ifdef SQLITE_TEST
static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
#endif
/* 2^32 - to avoid use of LL and warnings in gcc */
static const sqlite3_int64 max32BitValue =
(sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 + (sqlite3_int64)294967296;
#if SQLITE_OS_WINCE
SYSTEMTIME time;
GetSystemTime(&time);
/* if SystemTimeToFileTime() fails, it returns zero. */
if (!SystemTimeToFileTime(&time,&ft)){
return 1;
}
#else
GetSystemTimeAsFileTime( &ft );
#endif
*piNow = winFiletimeEpoch +
((((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) +
(sqlite3_int64)ft.dwLowDateTime)/(sqlite3_int64)1000;
#ifdef SQLITE_TEST
if( sqlite3_current_time ){
*piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
}
#endif
UNUSED_PARAMETER(pVfs);
return 0;
}
/*
** Find the current time (in Universal Coordinated Time). Write the
** current time and date as a Julian Day number into *prNow and
** return 0. Return 1 if the time and date cannot be found.
*/
int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
int rc;
sqlite3_int64 i;
rc = winCurrentTimeInt64(pVfs, &i);
if( !rc ){
*prNow = i/86400000.0;
}
return rc;
}
/*
** The idea is that this function works like a combination of
** GetLastError() and FormatMessage() on windows (or errno and
** strerror_r() on unix). After an error is returned by an OS
** function, SQLite calls this function with zBuf pointing to
** a buffer of nBuf bytes. The OS layer should populate the
** buffer with a nul-terminated UTF-8 encoded error message
** describing the last IO error to have occurred within the calling
** thread.
**
** If the error message is too large for the supplied buffer,
** it should be truncated. The return value of xGetLastError
** is zero if the error message fits in the buffer, or non-zero
** otherwise (if the message was truncated). If non-zero is returned,
** then it is not necessary to include the nul-terminator character
** in the output buffer.
**
** Not supplying an error message will have no adverse effect
** on SQLite. It is fine to have an implementation that never
** returns an error message:
**
** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
** assert(zBuf[0]=='\0');
** return 0;
** }
**
** However if an error message is supplied, it will be incorporated
** by sqlite into the error message available to the user using
** sqlite3_errmsg(), possibly making IO errors easier to debug.
*/
static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
UNUSED_PARAMETER(pVfs);
return getLastErrorMsg(nBuf, zBuf);
}
#ifndef SQLITE_OMIT_WAL
/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the winLockInfo objects used by
** this file, all of which may be shared by multiple threads.
**
** Function winShmMutexHeld() is used to assert() that the global mutex
** is held when required. This function is only used as part of assert()
** statements. e.g.
**
** winShmEnterMutex()
** assert( winShmMutexHeld() );
** winEnterLeave()
*/
static void winShmEnterMutex(void){
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
static void winShmLeaveMutex(void){
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
#ifdef SQLITE_DEBUG
static int winShmMutexHeld(void) {
return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
#endif
/* Forward reference */
typedef struct winShm winShm;
typedef struct winShmFile winShmFile;
/*
** Object used to represent a single file opened and mmapped to provide
** shared memory. When multiple threads all reference the same
** log-summary, each thread has its own winFile object, but they all
** point to a single instance of this object. In other words, each
** log-summary is opened only once per process.
**
** winShmMutexHeld() must be true when creating or destroying
** this object or while reading or writing the following fields:
**
** nRef
** pNext
**
** The following fields are read-only after the object is created:
**
** fid
** zFilename
**
** Either winShmFile.mutex must be held or winShmFile.nRef==0 and
** winShmMutexHeld() is true when reading or writing any other field
** in this structure.
**
** To avoid deadlocks, mutex and mutexBuf are always released in the
** reverse order that they are acquired. mutexBuf is always acquired
** first and released last. This invariant is check by asserting
** sqlite3_mutex_notheld() on mutex whenever mutexBuf is acquired or
** released.
*/
struct winShmFile {
sqlite3_mutex *mutex; /* Mutex to access this object */
sqlite3_mutex *mutexBuf; /* Mutex to access zBuf[] */
char *zFilename; /* Name of the file */
winFile hFile; /* File handle from winOpen */
HANDLE hMap; /* File handle from CreateFileMapping */
DWORD lastErrno; /* The Windows errno from the last I/O error */
int szMap; /* Size of the mapping of file into memory */
char *pMMapBuf; /* Where currently mmapped(). NULL if unmapped */
int nRef; /* Number of winShm objects pointing to this */
winShm *pFirst; /* All winShm objects pointing to this */
winShmFile *pNext; /* Next in list of all winShmFile objects */
#ifdef SQLITE_DEBUG
u8 exclMask; /* Mask of exclusive locks held */
u8 sharedMask; /* Mask of shared locks held */
u8 nextShmId; /* Next available winShm.id value */
#endif
};
