blob: b670026861a57998b51dc196b3ede9bfbc398a71 [file] [log] [blame]
/*
** 2017-10-13
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code to implement an MD5 extension to TCL.
*/
#include "sqlite3.h"
#include <stdlib.h>
#include <string.h>
#include "sqlite3.h"
#if defined(INCLUDE_SQLITE_TCL_H)
# include "sqlite_tcl.h"
#else
# include "tcl.h"
# ifndef SQLITE_TCLAPI
# define SQLITE_TCLAPI
# endif
#endif
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
/*
* If compiled on a machine that doesn't have a 32-bit integer,
* you just set "uint32" to the appropriate datatype for an
* unsigned 32-bit integer. For example:
*
* cc -Duint32='unsigned long' md5.c
*
*/
#ifndef uint32
# define uint32 unsigned int
#endif
struct MD5Context {
int isInit;
uint32 buf[4];
uint32 bits[2];
unsigned char in[64];
};
typedef struct MD5Context MD5Context;
/*
* Note: this code is harmless on little-endian machines.
*/
static void byteReverse (unsigned char *buf, unsigned longs){
uint32 t;
do {
t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
((unsigned)buf[1]<<8 | buf[0]);
*(uint32 *)buf = t;
buf += 4;
} while (--longs);
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void MD5Transform(uint32 buf[4], const uint32 in[16]){
register uint32 a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
static void MD5Init(MD5Context *ctx){
ctx->isInit = 1;
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
static
void MD5Update(MD5Context *ctx, const unsigned char *buf, unsigned int len){
uint32 t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if ( t ) {
unsigned char *p = (unsigned char *)ctx->in + t;
t = 64-t;
if (len < t) {
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64) {
memcpy(ctx->in, buf, 64);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
static void MD5Final(unsigned char digest[16], MD5Context *ctx){
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(p, 0, count-8);
}
byteReverse(ctx->in, 14);
/* Append length in bits and transform */
memcpy(ctx->in + 14*4, ctx->bits, 8);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
byteReverse((unsigned char *)ctx->buf, 4);
memcpy(digest, ctx->buf, 16);
}
/*
** Convert a 128-bit MD5 digest into a 32-digit base-16 number.
*/
static void MD5DigestToBase16(unsigned char *digest, char *zBuf){
static char const zEncode[] = "0123456789abcdef";
int i, j;
for(j=i=0; i<16; i++){
int a = digest[i];
zBuf[j++] = zEncode[(a>>4)&0xf];
zBuf[j++] = zEncode[a & 0xf];
}
zBuf[j] = 0;
}
/*
** Convert a 128-bit MD5 digest into sequency of eight 5-digit integers
** each representing 16 bits of the digest and separated from each
** other by a "-" character.
*/
static void MD5DigestToBase10x8(unsigned char digest[16], char zDigest[50]){
int i, j;
unsigned int x;
for(i=j=0; i<16; i+=2){
x = digest[i]*256 + digest[i+1];
if( i>0 ) zDigest[j++] = '-';
sqlite3_snprintf(50-j, &zDigest[j], "%05u", x);
j += 5;
}
zDigest[j] = 0;
}
/*
** A TCL command for md5. The argument is the text to be hashed. The
** Result is the hash in base64.
*/
static int SQLITE_TCLAPI md5_cmd(
void*cd,
Tcl_Interp *interp,
int argc,
const char **argv
){
MD5Context ctx;
unsigned char digest[16];
char zBuf[50];
void (*converter)(unsigned char*, char*);
if( argc!=2 ){
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
" TEXT\"", (char*)0);
return TCL_ERROR;
}
MD5Init(&ctx);
MD5Update(&ctx, (unsigned char*)argv[1], (unsigned)strlen(argv[1]));
MD5Final(digest, &ctx);
converter = (void(*)(unsigned char*,char*))cd;
converter(digest, zBuf);
Tcl_AppendResult(interp, zBuf, (char*)0);
return TCL_OK;
}
/*
** A TCL command to take the md5 hash of a file. The argument is the
** name of the file.
*/
static int SQLITE_TCLAPI md5file_cmd(
void*cd,
Tcl_Interp *interp,
int argc,
const char **argv
){
FILE *in;
int ofst;
int amt;
MD5Context ctx;
void (*converter)(unsigned char*, char*);
unsigned char digest[16];
char zBuf[10240];
if( argc!=2 && argc!=4 ){
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
" FILENAME [OFFSET AMT]\"", (char*)0);
return TCL_ERROR;
}
if( argc==4 ){
ofst = atoi(argv[2]);
amt = atoi(argv[3]);
}else{
ofst = 0;
amt = 2147483647;
}
in = fopen(argv[1],"rb");
if( in==0 ){
Tcl_AppendResult(interp,"unable to open file \"", argv[1],
"\" for reading", (char*)0);
return TCL_ERROR;
}
fseek(in, ofst, SEEK_SET);
MD5Init(&ctx);
while( amt>0 ){
int n;
n = (int)fread(zBuf, 1, sizeof(zBuf)<=amt ? sizeof(zBuf) : amt, in);
if( n<=0 ) break;
MD5Update(&ctx, (unsigned char*)zBuf, (unsigned)n);
amt -= n;
}
fclose(in);
MD5Final(digest, &ctx);
converter = (void(*)(unsigned char*,char*))cd;
converter(digest, zBuf);
Tcl_AppendResult(interp, zBuf, (char*)0);
return TCL_OK;
}
/*
** Register the four new TCL commands for generating MD5 checksums
** with the TCL interpreter.
*/
int Md5_Init(Tcl_Interp *interp){
Tcl_CreateCommand(interp, "md5", (Tcl_CmdProc*)md5_cmd,
MD5DigestToBase16, 0);
Tcl_CreateCommand(interp, "md5-10x8", (Tcl_CmdProc*)md5_cmd,
MD5DigestToBase10x8, 0);
Tcl_CreateCommand(interp, "md5file", (Tcl_CmdProc*)md5file_cmd,
MD5DigestToBase16, 0);
Tcl_CreateCommand(interp, "md5file-10x8", (Tcl_CmdProc*)md5file_cmd,
MD5DigestToBase10x8, 0);
return TCL_OK;
}
/*
** During testing, the special md5sum() aggregate function is available.
** inside SQLite. The following routines implement that function.
*/
static void md5step(sqlite3_context *context, int argc, sqlite3_value **argv){
MD5Context *p;
int i;
if( argc<1 ) return;
p = sqlite3_aggregate_context(context, sizeof(*p));
if( p==0 ) return;
if( !p->isInit ){
MD5Init(p);
}
for(i=0; i<argc; i++){
const char *zData = (char*)sqlite3_value_text(argv[i]);
if( zData ){
MD5Update(p, (unsigned char*)zData, (int)strlen(zData));
}
}
}
static void md5finalize(sqlite3_context *context){
MD5Context *p;
unsigned char digest[16];
char zBuf[33];
p = sqlite3_aggregate_context(context, sizeof(*p));
MD5Final(digest,p);
MD5DigestToBase16(digest, zBuf);
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
int Md5_Register(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pThunk
){
int rc = sqlite3_create_function(db, "md5sum", -1, SQLITE_UTF8, 0, 0,
md5step, md5finalize);
sqlite3_overload_function(db, "md5sum", -1); /* To exercise this API */
return rc;
}