/*
** A global array of all winShmFile objects.
**
** The winShmMutexHeld() must be true while reading or writing this list.
*/
static winShmFile *winShmFileList = 0;
/*
** Structure used internally by this VFS to record the state of an
** open shared memory connection.
**
** winShm.pFile->mutex must be held while reading or writing the
** winShm.pNext and winShm.locks[] elements.
**
** The winShm.pFile element is initialized when the object is created
** and is read-only thereafter.
*/
struct winShm {
winShmFile *pFile; /* The underlying winShmFile object */
winShm *pNext; /* Next winShm with the same winShmFile */
u8 lockState; /* Current lock state */
u8 hasMutex; /* True if holding the winShmFile mutex */
u8 hasMutexBuf; /* True if holding pFile->mutexBuf */
u8 sharedMask; /* Mask of shared locks held */
u8 exclMask; /* Mask of exclusive locks held */
#ifdef SQLITE_DEBUG
u8 id; /* Id of this connection with its winShmFile */
#endif
};
/*
** Size increment by which shared memory grows
*/
#define SQLITE_WIN_SHM_INCR 4096
/*
** Constants used for locking
*/
#define WIN_SHM_BASE 32 /* Byte offset of the first lock byte */
#define WIN_SHM_DMS 0x01 /* Mask for Dead-Man-Switch lock */
#define WIN_SHM_A 0x10 /* Mask for region locks... */
#define WIN_SHM_B 0x20
#define WIN_SHM_C 0x40
#define WIN_SHM_D 0x80
#ifdef SQLITE_DEBUG
/*
** Return a pointer to a nul-terminated string in static memory that
** describes a locking mask. The string is of the form "MSABCD" with
** each character representing a lock. "M" for MUTEX, "S" for DMS,
** and "A" through "D" for the region locks. If a lock is held, the
** letter is shown. If the lock is not held, the letter is converted
** to ".".
**
** This routine is for debugging purposes only and does not appear
** in a production build.
*/
static const char *winShmLockString(u8 mask){
static char zBuf[48];
static int iBuf = 0;
char *z;
z = &zBuf[iBuf];
iBuf += 8;
if( iBuf>=sizeof(zBuf) ) iBuf = 0;
z[0] = (mask & WIN_SHM_DMS) ? 'S' : '.';
z[1] = (mask & WIN_SHM_A) ? 'A' : '.';
z[2] = (mask & WIN_SHM_B) ? 'B' : '.';
z[3] = (mask & WIN_SHM_C) ? 'C' : '.';
z[4] = (mask & WIN_SHM_D) ? 'D' : '.';
z[5] = 0;
return z;
}
#endif /* SQLITE_DEBUG */
/*
** Apply posix advisory locks for all bytes identified in lockMask.
**
** lockMask might contain multiple bits but all bits are guaranteed
** to be contiguous.
**
** Locks block if the mask is exactly WIN_SHM_C and are non-blocking
** otherwise.
*/
#define _SHM_UNLCK 1
#define _SHM_RDLCK 2
#define _SHM_WRLCK 3
static int winShmSystemLock(
winShmFile *pFile, /* Apply locks to this open shared-memory segment */
int lockType, /* _SHM_UNLCK, _SHM_RDLCK, or _SHM_WRLCK */
u8 lockMask /* Which bytes to lock or unlock */
){
OVERLAPPED ovlp;
DWORD dwFlags;
int nBytes; /* Number of bytes to lock */
int i; /* Offset into the locking byte range */
int rc = 0; /* Result code form Lock/UnlockFileEx() */
u8 mask; /* Mask of bits in lockMask */
/* Access to the winShmFile object is serialized by the caller */
assert( sqlite3_mutex_held(pFile->mutex) || pFile->nRef==0 );
/* Initialize the locking parameters */
if( lockMask==WIN_SHM_C && lockType!=_SHM_UNLCK ){
dwFlags = 0;
OSTRACE(("SHM-LOCK %d requesting blocking lock %s\n",
pFile->hFile.h,
winShmLockString(lockMask)));
}else{
dwFlags = LOCKFILE_FAIL_IMMEDIATELY;
OSTRACE(("SHM-LOCK %d requesting %s %s\n",
pFile->hFile.h,
lockType!=_SHM_UNLCK ? "lock" : "unlock",
winShmLockString(lockMask)));
}
if( lockType == _SHM_WRLCK ) dwFlags |= LOCKFILE_EXCLUSIVE_LOCK;
/* Find the first bit in lockMask that is set */
for(i=0, mask=0x01; mask!=0 && (lockMask&mask)==0; mask <<= 1, i++){}
assert( mask!=0 );
memset(&ovlp, 0, sizeof(OVERLAPPED));
ovlp.Offset = i+WIN_SHM_BASE;
nBytes = 1;
/* Extend the locking range for each additional bit that is set */
mask <<= 1;
while( mask!=0 && (lockMask & mask)!=0 ){
nBytes++;
mask <<= 1;
}
/* Verify that all bits set in lockMask are contiguous */
assert( mask==0 || (lockMask & ~(mask | (mask-1)))==0 );
/* Release/Acquire the system-level lock */
if( lockType==_SHM_UNLCK ){
for(i=0; i<nBytes; i++, ovlp.Offset++){
rc = UnlockFileEx(pFile->hFile.h, 0, 1, 0, &ovlp);
if( !rc ) break;
}
}else{
/* release old individual byte locks (if any)
** and set new individual byte locks */
for(i=0; i<nBytes; i++, ovlp.Offset++){
UnlockFileEx(pFile->hFile.h, 0, 1, 0, &ovlp);
rc = LockFileEx(pFile->hFile.h, dwFlags, 0, 1, 0, &ovlp);
if( !rc ) break;
}
}
if( !rc ){
OSTRACE(("SHM-LOCK %d %s ERROR 0x%08lx\n",
pFile->hFile.h,
lockType==_SHM_UNLCK ? "UnlockFileEx" : "LockFileEx", GetLastError()));
/* release individual byte locks (if any) */
ovlp.Offset-=i;
for(i=0; i<nBytes; i++, ovlp.Offset++){
UnlockFileEx(pFile->hFile.h, 0, 1, 0, &ovlp);
}
}
rc = (rc!=0) ? SQLITE_OK : SQLITE_BUSY;
/* Update the global lock state and do debug tracing */
#ifdef SQLITE_DEBUG
OSTRACE(("SHM-LOCK %d ", pFile->hFile.h));
if( rc==SQLITE_OK ){
if( lockType==_SHM_UNLCK ){
OSTRACE(("unlock ok"));
pFile->exclMask &= ~lockMask;
pFile->sharedMask &= ~lockMask;
}else if( lockType==_SHM_RDLCK ){
OSTRACE(("read-lock ok"));
pFile->exclMask &= ~lockMask;
pFile->sharedMask |= lockMask;
}else{
assert( lockType==_SHM_WRLCK );
OSTRACE(("write-lock ok"));
pFile->exclMask |= lockMask;
pFile->sharedMask &= ~lockMask;
}
}else{
if( lockType==_SHM_UNLCK ){
OSTRACE(("unlock failed"));
}else if( lockType==_SHM_RDLCK ){
OSTRACE(("read-lock failed"));
}else{
assert( lockType==_SHM_WRLCK );
OSTRACE(("write-lock failed"));
}
}
OSTRACE((" - change requested %s - afterwards %s:%s\n",
winShmLockString(lockMask),
winShmLockString(pFile->sharedMask),
winShmLockString(pFile->exclMask)));
#endif
return rc;
}
/*
** For connection p, unlock all of the locks identified by the unlockMask
** parameter.
*/
static int winShmUnlock(
winShmFile *pFile, /* The underlying shared-memory file */
winShm *p, /* The connection to be unlocked */
u8 unlockMask /* Mask of locks to be unlocked */
){
int rc; /* Result code */
winShm *pX; /* For looping over all sibling connections */
u8 allMask; /* Union of locks held by connections other than "p" */
/* Access to the winShmFile object is serialized by the caller */
assert( sqlite3_mutex_held(pFile->mutex) );
/* don't attempt to unlock anything we don't have locks for */
if( (unlockMask & (p->exclMask|p->sharedMask)) != unlockMask ){
OSTRACE(("SHM-LOCK %d unlocking more than we have locked - requested %s - have %s\n",
pFile->hFile.h,
winShmLockString(unlockMask),
winShmLockString(p->exclMask|p->sharedMask)));
unlockMask &= (p->exclMask|p->sharedMask);
}
/* Compute locks held by sibling connections */
allMask = 0;
for(pX=pFile->pFirst; pX; pX=pX->pNext){
if( pX==p ) continue;
assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
allMask |= pX->sharedMask;
}
/* Unlock the system-level locks */
if( (unlockMask & allMask)!=unlockMask ){
rc = winShmSystemLock(pFile, _SHM_UNLCK, unlockMask & ~allMask);
}else{
rc = SQLITE_OK;
}
/* Undo the local locks */
if( rc==SQLITE_OK ){
p->exclMask &= ~unlockMask;
p->sharedMask &= ~unlockMask;
}
return rc;
}
/*
** Get reader locks for connection p on all locks in the readMask parameter.
*/
static int winShmSharedLock(
winShmFile *pFile, /* The underlying shared-memory file */
winShm *p, /* The connection to get the shared locks */
u8 readMask /* Mask of shared locks to be acquired */
){
int rc; /* Result code */
winShm *pX; /* For looping over all sibling connections */
u8 allShared; /* Union of locks held by connections other than "p" */
/* Access to the winShmFile object is serialized by the caller */
assert( sqlite3_mutex_held(pFile->mutex) );
/* Find out which shared locks are already held by sibling connections.
** If any sibling already holds an exclusive lock, go ahead and return
** SQLITE_BUSY.
*/
allShared = 0;
for(pX=pFile->pFirst; pX; pX=pX->pNext){
if( pX==p ) continue;
if( (pX->exclMask & readMask)!=0 ) return SQLITE_BUSY;
allShared |= pX->sharedMask;
}
/* Get shared locks at the system level, if necessary */
if( (~allShared) & readMask ){
rc = winShmSystemLock(pFile, _SHM_RDLCK, readMask);
}else{
rc = SQLITE_OK;
}
/* Get the local shared locks */
if( rc==SQLITE_OK ){
p->sharedMask |= readMask;
}
return rc;
}
/*
** For connection p, get an exclusive lock on all locks identified in
** the writeMask parameter.
*/
static int winShmExclusiveLock(
winShmFile *pFile, /* The underlying shared-memory file */
winShm *p, /* The connection to get the exclusive locks */
u8 writeMask /* Mask of exclusive locks to be acquired */
){
int rc; /* Result code */
winShm *pX; /* For looping over all sibling connections */
/* Access to the winShmFile object is serialized by the caller */
assert( sqlite3_mutex_held(pFile->mutex) );
/* Make sure no sibling connections hold locks that will block this
** lock. If any do, return SQLITE_BUSY right away.
*/
for(pX=pFile->pFirst; pX; pX=pX->pNext){
if( pX==p ) continue;
if( (pX->exclMask & writeMask)!=0 ) return SQLITE_BUSY;
if( (pX->sharedMask & writeMask)!=0 ) return SQLITE_BUSY;
}
/* Get the exclusive locks at the system level. Then if successful
** also mark the local connection as being locked.
*/
rc = winShmSystemLock(pFile, _SHM_WRLCK, writeMask);
if( rc==SQLITE_OK ){
p->sharedMask &= ~writeMask;
p->exclMask |= writeMask;
}
return rc;
}
/*
** Purge the winShmFileList list of all entries with winShmFile.nRef==0.
**
** This is not a VFS shared-memory method; it is a utility function called
** by VFS shared-memory methods.
*/
static void winShmPurge(void){
winShmFile **pp;
winShmFile *p;
assert( winShmMutexHeld() );
pp = &winShmFileList;
while( (p = *pp)!=0 ){
if( p->nRef==0 ){
if( p->mutex ) sqlite3_mutex_free(p->mutex);
if( p->mutexBuf ) sqlite3_mutex_free(p->mutexBuf);
if( p->pMMapBuf ){
UnmapViewOfFile(p->pMMapBuf);
}
if( INVALID_HANDLE_VALUE != p->hMap ){
CloseHandle(p->hMap);
}
if( p->hFile.h != INVALID_HANDLE_VALUE ) {
winClose((sqlite3_file *)&p->hFile);
}
*pp = p->pNext;
sqlite3_free(p);
}else{
pp = &p->pNext;
}
}
}
/*
** Open a shared-memory area. This particular implementation uses
** mmapped files.
**
** zName is a filename used to identify the shared-memory area. The
** implementation does not (and perhaps should not) use this name
** directly, but rather use it as a template for finding an appropriate
** name for the shared-memory storage. In this implementation, the
** string "-index" is appended to zName and used as the name of the
** mmapped file.
**
** When opening a new shared-memory file, if no other instances of that
** file are currently open, in this process or in other processes, then
** the file must be truncated to zero length or have its header cleared.
*/
static int winShmOpen(
sqlite3_vfs *pVfs, /* The VFS */
const char *zName, /* Name of the corresponding database file */
sqlite3_shm **pShm /* Write the winShm object created here */
){
struct winShm *p; /* The connection to be opened */
struct winShmFile *pFile = 0; /* The underlying mmapped file */
int rc; /* Result code */
struct winShmFile *pNew; /* Newly allocated pFile */
int nName; /* Size of zName in bytes */
char zFullpath[MAX_PATH+1]; /* Temp buffer for full file name */
rc = winFullPathname(pVfs, zName, MAX_PATH, zFullpath);
if( rc ) return rc;
/* Allocate space for the new sqlite3_shm object. Also speculatively
** allocate space for a new winShmFile and filename.
*/
p = sqlite3_malloc( sizeof(*p) );
if( p==0 ) return SQLITE_NOMEM;
memset(p, 0, sizeof(*p));
nName = sqlite3Strlen30(zFullpath);
pNew = sqlite3_malloc( sizeof(*pFile) + nName + 15 );
if( pNew==0 ){
sqlite3_free(p);
return SQLITE_NOMEM;
}
memset(pNew, 0, sizeof(*pNew));
pNew->zFilename = (char*)&pNew[1];
sqlite3_snprintf(nName+12, pNew->zFilename, "%s-wal-index", zFullpath);
/* Look to see if there is an existing winShmFile that can be used.
** If no matching winShmFile currently exists, create a new one.
*/
winShmEnterMutex();
for(pFile = winShmFileList; pFile; pFile=pFile->pNext){
/* TBD need to come up with better match here. Perhaps
** use FILE_ID_BOTH_DIR_INFO Structure.
*/
if( sqlite3StrICmp(pFile->zFilename, pNew->zFilename)==0 ) break;
}
if( pFile ){
sqlite3_free(pNew);
}else{
pFile = pNew;
pNew = 0;
pFile->pMMapBuf = NULL;
pFile->hMap = INVALID_HANDLE_VALUE;
((winFile*)(&pFile->hFile))->h = INVALID_HANDLE_VALUE;
pFile->pNext = winShmFileList;
winShmFileList = pFile;
pFile->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
if( pFile->mutex==0 ){
rc = SQLITE_NOMEM;
goto shm_open_err;
}
pFile->mutexBuf = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
if( pFile->mutexBuf==0 ){
rc = SQLITE_NOMEM;
goto shm_open_err;
}
rc = winOpen(pVfs,
pFile->zFilename, /* Name of the file (UTF-8) */
(sqlite3_file *)&pFile->hFile, /* Write the SQLite file handle here */
SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, /* Open mode flags */
0);
if( SQLITE_OK!=rc ){
rc = SQLITE_CANTOPEN_BKPT;
goto shm_open_err;
}
/* Check to see if another process is holding the dead-man switch.
** If not, truncate the file to zero length.
*/
if( winShmSystemLock(pFile, _SHM_WRLCK, WIN_SHM_DMS)==SQLITE_OK ){
rc = winTruncate((sqlite3_file *)&pFile->hFile, 0);
}
if( rc==SQLITE_OK ){
rc = winShmSystemLock(pFile, _SHM_RDLCK, WIN_SHM_DMS);
}
if( rc ) goto shm_open_err;
}
/* Make the new connection a child of the winShmFile */
p->pFile = pFile;
p->pNext = pFile->pFirst;
#ifdef SQLITE_DEBUG
p->id = pFile->nextShmId++;
#endif
pFile->pFirst = p;
pFile->nRef++;
*pShm = (sqlite3_shm*)p;
winShmLeaveMutex();
return SQLITE_OK;
/* Jump here on any error */
shm_open_err:
winShmSystemLock(pFile, _SHM_UNLCK, WIN_SHM_DMS);
winShmPurge(); /* This call frees pFile if required */
sqlite3_free(p);
sqlite3_free(pNew);
*pShm = 0;
winShmLeaveMutex();
return rc;
}
/*
** Close a connection to shared-memory. Delete the underlying
** storage if deleteFlag is true.
*/
static int winShmClose(
sqlite3_vfs *pVfs, /* The VFS */
sqlite3_shm *pSharedMem, /* The shared-memory to be closed */
int deleteFlag /* Delete after closing if true */
){
winShm *p; /* The connection to be closed */
winShmFile *pFile; /* The underlying shared-memory file */
winShm **pp; /* For looping over sibling connections */
UNUSED_PARAMETER(pVfs);
if( pSharedMem==0 ) return SQLITE_OK;
p = (struct winShm*)pSharedMem;
pFile = p->pFile;
/* Verify that the connection being closed holds no locks */
assert( p->exclMask==0 );
assert( p->sharedMask==0 );
/* Remove connection p from the set of connections associated with pFile */
sqlite3_mutex_enter(pFile->mutex);
for(pp=&pFile->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
*pp = p->pNext;
/* Free the connection p */
sqlite3_free(p);
sqlite3_mutex_leave(pFile->mutex);
/* If pFile->nRef has reached 0, then close the underlying
** shared-memory file, too */
winShmEnterMutex();
assert( pFile->nRef>0 );
pFile->nRef--;
if( pFile->nRef==0 ){
if( deleteFlag ) winDelete(pVfs, pFile->zFilename, 0);
winShmPurge();
}
winShmLeaveMutex();
return SQLITE_OK;
}
/*
** Query and/or changes the size of the underlying storage for
** a shared-memory segment. The reqSize parameter is the new size
** of the underlying storage, or -1 to do just a query. The size
** of the underlying storage (after resizing if resizing occurs) is
** written into pNewSize.
**
** This routine does not (necessarily) change the size of the mapping
** of the underlying storage into memory. Use xShmGet() to change
** the mapping size.
**
** The reqSize parameter is the minimum size requested. The implementation
** is free to expand the storage to some larger amount if it chooses.
*/
static int winShmSize(
sqlite3_vfs *pVfs, /* The VFS */
sqlite3_shm *pSharedMem, /* Pointer returned by winShmOpen() */
int reqSize, /* Requested size. -1 for query only */
int *pNewSize /* Write new size here */
){
winShm *p = (winShm*)pSharedMem;
winShmFile *pFile = p->pFile;
int rc = SQLITE_OK;
UNUSED_PARAMETER(pVfs);
if( reqSize>=0 ){
reqSize = (reqSize + SQLITE_WIN_SHM_INCR - 1)/SQLITE_WIN_SHM_INCR;
reqSize *= SQLITE_WIN_SHM_INCR;
rc = winTruncate((sqlite3_file *)&pFile->hFile, reqSize);
}
if( SQLITE_OK==rc ){
sqlite3_int64 sz;
rc = winFileSize((sqlite3_file *)&pFile->hFile, &sz);
if( SQLITE_OK==rc ){
*pNewSize = (int)sz;
}else{
*pNewSize = 0;
rc = SQLITE_IOERR;
}
}
return rc;
}
/*
** Map the shared storage into memory. The minimum size of the
** mapping should be reqMapSize if reqMapSize is positive. If
** reqMapSize is zero or negative, the implementation can choose
** whatever mapping size is convenient.
**
** *ppBuf is made to point to the memory which is a mapping of the
** underlying storage. A mutex is acquired to prevent other threads
** from running while *ppBuf is in use in order to prevent other threads
** remapping *ppBuf out from under this thread. The winShmRelease()
** call will release the mutex. However, if the lock state is CHECKPOINT,
** the mutex is not acquired because CHECKPOINT will never remap the
** buffer. RECOVER might remap, though, so CHECKPOINT will acquire
** the mutex if and when it promotes to RECOVER.
**
** RECOVER needs to be atomic. The same mutex that prevents *ppBuf from
** being remapped also prevents more than one thread from being in
** RECOVER at a time. But, RECOVER sometimes wants to remap itself.
** To prevent RECOVER from losing its lock while remapping, the
** mutex is not released by winShmRelease() when in RECOVER.
**
** *pNewMapSize is set to the size of the mapping.
**
** *ppBuf and *pNewMapSize might be NULL and zero if no space has
** yet been allocated to the underlying storage.
*/
static int winShmGet(
sqlite3_vfs *pVfs, /* The VFS */
sqlite3_shm *pSharedMem, /* Pointer returned by winShmOpen() */
int reqMapSize, /* Requested size of mapping. -1 means don't care */
int *pNewMapSize, /* Write new size of mapping here */
void **ppBuf /* Write mapping buffer origin here */
){
winShm *p = (winShm*)pSharedMem;
winShmFile *pFile = p->pFile;
int rc = SQLITE_OK;
if( p->lockState!=SQLITE_SHM_CHECKPOINT && p->hasMutexBuf==0 ){
assert( sqlite3_mutex_notheld(pFile->mutex) );
sqlite3_mutex_enter(pFile->mutexBuf);
p->hasMutexBuf = 1;
}
sqlite3_mutex_enter(pFile->mutex);
if( pFile->szMap==0 || reqMapSize>pFile->szMap ){
int actualSize;
if( winShmSize(pVfs, pSharedMem, -1, &actualSize)==SQLITE_OK
&& reqMapSize<actualSize
){
reqMapSize = actualSize;
}
if( pFile->pMMapBuf ){
if( !UnmapViewOfFile(pFile->pMMapBuf) ){
pFile->lastErrno = GetLastError();
rc = SQLITE_IOERR;
}
CloseHandle(pFile->hMap);
pFile->hMap = INVALID_HANDLE_VALUE;
}
if( SQLITE_OK == rc ){
pFile->pMMapBuf = 0;
if( reqMapSize == 0 ){
/* can't create 0 byte file mapping in Windows */
pFile->szMap = 0;
}else{
/* create the file mapping object */
if( INVALID_HANDLE_VALUE == pFile->hMap ){
/* TBD provide an object name to each file
** mapping so it can be re-used across processes.
*/
pFile->hMap = CreateFileMapping(pFile->hFile.h,
NULL,
PAGE_READWRITE,
0,
reqMapSize,
NULL);
}
if( NULL==pFile->hMap ){
pFile->lastErrno = GetLastError();
rc = SQLITE_IOERR;
pFile->szMap = 0;
pFile->hMap = INVALID_HANDLE_VALUE;
}else{
pFile->pMMapBuf = MapViewOfFile(pFile->hMap,
FILE_MAP_WRITE | FILE_MAP_READ,
0,
0,
reqMapSize);
if( !pFile->pMMapBuf ){
pFile->lastErrno = GetLastError();
rc = SQLITE_IOERR;
pFile->szMap = 0;
}else{
pFile->szMap = reqMapSize;
}
}
}
}
}
*pNewMapSize = pFile->szMap;
*ppBuf = pFile->pMMapBuf;
sqlite3_mutex_leave(pFile->mutex);
return rc;
}
/*
** Release the lock held on the shared memory segment so that other
** threads are free to resize it if necessary.
**
** If the lock is not currently held, this routine is a harmless no-op.
**
** If the shared-memory object is in lock state RECOVER, then we do not
** really want to release the lock, so in that case too, this routine
** is a no-op.
*/
static int winShmRelease(sqlite3_vfs *pVfs, sqlite3_shm *pSharedMem){
winShm *p = (winShm*)pSharedMem;
UNUSED_PARAMETER(pVfs);
if( p->hasMutexBuf && p->lockState!=SQLITE_SHM_RECOVER ){
winShmFile *pFile = p->pFile;
assert( sqlite3_mutex_notheld(pFile->mutex) );
sqlite3_mutex_leave(pFile->mutexBuf);
p->hasMutexBuf = 0;
}
return SQLITE_OK;
}
/*
** Symbolic names for LOCK states used for debugging.
*/
#ifdef SQLITE_DEBUG
static const char *azLkName[] = {
"UNLOCK",
"READ",
"READ_FULL",
"WRITE",
"PENDING",
"CHECKPOINT",
"RECOVER"
};
#endif
/*
** Change the lock state for a shared-memory segment.
*/
static int winShmLock(
sqlite3_vfs *pVfs, /* The VFS */
sqlite3_shm *pSharedMem, /* Pointer from winShmOpen() */
int desiredLock, /* One of SQLITE_SHM_xxxxx locking states */
int *pGotLock /* The lock you actually got */
){
winShm *p = (winShm*)pSharedMem;
winShmFile *pFile = p->pFile;
int rc = SQLITE_PROTOCOL;
UNUSED_PARAMETER(pVfs);
/* Note that SQLITE_SHM_READ_FULL and SQLITE_SHM_PENDING are never
** directly requested; they are side effects from requesting
** SQLITE_SHM_READ and SQLITE_SHM_CHECKPOINT, respectively.
*/
assert( desiredLock==SQLITE_SHM_UNLOCK
|| desiredLock==SQLITE_SHM_READ
|| desiredLock==SQLITE_SHM_WRITE
|| desiredLock==SQLITE_SHM_CHECKPOINT
|| desiredLock==SQLITE_SHM_RECOVER );
/* Return directly if this is just a lock state query, or if
** the connection is already in the desired locking state.
*/
if( desiredLock==p->lockState
|| (desiredLock==SQLITE_SHM_READ && p->lockState==SQLITE_SHM_READ_FULL)
){
OSTRACE(("SHM-LOCK %d shmid-%d, pid-%d request %s and got %s\n",
pFile->hFile.h,
p->id, (int)GetCurrentProcessId(), azLkName[desiredLock], azLkName[p->lockState]));
if( pGotLock ) *pGotLock = p->lockState;
return SQLITE_OK;
}
OSTRACE(("SHM-LOCK %d shmid-%d, pid-%d request %s->%s\n",
pFile->hFile.h,
p->id, (int)GetCurrentProcessId(), azLkName[p->lockState], azLkName[desiredLock]));
if( desiredLock==SQLITE_SHM_RECOVER && !p->hasMutexBuf ){
assert( sqlite3_mutex_notheld(pFile->mutex) );
sqlite3_mutex_enter(pFile->mutexBuf);
p->hasMutexBuf = 1;
}
sqlite3_mutex_enter(pFile->mutex);
switch( desiredLock ){
case SQLITE_SHM_UNLOCK: {
assert( p->lockState!=SQLITE_SHM_RECOVER );
winShmUnlock(pFile, p, WIN_SHM_A|WIN_SHM_B|WIN_SHM_C|WIN_SHM_D);
rc = SQLITE_OK;
p->lockState = SQLITE_SHM_UNLOCK;
break;
}
case SQLITE_SHM_READ: {
if( p->lockState==SQLITE_SHM_UNLOCK ){
int nAttempt;
rc = SQLITE_BUSY;
assert( p->lockState==SQLITE_SHM_UNLOCK );
for(nAttempt=0; nAttempt<5 && rc==SQLITE_BUSY; nAttempt++){
rc = winShmSharedLock(pFile, p, WIN_SHM_A|WIN_SHM_B);
if( rc==SQLITE_BUSY ){
rc = winShmSharedLock(pFile, p, WIN_SHM_D);
if( rc==SQLITE_OK ){
p->lockState = SQLITE_SHM_READ_FULL;
}
}else{
winShmUnlock(pFile, p, WIN_SHM_B);
p->lockState = SQLITE_SHM_READ;
}
}
}else{
assert( p->lockState==SQLITE_SHM_WRITE
|| p->lockState==SQLITE_SHM_RECOVER );
rc = winShmSharedLock(pFile, p, WIN_SHM_A);
winShmUnlock(pFile, p, WIN_SHM_C|WIN_SHM_D);
p->lockState = SQLITE_SHM_READ;
}
break;
}
case SQLITE_SHM_WRITE: {
assert( p->lockState==SQLITE_SHM_READ
|| p->lockState==SQLITE_SHM_READ_FULL );
rc = winShmExclusiveLock(pFile, p, WIN_SHM_C|WIN_SHM_D);
if( rc==SQLITE_OK ){
p->lockState = SQLITE_SHM_WRITE;
}
break;
}
case SQLITE_SHM_CHECKPOINT: {
assert( p->lockState==SQLITE_SHM_UNLOCK
|| p->lockState==SQLITE_SHM_PENDING
);
if( p->lockState==SQLITE_SHM_UNLOCK ){
rc = winShmExclusiveLock(pFile, p, WIN_SHM_B|WIN_SHM_C);
if( rc==SQLITE_OK ){
p->lockState = SQLITE_SHM_PENDING;
}
}
if( p->lockState==SQLITE_SHM_PENDING ){
rc = winShmExclusiveLock(pFile, p, WIN_SHM_A);
if( rc==SQLITE_OK ){
p->lockState = SQLITE_SHM_CHECKPOINT;
}
}
break;
}
default: {
assert( desiredLock==SQLITE_SHM_RECOVER );
assert( p->lockState==SQLITE_SHM_READ
|| p->lockState==SQLITE_SHM_READ_FULL
);
assert( sqlite3_mutex_held(pFile->mutexBuf) );
rc = winShmExclusiveLock(pFile, p, WIN_SHM_C);
if( rc==SQLITE_OK ){
p->lockState = SQLITE_SHM_RECOVER;
}
break;
}
}
sqlite3_mutex_leave(pFile->mutex);
OSTRACE(("SHM-LOCK %d shmid-%d, pid-%d got %s\n",
pFile->hFile.h,
p->id, (int)GetCurrentProcessId(), azLkName[p->lockState]));
if( pGotLock ) *pGotLock = p->lockState;
return rc;
}
#else
# define winShmOpen 0
# define winShmSize 0
# define winShmGet 0
# define winShmRelease 0
# define winShmLock 0
# define winShmClose 0
#endif /* #ifndef SQLITE_OMIT_WAL */
/*
** Initialize and deinitialize the operating system interface.
*/
int sqlite3_os_init(void){
static sqlite3_vfs winVfs = {
2, /* iVersion */
sizeof(winFile), /* szOsFile */
MAX_PATH, /* mxPathname */
0, /* pNext */
"win32", /* zName */
0, /* pAppData */
winOpen, /* xOpen */
winDelete, /* xDelete */
winAccess, /* xAccess */
winFullPathname, /* xFullPathname */
winDlOpen, /* xDlOpen */
winDlError, /* xDlError */
winDlSym, /* xDlSym */
winDlClose, /* xDlClose */
winRandomness, /* xRandomness */
winSleep, /* xSleep */
winCurrentTime, /* xCurrentTime */
winGetLastError, /* xGetLastError */
winShmOpen, /* xShmOpen */
winShmSize, /* xShmSize */
winShmGet, /* xShmGet */
winShmRelease, /* xShmRelease */
winShmLock, /* xShmLock */
winShmClose, /* xShmClose */
0, /* xRename */
winCurrentTimeInt64, /* xCurrentTimeInt64 */
};
sqlite3_vfs_register(&winVfs, 1);
return SQLITE_OK;
}
int sqlite3_os_end(void){
return SQLITE_OK;
}
#endif /* SQLITE_OS_WIN */